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O medo serve para identificar
algo perigoso e então assumir

uma postura de preservação da
vida, no entanto quando o medo
te paralisa, sua liberdade e sua

própria vida podem ser perdidas.
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A necessidade de Inteligência Artificial Explicável se torna aparente à medida
que os modelos de aprendizagem profunda crescem em popularidade e a Inteligência
Artificial é usada em cada vez mais áreas. Muitas técnicas foram propostas até agora
para produzir explicações legíveis para os processos de decisão dos classificadores,
cada um resolvendo uma pequena peça deste enorme quebra-cabeça. Uma parte
disso são as explicações visuais, que buscam produzir imagens que possam destacar o
que é o conteúdo relevante para o classificador e indique ao usuário se o modelo toma
sua decisão em uma base sólida, ou ao acaso, ou mesmo em uma premissa errada.
Portanto, soluções como LIME encontram maneiras de gerar essas explicações
em diferentes modelos de aprendizagem, fornecendo uma ferramenta versátil para
compreender melhor os modelos de classificação. Embora essas soluções geralmente
tentem ser o mais agnóstico possível, a advertência natural é que eles são mais
adequados para algumas classes de problemas e classificadores do que outros.
Portanto, uma série de modelos explicáveis diferentes são necessários para cobrir
o vasto espaço de modelos possíveis para explicar. Nós apresentamos um desses
modelos, o Fuzzy Regression WiSARD Interpreter (FRWI), para tentar produzir
explicações de alta qualidade a partir de modelos baseados em WiSARD. Além
disso, como precisamos de uma maneira objetiva e quantificável de avaliar como os
diferentes modelos se comparam, também apresentamos nosso próprio Interpretation
Capacity Score (ICS), uma medida para julgar as explicações produzidas. Sob esta
métrica além dos subjetivos testes qualitativos, esta nova abordagem FRWI teve
resultados promissores, que podem superar o LIME nos cenários testados e fornecer
explicações compreensíveis.
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The need for eXplainable Artificial Intelligence becomes apparent as deep
learning models grow in popularity and Artificial Intelligence is used in more and
more areas. Many techniques have been proposed thus far to produce human-
legible explanations to the decision processes of classifiers, each solving a small
piece of this enormous puzzle. One part of this, are the visual explanations, which
seeks to produce images which can highlight what is the relevant content to the
classifier, and clue the user in as to whether the model makes its decision on a
sound basis, or at random, or even on a mistaken premise. Thus, solutions such as
LIME find ways to generate theses explanations across different learning models,
providing a versatile tool to better understand classification models. Although
said solutions usually attempt to be as model agnostic as possible, the natural
caveat is that they are better suited for some classes of problems and classifiers
than others. Therefore, a number of different explainable models are needed in
order to cover the vast space of possible models to explain. We introduce one such
model, the Fuzzy Regression WiSARD Interpreter (FRWI), to attempt to produce
higher quality explanations from WiSARD based models. Furthermore, as we need
an objective, quantifiable way of gauging how different models compare, we also
introduce our own Interpretation Capacity Score (ICS), a measurement process to
judge the explanations produced. Under this metric as well as subjective, qualitative
tests, this new FRWI approach had promising results, which could beat LIME in
the tested scenarios and provide comprehensible explanations.
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Chapter 1

Introduction

The research on eXplainable Artificial Intelligence (XAI) [2] grows with the demand
for understanding the decision process made by learning models. It seeks to supply
the final user or the designer of the model the explanations needed to comprehend
the model’s decision.

This demand arises from the need to answer certain questions. For instance,
when law enforcement or legislators request the reasoning behind some incident
involving an AI system from some company. The XAI is a tool that tries to provide
humans such an explanation for the machine decision process. There are different
solutions for different scenarios. In an image classification system, it could present
some report of what is relevant to the classifier. In a deep explanation system, it
could produce images from the concept learned by the deep model.

1.1 Motivation

There are some decisions processes where the explanation is fundamental. As a
notable example, consider disease classification [42]. Doctors need to understand
why the model suggests a patient has some disease, and in order to do so, he or she
needs to know how the classifier reaches its conclusion. In a tumour classification, for
example, it is necessary to know where is the tumour, so an explanation of relevant
regions can determine that, and also inform to the doctor if the classifier has decided
for the wrong reason. This explanation producing process can also significantly help
the user to learn when to use or not to use the classifier.

One method to produce an explanation is to generate visualisations that highlight
the relevant regions in the image. LIME [39] is one model that does so. It analyses
the classifier locally to obtain answers about its behaviour. Despite LIME being
model agnostic, it does not perform well in all scenarios, including WiSARD [1]
classifier, where the explanation produced by LIME is hard to grasp.

Following are some motivations for this work:
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• The first and most important one is the comprehension of black-boxes. The
classifiers usually use a very complex model whose behaviour is hard to com-
prehend, because they use a very large amount of variables.

• Another reason is to have more assets to work with the great variety of learn-
ing models that exist, where each one may perform better for given specific
scenarios.

• The initial reason for this work is to develop an explanation for the models
based on the WiSARD classifier, which can help to improve the model and
trust in it in real-life scenarios, as well as to improve the model architecture
to reach new research fields.

These motivations are also the base for the contributions exposed in detail in
the next section.

1.2 Contributions

The development of the research followed the path presented below.
While looking for existing methods to generate explanations to the WiSARD

model, the explainer LIME was found, whose purpose was to produce explanations
agnostic to the learning model. However, although LIME can guarantee agnostic
explanations, it cannot universally guarantee explanation quality. That is to say,
although it can explain every model, it cannot produce useful explanations to every
model, and that was exactly the result encountered with WiSARD. The explanations
LIME produced for WiSARD marked almost whole image as relevant, therefore
failing to elucidate any aspect of the WiSARD’s decision process. Extensive analysis
of the working process of LIME highlighted how one of the its steps attempts to
approximate the values through linear regression, using a line to approximate to a
complex function or a discontinuous function, such as the ones WiSARD produces.

This made the problem clear, we needed to be able to handle data that is not
easily approximated to a linear function, and that is the role of the Regression
WiSARD (ReW) model, as it is specifically made to solve regression problems with a
discontinuous approach. As for what data would be tested, the ReW takes a binary
input. While it would have been possible to just feed ReW randomly generated
images converted to binary, it was more useful to generate binary masks which
would highlight portions of the image and focus on those instead.

The main question remains, what the ReW will learn? Since the core objective is
to understand the decision WiSARD’s process, ReW must learn what it is relevant
to the classifier in a given classification. So the scope was narrowed to a single step

2



classification (local observation) in order to minimise the complexity of the classi-
fying function and consequently generate explanations that would more accurately
reflect the reality of the classification process.

The next focus point was on how to determine what is relevant to the classifier
within the random image generation and ReW learning process. At that point the
winning idea was to use a set of fuzzy rules to determine in a logic way what it
is relevant. Finally the last point, the set of fuzzy rules needed of input factors to
which the rules are applied, these factors are the context that has to be evaluated,
in our case they are the produced images and the responses given by the classifier,
to transform this into factors the distances between images and responses were cal-
culated, that is, the distances between the vectors and the corresponding "masked"
ones.

Although the process of learning what it is relevant is complete, it was missing
a minor important detail: the extraction of this information. There was however
already a process to extract what was learned by the WiSARD, this process is called
DRASiW [18] which produce a mental image. The final result achieved is the FRWI
model[16].

The main contribution of this work is the new explainable model based on WiS-
ARD (FRWI [16]), which is capable of producing visual explanations from the images
classifiers. To highlight the relevant regions in the image of the classification and
then provide some clues about its decision process in specific classifications. Some
qualitative experiments were developed to analyse the behaviour of explainable mod-
els, where it is possible to see if the explanations are comprehensible or not, and
also useful for some conclusion.

These explainable models need some metric to evaluate their performance, so a
new metric – the interpretation capacity score – was developed to fill this necessity.
Thus, this metric is also a new contribution from this work. Therefore some quan-
titative experiments with this metric were executed to analyse the performance of
the models, and also a possible reason for the acquired results.

Additional contribution brought about by this research include the Regression
WiSARD [17] developed in the Palm Oil Prediction competition on Kaggle [23],
which had a regression problem to predict the amount of oil produced by a palm
tree in a month. Thus, since the WiSARD model had no regression compatibility,
the Regression WiSARD was adapted from the n-tuple regression [24] to achieve
this goal. Furthermore, when research started there was no library to run and test
the models based on WiSARD, so a library called wisardpkg [28] was created to fill
this gap and become an unified tool of usage and experimentation with WiSARD
model and others.

3



1.3 Structure of this Document

Chapter 2 presents the area of eXplainable Artificial Intelligence and problems it
tries to solve, also how LIME’s internal operations works. As the novel explainable
model is a new way to solve these problems, it is important to present what it is
necessary to explain its building blocks. So Chapter 3 presents the WiSARD model
and how it works; a method to produce a global visualisation from the WiSARD
model called mental image; Regression WiSARD which helps the new explainable
model to aggregate information; and the fuzzy logic with is the core of the new
model. Finally, Chapter 4 presents the new model and each of its steps in detail.
To evaluate the new approach, plenty of experiments were made, as extensively
presented in Chapter 5. Thus, the work concludes with Chapter 6, which presents
what was achieved and possible future works for this research.

4



Chapter 2

eXplainable Artificial Intelligence

This chapter introduces the eXplainable Artificial Intelligence(XAI) [21], focusing
in the problem with providing reasoning. Because of that, the field of eXplainable
Artificial Intelligence arose to study the reasoning behind decisions made by a black-
boxes. The goal is for humans to be able to understand the concept learned by the
model and make better decisions based on that.

There are different situations where humans need an explanation from the model.
Justification, for example, a bank needs to provide a reason for a credit denial.
Discrimination is another possible situation, the model can discriminate people by
their skin colour or the location where they live. In medicine, Doctors needs to know
why a patient has been diagnosed with a certain disease determined by a model, in
order to decide on a treatment and to double check the machine’s findings [42].

Explainable models are a solution to generate such reasoning from a black-box
model. Those models use different methods to produce explanations, as detailed in
Section 2.2. One way to produce explanations is through counterfactual evidence
[7] which can play an important role in XAI. Alongside with the decision made
by a learning model, decisions that were not made are presented as well as some
representation of the criteria for that discard, making it easier to identify reasons
for the decision.

Moreover, the counterfacts allows users to make inferences with information that
they would otherwise neglect or be reluctant to include. A counterfact could take
shape as an explanation produced with images that try to present a reason for the
classification, which could then be used in new conjectures.

One kind of explainable model which works with images is LIME [39]. It produces
explanations in the domain of image classification. It evaluates a single classification
made by a model generating many inputs to the model, and it calculates whether
they are relevant for the model. Finally, LIME determines the explanation with a
linear model, as shown in the Section 2.3.

