
EXTENDING WISARD TO PERFORM ENSEMBLE LEARNING,
REGRESSION, MULTI-LABEL, AND MULTI-MODAL TASKS

Leopoldo André Dutra Lusquino Filho

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia de Sistemas e
Computação, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor em
Engenharia de Sistemas e Computação.

Orientadores: Priscila Machado Vieira Lima
Felipe Maia Galvão França

Rio de Janeiro
Julho de 2021

EXTENDING WISARD TO PERFORM ENSEMBLE LEARNING,
REGRESSION, MULTI-LABEL, AND MULTI-MODAL TASKS

Leopoldo André Dutra Lusquino Filho

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientadores: Priscila Machado Vieira Lima
Felipe Maia Galvão França

Aprovada por: Priscila Machado Vieira Lima Ph.D.
Felipe Maia Galvão França Ph.D.
Diego Leonel Cadette Dutra D.Sc.
Aluizio Fausto Ribeiro Araujo D.Phil.
David Alexis Owen Gamez Ph.D.

RIO DE JANEIRO, RJ – BRASIL
JULHO DE 2021

Lusquino Filho, Leopoldo André Dutra
Extending WiSARD to Perform Ensemble Learning,

Regression, Multi-label, and Multi-modal Tasks/Leopoldo
André Dutra Lusquino Filho. – Rio de Janeiro:
UFRJ/COPPE, 2021.

XXVII, 215 p.: il.; 29, 7cm.
Orientadores: Priscila Machado Vieira Lima

Felipe Maia Galvão França
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2021.
Referências Bibliográficas: p. 117 – 139.
1. WiSARD. 2. Weightless artificial neural network.

3. Cognitive architectures. 4. Multi-label classification.
5. Ensemble learning. 6. Non-parametric regression. 7.
Multi-modal learning. I. Lima, Priscila Machado Vieira
et al. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

A Krishna-Balarama

iv

Agradecimentos

nama om vishnu-padaya krishna-presthaya bhu-tale
srimate chandramukha swamin iti namine

nama om vishnu-padaya krishna-presthaya bhu-tale
srimate bhaktivedanta swamin iti namine

jaya sri krishna chaitanya prabhu nityananda
sri advaita gadadhara srivasadi gaura bhakta vrinda

hare krishna hare krishna krishna krishna hare hare
hare rama hare rama rama rama hare hare

Agradeço primeiramente a Krishna, o tesouro negro dos bosques de Vrindavana,
e seu irmão Balarama, suavizante como o luar primaveril.

Agradeço a Srila Prabhupada, por distribuir tão misericordiosamente o mais
valioso néctar indiscriminadamente, e ao seu mais querido servo, Chandramukha
Swami, por ter me aceitado como seu discípulo e ressignificado toda minha vida.

Agradeço aos meus pais, Carmen e Balabhadra, por terem me estimulado a
sonhar o tanto quanto eu pudesse, por terem me dado um lar tranquilo e feliz e por
terem me ensinado o valor da retidão. Agradeço a minha melhor metade, Damodara,
por me completar de tantas formas e ser a melhor companhia que eu poderia ter
nesta misteriosa jornada da vida. Agradeço ao meu amado Krishna-Balarama, que
me revigora completamente com seu doce sorriso. krishna shaktir astu te

Agradeço aos meus avós por toda sua generosidade, ao meu primo Raphael,
por ter sido sempre uma inspiração, sua esposa Nina, uma irmã tardia, e sua filha
Marina, minha querida afilhada.

Agradeço a ISKCON, que se tornou meu verdadeiro refúgio, especialmente ao
Dhira Chaitanya, Bhagavan, Nityananda Raya e Chaitanya Chandrodaya, por todas
as aventuras que passamos juntos. Ainda vamos salvar o mundo um dia!

Agradeço aos meus orientadores, professores Priscila e Felipe, que foram muito
mais do que meus tutores acadêmicos durante estes anos. Muito obrigado pela
amizade e confiança que me destinaram e que possamos continuar nossa parceria
nos anos vindouros.

v

Agradeço aos meus destemidos irmãos de armas da Sociedade da RAM: Luiz,
Gabriel e Aluizio. Certamente este trabalho não teria sido possível sem a colaboração
de vocês. elen síla lúmenn’ omentielvo

Agradeço aos amigos dos laboratórios LAM, LabZero e LabIA, especialmente ao
Hugo, Brunno, Victor, Santiago, João Victor e Eduardo. Com vocês, todo o fardo
desta pesquisa se tornou mais leve e agradável.

Agradeço ao Vladimir e a NGD Systems por terem apoiado minha pesquisa e
me propiciado oportunidades únicas de crescimento pessoal e profissional.

Agradeço a toda família do PESC/COPPE/UFRJ, por fazerem deste programa
um ambiente tão amistoso e fértil academicamente. Agradeço também as agências de
fomento CAPES, CNPq e COPPETEC, cuja ajuda foi fundamental durante minha
pesquisa.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

ESTENDENDO WISARD PARA APRENDIZAGEM DE COMITÊ E TAREFAS
DE REGRESSÃO, MULTI-RÓTULO E MULTI-MODO

Leopoldo André Dutra Lusquino Filho

Julho/2021

Orientadores: Priscila Machado Vieira Lima
Felipe Maia Galvão França

Programa: Engenharia de Sistemas e Computação

Wilkie, Stonham and Aleksander’s Recognition Device (WiSARD) é um modelo
de aprendizado de máquina que não necessita de nenhum tipo de técnica de mini-
mização de erro para aprender padrões. Este modelo utiliza RAMs como neurônios,
sendo necessário apenas um processo de escrita em memória na sua fase de treina-
mento e leitura em memória na sua fase de classificação. WiSARD é uma rede
neural sem peso, um tipo de modelo que tem sido usado exitosamente em pesquisas
sobre arquiteturas cognitivas e consciência artificial. Esta tese propõe várias exten-
sões para este modelo de forma a criar os componentes necessários para uma futura
arquitetura cognitiva direcionada a emoções baseada em WiSARD. As contribuições
deste trabalho incluem dois sistemas de classificação multi-rótulo utilizando WiS-
ARD, cinco novos tipos de comitês utilizando tanto WiSARD, quanto sua exten-
são ClusWiSARD, dois modelos de regressão não-paramétrica e um de regressão
logística baseados em WiSARD e um sistema multi-modal de predição de empatia
baseado sem peso. Esta tese utiliza uma implementação da WiSARD baseada em
tabelas de dispersão, instanciando apenas as posições de memória que foram de fato
treinadas. Todos os modelos e sistemas criados para esta tese foram comparados com
o estado-da-arte, sendo competitivos em alguns casos, enquanto preservam todas as
qualidades da WiSARD canônica.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

EXTENDING WISARD TO PERFORM ENSEMBLE LEARNING,
REGRESSION, MULTI-LABEL, AND MULTI-MODAL TASKS

Leopoldo André Dutra Lusquino Filho

July/2021

Advisors: Priscila Machado Vieira Lima
Felipe Maia Galvão França

Department: Systems Engineering and Computer Science

Wilkie, Stonham and Aleksander’s Recognition Device (WiSARD) is a machine
learning model that does not require any kind of error minimization technique to
learn patterns. This model uses RAMs as neurons, requiring only one process of
writing in memory in its training phase and reading in memory in its classification
phase. WiSARD is a weightless artificial neural network, a kind of model that has
been successfully used in cognitive architectures and artificial consciousness research.
This thesis proposes several extensions for this model in order to create the necessary
components for a future WiSARD-based emotion-drive cognitive architecture, The
contributions of this work include two WiSARD-based multi-label classification sys-
tems, five new types of ensembles using both WiSARD, as well as its ClusWiSARD
extension, two WiSARD-based non-parametric regression models, one WiSARD-
based logistic regression model, and a weightless multi-modal empathy prediction
system. This thesis uses a map-based WiSARD implementation, instantiating only
the memory locations that were actually trained. All models and systems created
for this thesis have been compared with state-of-the-art, being competitive in some
cases, while preserving all the qualities of the canonical WiSARD.

viii

Contents

List of Figures xiv

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Positioning WiSARD in Relation to Other ML Models 3
1.3 Some Thoughts on Historical Development of ML Models 6
1.4 Contributions . 8
1.5 Thesis Outline . 9

2 Weightless Artificial Neural Networks 11
2.1 n-Tuple Classifier . 11
2.2 WiSARD . 12

2.2.1 Training and Classification . 12
2.2.2 Mapping . 14
2.2.3 DRASiW and Mental Images 15
2.2.4 minZero and minOne . 15
2.2.5 VC-dimension . 15
2.2.6 Scalability . 16

2.3 ClusWiSARD . 16
2.4 KernelCanvas . 18
2.5 n-tuple Regression Network . 19

2.5.1 General Regression Neural Network 19
2.5.2 The Approximation-Type n-tuple Neural Network 20

2.6 Other Weightless Artificial Neural Networks 21
2.7 WAAN’s Recent Advances . 24
2.8 Preprocessing Techniques . 26

2.8.1 Image . 26
2.8.1.1 Deskewing . 26
2.8.1.2 Yen’s Binarization 27

ix

2.8.1.3 Adaptive Gaussian 27
2.8.1.4 Sauvola’s Binarization 27
2.8.1.5 Canny Border Detector 28
2.8.1.6 Otsu’s Binarization 28

2.8.2 Audio . 29
2.8.3 Thermometer . 30
2.8.4 One-hot-encoding . 31
2.8.5 tf-idf . 31
2.8.6 Discussion about the Preprocessing Techniques 32

3 WiSARD in Action Units Multi-label Classification 33
3.1 WiSARD-based Multi-label Classification Systems 34

3.1.1 Label Powerset . 34
3.1.2 Binary Relevance . 35

3.2 Action Units . 35
3.3 Related Work . 36
3.4 Experimental Results . 37

3.4.1 Experimental Setup . 37
3.4.2 Cross-validation with Full Dataset 40
3.4.3 Cross-validation with Subsets 44
3.4.4 Leave-one-out Validation . 44
3.4.5 ClusWiSARD in Unsupervised Tasks 45
3.4.6 Discussion . 46

3.5 Chapter Conclusion . 46

4 Ensemble Learning with WiSARD 48
4.1 Related Work . 48

4.1.1 Bagging . 49
4.1.2 Arcing and AdaBoost . 49

4.2 WiSARD Ensembles . 50
4.2.1 WiSARD Bagging . 51
4.2.2 WiSARD Boosting . 51
4.2.3 WiSARD Borda Count . 52

4.2.3.1 Starting at 1 . 52
4.2.3.2 Starting at 0 . 53
4.2.3.3 Dowdall . 53

4.2.4 WiSARD Tie-break Ensembles 53
4.2.4.1 All candidates . 54
4.2.4.2 Only Ties . 54
4.2.4.3 Tie-break with Threshold 54

x

4.2.5 Weighted Votes Ensembles . 55
4.2.6 Discussing the Tiebreaker Criteria for WiSARD Ensembles . . 55

4.2.6.1 All candidates . 55
4.2.6.2 Only-ties . 55
4.2.6.3 Tie-break with Threshold 56
4.2.6.4 Weighted Votes Ensembles 56

4.3 Experimental Results . 56
4.3.1 Datasets . 56

4.3.1.1 Cifar 10 . 56
4.3.1.2 CKP . 56
4.3.1.3 MNIST . 57
4.3.1.4 Fashion MNIST . 57
4.3.1.5 IMDB . 57
4.3.1.6 MovieLens . 57
4.3.1.7 State-of-the-art Models 58

4.3.2 Experimental Setup . 58
4.3.3 Experimental Results . 58
4.3.4 Discussion . 59
4.3.5 Additional Results in Cifar 10 64

4.4 Chapter Conclusion . 67

5 Extending WiSARD for Regression 68
5.1 Related Work . 69
5.2 The New Weightless Regression Models 69

5.2.1 Regression WiSARD . 69
5.2.1.1 Training . 70
5.2.1.2 Prediction . 70

5.2.2 ClusRegression WiSARD . 72
5.2.2.1 Training . 72
5.2.2.2 Prediction . 73

5.2.3 Regression WiSARD Ensembles 74
5.3 Experimental Results . 74

5.3.1 KDD18 Experimental Setup 75
5.3.2 Analysis of the KDD18 Experiments 75
5.3.3 Analysis of Experiments in Other Datasets 80
5.3.4 Regression WiSARD’s Learning Curves 87
5.3.5 Analysis of Ensemble Composition 87
5.3.6 Logistic Regression . 90

5.3.6.1 The Model . 90

xi

5.3.6.2 Validation . 91
5.3.6.3 Discussion . 92

5.4 Chapter Conclusion . 92

6 A Weightless Multi-modal Empathy Predictor 94
6.1 Related Work . 95
6.2 Empathy Prediction . 96
6.3 Experimental Results . 96

6.3.1 Experimental Setup . 96
6.3.2 Results in Validation Set . 98
6.3.3 Results in Test Set . 101
6.3.4 Preprocessing Analysis . 101
6.3.5 Discussion . 104

6.4 Chapter Conclusion . 107

7 Conclusion 110
7.1 Summary of the Thesis . 111

7.1.1 Chapter 1 . 111
7.1.2 Chapter 2 . 111
7.1.3 Chapter 3 . 112
7.1.4 Chapter 4 . 112
7.1.5 Chapter 5 . 113
7.1.6 Chapter 6 . 113

7.2 WiSEMAN: Towards a WiSARD-based Cognitive Architecture 113
7.3 Final Remarks . 114

References 117

Appendices 140

A Supplementary Action Units Experiments 141

B Supplementary Ensemble Experiments 145
B.1 Cifar10 Dataset . 145

B.1.1 Local Threshold . 145
B.1.2 Mean Threshold . 146
B.1.3 Otsu’s Binarization . 147
B.1.4 Yen’s Binarization . 147

B.2 CKP Dataset . 147
B.2.1 Local Threshold . 148
B.2.2 Mean Threshold . 148

xii

B.2.3 Otsu’s Binarization . 149
B.2.4 Yen’s Binarization . 150

B.3 Fashion MNIST Dataset . 151
B.3.1 Local Threshold . 152
B.3.2 Mean Threshold . 152
B.3.3 Otsu’s Binarization . 152
B.3.4 Yen’s Binarization . 164

B.4 IMDb Dataset . 165
B.5 MNIST Dataset . 166
B.6 MovieLens Dataset . 166

C Comparison between WiSARD and ClusWiSARD in Ensemble Ex-
periments 171

D Supplementary Regression Experiments 195

E WiSEMAN: A Weightless Emotion-driven Neural Architecture for
Planning-related Tasks 199
E.1 Motivations . 199
E.2 WiSEMAN Architecture . 200

F Weightless Artificial Neural Networks and Artificial Consciousness203
F.1 The Fundamental Postulate: Consciousness and Neural Activity . . . 203
F.2 Advances in WiSARD and the Investigation in Artificial Consciousness204

G WiSARD Libraries 206
G.1 wisardpkg . 206

G.1.1 Implementation . 206
G.1.2 Availability . 206
G.1.3 Installation . 207
G.1.4 Architecture . 207

G.1.4.1 Binarization . 207
G.1.4.2 Models . 208

G.2 Multi-label Classification Systems . 210
G.3 Classification Ensembles . 211

H List of Publications 213
H.1 Journal Articles . 213
H.2 Book Chapters . 213
H.3 Complete Works Published in Proceedings of Conferences 213
H.4 Extended Abstracts Published in Proceedings of Conferences 214

xiii

List of Figures

2.1 The n-tuple classifier (extracted from [1]). 11
2.2 Training stage in WiSARD[2] . 13
2.3 Classification stage in WiSARD[2] . 13
2.4 Preprocessings: (a) original image[3]; (b) Canny filter; (c) Adaptive

Gaussian filter; (d) Sauvola binarization; (e) Otsu binarization. . . . 28
2.5 Thermometer encoding example . 31

3.1 Label Powerset . 34
3.2 Binary Relevance . 35
3.3 Examples of Cohn-Kanade Extended Dataset (CK+)[4] 39

4.1 WiSARD Bagging’s training datase 51
4.2 WiSARD Boosting’s training datase 52
4.3 Comparison of WiSARD’s accuracy in Cifar10 dataset with 10 and

15 bits in traditional and circular thermometer in RGB channels. . . 65
4.4 Comparison of WiSARD’s training time in Cifar10 dataset with 10

and 15 bits in traditional and circular thermometer in RGB channels. 66
4.5 Comparison of WiSARD’s test time in Cifar10 dataset with 10 and

15 bits in traditional and circular thermometer in RGB channels. . . 66

5.1 Example of a ReW model behavior in the training phase. A binary
input and a float value y are presented to the model. The pseudo-
random mapping is applied to the binary input and the new pattern is
divided into n-tuples, each one being assigned to one of the regression
RAMs. The values related to the address corresponding to the tuple
are updated in the following way: the counter is incremented by 1,
while the summation is incremented by the value of y. 71

5.2 Prediction of the same example with different minZero and minOne
values (simple mean). 72

5.3 Address size X MAE for ReW, CReW and n-tuple Regression Net-
work in KDD18 dataset. 76

xiv

5.4 Address size X training time (s) for: (a) ReW, CReW and n-tuple Re-
gression Network in KDD18 dataset; (b) ReW and n-tuple Regression
Network in KDD18 dataset. 77

5.5 Address size X test time (s) for: (a) ReW, CReW and n-tuple Re-
gression Network in KDD18 dataset; (b) ReW and n-tuple Regression
Network in KDD18 dataset. 78

5.6 Number of weak learners X MAE for ReW Bagging, ReW Boosting
and Naïve ReW Ensemble in KDD18. 79

5.7 Thermometer size X MAE for ReW, CReW, n-tuple Regression Net-
work, GradientBoost and XGBoost in House Prices. 82

5.8 Thermometer size X training time(s) for ReW, CReW, n-tuple Re-
gression Network, GradientBoost and XGBoost in House Prices. . . . 82

5.9 Thermometer size X test time(s) in training set for ReW, CReW,
n-tuple Regression Network, GradientBoost and XGBoost in House
Prices. 82

5.10 Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in House Prices. . 83

5.11 Number of weak learners X MAE for ReW Bagging, ReW Boosting
and Naïve ReW Ensemble in House Prices. 83

5.12 Thermometer size X MAE for ReW, CReW, n-tuple Regression Net-
work, GradientBoost and XGBoost in Parkinson. 83

5.13 Thermometer size X training time(s) for ReW, CReW, n-tuple Re-
gression Network, GradientBoost and XGBoost in Parkinson. 84