5



2.1 Concepts of XAI

The first important thing to make clear is the difference between interpretability
and explainability. This can cause some confusion. Based on the survey [2], the
interpretability refers to the passive characteristic from the model to be human
understandable, or in other words a given model makes sense for a human observer
as is. On the other hand, explainability can be view as the active characteristic of a
model, where a model takes action with the intent of clarifying its internal processes.

The survey [2] also gives us a definition for XAI:
“Given an audience, an explainable Artificial Intelligence is one that produces details
or reasons to make its functioning clear or easy to understand.”
This definition shows us that the explanation always depends on the audience, who
is directing the explanation. Thus, the XAI model produces some reasons to clarify
model decisions for certain audiences. The XAI aims to achieve a better understand-
ing of the learning models to make them trustworthy to the business sector and users
in general. Also, it has a second goal, which is to acquire knowledge through the
machine learning model to deal with huge amounts of data, and hopefully lead to
new knowledge.

There are various minor goals in which XAI can be useful as the survey [2]
details: trustworthiness, as mentioned before; causality, referring to finding causes
for problems in AI systems; transferability as XAI can elucidate the boundaries
which might affect the model; informativeness, with the intent to support decision
making; confidence, since there are many scenarios where confidence is expected
and XAI can help evaluate it; fairness, explainability can help guarantee fairness
in machine learning models; accessibility, allowing users to get more involved in
the process of improving and developing the ML models; interactivity, increasing
the ability of the model to interact with the user through an explainable model;
privacy awareness, XAI can be used to discover when models store private data in
its internal representation.

The next section introduces some approaches to reach some of these goals.

2.2 Types of approaches to produce explanations

There are different approaches to produce explanations, each one suitable for specific
situations; a deep explanation for deep learning models; interpretable models for
logical models and model induction to deal with any model as a black-box [21].

The deep explanation uses a modified deep learning model to learn features
which help in the explanation process. The Grad-CAM [40], for example, tries to
extract the relevant features on an image in a convolutional model, so the user can
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understand why the model takes a specific decision of classification.
The interpretable models use techniques to learn with more structured infor-

mation in order to have a more comprehensive decision process of the model. The
random forest model [22], for example, structures a decision tree based on the data
learned in order to make the classification. Although the structure information gen-
erated is not always suitable for humans to understand, but the decision path is
visible in the decision tree.

Lastly, the model induction, which tries to infer the decision process of a black-
box. After this inference, it produces the explanation of the model in a simple
way to humans. LIME [39] is an example of model induction in the classification
problem domain as can be seen in the next section. The current work fits in a model
induction type. It tries to infer the decision behind the classification without internal
information of the model. There are also other approaches to tackle explanation
production, such as the ones the survey [13] describes.

2.3 LIME

The Local Interpretable Model-agnostic Explanations (LIME) [39] is a technique
to explain predictions of classifiers, through a learning process locally around the
predictions. So this model analyses the classifier around a prediction and infers what
is relevant.

The inference process has two parts: sampling the input data and learning from
the produced data. The complete process is present below. This process produces
many examples based on the input; therefore, the new examples are close to the
given input. It gives each example to the classifier and gets its response. Each
produced example has a weight calculated by an exponential kernel function over
some distance equation. It then learns how the classifier responds in this situation.
It minimises the distance between the responses of the classifier and the complexity
of the explanation. It is a trade-off between fidelity to the responses and the com-
plexity of the explanation. More complex explanations usually means higher fidelity
explanations, but less readily interpretable. The result of LIME is a representation
by a binary vector where each position identifies the presence or absence of a fea-
ture in the raw data. When LIME minimises the complexity as a consequence, it
minimises the number of features appearing in the result.

1. Produce examples;

2. Classify new examples;

3. Calculate the weight of each example;
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4. Learns with the image and its weight;

5. Extract the info learned through the internal weights;

Figure 2.1: Husky classified as wolf [39]

In Figure 2.1, there is an image of a husky which the classifier identifies as a
wolf. In this case, the user asks the question why? LIME provides reasoning as can
be seen on the right-hand side, making it clear the classifier selected the snow as
relevant to the classification of wolves. The current work does in the same general
line, but before discussing it further, the next chapter presents the building blocks
of it.
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Chapter 3

Weightless WiSARD Model and
Fuzzy Logic

There are some essential concepts to understand before introducing the current work.
For that reason, this chapter presents the WiSARD [1] model, which is the base to
comprehend Mental Image [18] and Regression WiSARD [17], that the proposed
model uses.

The WiSARD is a weightless neural net, which uses binary inputs to learn, with
a speedy training process if compared to other models [36]. A new classification
algorithm called Bleaching [19] was developed recently, which improves general ac-
curacy. A mental image is a concept to gather the complete information learned
by the WiSARD model. As a result of this process, a picture emerges where the
distribution of the learned data through the features becomes visible.

Regression WiSARD came later to give WiSARD the possibility to perform
regression learning. It no longer uses the concept of discriminators. Instead, it only
uses RAMs which collect information to predict the output.

And finally, fuzzy logic [46] which gives us the possibility to have answers between
0 and 1. Which is to say, it is not crisp. Using a membership function, it can receive
any input and give it a degree of pertinence to a set.

3.1 WiSARD

The weightless model does not use the matrices of weights as a conventional neural
network feed-forward. This model works with the random memory access structure
to perform the training and classification procedures. Thus it just needs to write to
train, and to read to classify on this structure as defined in the n-tuple classifier [4].

WiSARD [1], a weightless model, works with pattern recognition for classification
and supervised learning. It attributes each class to a discriminator, which is a
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concept to split the data learned from each class into a set of RAMs. Therefore,
each discriminator only learns about its related label by frequency of access. The
usage of RAMs grants fast training and classification to the model as an advantage.

This model uses a binary representation to learn, thus encoding the data to
binary is required. For that propose, there are different techniques to process the
input data [15, 38], like for example, the thermometer method which, given a value
x, determines in which range x is and then the number of ones in sequence associated
with that range. Another one would be the cut method, which simply represents
values above a given x as one and otherwise as zero.

The model follows a specific structure to train and classify. It has two parts: the
discriminators and the RAMs, where a discriminator is composed of a set of RAMs.
The input data has a set of labels from the domain, so there is a discriminator
to represent each. Furthermore, it only trains with the collection of data which
represents it. The RAM is a matrix of addresses pointing to content values related
to them, where the address is composed of the binary input. Thus a RAM connects
the entry data with its address by a mapping tuple. A tuple is a group of positions
in the entry to form an address to access the RAM. Despite the RAM being defined
as a matrix, it is often not feasible to implement it as such, as in real scenarios
a RAM matrix will occupy extensive memory space although most of its contents
will be empty. Therefore, it is much more efficient to use a dictionary instead of a
matrix, implemented through a hash structure.

The learning procedure determines the label to select which discriminator has to
learn the data. Then it uses the binary input to compose a group of addresses to
access the RAMs contents of the discriminator, and there add the value one in the
content. This process is illustrated in Figure 3.1, where there are four rams, and
each access is determined by the input image H.
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Figure 3.1: The structure of WiSARD
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The classification procedure makes access to the RAM precisely like the training
process, but instead of writing in the memory, it reads from them so each RAM
will give you an answer. Hence, each discriminator will have a set of active RAMs,
which are RAMs that answer one instead of zero. So the discriminator with the
most significant number of active RAMs is the winner.

Moreover, the classification process through the Bleaching algorithm [19], which
make uses of the counter inside the RAM content instead of just looking at whether
it is active. With these counters the bleaching performs a process of cutting val-
ues returned by the RAMs; thus it starts with a value 1 for the cut, and then it
determines how many RAMs are active verifying which are above the cut value.
And so, it checks if there is a winner discriminator or not, if the answer is yes, so
the algorithm stops; otherwise, it adds one to the value of the cut and makes all
checks again until it finds a winner. The Figure 3.2 presents how this procedure
performs its actions inside a discriminator. The Figure 3.3 shows the activation of
each discriminator with the application of the cut.

RAM 0
5

12

RAM 1

RAM 2
8

3

RAM 3

Activation: 2 RAMS

bleaching: 7

Figure 3.2: The bleaching procedure applied over one discriminator
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Figure 3.3: The discriminators activation after the bleaching step

Over the years, the application and research of the WiSARDmodel has increased,
yielding important works such as [8–11, 14, 30, 31, 43]. The WiSARD structure
performs a straightforward learning process, but there is more it can do. This
structure is capable of supplying more information about how the WiSARD model
sees the data which it learns. This information is what is called the Mental Image,
which is the focus of the next section.

3.2 Mental Image

The mental image was a concept developed by the Burattini [6] to generate some
visual elements together with words to provide some degree of explanation of its
system. Beyond its goal, it also gives us information about the data behaviour like
a heatmap of all data aggregated as can be seen in this work [18]. Thus, it gives us
some insights about the data and helps us to improve modelling of a problem.

It is possible to make some starting visual explanation from what the model
learns. But it also is too premature to help us with a reason, and the process of gen-
erating the mental image removes essential information like the correlation between
data which the model learns. Therefore the current work presents an algorithm to
capture that information from WiSARD and give us a better explanation of what
the classifier learns.

However, as an advantage, Mental Image is information that you can get directly
from the model after it learns something, without high computational costs. Its
procedure is the inverse of the training. Reading all data from the RAMs and writing
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in the input structure, but strictly following the rules of the mapping between input
and RAMs. So each content value from RAM is written in all positions of input
structure, where the value in the binary address is one. In cases where more than
one RAM is mapping to the same location; it sums the contents. The Figure 3.4
shows this reverse process.
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Figure 3.4: The structure of DRASiW

The current work uses the mental image concept in its algorithm, but it uses
inside a recent model Regression WiSARD. The next section presents this model of
regression and how it works.

3.3 Regression WiSARD

Kaggle’s Palm Tree Oil [23] includes a regression problem. Namely in order to predict
the amount of oil produced by a set of palm trees, it is possible to model the scenario
as a regression problem. At that time we tackled it, the WiSARD model focused
only on classification problems, so a new model was needed to participate in this
competition and predicts the oil production and, ultimately to add to the WiSARD
ecosystem; thus, the Regression WiSARD (ReW) model was conceived [17]. Despite
this WiSARD shortcoming, there was already a model with a similar structure which
could deal with regression models: the n-tuple regression. Developed and published
in 1995 a paper by Kolcz [24], where this model performed regression on controlled
scenarios as a simulated environment where the data was produced. In the palm
oil tree competition, this model does not perform well with the measure of mean
absolute error (MAE) [41]. Thus, to achieve better performance, this new model
was created based on both models, n-tuple regression and WiSARD.

Its structure is quite similar to the regular WiSARD model but with the following
differences. It is composed only of RAMs, there is no discriminator. Each RAM is
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responsible for learning the pattern of the associated data. This pattern has two
values as input to training: y, the amount to be predicted, and the binary vector
x, which is the input data transformed. The RAM as before is a matrix, but this
time are three columns: address; counter; and sum_y. The counter works the same
way as before, and it is responsible for learning the pattern. The sum of y is a new
dimension to the RAM, and it stores the value y from the input added to previous
values. There is also the mapping between the input and the RAMs to make access
to the RAM possible.