5.14 Thermometer size X test time(s) in training set for ReW, CReW, n-
tuple Regression Network, GradientBoost and XGBoost in Parkinson. 84

5.15 Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in Parkinson. . . . 84

5.16 Number of weak learners X MAE for: (a) ReW Bagging, ReW Boost-
ing and Naïve ReW Ensemble in Parkinson; (b) ReW Bagging and
Naïve ReW Ensemble in Parkinson. 85

5.17 Thermometer size X MAE for ReW, CReW, n-tuple Regression Net-
work, GradientBoost and XGBoost in CalCOFI. 86

5.18 Thermometer size X training time(s) for ReW, CReW, n-tuple Re-
gression Network, GradientBoost and XGBoost in CalCOFI. 86

5.19 Thermometer size X test time(s) in training set for ReW, CReW,
n-tuple Regression Network, GradientBoost and XGBoost in CalCOFI. 86

5.20 Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in CalCOFI. 87

xv

5.21 Number of weak learners X MAE for: (a) ReW Bagging, ReW Boost-
ing and Naïve ReW Ensemble in CalCOFI; (b) ReW Bagging and
Naïve ReW Ensemble in CalCOFI. 88

5.22 Length of training set X MAE for ReW, CReW and n-tuple Regres-
sion Network in House Prices. 89

6.1 Example of the Sub Track Empathy prediction of OMG-Empathy
datase[5]. 97

6.2 WiSARD’s multi-modal pipeline . 98
6.3 n X CCC for ReW in the validation set using only image mode. . . . 99
6.4 n X correlation coefficient for ReW in the validation set using only

image mode. 100
6.5 n X training time for ReW using only image mode. 100
6.6 n X validation time for ReW in the validation set using only image

mode. 100
6.7 n X CCC for ReW and CReW in the validation set using image and

audio modes. 101
6.8 n (address size) X CCC for ReW in the test set using only image mode.102
6.9 n (address size) X correlation coefficient for ReW in the test set using

only image mode. 102
6.10 n (address size) X test time for ReW in the test set using only image

mode. 102
6.11 n (address size) X CCC for ReW and CReW in the test set (Sauvola

method) using image and audio modes. 103
6.12 n (address size) X CCC for ReW and CReW in the test set (Canny

Filter using image and audio modes. 103
6.13 n (address size) X training time for ReW and CReW in the test set

(Canny Filter) using image and audio modes. 104
6.14 n (address size) X test time for ReW and CReW in the test set (Canny

Filter) using image and audio modes. 104
6.15 n (address size) X CCC for ReW and CReW in the test set (Adaptive

Gaussian Filter) using image and audio modes. 105
6.16 n (address size) X training time for ReW and CReW in the test set

(Adaptive Gaussian Filter) using image and audio modes. 105
6.17 n (address size) X test time for ReW and CReW in the test set

(Adaptive Gaussian Filter) using image and audio modes. 106
6.18 n (address size) X CCC for ReW and CReW in the test set (Otsu

Binarization using image and audio modes. 106

xvi

6.19 n (address size) X training time for ReW and CReW in the test set
(Otsu Binarization) using image and audio modes. 106

6.20 n (address size) X test time for ReW and CReW in the test set (Otsu
Binarization) using image and audio modes. 107

A.1 Accuracy of Binary Relevance vs Label Powerset approaches using
WiSARD; n = the tuple size. 141

A.2 Accuracy of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size. 141

A.3 F1-Score of Binary Relevance vs Label Powerset approaches using
WiSARD; n = the tuple size. 142

A.4 F1-Score of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size. 142

A.5 Precision of Binary Relevance vs Label Powerset approaches using
WiSARD; n = the tuple size. 142

A.6 Precision of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size. 142

A.7 Recall of Binary Relevance vs Label Powerset approaches using WiS-
ARD; n = the tuple size. 143

A.8 Recall of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size. 143

A.9 Training time mean of Binary Relevance vs Label Powerset ap-
proaches using WiSARD; n = the tuple size. 143

A.10 Training time mean of Binary Relevance vs Label Powerset ap-
proaches using ClusWiSARD; n = the tuple size. 143

A.11 Classification time mean of Binary Relevance vs Label Powerset ap-
proaches using WiSARD; n = the tuple size. 144

A.12 Classification time mean of Binary Relevance vs Label Powerset ap-
proaches using ClusWiSARD; n = the tuple size. 144

C.1 Comparison of accuracy between WiSARD and ClusWiSARD in Ci-
far10 dataset with local threshold. 172

C.2 Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with local threshold. 172

C.3 Comparison of test time between WiSARD and ClusWiSARD in Ci-
far10 dataset with local threshold. 173

C.4 Comparison of accuracy between WiSARD and ClusWiSARD in Ci-
far10 dataset with mean threshold. 173

C.5 Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with mean threshold. 174

xvii

C.6 Comparison of test time between WiSARD and ClusWiSARD in Ci-
far10 dataset with mean threshold. 174

C.7 Comparison of accuracy between WiSARD and ClusWiSARD in Ci-
far10 dataset with Otsu’s Binarization 175

C.8 Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with Otsu’s Binarization. 175

C.9 Comparison of test time between WiSARD and ClusWiSARD in Ci-
far10 dataset with Otsu’s Binarization. 176

C.10 Comparison of accuracy between WiSARD and ClusWiSARD in Ci-
far10 dataset with Yen’s Binarization. 176

C.11 Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with Yen’s Binarization. 177

C.12 Comparison of test time between WiSARD and ClusWiSARD in Ci-
far10 dataset with Yen’s Binarization. 177

C.13 Comparison of accuracy betweenWiSARD and ClusWiSARD in CKP
dataset with local threshold. 178

C.14 Comparison of training time between WiSARD and ClusWiSARD in
CKP with local threshold. 178

C.15 Comparison of test time betweenWiSARD and ClusWiSARD in CKP
dataset with local threshold. 179

C.16 Comparison of accuracy betweenWiSARD and ClusWiSARD in CKP
dataset with mean threshold. 179

C.17 Comparison of training time between WiSARD and ClusWiSARD in
CKP with mean threshold. 180

C.18 Comparison of test time betweenWiSARD and ClusWiSARD in CKP
dataset with mean threshold. 180

C.19 Comparison of accuracy betweenWiSARD and ClusWiSARD in CKP
dataset with Otsu’s Binarization. 181

C.20 Comparison of training time between WiSARD and ClusWiSARD in
CKP with Otsu’s Binarization. 181

C.21 Comparison of test time betweenWiSARD and ClusWiSARD in CKP
dataset with Otsu’s Binarization. 182

C.22 Comparison of accuracy betweenWiSARD and ClusWiSARD in CKP
dataset with Yen’s Binarization. 182

C.23 Comparison of training time between WiSARD and ClusWiSARD in
CKP with Yen’s Binarization. 183

C.24 Comparison of test time betweenWiSARD and ClusWiSARD in CKP
dataset with Yen’s Binarization. 183

xviii

C.25 Comparison of accuracy between WiSARD and ClusWiSARD in
Fashion MNIST dataset with local threshold. 184

C.26 Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with local threshold. 184

C.27 Comparison of test time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with local threshold. 185

C.28 Comparison of accuracy between WiSARD and ClusWiSARD in
Fashion MNIST dataset with mean threshold. 185

C.29 Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with mean threshold. 186

C.30 Comparison of test time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with mean threshold. 186

C.31 Comparison of accuracy between WiSARD and ClusWiSARD in
Fashion MNIST dataset with Otsu’s Binarization. 187

C.32 Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with Otsu’s Binarization. 187

C.33 Comparison of test time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with Otsu’s Binarization. 188

C.34 Comparison of accuracy between WiSARD and ClusWiSARD in
Fashion MNIST dataset with Yen’s Binarization. 188

C.35 Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with Yen’s Binarization. 189

C.36 Comparison of test time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with Yen’s Binarization. 189

C.37 Comparison of accuracy between WiSARD and ClusWiSARD in
MNIST dataset. 190

C.38 Comparison of training time between WiSARD and ClusWiSARD in
MNIST dataset. 190

C.39 Comparison of test time between WiSARD and ClusWiSARD in
MNIST dataset. 191

C.40 Comparison of accuracy between WiSARD and ClusWiSARD in
IMDB dataset. 191

C.41 Comparison of training time between WiSARD and ClusWiSARD in
IMDB dataset. 192

C.42 Comparison of test time between WiSARD and ClusWiSARD in
IMDB dataset. 192

C.43 Comparison of accuracy between WiSARD and ClusWiSARD in
MovieLens dataset. 193

xix

C.44 Comparison of training time between WiSARD and ClusWiSARD in
MovieLens dataset. 193

C.45 Comparison of test time between WiSARD and ClusWiSARD in
MovieLens dataset. 194

D.1 Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in House Prices. . 196

D.2 Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in House Prices. . 196

D.3 Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in Parkinson. . . . 196

D.4 Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in Parkinson. . . . 197

D.5 Thermometer size X MSE (test set) for ReW, CReW, n-Tuple Re-
gression Network, GradientBoost and XGBoost in Parkinson. 197

D.6 Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in CalCOFI. 197

D.7 Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in CalCOFI. 198

D.8 Thermometer size X MSE (test set) for ReW, CReW, n-Tuple Re-
gression Network, GradientBoost and XGBoost in CalCOFI. 198

E.1 Architecture of WiSEMAN. 202

xx

List of Tables

1.1 A comparison between WiSARD and other ML models 7

2.1 Example of one-hot-encoding for variable Fantastic Creature = [grif-
fin, elf, dragon, fairy . 31

2.2 Term count in Document 1 . 31
2.3 Term count in Document 2 . 32

3.1 A comparison between ML-solutions for AUs classification in literature. 38
3.2 Number of examples of each AU in CK+ dataset 40
3.3 Best accuracy results for each combination of type of network, multi-

label approach and preprocessing. 41
3.4 Best F1-score results for each combination of type of network, multi-

label approach and preprocessing. 41
3.5 Best precision results for each combination of type of network, multi-

label approach and preprocessing. 41
3.6 Best recall results for each combination of type of network, multi-label

approach and preprocessing. 42
3.7 Best ROC AUC score results for each combination of type of network,

multi-label approach and preprocessing. 42
3.8 The training and classification time results for the best combination

of type of network, multi-label approach and preprocessing in relation
to F1-score; TrT - training time; TT - test time. 43

3.9 Benchmark using F1-score in leave-one-out validation 45

4.1 A comparison between the most used ensembles in literature. 50
4.2 Borda count starting at 1: scores received by each candidate from the

ballot of a voter . 52
4.3 Borda count starting at 0: scores received by each candidate from the

ballot of a voter . 53
4.4 Borda count in Dowdall system: scores received by each candidate

from the ballot of a voter . 53

xxi

4.5 This table is the result of a vote carried out by 20 weak learners,
where the position of each class in the rank of each voter is given
through the score obtained by him during the classification phase. In
the event of a tie in the scores of the discriminators, the tiebreaker
by individual rank occurs through arbitrary choice. 54

4.6 The best results per model in Cifar10 dataset. Abbreviations: PP -
preprocessing, n - tuple size, Pt - partition, training set size used, w;
- number of weak learners, TrT - training time; LT - Local Threshold,
MT - Mean Threshold, OB - Otsu’s Binarization, YB - Yen’s Bina-
rization, WSD - WiSARD, Clus - ClusWiSARD, Bg - Bagging, BC -
Borda Count, Tb - Tie-break, WV - Weighted Votes. 60

4.7 The best results per model in CKP dataset; Pol - Policy; M - Max;
St1 - Start at 1; Ot - Only ties; Dowdall - Dwd; Threshold - Th. . . . 61

4.8 The best results per model in Fashion MNIST dataset; Mod - Models;
Pol - Policy; M - Max; St1 - Start at 1; Ot - Only ties; Dowdall - Dwd. 62

4.9 The best results per model in MNIST dataset. 62
4.10 The best results per model in IMDb dataset. 63
4.11 The best results per model in MovieLens dataset. 63
4.12 The best results per model in Cifar10 dataset with traditional ther-

mometer in RGB channels; Mod - Models; Pol - Policy;M3 - Max =
3; St1 - Start at 1; Ot - Only ties. 65

4.13 The best results per model in Cifar10 dataset with circular thermome-
ter in RGB channels; Mod - Models; Pol - Policy;M3 - Max = 3; St1
- Start at 1; Ot - Only ties. 66

5.1 Comparison between the main regressors in literature and non-
parametric weightless regressor. 70

5.2 Comparison of WANN regressor models with state-of-the-art in Pri-
vate Score of KDD18 Challenge . 76

5.3 Best results for weightless models with standard deviation and best
median type. Caption: Md: median; PM: Power Mean; HM: Har-
monic Mean; GM: Geometric Mean. 85

5.4 Comparison of the three types of ensembles using only ReW, only
CReW and both models. Caption: MAE: mean absolute error; TrT:
training time (s); TT: test time (s) 89

5.5 Time spent by ReW to perform logistic regression on the test set . . . 91

6.1 A comparison between the multi-modal solutions in literature. 95
6.2 Average time of each preprocessing method. 99
6.3 CCC for each story with different addressing values with ReW model. 99

xxii

6.4 CCC for each story with different addressing values with CReW model. 99
6.5 CCC for each BaggingReW and Naïve ReW ensemble in Validation

set of Personalized Track . 101
6.6 A general benchmark in OMG-Empathy Prediction dataset 107

A.1 Multi-label confusion matrix for best scored classes (ClusWiSARD,
Adaptive Mean, Binary Relevance): AUs 10 and 31, respectively;
M0,0 is the count of true negatives, M0,1 is false positives, M1,0 is
false negatives and M1,1 is true positives. 144

B.1 Results for WiSARD Bagging Ensembles in Cifar10 Dataset with Lo-
cal Threshold . 145

B.2 Results for WiSARD Boosting Ensembles in Cifar10 Dataset with
Local Threshold . 146

B.3 Results for Borda Count Ensembles in Cifar10 Dataset with Local
Threshold . 146

B.4 Results for Tie-break Ensembles in Cifar10 Dataset with Local
Threshold . 146

B.5 Results for Weighted Votes Ensembles in Cifar10 Dataset with Local
Threshold . 147

B.6 Results for WiSARD Bagging Ensembles in Cifar10 Dataset with
Mean Threshold . 147

B.7 Results for WiSARD Boosting Ensembles in Cifar10 Dataset with
Mean Threshold . 147

B.8 Results for Borda Count Ensembles in Cifar10 Dataset with Mean
Threshold . 148

B.9 Results for Tie-break Ensembles in Cifar10 Dataset with Mean
Threshold . 148

B.10 Results for Weighted Votes Ensembles in Cifar10 Dataset with Mean
Threshold . 148

B.11 Results for WiSARD Bagging Ensembles in Cifar10 Dataset with
Otsu’s Binarization . 149

B.12 Results for WiSARD Boosting Ensembles in Cifar10 Dataset with
Otsu’s Binarization . 149

B.13 Results for Borda Count ensembles in Cifar10 dataset with Otsu’s
Binarization . 149

B.14 Results for Tie-break Ensembles in Cifar10 Dataset with Otsu’s Bi-
narization . 150

B.15 Results for Weighted Votes Ensembles in Cifar10 Dataset with Otsu’s
Binarization . 150

xxiii

B.16 Results for WiSARD Bagging Ensembles in Cifar10 Dataset with
Yen’s Binarization . 150

B.17 Results for WiSARD Boosting Ensembles in Cifar10 Dataset with
Yen’s Binarization . 151

B.18 Results for Borda Count Ensembles in Cifar10 Dataset with Yen’s
Binarization . 151

B.19 Results for Tie-break Ensembles in Cifar10 Dataset with Yen’s Bina-
rization . 151

B.20 Results for Weighted Votes Ensembles in Cifar10 Dataset with Yen’s
Binarization . 152

B.21 Results for WiSARD Bagging Ensembles in CKP Dataset with Local
Threshold . 152

B.22 Results for WiSARD Boosting Ensembles in CKP Dataset with Local
Threshold . 152

B.23 Results for Borda Count Ensembles in CKP Dataset with Local
Threshold . 153

B.24 Results for Tie-break Ensembles in CKP Dataset with Local Threshold153
B.25 Results for Weighted Votes Ensembles in CKP Dataset with Local

Threshold . 153
B.26 Results for WiSARD Bagging Ensembles in CKP Dataset with Mean

Threshold . 154
B.27 Results for WiSARD Boosting Ensembles in CKP Dataset with Mean

Threshold . 154
B.28 Results for Borda Count Ensembles in CKP Dataset with Mean

Threshold . 154
B.29 Results for Tie-break Ensembles in CKP Dataset with Mean Threshold155
B.30 Results for Weighted Votes Ensembles in CKP Dataset with Mean

Threshold . 155
B.31 Results for WiSARD Bagging Ensembles in CKP Dataset with Otsu’s

Binarization . 155
B.32 Results for WiSARD Boosting Ensembles in CKP Dataset with

Otsu’s Binarization . 156
B.33 Results for Borda Count Ensembles in CKP Dataset with Otsu’s Bi-

narization . 156
B.34 Results for Tie-break Ensembles in CKP Dataset with Otsu’s Bina-

rization . 156
B.35 Results for Weighted Votes Ensembles in CKP Dataset with Otsu’s

Binarization . 157

xxiv

B.36 Results for WiSARD Bagging Ensembles in CKP Dataset with Yen’s
Binarization . 157

B.37 Results for WiSARD Boosting Ensembles in CKP Dataset with Yen’s
Binarization . 157

B.38 Results for Borda Count Ensembles in CKP Dataset with Yen’s Bi-
narization . 158

B.39 Results for Tie-break Ensembles in CKP Dataset with Yen’s Bina-
rization . 158

B.40 Results for Weighted Votes Ensembles in CKP Dataset with Yen’s
Binarization . 158

B.41 Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Local Threshold . 159

B.42 Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Local Threshold . 159

B.43 Results for Borda Count Ensembles in Fashion MNIST Dataset with
Local Threshold . 159

B.44 Results for Tie-break Ensembles in Fashion MNIST Dataset with Lo-
cal Threshold . 160

B.45 Results for Weighted Votes Ensembles in Fashion MNIST Dataset
with Local Threshold . 160

B.46 Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Mean Threshold . 160

B.47 Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Mean Threshold . 161

B.48 Results for Borda Count Ensembles in Fashion MNIST Dataset with
Mean Threshold . 161

B.49 Results for Tie-break Ensembles in Fashion MNIST Dataset with
Mean Threshold . 161

B.50 Results for Weighted Votes Ensembles in Fashion MNIST Dataset
with Mean Threshold . 162

B.51 Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Otsu’s Binarization . 162

B.52 Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Otsu’s Binarization . 162

B.53 Results for Borda Count Ensembles in Fashion MNIST Dataset with
Otsu’s Binarization . 163

B.54 Results for Tie-break Ensembles in Fashion MNIST Dataset with
Otsu’s Binarization . 164

xxv

B.55 Results for Weighted Votes Ensembles in Fashion MNIST Dataset
with Otsu’s Binarization . 164

B.56 Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Yen’s Binarization . 164

B.57 Results for WiSARD Boosting ensembles in Fashion MNIST dataset
with Yen’s Binarization . 165

B.58 Results for Borda Count Ensembles in Fashion MNIST Dataset with
Yen’s Binarization . 165

B.59 Results for Tie-break Ensembles in Fashion MNIST Dataset with
Yen’s Binarization . 165

B.60 Results for Weighted Votes Ensembles in Fashion MNIST Dataset
with Yen’s Binarization . 166

B.61 Results for WiSARD Bagging Ensembles in IMDb Dataset 166
B.62 Results for WiSARD Boosting Ensembles in IMDb Dataset 166
B.63 Results for Borda Count Ensembles in IMDb Dataset 167
B.64 Results for Tie-break Ensembles in IMDb Dataset 167
B.65 Results for Weighted Votes Ensembles in IMDb Dataset 167
B.66 Results for WiSARD Bagging Ensembles in MNIST Dataset 168
B.67 Results for WiSARD Boosting Ensembles in MNIST Dataset 168
B.68 Results for Borda Count Ensembles in MNIST Dataset 168
B.69 Results for Tie-break Ensembles in MNIST Dataset 169
B.70 Results for Weighted Votes Ensembles in MNIST Dataset 169
B.71 Results for WiSARD Bagging Ensembles in MovieLens Dataset . . . 169
B.72 Results for WiSARD Boosting Ensembles in MovieLens Dataset . . . 169
B.73 Results for Borda Count Ensembles in MovieLens Dataset 170
B.74 Results for Tie-break Ensembles in MovieLens Dataset 170
B.75 Results for Weighted Votes Ensembles in MovieLens Dataset 170

xxvi

Chapter 1

Introduction

Wilkie, Stonham and Aleksander Recognition Device (WiSARD)[6] is an artifi-
cial neural network that does not use weighted synapses to learn patterns. On the
other hand, it possesses RAM(random-access-memory)-based neurons that stores
the learnerd patterns. In a WiSARD model the learning of a pattern simply corre-
sponds to writing in memory, whereas classification essentially corresponds to the
reading of certain memory positions.

WiSARD belongs to a type of machine learning model known as Weightless
Artificial Neural Networks (WANNs)[7] derived from the n-tuple Classifier[1]. The
goal of this work is to extend the WiSARD model in order to create components for
cognitive architectures from such extensions. Preliminary explorations of weightless
models in such architectures have proven successful[8–16].

One of the advantages of using weightless models in the construction of cognitive
architectures is that it is possible to build from the same type of neural network
upper and lower layers analogous to those of the brain, since in this model the
learning and classification parts could be built from the same components. Since
recent studies[17–20] on the predictive brain have suggested that higher layers of
the brain have a strong influence on the information processed in the lower layers,
such modeling would preserve fidelity with the human brain. On the other hand,
cognitive architectures that use deep models[21] tend to separate them from the
cognitive components..

1.1 Motivation

Cognitive architectures were first proposed by Allan Newell[22], one of the pioneers
of AI. He tried to establish a unified theory of cognition and defined the mind as a
single system[23]. Its definition of cognition postulated that it was composed of the
capacities of problem-solving, decision making, routine action, memory, learning,
skill, perception, motor behavior, language, motivation, emotion, imagining, dream-

1

ing, and daydreaming. According to this unified theory, any plausible explanation
of the mind should explain it as being achievable as a neural network[24].

Vernon et al.[25] define cognition as what “allows the system to act effectively,
to adapt,and to improve”. Panella et al.[21] connects cognition with an agent’s
sense of survival, in a way that a cognitive architecture will allow a system to adapt
to survive in diverse environments. To do so, the architecture should provide the
agent with the following capabilities: (i) sense the environment and themselves;
(ii) create an inner representation of what they sense; (iii) be able to reason and
make inferences about the environment; (iv) react to the environment; (v) learn and
update knowledge; (vi) re-plan their course of action; (vii) actuate the new plan.
Cognitive architecture surveys were provided by [26–29].

The concept of a theory for artificial consciousness-based only on neural machines
was first presented by one of the WiSARD’s creators, Professor Igor Aleksander, in
[8]. Soon after he formulates the first theory of artificial consciousness based on
the personal construct theory[30], and part of the premise that anticipation and
prediction capabilities are the main drivers of mind. Aleksander then formulates
his Fundamental Postulate of Consciousness, who tried to capture consciousness in
a neural state machine, with sensory neurons and iconic transfer. This is better
elaborated in Appendix F.

Aleksander also derives twelve corollaries from the Fundamental Postulate: (i)
the brain is a state machine; (ii) inner neuron partitioning; (iii)conscious and uncon-
scious states; (iv) perceptual learning and memory; (v) prediction; (vi) awareness
of self; (vii) representation of meaning; (viii) learning utterances; (ix) learning lan-
guage; (x) will; (xi) instinct; and (xii) emotion. According to this theory an agent
would have to satisfy these twelve corollaries to be considered conscious. The canon-
ical architecture of the WiSARD model does not allow the construction of a system
that meets these requirements, so this thesis will investigate how to extend this
model to advance research on the construction of a weightless cognitive agent. The
creation of such an agent is not within the scope of this research, this thesis is limited
to the creation of some of its components only.

Panella et al.[21] points out as the current limitations and open research questions
of cognitive architectures the following items: (i) integration of distinct cognitive
functions; (ii) computational efficiency of the platform; (iii) parallel processing of
data; (iv) integration of heterogeneous knowledge representation; (v) integration of
heterogeneous reasoning and cognitive functions; (vi) integration of planning, acting,
monitoring and goal reasoning; (vii) knowledge problem (knowledge acquisition,
knowledge size, and homogeneity of knowledge). One of the main points is related
to the computational cost of such cognitive architectures so that an agent with a
weightless cognitive architecture can offer a significant contribution in this regard,

2

given the low computational cost of the WiSARD model.

1.2 Positioning WiSARD in Relation to Other ML

Models

This section will situate the WiSARD model to mainstream machine learning models
to highlight its idiosyncrasies and justify its choice as the basis of a cognitive system.
The main features of WiSARD are:

• its speed in training time, without the need for any type of technique that in-
volves searching for convergence, so that this model can perform online learn-
ing;

• the ease of implementing forgetting mechanisms;

• the possibility of low-cost implementation in terms of memory when using
sparse data processing structures;

• a huge VC-dimension[31];

• its simplicity of hardware implementation;

• the ease of viewing patterns learned in each class;

• its ability to learn with few examples, presenting a rapid growth of its learning
curve in many domains;

• its facility for parallel training.

WiSARD originally is only capable of classifying binary inputs, so this model is
highly dependent on the preprocessing of inputs. Although classification is an impor-
tant task in machine learning, many tasks require a model with the ability to handle
a much higher level of complexity. The online learning ability of weightless neural
models, due to their short learning/classification times and low computational cost,
are major advantages of this type of ML model, make it an interesting complement
to today’s deep learning-dominated ecosystem, which despite its tremendous contri-
bution to the entire ML area, due to its ability to handle invariance, has remarkable
limits and little effort has been made to propose new alternative models with light
requirements[32].

In the last decade we have seen significant progress in several areas of machine
learning, such as image classification with noisy backgrounds[33], reinforcement
learning and its use in many complex games[34], the use of transfer learning to
accelerate training and transfer knowledge between domains[35], artificial creation

3

of images[36], and audio[37], video[38] and text[39] through generative adversarial
networks. Other advances include CapsNet and its capacity to deal with variation
in diverse features[40], advances in LSTM and its use for speech recognition[41] and
simultaneous translation from speech to text[42] and the creation of YOLO and the
advance of object detection[43].

Despite the great advances in ML caused by the rise of deep models in the last
decade and their undeniable historical contribution, these models also have visible
limitations that are often overlooked in favor of hype. Some fundamental limitations
of deep models are listed below.

• Difficulty in learning logical rules: many researchers have pointed out
the difficulty of reconciling deep models with a neurosymbolic approach that
takes advantage of the accumulated knowledge of a given domain[44, 45]. In
fact, some experiments point out how humans have an advantage in this type
of task compared to DNNs[46];

• Transfer’s capacity: the canonical architecture of DNNs makes it difficult to
transfer knowledge to other domains[47–49]. Some experiments show that fea-
tures extracted by DNNs have less representative capacity than might appear
at first glance[50];

• Limited understanding of architectures: the architecture of DNNs limits
its ability to generalize when the hierarchical structure of the data in the
training set is far removed from the test set, as [51] shows to RNNs and
complex linguistic constructions;

• Inability to deal with open-ended inference: DNNs isn’t able to extract
implicit knowledge from the data, despite [52, 53] make an initial move in this
direction;

• Lack of transparency: due to its large number of parameters, the major-
ity without a topological semantics, DNNs have a black-box structure, being
difficult to interpret[54–57];

• Necessity for a large dataset: although data augmentation techniques have
allowed DNNs to perform well on small datasets, DNNs have steep learning
curves and this is perhaps the limitation most evident by the community con-
sensus. Zohuri & Rahmani[58] explains in detail this characteristic of DNNs,
which is enhanced by their lack of common sense.

These were limitations of DNNs classical models and all of them were signifi-
cant restrictions on deep models when this research work began to be developed.

4

Many advances have been made since then, minimizing these obstacles, such as the
improvements in explainable model-agnostic algorithms that has considerably in-
creased the interpretability of DNNs[59] or the increased usability of deep models
through incremental learning[60, 61].

Due to its peculiarities that will be presented in details in Chapter 2 and explored
in other chapters, WiSARD is both (i) a viable alternative to DNNs in tasks that
demand online learning, light memory requirements, and hardware implementation
(economy of resources; high parallelism; no need to update weights in training, thus
saving all the operations in which this implies), and (ii) a suitable partner in the
composition of hybrid systems, creating architectures that combine the advantages
of WiSARD and DNNs, as has already been explored[62, 63].

Despite the prominence of DNNs, other mainstream ML algorithms have contin-
ued to be researched in the past decade, but they all have well-known limitations: (i)
although CART has a high potential of interpretability, is competitive with state-of-
the-art in many tasks, and is non-parametric, these models usually become overly
complex with few layers[64]; (ii) SVM has as advantages its relative efficiency in
memory and its effectiveness in higher dimensional spaces, however, it is not suit-
able for large datasets, it is not robust against noise and it does not perform well
when the number of data features exceeds the size of the training set[65]; (iii) Naïve
Bayes is able to perform well with few samples in the training set, however, its effec-
tiveness is limited to the degree of independence of the features and realistic datasets
tend to have some degree of correlation between their features. This problem can
be smoothing with proper data analysis, but it still imposes a strict limitation on
the model[66]; and (iv) kNN does not have a training stage, thus saving training
time and allowing new training data to be added at any time, without the need
for retraining. On the other hand, this peculiarity of kNN makes it dependent on
memory to store the entire training set. kNN is also vulnerable to noisy, missing
values and outliers, in addition to not performing well in high dimensions[67].

WiSARD is uniquely positioned in the face of these algorithms: (i) WiSARD is
non-parametric like CART and kNN, while preserving its simplicity and is inexpen-
sive in terms of memory consumption; (ii) WiSARD is memory efficient like SVM,
while its latest versions are robust to overfitting large datasets; (iii) WiSARD has
online learning as well as Naïve Bayes, being able to deal with interdependence of
the features if there is an adequate representation for the data; and (iv) WiSARD is
vulnerable to noise as well as SVM, Naïve Bayes and kNN, however, due to the in-
terdependence of training different patterns on WiSARD it is possible to implement
internal mechanisms in it that increases its noise tolerance, complementing the data
analysis smoothing process. This comparison is better visualized in Table 1.1.

In addition to its simplicity, efficiency, and good accuracy in many tasks, an

5

idiosyncrasy that makes WiSARD an interesting model today is its preservation
regardless of the trained patterns that allow greater control over the learning process
based on topological adjustments and adequate preprocessing.

One of the first steps necessary to expand the scope of action of WiSARD can
be achieved by enabling the model with the ability to provide continuous output,
that is, adapting it for regression tasks. In addition, many recent domains require
the model to be able to detect the simultaneous occurrence of multiple classes,
which is known as multi-label classification. In many tasks, it is also necessary
to combine different specialists, in order to obtain a system that is more robust
than individual classifiers, which is known as ensemble learning. Since all of these
WiSARD extensions are possible directly from minor modifications to the original
model, they were the goal of this work.

1.3 Some Thoughts on Historical Development of

ML Models

In his famous analysis of paradigmatic changes in "The Structure of Scientific
Revolutions"[89], the philosopher of science Thomas S. Kuhn points out that when
a number of anomalies in a given scientific area become large enough to be ignored,
a revolution in the current explanatory model is needed. And when a new model
capable of satisfying such anomalies is chosen as appropriate by the community con-
sensus, there is a shift in scientific work towards this new paradigm. The work of
normal science will then be to perfect this paradigm, increase its area of application
and close the gap between the empirical evidence and the theory that underlies the
new paradigm. Throughout this great undertaking, new anomalies will arise and
will accumulate until they lead to the point of a new scientific revolution. When this
happens, an outdated model, ineffective for satisfying the new evidence collected in
a more appropriate way, is set aside by the community.

It would be a mistake to consider that the shift from the machine learning com-
munity to the deep learning paradigm is the edge of such a revolution since deep
models have not solved all the anomalies and open questions that have accumulated
in the community historically, nor have they defeated competing models completely.
In fact, despite having provided high-performance solutions in many tasks and es-
tablishing new state-of-the-art in many domains, deep models immediately created
new issues, in addition to not addressing all the old ones, as we already mentioned
in Section 1.2.

It would be wise to conclude, therefore, that deep learning has developed along
the path of normal science, as more of a community effort to find answers to funda-

6

Ta
bl
e
1.
1:

A
co
m
pa

ri
so
n
be

tw
ee
n
W

iS
A
R
D

an
d
ot
he
r
M
L
m
od

el
s

M
od

el
S
p
ee
d

M
em

or
y

V
C

d
im

en
si
on

H
ar
d
w
ar
e

In
te
rp
re
ta
b
il
it
y

W
iS

A
R
D

Fa
st

tr
ai
ni
ng

;
on

lin
e
le
ar
ni
ng

;
ti
m
e
de
pe

nd
s

on
bi
na

ri
za
ti
on

Lo
w

m
em

or
y
co
ns
um

pt
io
n

(u
si
ng

sp
ar
se

st
ru
ct
ur
es

re
pr
es
en
ta
ti
on

)
d
V
C
=
N
(2
n
−

1)
+
1
[3
1]

E
ffi
ci
en
t,
us
in
g
ha

sh
[6
8,

69
];

F
P
G
A

im
pl
em

en
ta
ti
on

s[
70

]
H
ig
h

D
N
N

Tr
ai
ni
ng

te
nd

s
to

be
sl
ow

w
he
n
tr
an

sf
er

le
ar
ni
ng

is
no

t
us
ed

H
ig
h;

is
re
qu

ir
ed

to
st
or
e
in
pu

t,
w
ei
gh

ts
an

d
pa

ra
m
et
er
s[
71

]

Fr
om

O
(E

)
to
O
(E

2
),
be

in
g
E

th
e
nu

m
be

r
of

ed
ge
s;

th
is

is
sm

al
l,

de
sp
it
e
it
s
le
ar
ni
ng

po
te
nt
ia
l;

LT
H

ex
pl
ai
ns

th
is
[7
2]

H
ig
h
co
m
pu

ta
ti
on

al
co
st
;

ac
ce
le
ra
ti
on

te
ch
ni
qu

es
tu
rn

it
vi
ab

le
[7
3]

Lo
w
,d

ue
to

la
ck

of
to
po

lo
gi
ca
l

se
m
an

ti
cs
;e

xc
ep
t

fo
r
xD

ee
p[
74

]

C
A
R
T

Fa
st
,d

ep
en
da

nt
on

th
e
nu

m
be

r
of

fe
at
ur
es

U
se
s
to
o
la
rg
e
he
ap

sp
ac
e

fo
r
co
ns
tr
uc
ti
ng

tr
ee
s;

ca
n
be

m
it
ig
at
ed

us
in
g
st
ri
ct

po
lic
ie
s[
75

]

2l
≥
(d ⌊ d 2

⌋) ;

be
in
g
d
th
e
le
ng

th
of

th
e
gr
ea
te
st

tr
ee

an
d
l
th
e
nu

m
be

r
of

le
af
s.

[7
6]

Si
m
pl
e
an

d
effi

ci
en
t[
77
]

H
ig
h[
78

]

S
V
M

Sl
ow

du
e
to

ke
rn
el

tr
ic
k;

ca
n
be

m
it
i

ga
te
d
by

us
in
g
le
ss

tr
ai
ni
ng

da
ta

an
d
Li
ne
ar

SV
M
[7
9]

M
em

or
y-
in
te
ns
iv
e
in

tr
ai
ni
ng

,
w
he
n
w
or
ki
ng

in
th
e
du

al
sp
ac
e[
80

]

n
+
1

be
in
gn

th
e
nu

m
be

r
of

hy
pe

rp
la
ne
s[
81

]

N
ee
d
sp
ec
ia
ld

ed
ic
at
ed

ar
ch
it
ec
tu
re
s
du

e
to

it
s

co
m
pu

ta
ti
on

al
co
st
[8
2]

T
hr
ou

gh
fu
zz
y

ru
le
s[
83

]

N
aï
ve

B
ay
es

Fa
st
;o

nl
in
e

le
ar
ni
ng

Lo
w

|χ
|;

be
in
g
χ
th
e
nu

m
be

r
of

pa
ra
m
et
er
s[
84

]

F
P
G
A

us
in
g
st
oc
ha

st
ic

di
sc
ri
m
in
at
io
n
th
eo
ry

[8
5]

H
ig
h;

du
e
to

th
e

fe
at
ur
es

in
de
pe

n
de
nc
e
as
su
m
pt
io
n

[8
6]

kN
N

N
o
tr
ai
ni
ng

st
ag

e;
sa
ve
s

tr
ai
ni
ng

ti
m
e

an
d
al
lo
w
s

ad
di
ng

ne
w

tr
ai
ni
ng

da
ta

w
it
ho

ut
re
tr
ai
ni
ng

kN
N

de
pe

nd
s
on

m
em

or
y

to
st
or
e
th
e
en
ti
re

tr
ai
ni
ng

se
t

V
C
d
im

(H
)
≥
k
[8
7]

A
cc
el
er
at
io
n
is

ne
ce
ss
ar
y

fo
r
ap

pl
ic
at
io
ns

w
it
h

m
as
si
ve

hi
gh

di
m
en
si
on

al
da

ta
[8
8]

H
ig
h

7

mental credit assignment problems[90] than a universal solution for them. It is not
even a solution so strong that it excludes the contribution of other models in the
process of paradigmatic evolution.