To learn this model receives a binary input and the y value associated with
it. The binary input creates several addresses to be accessed for each RAM and
their counters to be sum up by one. Furthermore, each address accessed has its y
dimension added to the y from the input. Thus, the model learns the pattern and
the y associated. The Figure 3.5 shows the learning process of ReW.
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Figure 3.5: The structure of Regression WiSARD

The procedure to make the prediction remains nearly the same, reading from
memory, but with a specific step to be done before prediction stage. A simple mean
is taken from each RAM - whose addresses are constructed from the binary input
- simply by dividing the accumulator variable sum_y by the counters. The mean
of means, which is the regression result, can be a simple mean, but other types will
yield interesting results as well, such as power mean, harmonic mean, geometric
mean and exponential mean. The Figure 3.6 presents this procedure in a simple
view.
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Figure 3.6: The prediction procedure of Regression WiSARD

This model performs well in the competition, but the winner was a model using
XGBoost [12], which is popular in this kind of competition on Kaggle. The current
work uses ReW’s training procedure, where fuzzy rules produce part of the data
used. Thus, the next section makes a brief introduction to fuzzy logic, which the
next chapter develops in more detail.

3.4 Fuzzy Logic

Most forms of classic logic are limited to operating on binary, true or false, variables.
Fuzzy logic [46] is a way to deal with continuous variables instead, usually ranging
from 0 to 1. It also presents a more direct translation of the way humans face certain
questions.

To illustrate it, consider attempting to posit the question in formal logic, for the
sake of whether an air conditioning unit should turn on or not. For the sake of this
example, let us imagine only having temperature and humidity sensors. Ideally we
would like to describe ranges where it is considered hot, normal and cold, as well as
dry, regular and wet and then establish rules by which the unit turns on.

If we adhere to classic binary logic, we would have to decide on steps for our
two continuous variables - temperature and humidity - so we can work with them
as discrete variables, and then exhaustively describe rules to each step, of which
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variable.
Fuzzy logic, while performing functionally almost the same, allows us to suc-

cinctly take the temperature and humidity as the continuous variables they are and
describe continuous functions for arbitrary concepts such as "how hot is it" or "how
wet is it". We can then take these attributes and describe the rules to combine
them. So instead of writing an extensive list of propositions such as "if it is over 25
degrees, with a relative humidity over 10 percent, turn on the AC", we can write
simply, "if it is hot and humid, turn on the AC".

In short, fuzzy logic gives us a way to determine how hot, dry and so on in a
human-like perspective, while working with formal logic.

Generally, fuzzy problems have a set of input variables, a set of classes to each
variable, and a set of rules to solve a problem. Each class has a membership function,
which determines the degree of pertinence to it. The Greek letter µ is used to denote
a membership function. In our example, µhot describes the membership function of
the class hot as can be seen in the Figure 3.7. The fuzzy rules are where we formalise
the logic to solve the problem, for example, if the temperature is hot and humidity
is wet, then turn on the air conditioner. In this example, we have two variables
temperature and humidity, and two membership functions µhot and µwet, but we can
have as many membership functions as necessary. It all depends on the problem.
If a given problem has more membership functions, it may be necessary to define
all the combinations of rules to cover all the possibilities of system behaviour to be
controlled.

1

0

cold normal hot

a b c

Figure 3.7: Membership functions

A fuzzy problem usually goes through three steps: fuzzification [3], when the
membership functions are applied to the input variables; the fuzzy rules, to deter-
mine the system behaviour; and the defuzzification to translate the answer of the
fuzzy rules to the system. The defuzzification is the inverse process of the member-
ship function; the defuzzification converts the membership degree to be used as a
system control variable. The current work does not use the defuzzification process.
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To use membership function responses in fuzzy logic, we have the fuzzy logic
operators And, Or and Not. These operators are functions to deal with the varia-
tion between 0 and 1 from the membership functions. There are multiple possible
functions to each operator, for example, the And operator min(a, b) and a ∗ b, the
Or operator could be max(a, b) or a+ b− a ∗ b, and at last the Not could be 1− a.
These functions must respect some restrictions to be considered an operator.

The fuzzy logic is used in this work but without the defuzzification procedure.
The fuzzy rules analyse the data and measure the relevance of each data in the
algorithm of this work. With all the build blocks presented, the next chapter presents
the novel model in detail.

17



Chapter 4

FRWI

This chapter presents the current work in detail. This new methodology focuses
on interpreting the answer from any image classifier, which determines the relevant
regions in the image.

It presents the FRWI overview in Section 4.1, where it explains each step: the
production of examples, evaluation and generation of a mental image. Each of
these steps has an important role in the whole process, as shown in their respective
sections. It also displays the process of producing examples and its algorithm and
how it works in Section 4.2. After the production, it needs to be evaluated. So the
Section 4.3 presents that process in detail. This evaluation is made with a set of
rules from the fuzzy logic to determine what is relevant. And finally, Section 4.4
presents how to generate the local mental image. It shows how to use the structure
of a Regression WiSARD to obtain this.

4.1 Overview

The Fuzzy Regression WiSARD Interpreter(FRWI) is a model to interpret the an-
swers from classifiers and generates an image which reveals the relevant regions to
the classifiers, so humans can have a better comprehension of what the classifiers
took into consideration to make their decision. If, when provided an image of the
number 7, a classifier decides it is in fact a 3, we would like to know why. To that ef-
fect, the explainable model marks what was relevant for that classification, allowing
the user to have at least a clue as to what lead to that mistake.

The model has three steps: production of examples, evaluation and generation of
a local mental image. The production step locally generates several examples around
the input, so it is possible to see how the classifier answers in this environment.
The evaluation step uses fuzzy rules to calculate the relevance of each generated
example. The local mental image generation step then uses the Regression WiSARD
to aggregate all the information calculated before, and at last extracts a mental
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image from the model. The Figure 4.1 shows how this procedure works and the
Algorithm 1 details how to apply it.

FR
W

I

output

local mental image

evaluation

production of 
examples

classifier

input
functioninput

image

Figure 4.1: FRWI process

Algorithm 1: The general algorithm of FRWI
input : C – classifier
input : image – input image
input : fs – feature size
input : S – total examples
output: lmi – local mental image

1 begin
2 examples, predictions, binaries←

production_examples(C, image, fs, S)

3 y ← fuzzyEvaluation(examples, predictions)

4 lmi← generationOfLocalMentalImage(binaries, y)

5 end

The production of examples uses random binary masks to get different features
from the input. The binary mask represents what is kept from the original image and
what is not. Each example is in reality a different portion of the original input with
the rest of the image greyed out. An arbitrary number of examples are generated
in this format.
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The next stage evaluates each image generated in the previous step with the
fuzzy rules, which output a value between 0 and 1, where zero is not relevant, and
one is entirely relevant. The evaluation uses two variables: the distance between
images and the distance between answers. Thus we have two sets; the set of binary
masks and the set of fuzzy outputs. These two sets are the input to the next phase,
the generation of a local mental image.

The Regression WiSARD learns from these two sets. After it aggregates all
this information, the ReW is ready to generate the local mental image. So, the
reverse process as defined by a mental image in WiSARD 3.2 is the one to generate
the mental image from ReW, where it reads from memory and writes to the input
structure. The memory content has two dimensions, so it produces the mental
image with these two dimensions. Finally, the result of this process is the local
mental image.

The output of this process can be a positive or negative local mental image,
depending on which fuzzy rules set is applied to the examples. Positive highlights
what is relevant to the classifier to make its decision. So, it is possible to see the
regions in the image that are relevant to the classifier decision. Therefore, we can
understand the classification process and help us to answer how the classifier makes
the right or the wrong decision.

The negative image is to help to identify if there is something in the image that
is not part of the class learned by the classifier, so it is something that leads the
classifier to a different answer. Therefore, the negative local mental image presents
the regions which cause interference in the classifier. This image helps us question
whether there is something that can cause a mistake by the classifier.

4.2 Production of examples

This procedure aims to observe how the classifier responds in different scenarios
around the input. Conceptually, we could imagine an image of the number seven
getting sliced in different ways so we can observe how the classifier responds to each
line and the angle between them. So, to achieve this, the process generates several
local examples based on the input.

This procedure generates two types of examples to observe the responses of
classifier: the random example and its complement. A random binary mask applied
over the input produces the random example, and the complement of this mask
produces the complement example.

The algorithm produces the random binary mask in the following way. First, it
receives a feature window size. So, a square window is selected in a random position
in the image and marks it as ones in the same position in a binary mask. It repeats
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this until it iterates over a random portion of the image size. The feature size
determines the size of detail you are trying to highlight. The Algorithm 2 specifies
how this process happens.

Algorithm 2: Algorithm of production of examples
input : C – classifier
input : image – input image
input : fs – feature size
input : S – total examples
output: examples – the resulting examples
output: predictions – the predictions applied over the examples
output: binaries – the binaries mask produced

1 begin
2 examples← {}
3 predictions← {}
4 for i from 1 to S do
5 mask, complement←

generateMasks(height(image), width(image), fs)

6 binaries← binaries ∪ {mask, complement}
7 example1← applyMask(mask, image)
8 example2← applyMask(complement, image)

9 examples← examples ∪ {example1, example2}
10 prediction1← C(example1)
11 prediction2← C(example2)

12 predictions← predictions ∪ {prediction1, prediction2}
13 end
14 end

Finally, after it completes the binary mask, then the mask is applied over the
original image where the ones represent pixels unchanged, and the zeros represent a
“grey” pixel, as the Algorithm 4 presents.

The value of “grey” depends on the scenario and the colour space of the images
being studied. In this work, where the images of interest are grey-scale, we chose
the value zero - totally black - to colour the grey pixels. In a full RGB space, a good
choice could be 50% grey (128 red, 128 green and 128 blue).

Through the previously described mask, the algorithm produces the complement
binary mask, where the zeros and ones are flipped. So, it generates the complement
example after the application of the complement mask over the entry. The Figure
4.2 illustrates all these processes to make them explicit.
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Algorithm 3: Algorithm of generation of masks
input : h – height
input : w – width
input : fs – feature size
output: mask – the resulting mask
output: complement – the complement of the resulting mask

1 begin
2 mask ← {00, 01, 02, ..., 0s} /* s← h ∗ w */
3 complement← {10, 11, 12, ..., 1s}
4 numberOfFeatures← randomBetween(0, 1) ∗ ((h ∗ w)/(fs ∗ fs))
5 for k from 1 to numberOfFeatures do
6 l← randomBetween(0, h− fs)
7 c← randomBetween(0, w − fs)
8 for i from 1 to fs do
9 pos← (l + i) ∗ w + (c+ j)

10 mask[pos]← 1
11 complement[pos]← 0

12 end
13 end
14 end

Algorithm 4: Algorithm of apply a mask
input : M – mask
input : image – input image
output: example – the resulting example

1 begin
2 grey ← 0
3 example← {}
4 for i from 1 to size(image) do
5 if M [i] is equal to 1 then
6 example← example ∪ {image[i]}
7 else
8 examples← example ∪ {grey}
9 end

10 end
11 end
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Figure 4.2: FRWI production of examples

With the examples generated, the classifier evaluates them, thus producing a
data set of responses. The algorithm expects the classifier to respond with a vector
which indicates the relevance of each class. The next section presents the evaluation
procedure which uses these vectors.