In fact, as the DNN pioneer Jürgen Schmidhuber exposes in his historical re-
capitulation of DNNs[91], the components that would have constituted the hyped
phenomenon of deep models in the first decade of the 2000s had been develop-
ing for decades before: (i) the minimization of errors through gradient descent[92]
in the parameter space comes from the 60s[93–101]; (ii) explicit backpropagation
mechanisms in arbitrary, discrete, possibly sparsely connected networks in the early
1970s[102, 103]; and (iii) convolutional filters debuted on Neocognitron[104, 105] in
the late 1970s.

Likewise, although n-tuple classifiers are based on an ancient method, more
than six decades old and which has remained outside the mainstream efforts of
the community in recent years, this should not be enough to ignore its numerous
contributions and potential innovations. Even more than developments in the area
of hardware, as well as progress in the mathematical understanding of the model,
can powerfully enhance its qualities soon, as will be discussed in Chapter 2 of this
thesis.

In a recent survey[106] on n-tuple classifier subspace, the authors point out:
"The n-tuple method and its extensions are appropriate for problems even with
1000 dimensions and 100 classes for which it or its extensions may be the most
economical online classification method that trades off computational complexity
with fast memory, the cost of which has become cheaper and cheaper over the last
decades."

1.4 Contributions

This thesis explores the development of extensions of the WiSARD model and new
ways of grouping these neural networks into ensembles. The main contributions of
this work are listed below. This thesis uses a map-based WiSARD implementation,
instantiating only the memory locations that were actually trained (the complete
description is given by Appendix G.

• A reinterpretation of the multi-label approaches Label Powerset and Binary
Relevance taking advantage of WiSARD’s multi-discriminator architecture;

• New weightless ensembles based on voting systems, whose use of ballots is
directly related to the WiSARD architecture;

• An enhanced version of the n-tuple regression network using different kernel

8

estimators, in order to better approximate the probabilistic density function
according to the dataset;

• A new weightless regression model that uses multiple n-tuple regression net-
works, in order to approximate pdf according to the local behavior of the
regression function.

1.5 Thesis Outline

Chapter 2 presents the n-tuple classifier, the first machine learning model based in
n-tuple pattern matching. It also presents the WiSARD model, its extensions, and
its applications in various machine learning tasks. In this chapter, several models
of weightless neural networks are also introduced. The chapter concludes with a
discussion of the main limitations of these models, as well as what are their main
advantages and uses in modern machine learning scenarios. This chapter presents
too the preprocessing techniques used in this work. Since WiSARD deals only with
binary inputs and the preprocessing of data directly imply the performance of this
model, the choice of binarization is a vital element in the WiSARD pipeline and,
therefore, an entire chapter has been reserved to detail the techniques used here.
Preprocessing of categorical and quantitative variables, image, audio, and text are
presented in this chapter.

From Chapter 3 we have the contributions of this thesis. Since my master’s
thesis[107] was based on the application of WiSARD in classification of facial emo-
tions, this work started with the exploration of WiSARD in classifying Action Units,
the facial muscles used to express emotions. Chapter 3 presents two new WiSARD-
based multi-label architectures and discusses their validation in the task of classifying
Action Units. The systems described in this thesis are related to two important char-
acteristics of architectures based on the Fundamental Neuroconsciousness Postulate:
emotion and perception.

Since each approach introduced in Chapter 3 had advantages and disadvantages,
the need to explore ways to combine the idiosyncrasies of WiSARD-based solutions
became explicit. Chapter 4 introduces five new models of WiSARD ensembles pro-
posed for this purpose. This chapter presents their validation in several datasets
with different domains: numerical data, images, and text.

In parallel to the development of the research presented in Chapter 4, attempts
have been made to extend WiSARD for regression, since many ML domains require
models that deal with continuous data. Chapter 5 presents the two WiSARD-based
models proposed for regression, its ensembles, and its exploration in diverse datasets.
This chapter also details the WiSARD-based systems used in a palm oil prediction

9

challenge, with one of these solutions reaching one of the highest positions in the
ranking, with a difference of four orders of magnitude in the training time of the
winning model. Since prediction is an essential attribute of a system that aims
to satisfy the Fundamental Neuroconsciousness Postulate, the contribution of this
chapter fulfills one of the most important requirements for obtaining a weightless
cognitive agent.

In order to apply all novel WiSARD-based models to a real-world problem, Chap-
ter 6 deals with the affective computing task presented in Chapter 3, the ensemble
architectures presented in Chapter 4, and the regression models developed in Chap-
ter 5 in a task of multi-modal prediction of empathy. This chapter offers an analysis
of WiSARD extensions and their ensembles performance on empathy prediction and
also explains the composition of the binary input obtained by combining image and
audio features.

Chapter 7 summarizes the thesis and discusses the limitations of the proposed
models and techniques. This chapter also discusses possible explorations and ap-
plications of the WiSARD model in general. Finally, this chapter discusses the
WiSEMAN cognitive architecture as a framework for multi-agent systems by using
all the extensions of the WiSARD model developed in this thesis.

Appendix A shows the complete results related to Chapter 3. Appendices B and
C show the complete results of the experiments described in Chapter 4 and discusses
the relationship between the number of weak learners and the number of training
partitions with the accuracy of each ensemble. Appendix D shows additional results
to those present in Chapter 5.

Appendices E and F debates the Fundamental Postulate of Neuroscience, its
corollaries, and how the regression-based model presented in Chapter 5 can con-
tribute to a discussion on the topic of artificial consciousness, by bringing the WiS-
ARD model even closer to the fulfillment of the requirements derived from this
postulate. Additionally, an architecture based on WiSARD and concepts presented
throughout the thesis for organizing multi-agent systems is proposed.

Appendix G presents the code libraries used in this thesis. Appendix H lists all
papers accepted for publication from the content of this thesis.

10

Chapter 2

Weightless Artificial Neural
Networks

In this chapter, we will discuss the background, the main features, recent work, and
some promising possibilities in relation to the WiSARD classifier.

2.1 n-Tuple Classifier

The n-tuple classifier is a binary pattern classifier[1] based on memory array, re-
quiring no parameter fine-tuning or any error minimization technique to achieve
generalized learning patterns. The basis of its operation is to use the input to con-
struct an address set and use them to access the memory contents. In this way,
the n-tuple classifier is formed by a matrix, where each column is associated with a
class and the lines correspond to combinations of bits of the input. This model is
illustrated by Figure 2.1.

Thus, in this model, the training phase consists of writing in memory locations,
while the classification phase in reading the same locations. This model was pro-
posed by Bledsoe & Browning in 1959. In 1962, Bledsoe & Bisson[108] proposed ways
to make the n-tuple pattern recognition method more efficient, through changes in
training policies and using tiebreaker techniques in the classification phase. Models

Figure 2.1: The n-tuple classifier (extracted from [1]).

11

based on n-tuple classifier are commonly called Weightless Artificial Neural Net-
works (WANNs).

2.2 WiSARD

WiSARD[6] is a n-tuple classifier composed by class discriminators proposed by Igor
Aleksander in 1969. In this model, each discriminator is a set of N Random Access
Memories (RAMs) nodes having n address lines each. All discriminators share a
structure called input retina, from which a pseudo-random mapping of its N ∗ 2n

bits composes the input address lines of all of its RAM nodes. Due to the fact that
it separates the learning of different classes in different artifacts, WiSARD is more
modularizable than the original n-tuple classifier.

The biological analogy behind this model lies in the mapping of the synaptic
strength between the output produced and transmitted by the neuron’s axon and
the input of a post-synaptic neuron, into pseudo-continuous numerical weights. An
important simplification happens in the way inputs to neurons are modeled: all
synaptic connections terminate directly at the neuron’s soma. Although such spe-
cific morphological arrangement is plausible in biological terms, the vast majority
of synapses in the central nervous system terminate at the neuron’s dendritic tree.
Nevertheless, generalizations of artificial weighted-sum-and-threshold neurons, such
as Sigma-Pi units, do exist, this means that the dendritic tree, the most notice-
able morphological structure of the neuron cell, is not being taken into account in
mainstream artificial neural network paradigms[7].

2.2.1 Training and Classification

When the network is initialized, all RAM memory locations have "0" as content. In
its original definition, when receiving a binary training input, WiSARD set to "1" the
contents of the memory locations accessed in the discriminator of the sample class
(Fig. 2.2). In the classification phase, all discriminators have each of their RAMs
accessed in a single memory location, and the discriminator who has accessed more
memory locations with content "1" will determine the class of the example (Fig.
2.3).

The original model suffered from saturation as the cardinality of the training
set increased. To circumvent this limitation, in an enhanced version WiSARD[109]
happened to have a counter in the positions of memory of the RAMs, increasing its
value to each access during the training. During the classification phase, it continues
to count the number of memory locations with non-null content to determine the
score of each discriminator, however, a memory location can only be counted if its

12

Figure 2.2: Training stage in WiSARD[2]

Figure 2.3: Classification stage in WiSARD[2]

content has a value greater than a threshold called bleaching, which is initialized
with value 0. When there is a tie between the discriminators, the bleaching is
increased. If the value of the bleaching becomes greater than the counter of the most
accessed memory location of WiSARD, there is an absolute draw and a default class
chosen beforehand is determined for the sample. A more elaborate mathematical
formulation of the training and classification of the n-tuple classifier and WiSARD
can be found in literature[31, 106].

A facility promoted by training oriented to writing in memory is that learning of
each pattern preserves a type of independence, and it is very simple for the model
to forget a certain pattern: when receiving a pair <binary input, label>, just use
the label to access the corresponding discriminator and use the binary input to
access specific memory locations from this discriminator, subtracting by one the

13

counter stored in this memory location. Such algorithm considerably reduces the
implementation of cross validation and, especially, leave-one-out validations.

In WiSARD, the base of the tuple does not necessarily need to be 2, since in
some domains certain possibilities for variations of the features can be related to
the values of the bits, adding the tuples semantically. While this method has the
advantage of using domain information directly in the formation of tuples, on the
other hand, it causes more memory locations in the RAMs, further increasing the
sparse network. An example of a task in which a WiSARD with a base other than 2
was used is in a competition to create intelligent rock-paper-scissors players, where
the network was used with base 3[110].

2.2.2 Mapping

Although the WiSARD mapping is normally pseudo-random, it can be changed
depending on the domain, if it is desired that certain bits of the input form the
same tuple, if there is a semantic link between them. The mapping can also be
replicated to generate oversampling and if the number of bits in the input does not
allow an exact division in the number of tuples, the mapping can disregard a bit or
repeat as many as necessary in new tuples[108].

Optimization techniques for WiSARD mapping that have been developed
throughout its history include: genetic algorithm with simple mutations[111],
crossover between the mappings[112], tuples with different sizes and probabilistic
mechanism for selecting the size of the tuples (in images the probability is calcu-
lated according to the distance of a given pixel to the center of the image)[113],
stochastic search using a reward and punishment system for the performance of
individual tuples[114] and particle swarm optimization of n-tuples[115].

Guarisa[116] introduces other approaches to mapping: (i) particle swarm opti-
mization of mappings; (ii) an improved version of the genetic algorithm proposed
by Giordano & Massimo[112], adding diversity to the initial population and using
values of the objective function in the selection of individuals; (iii) creation of a
mapping based on the ordering of the input bits in relation to the entropy level of
the access probabilities of these same bits in mental images (see next subsection,
Section 2.2.3); (iv) the use of weighted constraint satisfaction problem[117] to sep-
arate bits ’1’s in separate tuples in sparse datasets, in order to balance the RAMs.
This latter approach is the only one that is based directly on the examples of a
particular dataset.

14

2.2.3 DRASiW and Mental Images

An interesting feature of WiSARD discriminators is that as the mapping of the input
in memory locations is known, it is possible to apply a reverse engineering method
to the memory contents of the RAMs to generate a new input, which represents the
pattern learned by a specific discriminator. This process is known as DRASiW[109]
and the generated inputs are known as mental images.

Mental images are gray-scale inputs with the same dimensions as the WiSARD
retina, and access counters stored in memory locations are used for their forma-
tion. The input bits that generated the most accessed locations will be filled with
RGB(255, 255, 255), while bits that generated never accessed locations will be filled
with RGB(0, 0, 0). All other locations are filled with shades of gray from a normal-
ization of the counters.

In image datasets, this is a good way to observe if there is any type of noise
affecting learning if there is saturation in a specific discriminator or even empirically
visualize the main features that allow the correct classification of each class.

2.2.4 minZero and minOne

Another modification in the WiSARD algorithm is to ignore the contribution of a
certain memory location in the classification phase if its address does not meet a
certain amount of "0"s (minZero) and "1"s (minOne). The motivation for these
parameters is to be another way by which the WiSARD can filter redundant input
data, besides the necessary preprocessing applied to the input (via binarization).
There is still no way to dynamically adjust minZero and minOne, and the best
values for them vary for each task and are empirically obtained through a simple
exploration of the value space.

2.2.5 VC-dimension

In ML theory, the VC dimension[118] is a measure of the capacity of functions that
can be learned by a binary classifier, that is, the cardinality of a set of data that can
be learned without saturation. The exact WiSARD VC dimension was calculated
for the following cases:

• traditional WiSARD with a single discriminator: dV C = N(2n − 1),
where N and n are the amount of nodes and the addressing tuple length,
respectively[119]. In this case, this WiSARD has only one discriminator that
will classify a sample by comparing its score with an acceptance threshold;

• traditional WiSARD with two discriminators: dV C = N(2n − 1) + 1[31];

15

• WiSARD with discriminators storaging counters and using bleaching : dV C =

N(2n − 1) + 1[31].

2.2.6 Scalability

Some possible methods to train the WiSARD method in a scalable way include:

• in the training of each sample, train each RAM independently and simultane-
ously;

• separate the training dataset by class and train each discriminator indepen-
dently and simultaneously;

• create several models with the same mapping and addressing and divide the
training set into all of them and then unify them into a single WiSARD, whose
content of each memory location is the sum of the counters of the networks
used for training, performing a kind of federated learning.

2.3 ClusWiSARD

A version of WiSARD was created to deal with unsupervised data, based on the
Fuzzy ART1 networks[120], which represents each class as a node, which is a vector
of binary inputs. Fuzzy ART1 has the ability to dynamically allocate new nodes,
if necessary. This modelis called AutoWiSARD[121, 122] and aims to solve the
stability-plasticity dilemma[123], which tries to find the optimum amount of ele-
ments in a cluster, so that it is not too heterogeneous, nor excessively restrictive.
Basically, AutoWiSARD works as a WiSARD that is started with a single discrim-
inator, which has two thresholds. When it receives an example for training, she
will rate it and use the score obtained to decide whether to train the example or
not. If the example score is between the window formed for both thresholds, the
discriminator learns the example, since it is located in its stable zone. If its score
is below the lower threshold, a new discriminator will be created to learn it, since
this example is located in its plastic zone. If its score is higher than the upper
threshold, this example will not be learned, as it is considered sufficiently similar to
the previous ones, whose standard is already defined in the discriminator.

Sometimes the same class must include non-similar patterns. Not differently
from other classifier models, WiSARD’s discriminating capabilities will be stressed,
probably inducing the target discriminator to become saturated due to the learning
of extremely heterogeneous patterns. ClusWiSARD [124] is an extension of WiS-
ARD, which allows it to learn sub-patterns by allowing the creation of more than

16

one discriminator per class if the new examples submitted to the network for learn-
ing are not sufficiently similar to those already learned. Since this is analogous to
clustering the examples of a class, the network was called ClusWiSARD and this
operation is called internal clustering. Unlike AutoWiSARD, ClusWiSARD can also
be used for supervised learning, as well as unsupervised.

In the training phase, when an observation is sent to the network, it is sorted
by all the discriminators in its class, which will naturally return a score with the
number of active RAMs during classification. The discriminator that will learn a
new pattern must satisfy the following condition:

r ≥ min

(
N, r0 +

N |d|
γ

)
, (2.1)

where r is the score of the discriminator when classifying the observation, |d| is
the discriminator size, N is its number of RAMs, r0 is a threshold, which indicates
the minimum response expected by a discriminator, and γ is also a threshold, which
indicates the growth interval, that is, the speed that the discriminators increase
their size.

The classification phase of ClusWiSARD is similar to that of WiSARD, where
the discriminator with the highest score will determine the pattern of the example.
If there is a tie between discriminators of the same class, this class will naturally be
the network response and there is no need to apply bleaching.

Although originally designed to improve accuracy in supervised tasks, by en-
abling learning of sub-patterns, ClusWiSARD can also be used for semi-supervised
learning (where a non-annotated example is trained by all the discriminators that
present the highest score in the classification phase, being able to belong to more
than one cluster per class and to more than one class) and unsupervised learning[125]
(where a ClusWiSARD presents only one discriminator and applies the same pol-
icy of creating new discriminators of supervised learning, one example being always
tested for all discriminators already created; this operation is known as external
clustering).

In a challenge of financial credit analysis, ClusWiSARD outperformed SVM
by two orders of magnitude in training time, while remaining competitive in
accuracy[124]. Data stream clustering is a challenging task, as it involves deal-
ing with data that has become obsolete, and in many tasks in this domain there
is data coming from multiple sources, which almost always implies different fea-
tures. WiSARD has proven successful in this field, mainly through its ClusWiSARD
extension[124, 126], that is detailed in Section 2.3, adapted to include forgetfulness
mechanisms. Results obtained can be found at [124, 126–129].

17

2.4 KernelCanvas

Time-series classification has a wide range of practical applications like speech recog-
nition, but one big challenge in tackling this kind of problem is data length, which is
not always the same. This turns out to be a problem for many models that require
data to have equal dimensions. KernelCanvas is a method that enables WiSARD to
deal with spatio-temporal data by transforming it into a fixed-length binary input.

The KernelCanvas method is based on the action of using a paintbrush on a white
canvas. When drawing a figure like a character on the canvas, it does not matter
how many times the brush stroke the canvas or the order the figure was drawn, since
the canvas itself will preserve its dimensions. In a similar way, KernelCanvas makes
use of a set of kernels to represent partitions of the canvas.

A time-series dataset sample can be seen as an array of variables measured during
a certain period of time. The elements of this array can contain any dimension but
one might consider an array of two-dimensional data for the sake of explanation.
It takes the (x, y) coordinates of the pixels of a handwritten character. Each point
indicating the part of the image that was drawn at some instant.

The empty canvas can be interpreted as a zero matrix and the kernels are points
in the canvas that address groups of indices of that matrix. The kernels are usually
generated in a uniform space [−1, 1], yet there is no restriction on this bound. It
implies that the data needs to fit this space and some kind of normalization must
be applied. For a given sample, all points in the array must be compared to all
kernels using some metric, such as the euclidean distance. The kernel that presents
the shortest distance to the point is then activated so that all bits addressed by
this kernel are set to 1. After all points in the sample are computed, the canvas
represents a binary pattern that can be applied to the weightless model.

Some applications of KernelCanvas include:

• Time-series classification: Spatio-temporal data add new dimensions to
typical classification problems since the way in which the input is formed is
itself one of the most important features of the inputs. For WiSARD this is
a special problem that is difficult to solve since context windows can result in
data of different sizes, and in WiSARD the size of the entry is fixed due to
the retina. In addition, resizing the input adds noise and depending on the
number of times this is required in a task, the classification capability of the
WiSARD rating can be completely compromised. Combined with KernelCan-
vas, WiSARD and its extensions proved robust when dealing with handwrit-
ten character recognition, speech recognition[130] and empathy prediction in
videos[131].

• Audio Processing: Music tracking is a technique that allows you to find

18

out which part of a song is being played at any given time. Representing
this task as a classification problem implies treating each piece of the original
audio as a class, thus generating many classes and few examples in each of
them, making this an interesting case for the use of WiSARD, given its ability
to generalize with few samples. WiSARD, combined with KernelCanvas and
Markov Localization Algorithm[132], proved to be efficient for this task, as
detailed in Souza et al.[133].

2.5 n-tuple Regression Network

n-tuple Regression Network[134] is a modification of the basic n-tuple classifier archi-
tecture, which allows it to operate as a non-parametric kernel regression estimator;
it is also capable of approximating probability density functions (pdfs) and deter-
ministic arbitrary function mappings; for this, the n-tuple Regression Network uses
a RAM-based structure, where each memory location stores a counter and a weight,
which is updated through the least means square algorithm [135].

Non-parametric regression estimates a function directly, unlike parametric re-
gression, which estimates the parameters of the approximating function. For this,
two assumptions are made: that the function is smooth and continuous[136]. In
cases where the relationship between the dependent variable and the explanatory
variables is unknown, non-parametric regression is more appropriate, as it can be
adjusted to capture unusual or unexpected features of the data.

This being a scenario found in many tasks where ML is regularly applied, it is
natural that a neural network for regression is oriented to work with non-parametric
regression. This is the case with the extension of the n-tuple method for regression,
whose construction and mathematical foundation will be analyzed below.

2.5.1 General Regression Neural Network

For regression tasks, it is assumed that any input x and output y of the system is
associated with the random variables X and Y , respectively. The system will esti-
mate a conditional mean of the dependent variable Y for any value of x, considering
that:

m(x) = E(Y |x) = E(Y |X = x) (2.2)

It is assumed that the conditional mean exists and is well defined on the do-
main of the input. For a known underlying probabilistic density function (pdf), the
regression function is given by:

19

m(x) = E(Y/x) =

∫∞
−∞ y · f(x, y)dy∫∞
−∞ f(x, y)dy

=

∫ ∞
−∞

y · f(y|x)dy (2.3)

However, when there is no explicit knowledge about the system, it is necessary to
estimate the regression function from a finite set of known points. Non-parametric
regression methods perform this estimation, without any need to make assumptions
about the shape of the regression function. Kernel methods are among such non-
parametric methods and are based on applying a smooth monotonically decreasing,
non-negative and continuous function for each pair < x, y > taken from the distri-
bution to estimate the pdf [137–141].

It is convenient to choose a (D + 1)-variate kernel function, in such a way that
this is separable to x and y:

φ(x, y) = φx(x) · ϕy(y), (2.4)

where φx(x) and ϕy(y) are univariate kernel functions.
The regression function will be given by:

Ê(Y |x) =
∑T

i=1 φx(x− xi) ·
∫∞
−∞ y · ϕy(y − y

i)dy∑T
i=1 φx(x− xi)

=

∑T
i=1 y

iφx(x− xi)∑T
i=1 φx(x− xi)

(2.5)

The estimator in Equation 2.5 is known as Nadaraya-Watson[142, 143] and it can
be interpreted as the weighted average of Y1, ..., Yn given a set of weights Wi(x)

n
i=1.

A General Regression Neural Network (GRNN)[144] is a model capable of per-
forming non-parametric regression from a training set only, which can be relatively
small. GRNN stores the entire dataset, based on this data to estimate the system’s
pdf .

There are many types of GRNNs and, despite their differences, they work the
same way: they store the entire training set and select a kernel function and a
smoothing parameter from it. The major limitation of this model is the memory
cost to store the entire training set and Kolcz[145] uses an n-tuple neural network
to approach a GRNN, taking advantage of the fact that its access counters can be
analogous to an implicit type of storage of the training set.

2.5.2 The Approximation-Type n-tuple Neural Network

To approximate a GRNN with an n-tuple neural network, Kolcz & Allinson[134] used
a variation of the model where each memory location stores two different contents:
access counters and weights. These weights are updated using the Least Means
Square gradient descent algorithm, as is done in other single layer architectures

20

since this minimizes the weighted least-square error. Such weights are initialized
with the value 0 and at each access during the training phase, they are increased by
the value of the dependent variable associated with the trained input.

Since the memory locations accessed by an input during the prediction phase
have their counters related to the tuples formed by the xs of the training sample
and their weights formed by their ys, Equation 2.5 can be applied here to generate
the prediction of the n-tuple neural network, that is, a Nadaraya-Watson estimator
can be approximated by simple arithmetic mean of the sum of the weights and the
sum of the counters accessed.

However, for this to be true, the set of hit counters accessed must be the distance
between the x that is being predicted and the xs of the training set, that is, that the
sum of the counters of the accessed memory locations is equal to

∑T
i=1 φx(x − xi).

[134] define the distance between two network inputs as the number of different
tuple addresses they generate. Many analyzes[146–148] have suggested that the
tuple distance is equivalent to a generalized Hamming distance.

This is used to calculate how many memory locations accessed in a prediction
were never accessed during training, that is, how many different tuples exist when
comparing two inputs. Therefore, the kernel in an n-tuple neural network will be
obtained easily by the sum of the counters stored in memory locations addressed by
tuples that are identical (Hamming distance equal to zero) between each example
of the training set and the input whose associated y is being predicted. In this way,
there is no need to store the entire training set as in a GRNN. Finally, in this model
the smoothing parameter is the tuple size.

2.6 Other Weightless Artificial Neural Networks

Other WANN models include:
WiSARD’s alternative implementations:

• WiSARD PUF: Physically Unclonable Functions (PUFs) are circuits that
use one-way functions which map inputs to unique outputs[149]. Ideal PUF
chips have three characteristics: security, uniqueness, and reliability. Recently,
many practical applications based on PUF have been shown to be highly vul-
nerable to attacks made by machine learning algorithms. In order to increase
the security of such chips and improve its uniqueness, new PUF models were
created based on the WiSARD architecture.

WiSARD PUF[68, 69] is a collection of RAMs, not necessarily of the same
size. In this model, the memory locations are the same as in the original WiS-
ARD, storing only bits and not counters. As in the other n-tuple classifiers,

21

WiSARD PUFF uses a pseudo-random mapping between the input bits and
the addresses of the RAMs, but here the tuples can be of different sizes de-
pending on the RAM. The training is similar to traditional WiSARD. And
when the network receives a challenge string it enters a mode equivalent to
the traditional classification, only here there are two different counters for the
"0"s and "1"s accessed. The response from WiSARD PUF will be equal to
the bit most accessed at this stage.

• AMQ Filters-based WiSARDs: Since the original implementation of WiS-
ARD, as well as those based on dictionary-like structures, requires a consid-
erable amount of memory resources to achieve good learning features, new
implementations[150, 151] have been proposed based on Approximate Mem-
bership Query (AMQ) structures[152], probabilistic data structures that use
less space than dictionaries. Four types of AMQ-structures were tested:
Bloom Filter[153, 154], Cuckoo Hashing[155], Cuckoo Filter[156] and Quotient
Filter[157].

A WiSARD-based multi-layer model called NC-WiSARD[158]. One of the
weaknesses of the WiSARD lies in its inability to deal with invariancy, since when
the inputs of the training set are binarized if there is variation in relation to rotation
or scale in specimens of the same class this will result in different patterns overlap-
ping and causing great noise in the content of discriminators. To circumvent this
limitation NC-WiSARD was created. This weightless neural network is based on
AutoWiSARD and the Neocognitron network[159], a hierarchical feedforward neural
model inspired by the visual cortex.

NC-WiSARD has three types of cells per layer:

• D cells: responsible for connecting to the previous layers;

• S cells: responsible for selecting a subset of the characteristics of a feature of
the previous layer;

• C cells: responsible for applying distortions to the selected features by S cells.

PLN[160]: While weightless models traditionally have one layer, Probabilistic
Logic Node (PLN) is the first multilayer weightless approach. In this model, each
memory location stores a single bit, which can be "0", "1", or "u". The network
is shaped like a pyramid, that is, the last layer has only one RAM. When RAM
is accessed, it propagates the bit stored in the memory location in which it was
accessed to the next layer. The entire network is initialized with the "u" bit. In
the training phase, when a pattern is submitted to PLN, each bit "u" is accessed

22

and makes a bit "0" or "1", with the same probability. If there is convergence, this
pattern is learned, otherwise, the process is repeated.

This model received two extensions: m-state PLN (MPLN)[161], where each
memory location can store discrete values and the output can operate as a linear or
sigmoid function, and pRAM[162], where each memory location can store continuous
values in a range [0, 1].

GSN[163]: One of the great problems of PLN was its high rate of saturation
and corruption of previously learned data since when a new example was submitted
for learning, there were as many iterations in the pyramid as were necessary for
there to be convergence and, finally, learning the new pattern.

To overcome this limitation of the previous model, a new one was proposed: Goal
Seeking Neuron (GSN). The novelties of this model are listed below.

• In GSN RAMs propagates "u" as a signal to the next layer and even is possible
for the network to have an "u" output.

• When a RAM is accessed in a memory location with "u" content, it propagates
two distinct signals ("0" and "1"), accessing two memory locations in the RAM
that are addressing in the next layer.

• In the validation phase, if there is no success, learning a certain pattern is
abandoned so as not to cause saturation in the model.

• If the network output is "u" during validation, this indicates that the network
is ready to learn any desired pattern.

• If the pattern is learned and the RAM of the last layer has been accessed in
two memory locations that contain a bit that allows the pattern to be learned,
then one of the memory locations is randomly drawn to be used to perform
the recall where the writing will take place the new contents of the previous
layers.

• If there is access to memory locations storing "0" and "1" in the last layer,
the network output is "u".

GRAM: Since in PLN and its derived models, neurons do not have the ability
to generalize, something that is only possessed by the network, a new model was
proposed to circumvent this limitation. The new model became known as General-
ising Random Access Memories (GRAM)[164] and its main feature is its spreading
phase, which creates clusters, whose centroids are the learned patterns. This phase
can have as many iterations as previously defined and in an iteration i only the u-
positions that are a Hamming distance i from the pattern will learn it. Due to a large

23

amount of memory required when the number of clusters increases, an alternative
implementation of GRAM was created. Known as Virtual GRAM (VGRAM)[165],
it only instantiates memory locations that have been trained, so that the network
generalizes patterns not seen in training through calculations using the stored values
and the spreading algorithm.

GNU: General Neural Unit (GNU)[166] are single-layer networks where each
neuron is a GRAM, each of which has n inputs connected to the input layer and m
nodes connected to the output. They can be trained as feedforward or/and feedback
networks. The process of storing this model consists of creating associations between
an external pattern and its representation. In the training phase, the same GRAM
algorithm is applied to each neuron. In this phase the learned pattern is associated
with itself, what is known as iconic learning.

Subsequently, a system was created by combining several GNUs for modeling
brain structures. He became known as MAGNUS and the experiments carried out
with him were one of the drivers for the discussion on the possibility of Artificial
Consciousness[167].

ADAM[168] is a network whose architecture uses two weightless correlation
matrix memories using a Hebbian learning rule[169]. CAINN[170] is an adaptation
of the ADAM architecture using Alpha-Beta operations.

SDM[171] is a generalized RAM inspired by the concept of long-term memory.
It uses sensitivity between two memory locations so that a word of data can be
retrieved not only if its address is accessed, but also some other similar memory
location is accessed. The similarity between memory locations is calculated by the
number of mismatched bits (i.e., the Hamming distance between memory addresses).

Fuzzy Boolean Neural Network[172] is a model whose memory locations
can store "0", "1" or "u" and which are capable of learning qualitative rules and of
reasoning using those rules.

Quantum weightless neural networks[173] use qRAM neurons, whose mem-
ory locations store qubits. These do not use non-linear networks activation func-
tion, like sigmoid or tangent hyperbolic, because non-linear activation functions will
hardly have an exact quantum analogous. It is possible to simulate using the classic
WANNs learning algorithms using qRAMs.

2.7 WAAN’s Recent Advances

After the addition of bleaching and its consequent reduction in model saturation,
WiSARD was once again competitive in tasks from the most diverse domains, many
of which are real world problems.. The main ones will be listed below:

24

• Online tracking: this is a complex task since characteristics of the environ-
ment can change in real-time, as well as the object being tracked can suffer
occlusions and deformations. WiSARD was used effectively in this task in an
approach inspired by the hierarchy of human memory.

In this domain, only a single discriminator is created and the model has no
changes in its learning phase. In the classification phase, the entire scenario is
covered by a sliding window looking for which specimen will have the highest
score. If the score of the classified object does not reach a pattern threshold, a
new discriminator will be created to learn this new configuration of the object,
which must have changed from its original shape.

This system has two queues, corresponding to short and medium-term memo-
ries. When a new discriminator is created, it occupies a position in short-term
memory, and when a discriminator fails to reach the pattern threshold it is
moved to medium-term memory. Both memories have a size limit and when
this is reached the last discriminator is removed from the system. Results of
this system in online video tracking can be seen in [174];

• GPS trajectory classification, a complex task since GPS data usually in-
volves a lot of noise. A successful approach using WiSARD in this domain con-
sists of preprocessing the data using kd-tree division of the space[175] and using
an ensemble of WiSARDs arranged in a decision directed acyclic graph[176],
forming a decision tree-like structure, where spurious data is eliminated and
ties are avoided through a neurosymbolic methodology. Results are found in
[177, 178];

• Part-of-speech (PoS) Tagging is a complex task due to the presence of
homonyms and the great vastness of words in most languages, there is a high
chance that there would be many words that were not present in the training
set. An efficient multilingual PoS-tagging was built based on the WiSARD
classifier. Since this system has many parameters to be tuned depending, and
that are very sensitive to specific characteristics of each language, such as its
synthesis index, the use of a fast and light model like WiSARD allows an ex-
haustive search for the best configuration of each language. The system, which
became known as mWANN-Tagger, has in addition to a WiSARD classifier, a
mapping matrix that relates the degree of relevance of the words in the cor-
pus and a context window, which aims to reduce homonymy. There are more
results from mWANN-Tagger in eight different languages[179–181].

Although WANNs are not ML mainstream models, their use has always remained
in certain AI niches, due to their versatility and low computational cost. To date,

25

attempts to circumvent the limitations of these models persist, largely stemming
from the difficulty of consistently representing complex data with binary data words.
Its use is mainly associated with hardware implementations and environments where
little memory is available or online learning is required.

Among the recent work with WANNs, in addition to those already mentioned
in the Section 2.6, is the use of AutoWiSARD as a basis for reinforcement learning
techniques[182–184], use of WiSARD in a feasible weightless neural accelerator for a
fairly small-sized Xilinx FGPA[70], use of WiSARD as an accelerator of learning in
deep neural networks[62], use of WiSARD with transfer learning to detect distress
in asphalt[63], generation of synthetic datasets[185], cryptography[186], combined
use of VGRAM with a modified binary TRIE data structure and genetic algorithms
for automatic disease diagnosis[187] and autonomous vehicle control systems based
on WiSARD[188]. A recent survey has discussed the relevance of n-tuple classifier
in a contemporary ML scenario[106].

2.8 Preprocessing Techniques

As mentioned in Chapter Two, the input of WiSARD is conveniently composed of
bits. This way, it was necessary to apply some preprocessing to the system entry,
so that it can be represented as a collection of Boolean values.

2.8.1 Image

In the case of images, the most trivial preprocessing procedure consists of binarizing
every pixel, as a means to highlight some particular type of the desired feature in the
image, such as shapes, borders, or clusters with shared characteristics. The image
preprocessing techniques employed in this work were Sauvola, Canny edge detector,
adaptive Gaussian, and Otsu binarization.

The simplest binarization for images consists of establishing a global threshold
based on some graphical feature, such as the average intensity of their pixels, and
assigning a value for each pixel according to this threshold. However, assigning
the same threshold for the whole image produces noises in the case of non-uniform
backgrounds. Because of this, we employed techniques based on local information,
and the feature used to calculate the threshold was luminance.

2.8.1.1 Deskewing

When we normally write something, there is an angle with the paper. In the image
recognition process, this ends up being a type of noise. To minimize this, a process
known as deskewing is used, which consists of an affine transformation.