4.3 Evaluation of examples

This procedure calculates the relevance of each example, which in the next step of
the model will be aggregated. Each example has a piece of information about what
is relevant, and this information is repeated several times over the whole data set.
Through the frequency of those repetitions, the algorithm discovers the relevant
regions to the classifier.

The fuzzy rules use four factors as input. These factors are calculated with the
distance equation through two dots in a space of n dimensions, each factor uses
different vectors to represent the dots in the space. Each of factors are:

• FI , the distance between the original image vector and the generated image
vector;

• FIc, the distance between the original image vector and the complement of the
generated image vector;

• FR, the distance between the response vector of the classifier over the original
image and over the generated image;

• FRc, the distance between the response vector of the classifier over the original
image and over the complement of the generated image;
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Each of these distances can be interpreted as how similar each vector is. Once
again, in this context, the generated example is a section of the original image
selected by a binary mask and the complement is the section selected by the com-
plement of the mask.

factor(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (4.1)

The next stage adjusts the membership functions to each of the four factors.
Each factor has three membership functions: low distance, middle distance and
high distance. So, low distance means the group of distances factors which are very
similar to the original value. The high distance means the group of distances factors
which are very different from the original one, and the middle is naturally somewhere
in between. So, the closer the factor is to zero, the more similar it is, and conversely,
the furthest from zero, the more different it is. These three types of membership
function can be seen in the equations 4.2, 4.3, 4.4.

µH(x) =


0, if x < b

(x− b)/(c− b), if x ≥ b and x ≤ c

1, if x > c

(4.2)

µM(x) =



0, if x < a

(x− a)/(b− a), if x ≥ a and x < b

(c− x)/(c− b), if x ≥ b and x ≤ c

0, if x > c

(4.3)

µL(x) =


1, if x < a

(b− x)/(b− a), if x ≥ a and x ≤ b

0, if x > b

(4.4)

These membership functions together have three variables a, b and c. The Algo-
rithm 5 describes how to calculate these variables through the data of the factors.
The algorithm is the K-means algorithm [25] with a single step, and with three
clusters.

So, each factor will have three variables determined by the above algorithm to
be placed in the membership functions, as shown in the Figure 4.3.
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Algorithm 5: Algorithm to calculate variables a,b and c
input : data – vector of values
output: clusters – the resulting variables a,b and c respectively

1 begin
2 sort(data)
3 piece← size(data)/3
4 clusters← {0, 0, 0}
5 c← 1
6 for i from 1 to size(data) do
7 clusters[c]← clusters[c] + data[i]
8 if i mod piece is 0 then
9 c← c+ 1

10 end
11 end
12 for j from 1 to 3 do
13 clusters[j]← clusters[j]/piece
14 end
15 end

( 4, 0, 2, 1, 5, 2, 3, 5, 1 )

( 0, 1, 1,  2, 2, 3,  4, 5, 5 )} } }

a=2/3 b=7/3 c=14/3

sort

a b c

Low Middle High

Figure 4.3: FRWI adjust of membership function

With all the membership functions determined, the fuzzy rules can play their
role. First of all, the equivalence of the fuzzy operators used in this model are
defined in the Equation 4.5.
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a ∧ b ≡ a ∗ b
a ∨ b ≡ a+ b− a ∗ b
¬a ≡ 1− a

(4.5)

There are the rules for positive and negative relevance. The positive set of fuzzy
rules p has two parts: one to determine what contributes to the relevance r; and what
does not contribute nr. These two parts help to distinguish the relevant regions.
The positive relevance regions help to understand what features the classifier uses
to make its decision. The set of fuzzy rules used are found in the Equation 4.8.

r(x1, x2, y1) =


µLx1(x1) ∧ ¬µLx2(x2) ∧ µLy1(y1)∨
µLx1(x1) ∧ ¬µLx2(x2) ∧ µMy1(y1)∨
µLx1(x1) ∧ ¬µLx2(x2) ∧ µHy1(y1)

(4.6)

nr(x1, x2, y1) =


µHx1(x1) ∧ ¬µHx2(x2) ∧ µLy1(y1)∨
µHx1(x1) ∧ ¬µHx2(x2) ∧ µMy1(y1)∨
µHx1(x1) ∧ ¬µHx2(x2) ∧ µHy1(y1)

(4.7)

p(x1, x2, y1) = r(x1, x2, y1) ∧ ¬nr(x1, x2, y1) (4.8)

Similarly to before, x1 and x2 here are distance factors between the original
image the generated example and its complement. Meanwhile y1 is specifically the
distance between the response vectors from the classifier over the original image and
the generated example. The membership function µLx1 is the function µL defined in
4.4 and adjusted by the factor x1. As previously defined, p is the positive function
which evaluates the factors of one produced example. The same function can be
used for the complement of the example, in which case y1 should be the distance
between the classifier responses for the original image and the example complement,
and x1 and x2 should be swapped. The resulting equations can be seen in 4.9, and
its returned values are used in the next stage where the information is aggregated.

Thus, it result in two equations one applied over the produced example and
other in the complement of the produced example as can be seen in the Equation
4.9, these resulting values are used in the next stage where all the information is
aggregated.

p1 = p(FI , FIc, FR)

p2 = p(FIc, FI , FRc)
(4.9)
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The negative relevance regions help to understand what features could make the
classifier make the wrong decision. In other words, the elements that are hindering
the classifier in making its decision. The Equation 4.10 describes the fuzzy rules of
negative relevance.

n(x1, x2, y1) = ¬



µLx1(x1) ∧ µLx2(x2) ∧ µLy1(y1)∨
µLx1(x1) ∧ µLx2(x2) ∧ µMy1(y1)∨
µLx1(x1) ∧ µLx2(x2) ∧ µHy1(y1)∨

¬µLx1(x1) ∧ ¬µLx2(x2) ∧ µLy1(y1)∨
¬µLx1(x1) ∧ ¬µLx2(x2) ∧ µMy1(y1)∨
¬µLx1(x1) ∧ ¬µLx2(x2) ∧ µHy1(y1)

(4.10)

Where x1,x2 and y1 are defined the same as in the positive function. The
membership functions also has the same meaning as in the positive function, but
now n is the negative function to evaluate one produced example. As before, to
evaluate the complement example, the same can be done. Thus, these resulting in
two equations as can be seen in 4.11, one applied over the produced image, and
other applied over the produced complement image. Theses results are used in the
next stage, to produce the negative relevance.

n1 = n(FI , FIc, FR)

n2 = n(FIc, FI , FRc)
(4.11)

With that values are calculated in the Equations 4.9, 4.11, the local mental
images for the positive and negative relevance can play their central role. The next
section describes how this process happens in detail.

4.4 Local Mental Image

The local mental image aggregates all the previous information calculated to produce
a visual explanation of what is happening in the decision process of the classifier in
one classification. The trained ReW is the one to provide this.

The procedure to produce the mental image has the following steps:

1. generating the neighbour mapping;

2. instantiating the ReW;
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3. training the ReW;

4. extracting of the mental image from ReW;

5. finally normalising the mental image;

First, it needs to calculate the neighbour mapping to be able to instantiate the
ReW. The neighbour mapping has the intention to create a RAM for each pixel of
the image. Thus, the tuple uses the central pixel and its direct neighbours totalling
nine pixels, making it a nine-tuple. This mapping allows the ReW to spread the
information to its neighbourhood of RAMs, and then it creates a smoother image
than without it. The Algorithm 6 describes in detail how to execute this process.

Algorithm 6: Algorithm to calculate the neighbor mapping
input : width – width from the image
input : height – height from the image
input : n – neighbor size
output: mapping – the resulting mapping

1 begin
2 tuple_size← (2 ∗ n+ 1)2

3 s← width ∗ height ∗ tuple_size
4 mapping ← {01, 02,3 , ..., 0s}
5 pos← 0
6 for l from 1 to height do
7 for c from 1 to width do
8 for ll from l − n to l + n do
9 for cc from c− n to c+ n do

10 if ll < 0 or cc < 0 or ll > height or cc > width then
11 mapping[pos]← l ∗ width+ c
12 else
13 mapping[pos]← ll ∗ width+ cc
14 end
15 pos← pos+ 1

16 end
17 end
18 end
19 end
20 end

Given the previous information, the algorithm instantiates the ReW with the
tuple size of nine and using the neighbour mapping. It creates two ReW, one to the
positive relevance and other to the negative. After the instantiation, it trains each
ReW with the binary mask data set generated in the production of examples step
and the y value, which is the output from the fuzzy rules, where the evaluation of
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positive relevance is the input to the positive ReW and the negative relevance to
the negative ReW.

When it completes the training process, the stage of extraction of the mental
image from the ReW can start. The mental image is a heat map of what the
WiSARD learns. In the case of Regression WiSARD the concept is the same, but
the process is different, as for the purposes of this work it requires to use the y value
learned too. It reads from memory, both values in this case, and writes the values
in the input format. The Algorithm 7 describes how to apply this procedure, where
it produces the raw local mental image.

The final step, the raw output from the Algorithm 7 is not useful yet, because
the relevance regions are not visible and all values in the output are too high. In
order to make the information it produces clearer, it applies a simple normalisation.
In this normalisation, the biggest value is represesnted by one, and the lowest value
represents zero; and all other values are normalised on this range. The Algorithm 8
shows how to proceed with this process.
Algorithm 8: Algorithm to normalise vector with the lowest and biggest
value as range
input : data
output: data

1 begin
2 min_value← min(data)

3 range← max(data)−min_value
4 for i← 1, size(data) do
5 data[i]← (data[i]−min_value)/range
6 end

7 end

This chapter described the whole process of the model The next chapter de-
scribes the tests performed on the model in different cases to help us understand
its behaviour in certain environments. It also shows the performance of the model
compared to LIME in some scenarios.
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Algorithm 7: Algorithm to extract the mental image from Regression
WiSARD
input : mapping
input : s – the size of the image
input : tuple_size
input : memory – list of dictionaries from the RAMs contents
output: mi – the resulting mental image

1 begin
2 mi← {01, 02, 03, ..., 0s}
3 for r from 1 to size(memory) do
4 y ← 01, 02, 03, ..., 0n /* n← tuple_size ∗ 2 */

5 for p from 1 to size(memory[r]) do
6 addr ← getAddress(memory[r][p])
7 counter, sum_y ← getRamContent(memory[r][p])

8 for i from 0 to tuple_size− 1 do
/* / is a integer division; & is and operation bit
a bit; % is module operation; << is a shift left
operation of bits */

9

10 bit← addr[i/8]&(1 << (i%8))
11 if bit is not 0 then
12 y[i ∗ 2]← y[i ∗ 2] + counter
13 y[i ∗ 2 + 1]← y[i ∗ 2 + 1] + sum_y
14 end
15 end
16 end
17 for j from 1 to tuple_size do
18 if y[j ∗ 2] is not 0 then
19 pos← mapping[r ∗ tuple_size+ 1]

/* here is not a interget division */
20

21 mi[pos]← y[j ∗ 2 + 1]/y[j ∗ 2]
22 end
23 end
24 end
25 end
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Chapter 5

Experiments

After presenting the methodology, it is finally the moment to evaluate the model
in specific scenarios, to comprehend its functionality and to learn when to use it
and when not to use it. So, this chapter discusses the experiments conducted to
evaluate the performance of the explainable models in different scenarios.
Firstly, it presents the environment, and the data sets used to apply the exper-
iments. After, it shows the new equation to evaluate the explainable models,
and possibilities to compare their performance of explainability in a quantitative
fashion.
The last two sections are about the analysis of the experiments. The first one,
evaluates them in a qualitative manner, through the images generated by them.
That is, it reports on plenty of pictures from different classes, to see what is
useful to the user and not. Therefore, it is possible to see the explainers supplying
information which can help us to understand the decision process of the classifier.
The last section presents the quantitative evaluation with the new equation, and so
to see the capability of the explainers to generate precise explanations.