26

For this, is assumed that the image that was created (the skewed version), it
is actually some affine skew transformation on the image Image′ = A(Image) + b,
that is unknown. Therefore, one must calculate the matrix that allows obtaining this
image. To do this, it is necessary to calculate the covariance of the pixel intensity

of the image, since the matrix that skew back to original image is:

[
1 0

α 1

]
, where

α = Cov(X,Y)
V ar(X)

. Then, this matrix and the offset µ - center are used to perform
interpolation and obtain the deskewed image.

2.8.1.2 Yen’s Binarization

Yen’s binarizartion[189] is multilevel thresholding. This method uses two factors to
determine threshold values: the discrepancy between the thresholded and original
images and the number of bits required to represent the thresholded image. Based
on a new maximum correlation criterion for bilevel thresholding, the discrepancy
is defined and then a cost function is proposed for multilevel thresholding. By
minimizing the cost function, the classification number that the gray-levels should
be classified and the threshold values can be determined automatically.

2.8.1.3 Adaptive Gaussian

Adaptive Gaussian is a low-pass filter that binarizes the image according to a local
threshold for each pixel, defined by the convolution of the neighboring pixel features
weighted with a Gaussian kernel.

2.8.1.4 Sauvola’s Binarization

Sauvola method [190], in turn, makes use of the concept of the integral image, i.e.,
a version of the image in which every pixel has its value substituted by the sum of
the values of every pixel that lie to left and/or above it. Given that integral image,
Sauvola binarizes a pixel through the application of a threshold t defined by

t = 1 + µF + k
(σF
r
− 1
)
, (2.6)

where F represents the features of the neighboring pixels, µF and σF their respective
mean and standard deviation, and k and r are factors responsible for amplifying the
contribution of sF in an adaptive manner in order to minimize potential harming
effects caused by the background.

27

Figure 2.4: Preprocessings: (a) original image[3]; (b) Canny filter; (c) Adaptive
Gaussian filter; (d) Sauvola binarization; (e) Otsu binarization.

2.8.1.5 Canny Border Detector

The Canny border detector is a technique widely used in computer vision to reduce
the amount of information to be processed. This method smooths the image by
applying it to a Gaussian filter, then calculates its intensity gradients and removes
spurious edges using non-maximum suppression techniques. It then applies two em-
pirically determined thresholds and classifies the pixels according to their gradients.
A pixel whose gradient is greater than the highest threshold is classified as strong,
if its gradient lies between the thresholds it is classified as weak, and it is discarded
if the gradient is lower than the lowest one. Next, weak pixels that are not bound
to strong ones are also suppressed.

2.8.1.6 Otsu’s Binarization

Otsu’s binarization employs a clustering approach. This method is applied only to
grayscale images and considers that there are only two types of pixels based on a
bimodal histogram. The algorithm calculates an optimal threshold that separates
these pixels through the minimization of intraclass variance σ2

intra(t), which is given
by

σ2
intra(t) = pS(t)σ

2
S(t) + pW (t)σ2

W (t) , (2.7)

where σ2
S(t) and σ2

W (t) are the variances of the gradients of strong and weak pixels,
and pS(t) and pW (t) are the probabilities of a pixel being of that class given threshold
t. Otsu’s method is based on the fact that minimizing intraclass variance σ2

intra(t) is
the same as maximizing interclass variance σ2

inter(t), which is given by

σ2
inter(t) = pS(t) pW (t) (µS(t)− µW (t))2, (2.8)

where µS(t) and µW (t) are the means of the gradients of strong and weak pixels
given threshold t.

A comparison of the binarized images produced by the different preprocessing
methods is depicted in Figure 2.4.

28

2.8.2 Audio

Audio processing, in turn, has the goal of making the entry compatible with the
canvas employed to treat the time series and also to highlight features of interest to
the network. This preprocessing procedure consists of performing an MFCC (mel
frequency cepstral coefficients) feature extraction, which produces acoustic feature
vectors from the original waveform, and then in the binarization of those vectors
with KernelCanvas. The detailed steps of the procedure of converting the audio into
binary inputs are the following:

• application a pre-emphasis filter on the signal to increase the amplitude of high-
frequency bands and decrease the amplitude of low ones. The pre-emphasis
filter is a first-order high-pass filter that if applied to a signal x(t) produces
accentuated signal

y(t) = x(t)− αx(t− 1) , (2.9)

for 0.9 ≤ α ≤ 1.0;

• windowing of the audio signal, by sampling extracts of fixed length from the
original audio in frames. This sampling is performed according to the frame
size (in milliseconds) and the frameshift, which is the offset between successive
frames. It is important that the frame size be greater than the frame shift,
so that there is an overlap between the frames. Solely framing the original
waveform produces signals that are abruptly cut off at their boundaries and
these discontinuities create complications in the upcoming Fourier analysis.
To ensure continuity, a Hamming window is applied to the framed signal so
that the amplitudes at the boundaries are shrunk to 0. The Hamming window
for a frame of length N is given by the formula

w(n) = 0.54− 0.46 cos

(
2πn

N

)
, (2.10)

where 0 ≤ n ≤ N − 1;

• conversion of the Hamming-windowed signal to a frequency spectrum through
the use of the discrete Fourier transform (DFT). A much more efficient algo-
rithm called fast Fourier transform (FFT) can be employed in this step, but
it only works for frames of length N that are powers of 2;

• elimination of extremely high frequencies, e.g. 16 kHz, and creation of a bank
of high-pass filters for the remaining frequencies. The human auditory system
is less sensitive in higher frequencies than it is in lower ones, and this bank
must try to replicate this property. So, its filters are made with overlapping

29

triangular windows whose centers are spaced almost linearly below 1000 Hz
and logarithmically above it. More specifically, the centers of those filters are
linearly spaced in the mel scale, which is given by

mel(f) = 1127 ln

(
1 +

f

700

)
, (2.11)

where f is a frequency in hertz. Lastly, the amplitudes of the filters are
subjected to a logarithm for human perception of amplitude is logarithmic;

• the high correlation between the filter banks is problematic in some models of
machine learning, then a discrete cosine transform (DCT) should be applied to
decorrelate them and reduce their representation. The results of this transform
are known as the mel frequency cepstral coefficients, the components of an
audio representation obtained by the spectrum of the log of the spectrum of
the time signal;

• to balance the spectrum and improve the signal-to-noise, the average of each
coefficient of all frames is subtracted;

• to make better use of the context of the audio window, an integral image of
the input is constructed;

• the resulting input is then binarized with KernelCanvas.

When Gaussian mixture models were the main machine learning solution for
audio recognition, MFCC was the main type of representation used because of the
limitation that many machine learning algorithms had to handle highly nonlinear
data. With the rise of deep neural networks, this was no longer a problem, and
the use of filter banks alone became more popular as this reduces the cost of data
processing and preserves sample information. Here only MFCC was used for binary
input composition.

2.8.3 Thermometer

Binary thermometer is a technique for preprocessing quantitative variables. Given
a variable d, a maximum value of training test m and a number of ranges s, the new
binary variable will have s bits, with each ith bit being determined by a threshold
t = i ∗ m

s
. If d > t, the ith position is worth 1, otherwise 0. A example is displayed

in Figure 2.5, where d = 76, s = 7,max = 90. Some treatment should be given
to values in test set that are greater than the maximum value of the training set.
The main advantage in use thermometer in relation to represent a number using the
direct binary representation: thermometer preserves Hamming distance between

30

Figure 2.5: Thermometer encoding example

the binary inputs. Another advantage of the thermometer is that it can scale the
representation of a feature so that its impact on classification is not dissipated
in front of other features. A total comparison between both of them in different
scenarios in order to prove in which they are advantageous and disadvantageous is
still needed.

2.8.4 One-hot-encoding

Binary preprocessing technique for categorical variables, where the number of bits of
the variable is fixed as the number of possible values for the variable in the training
set. Each of these values will correspond to a binary variable setting, where only
one position has "1". Table 2.1 display a example of this encoding. Some treatment
should be given to test set values that are not found in the training set.

Table 2.1: Example of one-hot-encoding for variable Fantastic Creature = [griffin,
elf, dragon, fairy

Variable Encoding
griffin 1000
elf 0100
dragon 0010
fairy 0001

2.8.5 tf-idf

A numerical statistic that is intended to reflect how important a word is to a docu-
ment in a corpus. It is formed by the product between term frequency[191], which
is the frequency of a word in a given document in the corpus, and the inverse doc-
ument frequency[192], which is the proportion of occurrences of the same word in
documents in the corpus, being a fixed value for the entire corpus.

Table 2.2: Term count in Document 1
Term Term count
Wisdom 1
is 7
light 4

31

Table 2.3: Term count in Document 2
Term Term count
Ignorance 2
is 5
shadow 1

Considering a corpus D = D1, D2 and the frequency of some of its terms listed
in Tables 3.2 and 3.3, the tf-idf of the word is calculated:

• "is" in Document 1 = 7
12
∗ log(2

2
) = 0.583 * 0 = 0

• "is" in Document 2 = 5
8
∗ log(2

2
) = 0.625 * 0 = 0

• "light" in Document 1 = 4
12
∗ log(2

1
) = 0.33 * 0.301 = 0.099

Analyzing the tf-idf features of these words, it can be concluded that the word
"is" is not important in the classification of elements in this corpus given its high
incidence in different contexts.

2.8.6 Discussion about the Preprocessing Techniques

The efficiency of such preprocessing techniques depends on each domain and on the
network topology, so it is not possible to generalize its performance in general. In
the following chapters we will have analysis of these preprocessing in 11 different
datasets. Other analyzes of the use of these preprocessing techniques with the
WiSARD model were made in literature[2, 116, 125, 131, 193–195].

32

Chapter 3

WiSARD in Action Units Multi-label
Classification

Many ML classification tasks involve multi-label classification, which implies not in
the categorization of samples, but in the selection of a subset of domain labels for
these, and in label ranking, which consists of ordering the labels of a given domain to
the degree of belonging to a given example. Label ranking is a task that can be easily
solved by a WiSARD classifier since with the score obtained by each discriminator
in the classification stage, such ordering becomes a trivial task. However, like many
other classifiers, WiSARD is unable to select a subset of labels without an domain-
oriented modeling. In this chapter, we will explore the use of WiSARD with some
methodologies to expand its traditional use and solve a multi-label classification
task: the classification of Action Units.

Ekman and Friesen [196] cataloged a set of muscles known as Action Units (AUs),
which would be responsible for all facial expressiveness while attempting to obtain a
set of universal emotions present in any human. The automatic identification of these
AUs has been developed since the mid-1990s and has several applications: forensics,
psychological treatment, physical therapy support, and advertising feedback, among
others. AUs have also been used in the development of adaptive digital avatars [197].

Some of the great difficulties in automatic detection of AUs are a large number
of classes and the wide variety of forms how AUs express themselves, besides the
fact that they usually manifest together, making this a hard multi-label task. In
this way, the approaches that are emerging in the literature usually involve complex
techniques of computer vision and machine learning, with high computational cost
and long learning time. This work presents an alternative that solves that problem
by using weightless neural networks (WANNs), which are characterized by their
simplicity of implementation and online learning. The weightless solutions presented
here are validated in the CK + dataset, which presents 30 classes of AUs.

This chapter is organized as follows: Section 2 introduces the two approaches

33

Figure 3.1: Label Powerset

used in order to reduce the multi-label problem classification of AUs in acceptable
single-label problems for WANNs. Section 3 presents the concept of AUs and their
many classifications. In Section 4, the experiments are performed using supervised
and semi-supervised datasets. Although a description of state-of-the-art works and
other relevant solutions with their main characteristics is provided, unfortunately, a
complete comparison with them is not possible due to lack of information on which
classes are used by them and their performance in relation to training time and test.
Section 5 concludes the text, highlighting the contribution of this work in providing
multi-label solutions for the weightless neural models while offering a simpler and
faster solution for the AU classification.

3.1 WiSARD-based Multi-label Classification Sys-

tems

Since WiSARD uses a set of discriminators to infer a single class that a given in-
put is more likely to belong to, two traditional multi-label strategies[198] have been
adapted to work with this paradigm. They are Label Powerset and Binary Rele-
vance.

3.1.1 Label Powerset

In this approach a combination of classes is considered as a new class. When the
number of classes increases much in relation to the single-label problem, and to
circumvent memory spending, new discriminators are instantiated when a new class
is presented in the training phase. This approach is illustrated in Figure 3.1.

One problem with this solution is that a misclassified AU will induce other
erroneous classifications since the network can only find a single group of AUs. In
this approach, when the amount of discriminators increases, the amount of training
examples will tend to decrease and this can consume a lot of memory depending on
the combination of classes present in the training dataset.

34

Figure 3.2: Binary Relevance

3.1.2 Binary Relevance

The idea is to use a set of WiSARDs where each one is related to an AU, all with two
discriminators indicating the presence or the absence of AU. In the training phase,
when an example is submitted, all the WiSARDs are trained in the appropriate
discriminator. In the classification phase, AUs activation will be predicted according
to the response of each of the WiSARDs. This approach is illustrated in Figure 3.2.

The disadvantage of this method over the Label Powerset is the fact that, since
the combination of non-additive AUs is extremely idiosyncratic, it may not be cap-
tured by the WiSARDs responsible for its elements. On other hand, this method
has the advantages of making classification of Upper and Lower Face AUs indepen-
dents and save memory and classification time in relation to Label Powerset. In this
approach is possible that no class appears in the output.

3.2 Action Units

The study of human expressions has been developed through scientific analysis since
the second half of the 19th century but, due to the lack of objectivity in defining
parameters to categorize such expressions, this research was unable to be properly

35

developed until the end of the 1970s, when Ekman and Friesen finally proposed the
use of facial muscles as the physiological element, totally independent of cultural
context, to support a taxonomy of the face. From there they developed the Facial
Action Coding System (FACS) [196], a descriptive code of facial expressions, whose
basic units are the 32 muscles that express facial emotions and 14 Action Descriptors
(ADs), which describe facial actions not expressed through muscles, such as the
movement of the eyes, tongue, and jaw.

AUs are divided into Upper Face (above the nose) and Lower Face (from nose to
chin) and into additive (their appearance is independent of the rest of the face) and
non-additive (their appearance may be affected by other non-additive AUs, which are
in the same facial region). The 32 AUs can form more than 7000 combinations[199].
AUs may manifest voluntarily or involuntarily, which affects the duration of their
manifestation and their symmetry. Involuntary AUs are used to detect micro-
expressions. AUs have different degrees of intensity, usually divided into five levels
of expressiveness.

3.3 Related Work

A lot of work has been developed for the detection and classification of Action Units,
since this is useful in a wide range of tasks, such as medical, pedagogical, and com-
puter graphics applications. Most of the systems found in the literature use some
computer vision technique to extract features, which are then fed to a classifier.
Among the techniques for extracting features, some popular solutions are Optical
Flow[200] (movement vector of objects per frame), Gabor Wavelets[201] (transform
capable of obtaining spatio-temporal information from a signal, being able to fully
represent images), Multi-state Models[202] (they model a process with several tran-
sitions, where each state can be submitted to a distinct heuristic), KLT Tracker[203]
(information-using method about the spatial intensity of the image to reduce the
computational cost of searching for specific features) and PBVD Tracker[204] (sim-
ilar to the previous one, it uses the Bézier partial volume deformation model).

The classifiers with the best results are Bayesian networks[205] (knowledge repre-
sentation models that work with uncertain and incomplete knowledge through Bayes’
Theorem), Hidden Markov Model[206] (the statistical model in which the modeled
system is assumed as a Markov process with unknown parameters), SVM[207] (su-
pervised learning model that separates distinct classes through a hyper-plane) and
neural networks.

Some specific solutions for AU classification: Khorrami et al.[208] train a zero-
bias CNN on facial expression data and use an approach to decipher which portions
of the face influence the CNN’s predictions. This work also uses the FAU labels

36

provided in the CK+ dataset to verify that the FAUs observed in their filter visual-
izations indeed align with the subject’s facial movements.

Prajod et al.[209] train a VGG16 convolutional neural network to discern be-
tween emotions, then fine-tune larger parts of this network to learn suitable rep-
resentations for pain recognition. Then use Layer-wise Relevance Propagation to
analyze predictions of the model that have been predicted correctly previously but
are now wrongly classified. Chang et al.[210] use the rough contour estimation rou-
tine, mathematical morphology, and point contour detection method to extract the
precise contours of the eyebrows, eyes, and mouth of a face image.

In the literature[211][212][213] other relevant results of classification of AUs in
CK+ do not use all AUs or use other techniques to increase the available information.
Breuer & Kimmel[214] uses transfer-learning and all-against-all validation, with only
8 AUs, obtaining an accuracy of 98.62%. Abbasnejad et al.[215] uses a synthetic
dataset to extend the amount of data and 11 AUs are used and accuracy is 97.87%.
Pons & Masip[216] validates with 12 AUs and maximum accuracy is 82.5%. There
is no indication of which metric was used to calculate the accuracy in these works.

The main benchmark found in the literature in the CK+ dataset[4] for AU
classification uses leave-one-out as validation. The state-of-the-art uses a pair-wise
classifier trained with time series[212], in order to use the facial changes in each frame
to highlight the present AUs. The baseline proposed in [4] uses Active Appearance
Models and a linear support vector machine classifier. This comparison is better
visualized in Table 3.1.

3.4 Experimental Results

3.4.1 Experimental Setup

The Extended Cohn-Kanade dataset[4] was chosen for the experiments. It consists
of a base created by the University of Pittsburgh Affective Analysis Group. It is
made up of 500 image sequences from 100 subjects, aged between 18 and 30 years.
65% of individuals are female. 82% of the individuals are Caucasian, 15% African
American and 3% Latino and Asian. All images are completely frontal and are all
posed.

Each series of images on this base is made up of 23 photographs, each of which
has at least one Action Unit, the muscle used to express emotion, prominently active,
and can exist combinations of several of them in a single image. The first image
in each series exhibits neutral or predominantly neutral emotion, and throughout
the images, some other emotion becomes predominant until it reaches the apex of
its expressiveness. Each image is annotated with information about the emotion

37

Ta
bl
e
3.
1:

A
co
m
pa

ri
so
n
be

tw
ee
n
M
L-
so
lu
ti
on

s
fo
r
A
U
s
cl
as
si
fic
at
io
n
in

lit
er
at
ur
e.

W
or
ks

M
od

el
O
th
er

te
ch
n
iq
u
es

V
al
id
at
io
n

S
u
b
se
t

[2
08

]
Ze

ro
-b
ia
s

C
N
N

FA
U
-o
ri
en
te
d

F
ilt
er

10
-fo

ld
C
V

F
ir
st

fr
am

e
of

ea
ch

se
qu

en
ce

as
a
ne
ut
ra
lf
ra
m
e
in

ad
di
ti
on

to
th
e
la
st

th
re
e
ex
pr
es
si
ve

fr
am

es

[2
09

]
V
G
G
16

C
N
N

La
ye
r-
w
is
e

R
el
ev
an

ce
P
ro
pa

ga
ti
on

Tr
ai
n-
te
st

sp
lit

T
he

im
ag

es
w
er
e
co
lle
ct
ed

th
ro
ug

h
se
ar
ch

qu
er
ie
s

co
nt
ai
ni
ng

em
ot
io
na

lk
ey
w
or
ds
;i
m
ba

la
nc
ed

[2
10

]

R
ad

ia
lb

as
is

fu
nc
ti
on

ne
tw

or
k
an

d
M
LP

R
ou

gh
co
nt
ou

r
es
ti
m
at
io
n
ro
ut
in
e,

m
at
he
m
at
ic
al

m
or
ph

ol
og

y,
an

d
po

in
t
co
nt
ou

r
de

te
ct
io
n

Tr
ai
n-
te
st

sp
lit

A
ll
da

ta

[2
14

]
D
N
N

Tr
an

sf
er
-le

ar
ni
ng

A
ll-
ag

ai
ns
t-
al
l

8
M
os
t
fr
eq
ue
nt

A
U
s

[2
15

]
D
N
N

D
at
a
au

gm
en
ta
ti
on

10
-fo

ld
C
V

11
M
os
t
fr
eq
ue
nt

A
U
s

[2
16

]
D
N
N

-
10

-fo
ld

C
V

12
M
os
t
fr
eq
ue
nt

A
U
s

[4
]

Li
ne
ar

SV
M

A
ct
iv
e
A
pp

ea
ra
nc
e
M
od

el
s

Le
av
e-
on

e-
ou

t
A
ll
da

ta

[2
12

]
P
ai
r-
w
is
e

M
ul
ti
-la

be
l

P
er
ce
pt
ro
n

Te
m
po

ra
l

in
fo
rm

at
io
n

Le
av
e-
on

e-
ou

t
M
os
t
fr
eq
ue
nt

A
U
s

38

Figure 3.3: Examples of Cohn-Kanade Extended Dataset (CK+)[4]

displayed and the AUs expressed in it. Figure 3.3 gives examples of the images in
this dataset:

It is worth mentioning that of 10558 images present in the dataset, only 588 have
annotations indicating which AUs, and with what intensity, are present.

Table 3.2 presents the description of the AUs present in CK+, with their fre-
quency. One of the great difficulties of this dataset can be perceived here, by the
imbalance of the classes. Another difficulty is due to the fact that additive AUs
modify completely when they mutually manifest so that the combination of AUs
can practically be considered new classes (with many different features of the classes
that compose it).

This dataset was chosen to validate multi-label classification systems with WiS-
ARD due to its recurrent use in the literature, WiSARD’s natural vocation for image
classification (both n-tuple classifier and WiSARD were created with this intention
and most of them of the WiSARD application still focuses on this area) and because
WiSARD has already been applied to it, but to the task of classifying emotions[194].

The preprocessing methods used were Adaptive Mean, Adaptive Gaussian and,
Sauvola binarization[190]. The first two techniques binarize the image according to
a local threshold for each pixel defined by the mean luminance of the neighborhood
and the weighted-sum of Gaussian window, respectively, while the Sauvola method
uses integral images for computation of the threshold.

All experiments were run three times. The experiments were run on a machine
with the following configuration: 7.7 GiB, Intel Core i7-6500U CPU @ 2.50GHz x
4, GeForce 920MX/ PCIe/ SSE2, 64-bit, Ubuntu 18.04.1.

39

Table 3.2: Number of examples of each AU in CK+ dataset
AU Name N
1 Inner Brow Raiser 173
2 Outer Brow Raiser 116
4 Brow Lowerer 191
5 Upper Lip Raiser 102
6 Cheek Raiser 122
7 Lid Tightener 119
9 Nose Wrinkler 74
10 Upper Lip Raiser 21
11 Nasolabial Deepener 33
12 Lip Corner Puller 111
13 Cheek Puller 2
14 Dimpler 29
15 Lip Corner Depressor 89
16 Lower Lip Depressor 24
17 Chin Raiser 196

AU Name N
18 Lip Puckerer 9
20 Lip Stretcher 77
21 Neck Tightener 3
23 Lip Tightener 59
24 Lip Pressor 57
25 Lips Part 287
26 Jaw Drop 48
27 Mouth Stretch 81
28 Lip Suck 1
29 Jaw Thrust 1
31 Jaw Clencher 3
34 Cheek Puff 1
38 Nostril Dilator 29
39 Nostril Compressor 16
43 Eyes Closed 9

3.4.2 Cross-validation with Full Dataset

Both networks (WiSARD and ClusWiSARD) were tested in combination with both
methods (Binary Relevance and Label Powerset) using only annotated CK+ images
in 10-fold cross-validation. The landmarks information provided in the dataset was
used to obtain the box used to generate the input from the network.

In these experiments, the accuracy was calculated as: acc = tp+tn
tp+tn+fp+fn

, that is,
to calculate the accuracy, the system’s errors and absolute hits were considered and
not the number of class hits for each sample. Other metrics considered here were
F1-score, recall and precision. Since there is an imbalance between classes, F1-score
is a better metric than accuracy in this task.

Tables 3.2-3.6 show the best accuracy, F1-score, precision, recall and ROC AU
score, respectively, for each network type combination, multi-label approach, and
preprocessing. More results are available in Appendix A.

In relationship to accuracy, Adaptive Mean and Adaptive Gaussian preprocessing
methods worked better with Binary Relevance, while Sauvola provided better re-
sults with Label Powerset. The best result obtained in this sense was 89.66%, using
ClusWiSARD with 6 bits of addressing, Binary Relevance approach, and Adaptive
Mean preprocessing. Since there is no significant difference between these accuracy
values, these results are insufficient to determine which of the approaches was supe-
rior in terms of accuracy, and statistical tests that consider the null hypothesis are
necessary to obtain a truly accurate assessment.

We can see from the Tables 3.4 and 3.5 that Binary Relevance performs well
on Recall but underperforms on Precision, indicating that this method is better at

40

Table 3.3: Best accuracy results for each combination of type of network, multi-label
approach and preprocessing.

Network Multi-label Preprocessing Acc (%)

WiSARD

Binary Relevance
Sauvola 83.94
Adaptive Mean 89.54
Adaptive Gaussian 89.54

Label Powerset
Sauvola 87.8
Adaptive Mean 86.03
Adaptive Gaussian 86.88

ClusWiSARD

Binary Relevance
Sauvola 85.67
Adaptive Mean 89.66
Adaptive Gaussian 89.54

Label Powerset
Sauvola 87.85
Adaptive Mean 86.21
Adaptive Gaussian 87.02

Table 3.4: Best F1-score results for each combination of type of network, multi-label
approach and preprocessing.
Network Multi-label Preprocessing F1-score

WiSARD

Binary Relevance
Sauvola 38.1 ± 0.04
Adaptive Mean 36.9 ± 0.011
Adaptive Gaussian 38.3 ± 0.017

Label Powerset
Sauvola 46.1 ± 0.037
Adaptive Mean 41.5 ± 0.041
Adaptive Gaussian 41.3 ± 0.034

ClusWiSARD

Binary Relevance
Sauvola 35.4 ± 0.017
Adaptive Mean 34.9 ± 0.021
Adaptive Gaussian 49.11 ± 0.034

Label Powerset
Sauvola 49.11 ± 0.011
Adaptive Mean 42.1 ± 0.011
Adaptive Gaussian 40.7 ± 0.014

Table 3.5: Best precision results for each combination of type of network, multi-label
approach and preprocessing.
Network Multi-label Preprocessing Precision

WiSARD

Binary Relevance
Sauvola 31.1 ± 0.037
Adaptive Mean 52.1 ± 0.011
Adaptive Gaussian 52.1 ± 0.024

Label Powerset
Sauvola 58.7 ± 0.027
Adaptive Mean 49.1 ± 0.014
Adaptive Gaussian 44.1 ± 0.031

ClusWiSARD

Binary Relevance
Sauvola 35.1 ± 0.047
Adaptive Mean 53.7 ± 0.021
Adaptive Gaussian 55.1 ± 0.011

Label Powerset
Sauvola 59.7 ± 0.041
Adaptive Mean 48.1 ± 0.034
Adaptive Gaussian 42.7 ± 0.047

41

Table 3.6: Best recall results for each combination of type of network, multi-label
approach and preprocessing.
Network Multi-label Preprocessing Recall

WiSARD

Binary Relevance
Sauvola 91.1 ± 0.02
Adaptive Mean 99.7 ± 0.011
Adaptive Gaussian 99.7 ± 0.014

Label Powerset
Sauvola 41.7 ± 0.01
Adaptive Mean 41.4 ± 0.01
Adaptive Gaussian 41.1 ± 0.014

ClusWiSARD

Binary Relevance
Sauvola 91.1 ± 0.017
Adaptive Mean 99.7 ± 0.014
Adaptive Gaussian 99.7 ± 0.011

Label Powerset
Sauvola 43.1 ± 0.02
Adaptive Mean 41.1 ± 0.031
Adaptive Gaussian 39.7 ± 0.01

Table 3.7: Best ROC AUC score results for each combination of type of network,
multi-label approach and preprocessing.

Network Multi-label Preprocessing ROC AUC

WiSARD

Binary Relevance
Sauvola 0.485 ± 0.016
Adaptive Mean 0.466 ± 0.037
Adaptive Gaussian 0.466 ± 0.037

Label Powerset
Sauvola 0.541 ± 0.005
Adaptive Mean 0.521 ± 0.013
Adaptive Gaussian 0.51 ± 0.015

ClusWiSARD

Binary Relevance
Sauvola 0.481 ± 0.017
Adaptive Mean 0.465 ± 0.036
Adaptive Gaussian 0.462 ± 0.037

Label Powerset
Sauvola 0.539 ± 0.007
Adaptive Mean 0.517 ± 0.011
Adaptive Gaussian 0.509 ± 0.008

42

Table 3.8: The training and classification time results for the best combination of
type of network, multi-label approach and preprocessing in relation to F1-score; TrT
- training time; TT - test time.
Network Multi-label Preprocessing TrT (s) TT (s)

WiSARD

Binary Relevance
Sauvola 0.24 0.0005
Adaptive Mean 0.24 0.0005
Adaptive Gaussian 0.25 0.0005

Label Powerset
Sauvola 0.0006 0.0045
Adaptive Mean 0.0006 0.0045
Adaptive Gaussian 0.0006 0.0045

ClusWiSARD

Binary Relevance
Sauvola 0.29 0.0006
Adaptive Mean 0.30 0.0006
Adaptive Gaussian 0.30 0.0006

Label Powerset
Sauvola 0.00065 0.007
Adaptive Mean 0.00065 0.007
Adaptive Gaussian 0.00065 0.007

avoiding false negatives, but performs worse when false positives receive a higher
penalty. This may indicate that in this method many WiSARDs were classifying the
samples as belonging to a particular AU, so that the true classes of the sample were
identified by the excess of positive votes, which degraded performance in Precision.
Label Powerset was balanced in Recall and Precision, having better performance in
Precision than Binary Relevance and having worse performance concerning Recall.
This indicates that this system was more conservative than Binary Relevance, having
a lower false positives rate and a higher false negatives rate.

Another important analysis in multi-label classification is ROC AUC score, that
to refers to the area under a ROC curve, responsible to diagnose the classifier sys-
tem as its discrimination threshold is varied. The results obtained here are shown
in Table 3.6 and ClusWiSARD in Label Powerset using Sauvola preprocessing ob-
tained the best result. Actually, Label Powerset performed better regardless of
preprocessing, thus indicating the ability of this method to distinguish the positive
class values from the negative class values better than Binary Relevance. Using this
metric, WiSARD performed better than ClusWiSARD.

Since the dataset is unbalanced, accuracy may not be a fair metric, as it takes
advantage of correct classifications of more frequent classes. Using AUC ROC score,
only systems with Label Powerset obtained a score greater than 0.5, indicating that
only these systems had a considerable success rate, that is, they were superior to
a random guess. However, [217] discusses how AUC ROC should not be used on
unbalanced datasets, as the number of false positives will be reduced due to the high
number of true negatives, which is particularly true in this dataset, where there are
dozens of classes and only a few label per sample.

43

Table 3.7 show the training and classification time results for the best combi-
nation of type of network, multi-label approach and preprocessing in relation to
F1-score. In terms of training time, Label Powerset is faster, independent of the
network, because it needs to train in only one discriminator per input. In terms
of classification speed, Binary Relevance with WiSARD was more efficient due to
the lower number of classes than Label Powerset and due to the smaller number of
discriminators compared to ClusWiSARD.

Smaller addressing values had better F1-Score and precision results with Binary
Relevance and recall with Label Powerset, while higher bit-addressing values resulted
in better F1-Score and precision scores with Label Powerset and recall with Binary
Relevance, besides better training and classification time, regardless of method.

3.4.3 Cross-validation with Subsets

Given the low occurrence of some AUs and their combinations, so unique if com-
pared to their combinations, two tests were done using subsets of AUs. A test was
performed with ClusWiSARD, n = 6, by removing all AUs that do not have suffi-
cient examples in the dataset, reducing to 324 images for the AUs 1, 2, 4, 5, 6, 7, 9,
12, 15, 17, 20, 25 and 27, with 33.33% of perfect matches between classifications and
labels, F1-score of 61.46%, precision of 67.13% and recall of 56.67%. The accuracy
obtained was 83.02%. With the same configuration of ClusWiSARD: 11 AUs - acc
= 86.77%, F1-score = 74.09% (removing AUs 9 and 20 of previous subset); 9 AUs
(removing AUs 15 and 17) - acc = 85.71%, F1-score = 76.65%. This represented a
significant improvement in the F1-Score and the number of perfect matches, but a
slight drop in accuracy.

In order to increase the classification quality, another test was performed using
all annotated images and 4242 images without annotation in a ClusWiSARD with
n = 25, minimum score = 0.1, growth interval = 10, and three maximum discrimina-
tors per class, in a Label Powerset approach with Sauvola preprocessing, obtaining
accuracy = 32.8% and F1-score = 34%, representing a drop in performance on both
attributes.

3.4.4 Leave-one-out Validation

WiSARD is compared with state-of-the-art and baseline, in which the same classi-
fier is used, but without the context window. Both of them are more elaborated in
Section ??. The best result for weightless systems here was WiSARD using Label
Powerset and Adaptive Mean and the F1-score was the metric used in this compari-
son, both for each AU, as for the entire dataset. The benchmark is showed in Table
3.8.

44

Table 3.9: Benchmark using F1-score in leave-one-out validation

AUs WiSARD Baseline Relative
Facial

AU 1 0.644 0.94 0.95
AU 2 0.79 0.97 0.97
AU 5 0.74 0.95 0.97
AU 6 0.73 0.92 0.94
AU 9 0.8 0.98 0.98
AU 12 0.74 0.91 0.93
AU 15 0.38 0.80 0.83
AU 17 0.39 0.84 0.86
AU 20 0.17 0.91 0.93
AU 25 0.79 0.97 0.97
AU 27 0.87 1.00 1.00
Average 0.575 0.926 0.939

There is no strict relationship between the frequency of AUs and their F1-score,
and the classes that presented low F1-score (A15, A17, and A20) do not necessarily
have a low frequency (89, 196, and 77 samples, respectively). All AUs with the
lowest F1-score are from the lower face (lip corner depressor, chin raiser, and lip
stretcher). Probably the error of such classes comes from the fact that they have
very similar features, whose nuances and idiosyncrasies were not preserved by the
preprocessing techniques used.

Although WiSARD had an overall F1-score lower than the other methods, it
does the classification with a single frame, which in certain domains may actually
be the only one available. In this way, we can observe how WiSARD is a broader
solution, with online training and unrestricted use in this field, although it is not
able to correctly classify some classes satisfactorily.In order for WiSARD to be able
to perform well on these classes, it should be able to learn the intermediate rep-
resentations of the data. We do not have information on the training and testing
times for the state-of-the-art, so a complete comparison is not possible.

3.4.5 ClusWiSARD in Unsupervised Tasks

Experiments were also performed using the annotated images of the CK+ dataset
with ClusWiSARD in unsupervised mode to validate its clustering power in this
dataset, in an attempt to better interpret the use of ClusWiSARD in the semi-
supervised mode in the experiments described here.

To verify if the problem of that approach was the ability of ClusWiSARD to
select the best discriminator for non-annotated data, another test was done using a
ClusWiSARD in unsupervised mode. Here, the net has one class and no restrictions

45

on the number of discriminators, and each example was trained exclusively in one
discriminator. In this mode, an example is learned by a discriminator if it is the one
with the highest score in classification mode among all discriminators that satisfy
ClusWiSARD’s criterion for learning. In the case of ties between discriminators,
the tie-breaking policy is to increase the bleaching and if this cancels the score of
all discriminators candidates before the tiebreaker occurs, the larger discriminator
is elected to learn the example. If no discriminator satisfies the learning criterion, a
new discriminator is created to learn the example.

All the annotated images were used without their labels, which were then used
to evaluate the clustering potential with Rand, Jaccard, and Folkes-Mellow metrics.
Rand = a+d

a+b+c+d
, Jac = a

a+b+c
and FM = a√

(a+b)(a+c)
, where a are the number of

pairs that belong to the same class and even cluster, b the quantity of those belonging
to the same class and different clusters, c the number of those belonging to different
classes and even cluster and d the quantity of those belonging to different classes and
different clusters, and each multi-label example being decomposed into several single
labels. The results using a ClusWiSARD with n = 5, s = 0.1 and ϕ = 1000 were
Rand = 95.7%, Jac = 95.7% and FM = 97.8%, which indicate good performance
of ClusWiSARD for unsupervised, and consequently, semi-supervised learning, thus
leading to the conclusion that the non-annotated CK+ data did not have expressive
enough AUs, having it probably been obtained in moments of transition of emotions,
when AUs were far from their apex.