5.1 Experiments Base

The first subsection presents how to apply the quantitative evaluation through the
equation that it defines. So, it describes the new score in detail and how each part
works. Later, it shows the data sets, the distribution of the train set and the test
set, and also the classes that each one contains. The last subsection shows how each
classifier executes its training and classification.
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5.1.1 Methodology of the experiments for quantitative eval-

uation

Both the new model and LIME produces images as a form of visual explanation.
Although we can discuss whether it is useful or not, we can not measure its
explanation performance with any degree of precision. Therefore we created a
new score to measure the explainable model performances which use images to
highlight the relevant regions in pictures to the classifiers. Thus with this metric,
it is possible to compare and evaluate explainable model performances. We do not
measure the quality of the explanation from a human perspective, but measuring
the capacity of interpretation from the explainable model in some scenario.
The interpretation capacity score (ICS) uses three factors to make its value. First,
the keeps response, this one verifies if the classifier keeps its response after applying
the relevant regions as a mask over the original image and it keeps just the relevant
region erasing the remaining portion of the image. Thus, it is possible to check if the
relevant regions are indeed relevant. But only this is not enough, because we can
remove this relevant region and the classifier keeps its response, and therefore these
regions are not relevant. So there is the second factor, the change response. This
one as above applies the relevant regions as a mask over the original image. But this
time it removes the relevant regions and verify if the classifier changes its response,
and therefore more one time checking if the relevant regions are indeed relevant.
Again these two factors are not enough, because the explainable model can actually
select the entire image as relevant and this does not give us useful information, so it
is more useful if the explainable model selects small areas. For that reason, the last
factor, the interpretation complexity measures the proportion of the relevant region
over the image. Thus if it is bigger than the complexity is greater, otherwise will
be lesser. The two first factors are joined in a harmonic mean and weighted by the
complement of interpretation complexity as the Equation 5.1 shows forming the ICS.

ics = (1− c) ∗ 2 ∗ p ∗ n
p+ n

(5.1)

Where p is the mean of the keeps response, n is the mean of changes response,
and c is the mean of interpretation complexity. It calculates each of these means
over some test data set.
Thus, it is possible to measure the explanation performance from the explainable
models. The next section presents the data sets used to compare them.
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5.1.2 Data Sets

The first data set is the MNIST of handwritten digits [26], which is a subset from
a larger set NIST [20]. All images have a normalisation in a fixed size and centred.
It only contains greyscale images of 28 pixels of height and width, and the classes
are from the number zero to the nine as shown in the Figure 5.1.

Figure 5.1: MNIST data set

This data set has two groups: one for training and the other one to test the
performance of the classifiers. The training set has 60000 images, and the test set
has 10000 images, both sets are balanced data through the classes.
This one is a very controlled data set to test the viability of the algorithm proposed
in this work. Where it is elementary to see the difference between the classes, and
to the classifiers achieve remarkably high accuracy. Without high accuracy from
the classifier, it will not make sense to analyse the performance of the proposed
algorithm, because the classifier itself is flawed and incapable of telling us which
class each image belongs with certainty.

The second data set has the same configuration as the previews one. The
Fashion MNIST [44] has greyscale images also of size 28 by 28 pixels, but this
time it has images of clothes instead of numbers, where each number is related
to an article of clothing: 0 T-shirt/top; 1 Trouser; 2 Pullover; 3 Dress; 4 Coat;
5 Sandal; 6 Shirt; 7 Sneaker; 8 Bag; 9 Ankle boot; The Figures 5.2 shows each
class of image. It also has a training set of 60000 images and test set of 10000 images.

Figure 5.2: Fashioin MNIST data set

The Fashion MNIST is also a controlled dataset with clearly distinguishable
classes from a human perspective, if not that simple to the classifiers. Thus, this
data set brings some level of difficulty to the classifier to evaluate the FRWI and
LIME performance in a different classification scenario.
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5.1.3 Organisation of learning models to train with MNIST

and Fashion MNIST

Our work has three learning models for its experiments, to evaluate the proposed
algorithm and compare it to LIME. The first one is the WiSARD model which
learns by frequency. The second one is the Ridge Regression which is a regression
model applied to classification. And the last one is the Random Forest which builds
a decision tree during the training.
Both data sets have the same setup despite being a different scenario, so the same
configuration was applied to train and classify the data. The training set has a
total of 60000 samples, and the test set has 10000. The models train on the training
set, and are then evaluated based on their responses to the test set.
To the WiSARD model, the image was processed with the mean threshold algorithm
to transform into a binary vector. This algorithm calculates the mean value from
the image and after it checks if the pixel value if above the mean value. Suppose it
is above so it encodes to 1 otherwise to zero. Beyond that, it uses replication of 4
times, this means instead of to encode the pixel to only one bit it will encode it to
4 equals bits, so the one becomes 1111, and the zero becomes 0000. The model uses
a tuple size of 40 to learn. The classes vector remain the same with values between
zero and nine, which represents the real classes. To supply suitable information
to FRWI and LIME, a predict function was developed to make the classification
through a vector that has the relevance of each class. Thus, the last step from the
bleaching algorithm, where each class has the total of active RAMs, is taken and
normalised between zero and one.
For the Ridge Regression, it transforms each image to vector with the original
values. Each value from the classes vector is transformed into a vector by one hot
encode algorithm, to make it feasible to the model applies a regression. The model
uses a regularisation value of zero.
The last one is the Random Forest, which transforms each image to vector as
before, and the L2-norm normalises each vector. The classes vector remain the
original numbers from zero to nine to represent the classes.
The next section presents the setup of the experiments of the explainable models,
which uses the learning models shown above, whose configuration the current
section details.
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5.2 Qualitative experiments

In this section, the visual experiments will be made to see how the explainable
models produce their results in some specifics scenarios. First, how the experiment
was conducted is explained in the next subsection, there the implementation and
parameters used are discussed. There are two types of experiments in this section:
the comparison of positive explanations, to understand how the explainable model
deals with the given situation; and the comparison of negative explanations to see
how it responds to some noise data and help suggesting future improvements. The
next subsections will discourse about them.

5.2.1 Organisation of the experiment

These experiments will produce local mental images with the variation of data set,
learning models and classes. To achieve this, first, the learning models must be
trained as the Subsection 5.1.3 specifies. After the training, for each class from
each data set the explanation is produced from each explainable model.
The FRWI model is set up with the window size of 4, because the features are
small, and the number of examples of 10000 to achieve smoother results.
The LIME use the example of 10000 to be equivalent to the FRWI. LIME uses
the segmentation algorithm from scikit-learn [5] with the following parameters:
kernel_size = 1; max_dist = 200; ratio = 0.2.
In the case of negatives explanations, the number of examples produced was from
100000 to both explainable models, because the FRWI was incapable of producing
local mental images that have significant information on it with examples smaller
than this.

5.2.2 Comparison of the positive explanation

MNIST
First, the MNIST data set is analysed. Thus, it is possible to see how the
explanation from each class in this data set was produced. Both explainable models
produce their explanations, and thus it is possible to compare them visually. Not
only classes, but also the learning models were varied to see the behaviour of the
explainable models in scenarios of different complexity levels of learning models.
The WiSARD model is the first subject of the experiment. It was trained as
mention before in Section 5.1.3. And then, the explainable models are applied,
resulting in the Figure 5.3.
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Figure 5.3: MNIST on WiSARD qualitative experiment: a) original images ; b)
LIME explanations; c) FRWI explanations

The first line contains the original images as they come from the data set.
The third one is the FRWI explanations from these original images over the
WiSARD, and the second line has explanations from LIME in the same conditions.
In the Figure 5.3, FRWI shows explanations covering the almost entire number
for the classes 0, 3 and 4, where these are examples have low noises in the data
set. The class 7 also can fit in this description. But other examples have even
less noises, such as 1, 2, 6. The explanations do not cover the entire number,
indicating some preferential regions to learning model. Interestingly, disturbances
such as small rotations, incomplete figures or twisted images, such as seen in 9,
5 and 8, causes bad behaviour. The explanation covers only a few parts of the
numbers, which teaches us that the learning model can not deal well with this kind
of situation. Furthermore, these explanations from FRWI provide us with some
precious information about how the WiSARD acts in this scenario, therefore this
new approach begins to show some utility. In the case of LIME, it is hard to collect
some useful information about the model in this scenario, but the classes 0, 3, 4
and 6 is possible to see the explanation drawing the mould of the number.

Figure 5.4: MNIST on Ridge Regression qualitative experiment: a) original images;
b) LIME explanations; c) FRWI explanations
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The next scenario of the experiment is the Ridge Regression as can be seen in
the Figure 5.4. Same as before, it was trained as can detailed in the Subsection
5.1.3. And the lines mean the same as before. This time FRWI explanations
cover lesser regions than before, probably indicating that the model focus on small
regions. The explanations from FRWI in this experiment have one or two dots
with a high degree of relevance, which demonstrates the behaviour of the model.
And again, LIME is very hard to make it clear. The only case that it is possible to
understand is class 0 where LIME distinguishes the shape; also the class 3 it has a
piece of the number.

Figure 5.5: MNIST on Random Forest qualitative experiment: a) original images;
b) LIME explanations; c) FRWI explanations

The learning model of the experiment in the Figure 5.5 is the Random Forest.
Its training is described in Subsection 5.1.3. The FRWI explanations from this
model have some similarities with the Ridge Regression, where they focus on some
dots, but this case has some small areas also. This way, it is possible to see some
concepts learned by the model, like the small dot in the middle of the image to
indicate the class 1. In this scenario is where LIME is more confused, covering
almost the entire image as relevant in all cases.

The numbers are simple concepts to the human perspective, so this scenario
helps us to understand how the explainable models act and where they can be
useful. A general aspect that happens in the FRWI explanations is the less relevant
pixels are all too much similar. The main reason to cause this, it is the calculation
of membership functions described in the Section 4.3, which restricts the range of
values to the range of the data generated. Despite this drawback, this restrictions is
important to make the FRWI adapt to different scenarios and not become a biased
model. LIME has some tendency to focus on the shape in these scenarios, but in
most of the cases, the relevant regions are too big to be comprehensible.
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Fashion MNIST
Now for the Fashion MNIST. The classes are not as simple as the previous data set,
but it still somewhat clean data. All models were trained as described in Section
5.1.3 and the explainable models in Section 5.2.1.

Figure 5.6: Fashion MNIST on WiSARD qualitative experiment: a) original images;
b) LIME explanations; c) FRWI explanations

This time, the explanations from FRWI in the second line were not so clear, as
shown in the Figure 5.6. It produces some clouds of relevant regions, but it shows
us how WiSARD focuses on shapes. Especially in the case of the sandal, where it
is possible to see the mould more clearly. LIME performs better in the classes dress
and ankle boot, where it captures the shape very well. In the class pullover, also, it
is possible to see the shape, but not so clear in other cases. LIME, still, selects the
most of image as relevant, but its ability to capture shapes, is highlighted in this
scenario a little more. At least both explainable models help us to understand that
WiSARD is focusing on shape. Furthermore, the FRWI explanations show us that
it is not often clear how WiSARD differentiates classes.

Figure 5.7: Fashion MNIST on Ridge Regression qualitative experiment: a) original
images; b) LIME explanations; c) FRWI explanations

The Figure 5.7 is the experiment over the Ridge Regression. This scenario is
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one of the more interesting ones because it shows clearly how LIME from FRWI
diverge. Here, LIME is focusing on the shape of the classes learned by the model,
but FRWI is only focusing on what is relevant to the model, where it shows some
dots with the highest degree of relevance in the image.

Figure 5.8: Fashion MNIST on Random Forest qualitative experiment: a) original
images; b) LIME explanations; c) FRWI explanations

Finally, the last experiment over the Random Forest - in the Figure 5.8 - shows
us a similar situation as the previous, of the Ridge Regression experiment, with
LIME focing on shape. This time, FRWI is not focusing on dots, but on some
small areas. We can see how FRWI explanations expose the small areas that weigh
heavily on classifications made by models.

This data set reveals more information about the behaviour of the explainable
models. This time, LIME has a good explanation based on mould, but this not
teach us too much about the learning model.

Here only the positive explanation was analysed, but there is another view on
the explanation scenario useful, then it is the negative explanation. In the next
section, we show an introductory version of what such analysis could encompass.

5.2.3 Comparison of the negative explanation

The negative explanation is on a premature stage. So a special case was constructed
to make some qualitative analysis on it. Furthermore, the positive explanations were
generated as well, to give us a complete view of this scenario.
In this scenario, one image from each class in the MNIST data set was select to
compose a new set. This is necessary to create information that confuses the learning
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models in the classification process, and so see if the explainable models are capable
of identifying these regions. Then, for each image had three types of noise inserted:

• The point noise, where a dot is drawn on the corner of the image, not affecting
the main information and being a little disturbance (the letter ‘p’ is used to
represent this modification).

• The external line, where a line is drawn around the number shape, as before
not affecting the main information, but being a big disturbance (the letter ‘e’
is used to represent this modification).

• The cut line, where the number shape is cut in the middle, this one affects the
main information and probably is the most difficult situation to the learning
models (the letter ‘c’ is used to represent this modification).

For each noise, a new image is created, so some up the noise images and the
original images, this new set has 40 examples.

Figure 5.9: MNIST on WiSARD qualitative negative experiment

The learning models were trained with the MNIST data set to evaluate them
with these noised images. The Figure 5.9 shows us some examples of nega-
tives explanations from both explainable models over the WiSARD. The complete
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result of this experiment, including other models, can be seen in the Appendix B.1.2.

This experiment shows that FRWI is capable of identifying some added noise
and also removing them from positive explanations. In the case of LIME, there
are few cases where it finds some noise as a negative explanation. Still, it is very
consistent in separating positive and negative explanations, as opposed to FRWI.
FRWI has the drawback that it is needed to generate at least a 100000 examples
before clear regions become visible, less than this only shows clouds of pixels, often
meaning nothing to a human perspective.

In the previous subsection, each experiments goes over a small amount of cases,
so to ratify these results, a quantitative experiment is essential. Therefore the next
section details the quantitative experiments.

5.3 Quantitative experiments

In this section the experiments evaluated with the interpretation capacity score, as
defined in Equation 5.1, are described, where the explainable models will be exposed
to three different learning models in two data set as specified in Subsection 5.2.1. In
these scenarios, it will be possible to see the performance of the models in controlled
scenarios where it has a wide range of difficulty of explanations for the models.

5.3.1 Organisation of the experiment

As the qualitative experiment, the local mental images are generated, but this time
these images are evaluated with the interpretation capacity score. To achieve that,
some setup is required. In these experiments, only the positive explanations are
evaluated, because the negative explanations are premature, and need more devel-
opment.
The FRWI and LIME have the same configuration as in the qualitative experiments,
but in the case of the number of examples produced was tested with two values as
the next subsection shows.
First, it needs to calculate the mean of each parameter from the ICS, to do that, the
basic evaluation from ICS is applied over the entire test set. Thus, it gets one value
from ICS. Furthermore, to evaluate the consistency of this result, this experiment
is repeated ten times, where each time the learning models are trained again. It
is important to point out that the LIME and the FRWI are tested over the same
trained learning model each time the ICS is calculated.
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Another minor step needed for these experiments is to transform the output from
FRWI to apply it as a filter of relevant regions because its output varies between
zero and one. Thus, a cut based on the mean plus the standard deviation is applied
by each output, where when it is over this value, it becomes one and zero otherwise.
For the case of the application of the explanation as a filter, in both explainable
models, it keeps the original value when one occurs, and it writes zero otherwise.
The results of these experiments are detailed in the next section.

The environment used to run the experiments had the operational system Ubuntu
version 18.04, and Python version 3.6. The following Python libraries were using:
Scikit-Learn version 0.23.0, to apply the learning models, LIME version 0.2.0.0, to
apply explanations of LIME, Pillow, version 7.0.0, to produce the images, and finally,
Seaborn version 0.10.0, to produce the graphics. The WiSARD and Regression
WiSARD were implemented in C++ with a Python wrapper as described in the
sections 3.1,3.3 respectively. The source code of the model FRWI was built in
C++ with a Python wrapper, so to take advantage of the C++ optimisations while
retaining the clarity offered by Python scripting. The experiments were executed
in a machine with a Ryzen 7 processor (16 cores) and 32GB of RAM memory. The
complete execution of all experiments took 2 weeks.

5.3.2 Comparison of the positive explanation

In this comparison, the ICS was applied over the MNIST to compare the perfor-
mance of the explainable models in a quantitative view, and also over the Fashion
MNIST. Two values of examples produced were tested: 1000 and 10000, and
these two cases were combined with the three learning models: WiSARD, Ridge
Regression, Random Forest. Thus, it has two graphics for each data set: one for
the number of examples 1000; and the other 10000.
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Figure 5.10: MNIST – ICS; 1k examples on explainable models

Figure 5.11: MNIST – ICS; 10k examples on explainable models

The Figure 5.10 shows the case of 1000 examples on the MNIST data set, where
it is possible to see the FRWI winning in all cases. Also, the same occurs in the
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Figure 5.11 of the case with 10000 examples. This shows the consistency with the
previous analysis in qualitative experiments. The likely main reason for LIME’s
worse performance is its propensity to select big regions as relevant in the image.
In both figures, the black vertical line shows the size standard deviation.

Figure 5.12: Fashion MNIST – ICS; 1k examples on explainable models
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Figure 5.13: Fashion MNIST – ICS; 10k examples on explainable models

Here in the Figure 5.12 the case of 1000 examples on the Fashion MNIST data
set, there is a statistic draw between LIME and FRWI, but the new approach
is winning in other cases. This draw is probably because of the cloud regions
determined by FRWI, where it was not very precise in its definition of what
is relevant. In this data set, the WiSARD model has more colliding patterns
between classes, which causes this situation. In the case of 10000 examples as
the Figure 5.13 shows, the FRWI models wins all, probably because it produces
a more precise explanation with more information. Despite this, the stan-
dard deviation is too high as the black vertical line shows. This is the drawback
in being more precise because this can lead the explainable models to some mistakes.

After all these experiments, this work comes to its conclusions in next chapter.
Reviewing the entire work and defining the next steps in this research.
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Chapter 6

Final Considerations

This concluding chapter summarises the work developed and how it achieved results,
and suggests next steps for this line of research.

As AI based decision systems are more frequently employed and in ever many
areas, the need for eXplainable Artificial Intelligence grows, making this a rich
research area. There are an abundance of methods of achieving explanations,
depending on scenarios. The visualisation of relevant regions, as presented in
earlier sections, is one of many of those methods. It can help us understand
what the classifier considers important, and in the best cases can produce
general views of the concepts learned by the models or a local view that focuses
on one classification. This work was focused on the local view, as the LIME model is.

LIME was one of the first proposals to solve this problem of finding relevant
regions. Its technique is to produce random examples using a specific approach,
in order to optimise a linear model and thus find relevant regions. It is a good
strategy for some scenarios, but it fails to achieve useful results in many others.
For that reason it is important to develop and improve different methods.

The new approach, FRWI, can help fill the gap, producing explanations to
models such as the WiSARD, or rule-based models like the Random Forest. FRWI
also produces several examples to analyse the relevance to classifiers. By using
fuzzy logic, it produces clouds of relevance, as opposed to LIME’s crisp, discreet
outlines, which is useful in yet other scenarios.

We reiterate, however, that although both of these explainers are agnostic and
will attempt to produce explanations to any model, there is no guarantee they will
produce useful explanations in every scenario. Analogous to the fact that not any
single classifier model solves every problem, and are better suited for certain sce-
narios and data sets, each explainer model also suits specific classifiers and data sets.
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The qualitative experiments showed the model is capable of producing reason-
able explanations, which can help understand and improve classifiers. Also, in
the scenarios examined, in comparison to LIME, its explanations are more human
friendly and useful. As these experiments only show a small portion of the chosen
datasets, the quantitative experiments make a more global evaluation of the models.

These quantitative evaluations use the new Interpretation Capacity Score, also
introduced in this work, as an objective way to compare and assess the performance
of different explainers. The ICS evaluations have shown some of the model’s
tendencies, such as LIME often selecting nearly the entire image as relevant in the
experiments ran. Such a tendency can seem obvious, but with this we have a clear
indicator and metric to highlight and show it. Moreover, that FRWI performed
better by a large margin strongly suggests it is a noteworthy explainable model
that could be the focus of future research.

This work present as well the new FRWI approach to produce explanations to
the WiSARD classifier, which also shows promising results. It is a method that is
compatible with the model structure and capable of translating WiSARD decision
processes in a simple visual way.

Among the many possible points for further research, we highlight the need to
continue testing FRWI in more scenarios, such as using colouring images instead of
just greyscale. In order continue to further the understanding of in which cases these
explainers are viable, more experiments in different datasets should be conducted.
Another possibility is to extend FRWI to also work with tabular data, in which case
a new set of fuzzy rules would likely be needed as well as a new way to present
the explanations. It could also be interesting to extend it to work with regression
models, though that can be even more complex in the same two points, as well
as other adjustments that will inevitably be necessary to refine the explanations
produced.

There is also a more specific point for future works, such as the application of new
fuzzy rules to capture different information. For instance, looking for regions which
confuse the classifier. It would be a variation of negative rules, which could help in
the improvement of the learning models, with the use of the produced explanations.
As can be easily seen, it should be possible to capture any desired information as
long as it is possible to express it in fuzzy logic. Also, it is possible to automate
the production of rules in order to generate explanations with rules, which would
be more suitable to the context of tabular data or textual data. One last point of
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possible research is to research substitution of the step of evaluation of images to
mechanisms other than fuzzy logic.
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A weightless regression system for predicting multi-modal empathy

Leopoldo A. D. Lusquino Filho1, Luiz F. R. Oliveira1, Hugo C. C. Carneiro1, Gabriel P.
Guarisa1, Aluı́zio Lima Filho1, Felipe M. G. França1 and Priscila M. V. Lima1 2

1 PESC/COPPE, 2 NCE - Universidade Federal do Rio de Janeiro, RJ, Brazil

Abstract— This work takes into account the benefits of
machine learning in order to estimate the valence of emotions
on the OMG Empathy dataset, considering the information
obtained from face expressions and dialogue of interlocutors.
RegressionWiSARD and ClusRegressionWiSARD n-tuple re-
gressors and its ensembles were employed to this end. The best
performance achieved among all the combinations of weightless
neural models considered (evaluated using the CCC metric) was
0.25 in validation set of the Personalized Track .

I. INTRODUCTION

Since emotional states are a fundamental part of the
core of human psychology, often exceeding the intellect
itself in psychological hierarchy, it is natural that Affective
Computing[11] occupies a prominent place in the study
of the human-machine interface. Along with the apogee
of machine learning, Affective Computing has experienced
great growth in recent years, but it still has many open
questions. Some of the main ones involve the prediction of
emotions based on information from many different sources
and the identification of subtle emotional states in real time.
Specifically, many advances have been made recently in the
area of affective prediction[25][26][27][28][29][30][31][32].

In order to offer a significant contribution in the area,
this paper discusses the use of weightless neural network
ensembles in predicting the affective valence of individuals
in conversation videos, since this type of model has com-
putational simplicity, great computational agility and ease of
being parallelized.

The structure of this work is as follows: in Section 2
the WiSARD weightless model, some of its extensions and
ensembles will be described, Section 3 deals with the prepro-
cessing of data from different sources, Section 4 describes
the experiments carried out with different types of ensembles
using uni and multimodal data and discusses their results, and
Section 5 is the conclusion of this work, summarizing all
the previous discussion and also offering the main ongoing
works.

II. n-TUPLE MODELS

The n-Tuple classifier is a boolean node pattern classifier
[3], which distances itself from models derived from per-
ceptron because it do not use synaptic weights between their
neurons, thus avoiding all training time required for their
convergence. n-Tuple classifier does not need any parameter
fine tuning, nor does it use any error minimization technique
to obtain generalization in pattern learning [17]. The family

This work was not supported by any organization

Fig. 1. The WiSARD model multidiscriminator structure. For digits
recognition task there are ten discriminators. In the training phase, only
the corresponding discriminator is accessed.

of models derived from the n-Tuple classifier is known as
Weightless Artificial Neural Network (WANN).

A. WiSARD

WiSARD is a neural model based on the n-tuple classifier,
where each neuron is equivalent to a piece of memory [1].
This model is class discriminator-oriented, where all dis-
criminators are formed by N RAM-neurons, whose memory
addresses are addressed by n-bit tuples. Each neuron has 2n

memory locations.
WiSARD works with binary standards, requiring the use

of some preprocessing technique to form data suitable to
the model before the training and classification process. The
training process consists of using the binary input to access
specific memory positions of the corresponding discriminator
and increment the counter that constitutes its content. During
the classification, all discriminators are accessed and they
are assigned a score formed by the number of non-null
positions accessed. The discriminator with the highest score
will determine the class of the entry and in case of a tie,
a threshold called bleaching, which is initialized to zero, is
increased and the classification is repeated, considering for
the score only memory locations whose counter has higher
value than bleaching. This procedure is repeated until there is
a winning discriminator or until the bleaching value exceeds
the highest counter among the memory locations accessed,
in which case a default class is chosen for the entry. The
structure and the training process in WiSARD are illustrated
in Figs. 1 and 2. WiSARD can be used to accelerate the
training of deep models, and can be used as a starting layer
for such neural networks in a hybrid hierarchy[33].



Action Units Classification using ClusWiSARD
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Abstract. This paper presents the use of WiSARD and ClusWiSARD
weightless neural networks models for the classification of the contraction
and extension of Action Units, the facial muscles involved in emotive
expressions. This is a complex problem due to the large number of very
similar classes, and because it is a multi-label classification task, where
the positive expression of one class can modify the response of the others.
WiSARD and ClusWiSARD solutions are proposed and validated using
the CK+ dataset, producing responses with accuracy of 89.66%. Some of
the major works in the field are cited here, but a proper comparison is not
possible due to a lack of appropriate information about such solutions,
such as the subset of classes used and the time of training/testing. The
contribution of this paper is in the pioneering use of weightless neural
networks in an AUs classification task, in the unpublished application of
the WiSARD and ClusWiSARD models in multi-label tasks and in the
new unsupervised expansion of ClusWiSARD proposed here.

Keywords: Action Units, WiSARD, ClusWISARD, weightless neural
network

1 Introduction

Ekman and Friesen [1] cataloged a set of muscles known as Action Units (AUs)
– which would be responsible for all facial expressiveness – while attempting to
obtain a set of universal emotions present in any human. The automatic iden-
tification of these AUs has been developed since the mid-1990s and has several
applications: forensics, psychological treatment, physical therapy support and
advertising feedback, among others. AUs have also been used in the develop-
ment of adaptive digital avatars [2].

Some of the great difficulties in automatic detection of AUs are the large
number of classes and the wide variety of forms how AUs express themselves,
besides the fact that they usually manifest together, making this a hard multi-
label task. In this way, the approaches that are emerging in the literature usually
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?? This work was partially supported by CAPES, CNPq, FAPERJ and FINEP, Brazil-
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a b s t r a c t 

This paper explores two new weightless neural network models, Regression WiSARD and ClusRegression 

WiSARD, in the challenging task of predicting the total palm oil production of a set of 28 (twenty eight) 

differently located sites under different climate and soil profiles. Both models were derived from Kolcz 

and Allinson’s n -Tuple Regression weightless neural model and obtained mean absolute error (MAE) rates 

of 0.09097 and 0.09173, respectively. Such results are very competitive with the state-of-the-art (0.07983), 

whilst being four orders of magnitude faster during the training phase. Additionally the models have been 

tested on three classic regression datasets, also presenting competitive performance with respect to other 

models often used in this type of task. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Regression is a traditional and important machine learning task, 

since there is a wide range of practical situations in the real world 

where it is necessary to predict values in a continuous space. In 

a precision agriculture scenario, it would be desirable that simple 

devices, such as small sensors, could perform regression. Weight- 

less Artificial Neural Networks (WANNs), due to its lean, RAM- 

based architecture, seem to be a suitable computational intelli- 

gence model for this type of task. 

This paper explores the use of WANNs in the KDD18 compe- 

tition [3] , a challenge which goal is to predict the palm oil har- 

vest productivity of a set of 28 (twenty eight) different production 

fields using data provided by an agribusiness company. The dataset 

contains information about palm trees varieties, harvest dates, at- 

mospheric data during the development of the trees, and soil char- 

acteristics of the fields where the trees are located in. The WANN 

models explored in this work are based on the n -Tuple Regres- 

sion Network [2] , which was proved to be successful when com- 

pared to other classical regression approaches in non-linear plant 

∗ Corresponding author. 

E-mail address: lusquino@cos.ufrj.br (L.A.D. Lusquino Filho). 
1 Both authors had equal participation and are first author. 

approximation [33] and Mackey-Glass chaotic time series predic- 

tion tasks [32] . These WANN models were introduced in [5] . Here, 

a wider theoretical background is presented, alongside a broader 

exploration of their parameters and how the models perform when 

combined as ensembles. 

The remainder of this text is organized as follows. 

Section 2 presents the basic models that inspired the new weight- 

less regression ones: n -Tuple Classifier, WiSARD [1] , ClusWISARD 

[8] , and n -Tuple Regression Network [2] . Section 3 presents the 

two weightless models proposed for regression, and the ensemble 

techniques explored. Section 4 discusses the various approaches 

used in the KDD18 competition, as well as a comparison with 

state-of-the-art methods. This section also contains the description 

of experiments using the new models in the House Prices, CalCOFI, 

and Parkinson datasets. Concluding remarks and ongoing work are 

presented in Section 5 . 

2. n -Tuple Classifier and family 

2.1. n -Tuple Classifier 

The n -Tuple Classifier is a binary pattern classifier [4] based 

on Random Access Memories (RAMs), requiring no parameter fine 

tuning or any error minimization technique to achieve generalized 

learning patterns [34,35] . The basis of its operation is to use the 

https://doi.org/10.1016/j.neucom.2019.12.134 

0925-2312/© 2020 Elsevier B.V. All rights reserved. 
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artificial consciousness system 
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One key requirement for complex intelligent systems is the ability to           
explain their decisions/actions, which constitutes the focus of        
eXplainable Artificial Intelligence (XAI) (Gunning, 2017). In the core of          
XAI lies the need to generate some interpretation of the AI system’s            
behaviour (Ribeiro et al., 2016). Explanation constitutes a process that          
may involve argumentational and emotional responses, aiming at        
persuading the person who receives the arguments (Molnar, 2019). In          
such a process there are two kinds of interpretations: (i) the first one is              
the interpretation made by the explainer in order to create arguments;           
(ii) the second one is the interpretation coined by the one who receives             
the argumentation to understand what was said. 

In a conscious system, one can assume consciousness of its          
existence, consciousness of its perceptions, and so on (Aleksander, 1995).          
Explanation helps consciousness of oneself. So, the ability to create          
explanations is needed to make the system aware of itself and to help the              
system to create “logical thoughts”. The consciousness of itself could be           
made possible when the system generates interpretations of what it          
perceives, and with that create its argumentation to start the process of            
explanation. Therefore, it could create a line of reasoning that one could            
call “thinking”. 

The first step endow a system with explanatory abilities is to           
create tools capable of producing interpretation as resources to the          
artificial consciousness system. In this direction, the ongoing research of          
interpretations with the WiSARD model (Aleksander et al., 1984)         
provides a tool capable of produce “mental” images as interpretational          
resources that could further be used by a conscious system. 
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Abstract. Although successful black-box learning models have been
created, understanding what happens when a machine produces a classi-
fication response is still a challenge. This work introduces FRWI – Fuzzy
Regression WiSARD Interpreter, a novel fuzzy rules-based algorithm that
is capable of interpreting the responses of black-box classifiers via the pro-
duction of local mental images from a WiSARD n-tuple classifier. FRWI is
compared with LIME – Local Interpretable Model-Agnostic Explanations,
a pioneering agnostic classification interpreter model. To make a quan-
titative evaluation of interpretable models, a new metric – Interpretation
Capacity Score – is proposed. Using this metric, it is shown that FRWI
surpasses LIME in producing coherent interpretations.

1 Introduction

The need to interpret responses from learning models gets higher in different
situations [1]. Questions arise such as: how the models make the decision in the
classification, or when to trust its process, and when not to do so. One way to
answer the first question is to show what is relevant to the model. LIME [2]
– Local Interpretable Model-Agnostic Explanations – was developed with the
motivation to clarify such relevance. There are other interpreter models focused
on DNNs, like Gran-Cam [3], that were later introduced in the literature. How
ever, LIME does not have feasible interpretation capacity for all learning models,
due to interpretable models have scenarios where they work better as learning
models. Experimental tests were performed utilizing LIME to explain decisions
made by following classifiers: WiSARD [4], Linear model [5] and Random Forest
model [6] trained with images data sets. It will be shown that results will select
too much in the image as relevant, and it will not let it clear what is happening
inside the classifier.For that reason, the idea of creating a degree of relevance
for each pixel in the image came as an alternative to interpret the responses
of black-box classifiers more feasible. This work introduces FRWI – Fuzzy Re-
gression WiSARD Interpreter, a WiSARD n-tuple classifier that produces local
mental images, via a fuzzy rules-based algorithm, as an interpretation of the re-
sponses of black-box classifiers. To compare the interpretation capacity of both
LIME and FRWI models, the Interpretation Capacity Score metric is defined.

∗This work was partially supported by NGD Systems, Inc./COPPETEC grant PESC21713;
CAPES, CNPq and FAPERJ, Brazilian research agencies.
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Abstract. This paper introduces Regression WiSARD and ClusRe-
gression WiSARD, two new weightless neural network models that were
applied in the challenging task of predicting the total palm oil produc-
tion of a set of 28 differently located sites under different climate and soil
profiles. Both models were derived from the n-tuple regression weightless
neural model and obtained error (MAE) rates of 0.08737% and 0.08938%,
respectively, which are very competitive with the state-of-art (0.07569),
whilst being four (4) orders of magnitude faster during the training phase.

1 Introduction

Regression is one of the most important machine learning tasks, given the wide
range of practical situations in the real world where it is necessary to predict
values in a given continuum space. Due to its great utility, it is desirable that
simple devices, such as small sensors, could perform regression with online train-
ing. Weightless artificial neural networks (WANNs), due to its lean, RAM-based
architecture, seems to be ideal for this type of task.

This paper presents and explores the use of WANNs in the KDD18 compe-
tition [5], a challenge which goal is to predict the palm oil harvest productivity
of a set of 28 different production fields using data provided by an agribusiness
company. The dataset contains information about palm trees varieties, harvest
dates, atmospheric data during the development of the trees, and soil charac-
teristics of the fields where the trees are located in. The novel WANN models
are based on the n-tuple Regression Network [3], which has been proved success-
ful when compared to other classical regression approaches in non-linear plant
approximation, and Mackey-Glass chaotic time series prediction tasks.

The remainder of this text is organized as follows: Section 2 presents the
two weightless models proposed for regression, as well as the basic concepts be-
hind the models that inspired it: WiSARD [1] and n-tuple Regression Network.
Section 3 discusses the various approaches used in the KDD18 competition, as
well as a comparison with state-of-the-art methods and other relevant results.
Conclusion and future work are presented in Section 4.

∗This work was partially supported by CAPES, CNPq, FAPERJ and FINEP, Brazilian
research agencies.
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ABSTRACT
Planning and management systems via multi-agent have
become an increasingly demanding solution for many
tasks involving heterogeneous data. Research into con-
scious agents has also shown solid progress. Here we
propose an agent-based cognitive system with conscious-
like behavior using Weightless Artificial Neural Net-
works. WiSEMAN is easy to embed on a wide range
of devices due to low computational cost.

1. INTRODUCTION
The increasing number of devices collecting data and

connecting to each other, exchanging information, makes
concepts like IoT and BigData tangible. The emergence
of efficient ways to deal with such huge heterogeneous
mass of data in real time has become extremely nec-
essary.In this scenario, distributed solutions, such as
multi-agent planning, have been more and more high-
lighted. The ability of agents to be adaptive, agile in
their negotiations and able to handle multiple types of
tasks simultaneously is of fundamental importance in
this type of system. Because of this, different types
of cognitive architecture have been designed to struc-
ture the learning and action taking capabilities of such
agents[1].

Another area of computing that has gradually de-
veloped is Machine Consciousness (MC)[2], which at-
tempts to build systems that have subjectivity. One of
MC’s partial goals is to construct agents who behave
indistinguishably from that of a truly conscious agent,
even if unintentionally. In all of these systems, emotion
modeling plays a vital role as a tool for improving agent
training. This is to so expected, because all major the-
ories of consciousness place great emphasis on the role
of emotions.

Substantial, though gradual, advances have been made
in this type of system, and some prototypes have al-
ready been embodied in robots, with motion and visual
control systems, sound, touch and pain receptors[3]. A
naval dispatching system[4] was also designed. Based
on correlates to consciousness principles it incorporated
natural language processing, database interaction, and

resource management.
A common limitation of different architectures for

conscious agents is the large number of partially in-
dependent modules for performing complex tasks in-
volving multi-modal learning. Therefore, we propose
a multi-agent task planning system whose architecture
is inspired by a cognitive system with conscious-like
emotion-driven behavior using only weightless artificial
neural networks (WANN): WiSEMAN (WiSARD Emo-
tional Multi-Agent Network). WANNs are especially
computationally inexpensive. While the WiSEMAN it-
self is still theoretical and not yet tested, its different
modules have been developed separately and tested in
different domains.

Section 02 describes the WiSARD, WANN model used
here, and Section 03 details the WiSEMAN architecture
and refers to the basis on the technology needed to build
its modules.

2. WISARD
WANNs are RAM-based neural networks where each

neuron is a simple memory table. Learning on these
models consists on memory writes, and classification
on memory reads. A traditional and simple model of
WANN is WiSARD[5], a class discriminator-oriented
architecture that has an input retina, responsible for
performing a pseudo-random mapping of n-tuples of a
binary input into specific RAM locations. Since N neu-
rons compose each WiSARD discriminator, the length
of a binary input is roughly N ∗ n bits. Each memory
location stores an integer that represents the number of
hits in the memory position addressed by the n bits in
question.

The WiSARD training phase consists of feeding an
input data to the model and increment the counter in-
side each accessed RAM location of a class discrimina-
tor. To classify a sample, all discriminators access their
RAM locations and return the counters that represent
the scores of each class. The discriminator with the
highest score is the predicted class of the model. If a
score tie occurs, a threshold technique called bleaching
is applied. The bleaching value is initialized to zero and



Appendix B

Extended experiments results

B.1 Qualitative experiments

B.1.1 Positives

Figure B.1: MNIST qualitative experiment: a) original; b) LIME – WiSARD; c)
FRWI – WiSARD; d) LIME – Ridge Regression; e) FRWI – Ridge Regression; f)
LIME – Random Forest; g) FRWI – Random Forest
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Figure B.2: Fashion MNIST qualitative experiment: a) original; b) LIME – WiS-
ARD; c) FRWI – WiSARD; d) LIME – Ridge Regression; e) FRWI – Ridge Regres-
sion; f) LIME – Random Forest; g) FRWI – Random Forest
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B.1.2 Negatives

Figure B.3: MNIST negative qualitative experiment: 0 and 1
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Figure B.4: MNIST negative qualitative experiment: 2 and 3
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Figure B.5: MNIST negative qualitative experiment: 4 and 5
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Figure B.6: MNIST negative qualitative experiment: 6 and 7
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Figure B.7: MNIST negative qualitative experiment: 8 and 9
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B.2 Parameters variation experiments

In this section are presented some of the experiments made varying parameters of
the proposed explainable model, aiming to produce an overview of the correspond-
ing behaviour changes. First, the parameter feature size was tested in the following
values: 1; 2; 4; 6; 8; 10, which correspond to the size of the feature drawn by the
model to determine relevant regions. Second, the parameter number of examples
was tested in the following values: 1000; 5000; 10000; 50000; 100000, which mainly
serves to induce a convergence of the explanations with more examples determining
the same relevant regions.

In the images below, each line has a feature size value in pixels, and each column
has a number of examples. These experiments were ran only in the MNIST data
set to train the learning models, with WiSARD, Ridge regression and Random
forest as the section 5.1.3 details, and only with the first image of the data set of
test, which is the number seven as can be seen in the figure 5.1, to extract the
explanation with the proposed explainable model.

This shows how increasing the number of examples causes the resulting image
to grow smoother, as the increasing iterations cause a convergence on relevant re-
gions. As for the second parameter, as the feature size grows, information is shared
with neighbouring pixels leading a less sharp image, but with very highlighted or
concentrated relevant regions.
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Figure B.8: FRWI parameters variation experiment on MNIST and WiSARD
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Figure B.9: FRWI parameters variation experiment on MNIST and Ridge Regression
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Figure B.10: FRWI parameters variation experiment on MNIST and Random Forest
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B.3 Quantitatives experiments

B.3.1 MNIST 1k

Figure B.11: MNIST models accuracy
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Figure B.12: MNIST models ICS

Figure B.13: MNIST models; mean from p variable
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Figure B.14: MNIST models; mean from n variable

Figure B.15: MNIST models; mean from c variable

76



B.3.2 MNIST 10k

Figure B.16: MNIST models accuracy

Figure B.17: MNIST models ICS
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Figure B.18: MNIST models; mean from p variable

Figure B.19: MNIST models; mean from n variable
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Figure B.20: MNIST models; mean from c variable

B.3.3 Fashion MNIST 1k

Figure B.21: Fashion MNIST models accuracy

79



Figure B.22: Fashion MNIST models ICS

Figure B.23: Fashion MNIST models; mean from p variable
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Figure B.24: Fashion MNIST models; mean from n variable

Figure B.25: Fashion MNIST models; mean from c variable
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B.3.4 Fashion MNIST 10k

Figure B.26: Fashion MNIST models accuracy

Figure B.27: Fashion MNIST models ICS
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Figure B.28: Fashion MNIST models; mean from p variable

Figure B.29: Fashion MNIST models; mean from n variable
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Figure B.30: Fashion MNIST models; mean from c variable
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