3.4.6 Discussion

The main difficulties encountered in the classification of AUs with WANNs were: (a)
WiSARD and Label Powerset: few examples per discriminator; (b) ClusWiSARD
and Label Powerset: most non-annotated examples were trained by discriminators
who already had many examples; (c) WiSARD and Binary Relevance: many in-
stances of an absolute tie between discriminators; depending on the adopted policy
has low accuracy or low recall; high sensitivity to combinations of AUs; (d) all
approaches: many false negatives.

3.5 Chapter Conclusion

This chapter presented novel approaches for classifying AUs activation with weight-
less neural networks. These results were published in [125]. A relevant contribu-
tion is the exploration of the WiSARD model in a hard multi-label problem, a yet
non-observed feat in the literature, to the best of our knowledge. In 10-fold cross-
validation, the best values found for accuracy and F1-score are, respectively, 89.66%

46

and 49.11%. WiSARD performed bad for Action Units whose the shape varies a
lot between the samples. The speed of the proposed WANN architectures, both
in training and classification phases, was of a very low order of magnitude, but a
proper state-of-the-art comparison can not be provided because it use non-avaiable
code, preventing proper reproduction of experiments.

Another contribution was a new way of using ClusWiSARD in unsupervised
learning (others were presented in [127] and [126]), and the proof of its vocation for
this type of task, even in a dataset where each example is highly idiosyncratic. Some
related ongoing works are use of co-occurrence rules, ensemble between different
approaches, separate upper and lower face AUs, other preprocessing techniques,
non-annotated data filtering policy, and optimization of discriminator mapping.

47

Chapter 4

Ensemble Learning with WiSARD

Ensemble learning is a very valuable technique in machine learning due to its ability
to combine several models in a single committee, in such a way that it tends to
have greater accuracy in classification and regression tasks than each of its models
individually, even that all of these models have a higher error rate in the ensem-
ble learning. This occurs because the individual models learn fewer samples when
training with only one subset[218].

One of the obvious disadvantages of using ensembles is the increase in training
and classification time, which makes the use of weightless nets especially recom-
mended for these committees. Despite their great vocation for online learning, WiS-
ARD have been little explored in the literature in ensemble learning, and when they
have been used, the structure of the committees is strongly oriented to the domain of
the problem[177, 178, 219]. Unlike them, the ensemble types presented in this thesis
can be used for any multi-class supervised learning task in a fully domain-agnostic
way.

Although ClusWiSARD is traditionally used as an individual WANN, it can also
be considered an ensemble of discriminators or a committee of networks that only
have a single class pattern. Although ClusWiSARD’s traditional classification policy
involves using the score of each discriminator individually, without jointly observing
the score of discriminators of the same class, in some domains other policies could
be implemented in order to combine the outputs of these discriminators in order to
reduce the standard deviation of intra-class classifications. This chapter presents
new strategies for WiSARD ensembles and their exploration in several classification
datasets.

4.1 Related Work

Ensemble learning are techniques used to solve classification, regression or cluster-
ing tasks that are based on generating a set of learning models and combining their

48

results to obtain a more robust and accurate result than any of the models would ob-
tain individually [220]. Ensembles can be effective in problematic machine learning
issues, such as class imbalance, concept drift and curse of dimensionality[218, 221].

Ensembles distance themselves from divide-to-conquer strategies because they
are more than simply dividing a dataset into smaller sets and applying different
models to each of them. In ensemble learning each model is trained with a data
subset with the possibility of subsampling or even with distinct features. Ensembles
usually have a pruning step, where less important models on the committee are
discarded.

Some fundamental types of ensembles are described in the next subsections. The
comparison between is better visualized in Table 4.1.

4.1.1 Bagging

Bagging[222], or bootstrap aggregating, is an ensemble that generates several inde-
pendent models trained from random redistribution of the original dataset. Each
classifier in this ensemble is trained with the same number of examples in the training
set, that is, models can learn the same example more than once.

It initially appeared as an attempt to reduce the variance of models that make
the selection of variables and fitting in a linear model. Another original motivation
for Bagging was to add robustness to machine learning algorithms where a small
change in the training set produces great variation in predictions. Since models are
independent, they can be trained in parallel.

A more formal mathematical description of a classification model ensemble would
be:

Assume that we have pairs Xi, Yi, where Xi corresponds to a single data in the
dataset and Yi corresponds to its respective class, where Yi ∈ {0, 1, ..., C − 1} (classi-
fication with C classes). The target function is P [Y = j|X = x] (j = 0, 1, ..., C−1).
The function estimator, which is the result from a given base procedure, is:

ĝ(·) = hn((X1, Y1), ..., (Xn, Yn))(·) : Rd → R (4.1)

where the function hn(·) defines the estimator as a function of the data.

4.1.2 Arcing and AdaBoost

In the boosting ensemble[223], each classifier is built from the validation of the past
classifiers, that is, after a model is trained it has its learning validated in the training
set itself and the samples that were wrongly classified have more randomly selected
in the resampling that will be the original training set of the next model. This

49

Table 4.1: A comparison between the most used ensembles in literature.
Training stage Validation stage Inference stage

Bagging Subset with replacement
and repetition - Most voted

AdaBoost Subset without replacement
and repetition

Used for create
new weak learners. Most voted

Arcing
The probability of each
example being drawn
depends on previous validation.

Used for create
new weak learners. Most voted

validation can be used to generate weights for weak learners so that their votes
contributed differently in the classification stage.

In particular, two models of Boosting are prominent in the literature, they have
appeared previously: Arcing[224] and AdaBoost[225]. Similar to Bagging, Arcing
draws with replacement N examples of a training set of size N for each classifier.
Unlike Bagging, each example will not have the same probability of being drawn,
but this probability will be dependent on how this example was classified by the
models instantiated earlier. AdaBoost can select all the examples in the dataset
and just assign a weight to them depending on their associated error.

Both models initialize the probability of choosing each example of the training
set to be 1

N
and then this probability is recalculated after a validation phase. In

AdaBoost, each shift where a new classifier will be instantiated, the probability of
integrating the training set of the examples wrongly classified by it is multiplied by
the (1−α)

α
factor, where α is the sum of the current probabilities of these examples.

After updating the probabilities, all of them are normalized so that their sum is
equal to 1.

4.2 WiSARD Ensembles

All the ensembles proposed and listed below can be created from a combination
of WiSARD, ClusWiSARDs, or both models, which will be called a heterogeneous
ensemble. The address size of each neural network is determined randomly.

Bagging and Boosting based ensembles were chosen because the efficiency of
such methods is proved in the literature. Since one of the goals here was not to
sacrifice online training when using the ensemble, the validation stage of the tra-
ditional Boosting algorithm is not used to create new weak learners but rather to
give weak learners rating weights. three other ensemble types were created in or-
der to avoid the use of the bleaching algorithm on weak learners, in order to speed
up the classification of individual models, specifically the WiSARD Borda Count is
used in order to obtain the maximum likelihood estimator of the class ranking in a

50

Figure 4.1: WiSARD Bagging’s training datase

computationally cheap way.

4.2.1 WiSARD Bagging

In this ensemble, a set of weightless networks are used as weak learners and learn
a subset of the training set and the response of the ensemble consists of the class
with the most votes. In the event of a tie, one of the most voted classes is chosen
arbitrarily in response to the ensemble. All weak learners are trained using exactly
the same number of samples, which can be the same size as the original training set
or just a partition of it, which are drawn with replacement. It is also possible to
carry out the draw with repetition in the same subset so that the same sample can
be trained more than once by the same network, as illustrated in Figure 4.1.

4.2.2 WiSARD Boosting

Ensembles where weak learners are trained with subsets obtained from the original
training set without replacement and without repetition, as illustrated in Figure 4.2.
70% of the data of this subset are used for training and 30% for a validation phase,
where the vote weight of each network is calculated based on a normalization of its
accuracy.

In this ensemble, the choice of training subsets is not made based on valida-
tion, being validation used here only for calculating the weight of the vote of each
weak learner in the ensemble’s output. The purpose of this ensemble is to increase
the degree of differentiation between the networks, making them specialists. The
classification stage of this ensemble is exactly like that of WiSARD Bagging.

51

Figure 4.2: WiSARD Boosting’s training datase

Table 4.2: Borda count starting at 1: scores received by each candidate from the
ballot of a voter

Ranking Candidate Formula Points
1st T’Challa p 5
2rd Steve Rogers p-1 4
3rd Stephen Strange p-2 3
4th Peter Parker p-3 2
5th Scott Lang p-4 1

4.2.3 WiSARD Borda Count

This ensemble is constituted and trained in the same way as WiSARD Bagging,
however, it has a different classification system, based on diversified voting policies,
based on the Borda count election system, formally proposed by the mathematician
Jean-Charles de Borda[226]. In this ensemble, each weak learner will vote on all class
options in the domain, giving them positions based on the scores they obtained in
their classification phase, that is, the number of non-null memory locations that
were accessed in each of its discriminators.

From here on we will use the nomenclature of voting systems for ensembles
inspired by them, so the rank generated by each weak learner will be called ballot.
In the event of a tie between the discriminators’ scores, the sequence in the rank of
the classes involved is chosen arbitrarily. These ballots will be used to calculate the
ensemble’s response according to any of the following policies:

4.2.3.1 Starting at 1

Each class will receive a score equal to the inverse of their position in the rank of
each ballot. The class with the highest score in the entire ensemble is chosen as the
system output. This classification system is showed in Table 4.2.

52

Table 4.3: Borda count starting at 0: scores received by each candidate from the
ballot of a voter

Ranking Candidate Formula Points
1st Samwise p-1 4
2rd Bilbo p-2 3
3rd Meriadoc p-3 2
4th Peregrin p-4 1
5th Frodo p-5 0

Table 4.4: Borda count in Dowdall system: scores received by each candidate from
the ballot of a voter

Ranking Candidate Formula Points
1st Yoda 1

p−4 1.0
2rd Obi-Wan 1

p−3 0.5
3rd Chewbacca 1

p−2 0.33
4th Han 1

p−1 0.25
5th Luke 1

p
0.2

4.2.3.2 Starting at 0

Each class will receive a score equal to the number of classes below it in the ballot
rank. The class with the highest score in the entire ensemble is chosen as the system
output. This method penalizes the candidate in the last position on a ballot, as he
will not receive any points from this voter. This classification system is showed in
Table 4.3.

4.2.3.3 Dowdall

In this method, each class will receive 1
p
points in each ballot, where p is its position

in that rank. This method favors classes that have received many first preferences
compared to the other two previous methods. This classification system is showed
in Table 4.4.

4.2.4 WiSARD Tie-break Ensembles

These ensembles use the WiSARD Bagging structure for training and use classifica-
tion policies that contemplate alternatives to deal with the tie, which was not the
case in the others. In all of them, if there is a tie-up to the maximum number of
possible turns, one of the classes involved in the last tie is chosen arbitrarily as the
winner. Table 4.5 will be used to exemplify the classification policies used by this
ensemble.

53

Table 4.5: This table is the result of a vote carried out by 20 weak learners, where the
position of each class in the rank of each voter is given through the score obtained
by him during the classification phase. In the event of a tie in the scores of the
discriminators, the tiebreaker by individual rank occurs through arbitrary choice.

1st 2rd 3rd 4th 5th
Leonard
Hofstadter 5 4 4 2 5

Sheldon
Cooper 3 6 0 4 7

Howard
Wolowitz 5 4 4 4 3

Rajesh
Koothrapalli 2 3 8 7 0

Bert
Kibbler 5 3 4 3 5

4.2.4.1 All candidates

In this policy, in case of a tie in position i of the rank, a new round takes place using
the votes of candidates in position i + 1 and all candidates are able to participate
again.

In the case of Table 4.5, in the first round, we have a tie between "Leonard",
"Howard" and "Bert", all with the highest score in the first position of the rank (5
points), so there is a need for a second round, using the votes received by the classes
in the second rank class. This time, the winner is "Sheldon", with 6 points.

4.2.4.2 Only Ties

In this policy, in case of a tie in position i of the rank, a new round takes place using
the votes of candidates in position i + 1 and only candidates involved in previous
tie are able to participate again.

In the case of Table 4.5, in the first round, we have a tie between "Leonard",
"Howard" and "Bert", all with the highest score in the first position of the rank (5
points), so there is a need for a second round, using the votes received by the classes
in the second rank class. This time, candidates with the highest score are "Leonard"
and "Howard" with 4 points. The result in third turn is equal to the second. In the
fourth turn the winner is "Howard", with 4 points.

4.2.4.3 Tie-break with Threshold

In this policy, in case of a tie in position i of the rank, a new round takes place using
the votes of candidates in position i+ 1 and only candidates that scored more than
a previously established threshold can participate in the next round. This threshold

54

corresponds to a percentage of the total votes.
In the case of Table 4.5, assuming the threshold used is 15% of the points, in

the first round, we have a tie between "Leonard", "Howard" and "Bert", all with
the highest score in the first position of the rank (5 points), so there is a need for a
second round, using the votes received by the classes in the second rank class. This
round will be able to participate all who have had at least 15% of the votes, that is,
at least three votes. Thus, "Leonard", "Sheldon", "Howard" and "Bert" were able
to participate in the second round, and the winner was "Sheldon", with 6 points.

4.2.5 Weighted Votes Ensembles

This ensemble is built using the same structure and training method as the WiSARD
Bagging, but in its classification, each class receives a score vi ∗ (C − i + 1), where
v is the number of votes in the i-th position and C is the total number of classes.

Using Table 4.5, we have the following score to the "Leonard" class: 5*5 + 4*4
+ 4*3 + 2*2 + 5*1 = 62. Likewise, the results of the other classes are: "Sheldon":
54, "Howard": 64, "Rajesh": 60, "Bert": 60. The winner is "Howard".

4.2.6 Discussing the Tiebreaker Criteria for WiSARD En-

sembles

Here I will discuss the tiebreaker criterion adopted by each of the ensembles intro-
duced in this Section.

4.2.6.1 All candidates

"All candidates" use a counter-intuitive approach in allowing all candidates to move
on to the next stages of the voting process, which has obvious disadvantages, such
as ignoring the cumulative score of votes in the most privileged positions of the rank
and privilege candidates who had few votes in the first rounds as draws occur.

This option was only considered because it reflects one of the configurations that
bleaching has assumed historically and the purpose of this approach was only to
validate within an ensemble a tiebreaker mechanism that has been used internally
for a classifier previously.

4.2.6.2 Only-ties

Only-ties have the advantage of filtering candidates who received few votes in the
first rounds, but there is a risk of discarding a good candidate if it receives slightly
fewer votes than other candidates not so good in previous rounds, often for arbitrary
reasons, such as a specific configuration of the random mapping of weak learners.

55

4.2.6.3 Tie-break with Threshold

Tie-break with threshold ensures that only candidates well placed in one round can
participate in the tiebreaker in the next shift, but without applying as high a level
of rigor as that of Only-ties, with the threshold being responsible for regulating the
acceptance margin, thus mitigating the rejection of good candidates due to little
difference in the score of accesses in previous rounds.

4.2.6.4 Weighted Votes Ensembles

Weighted Votes ensembles it has the advantages of not having to carry out several
rounds of tiebreakers and generating a single score that takes into account all the
votes at once, which is intuitively fairer.

4.3 Experimental Results

Following are the results of experiments carried out with WiSARD ensembles.

4.3.1 Datasets

Below is a presentation of the datasets used in the experiments reported in this Sec-
tion. The choice of datasets was based on the following criteria: datasets commonly
used in the literature, which explore different domains (color images, gray-scale im-
ages, text and tabular), allowing to see how different preprocessing impacts on the
performance of the ensembles.

4.3.1.1 Cifar 10

The CIFAR-10 dataset[227] contains 60000 32x32 color images in 10 different classes
(airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks). There are
6000 images of each class. The images found on this data are tiny and have rotation,
different scales, and different backgrounds that can end up being considerable noise
after the binarization process necessary to prepare the input for WiSARD.

4.3.1.2 CKP

The Extended Cohn-Kanade dataset[4] consists of 500 image sequences from 100
subjects, aged between 18 and 30 years. 65% of individuals are female. 82% of
the individuals are Caucasian, 15% African American, and 3% Latino and Asian.
All images are completely frontal and are all posed. The task solved here consists
in classify the emotion in photos in the classes Neutral, Happy, Sad, Disgust, Fear,

56

Angry, and Surprise. Another task involving the use of the WiSARD in CKP dataset
is elaborated in Section 3.4.

4.3.1.3 MNIST

One of the most traditional datasets used to benchmark and validate machine learn-
ing models, MNIST[228] consists of a collection of digitized handwritten digits in
28x28 images (10 classes, 60000 examples in training set and 10000 in test set).

4.3.1.4 Fashion MNIST

Fashion MNIST[229] is an alternative version of MNIST that contains gray-scale
28x28 images of clothes. It has ten classes: T-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, ankle boot (60000 examples in the training set and
10000 in the test set).

4.3.1.5 IMDB

IMDB[230] is a dataset for binary sentiment classification with a set of 25000 highly
polar movie reviews for training, and 25000 for testing. There is additional unlabeled
data for use as well.

4.3.1.6 MovieLens

MovieLens data set[231] consists of 100000 ratings (1-5) from 943 users on 1682
movies, where each user has rated at least 20 movies. Datas provides simple de-
mographic info for the users (age, gender, occupation, zip). The data is randomly
ordered. Each entry consists of a tab-separated list of (user id | item id | rating |
timestamp), where the timestamps are Unix seconds since 1/1/1970 UTC.

Follow the features of the base:

• data: The full dataset, 100000 ratings by 943 users on 1682 items;

• info: The number of users, items, and ratings in the dataset;

• item: Information about the items (movies); this is list of: movie id | movie
title | release date | video release date | IMDb URL | unknown | Action |
Adventure | Animation | Children’s | Comedy | Crime | Documentary | Drama
| Fantasy | Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi | Thriller
| War | Western The last 19 fields are the genres, a 1 indicates the movie is
of that genre, a 0 indicates it is not; movies can be in several genres at once.
The movie ids are the ones used in the dataset;

• genre: A list of the genres;

57

• user: Demographic information about the users; this is a tab-separated list of:
user id | age | gender | occupation | zip code. The user ids are the ones used
in the dataset.

• occupation: A list of the occupations.

4.3.1.7 State-of-the-art Models

Here I will indicate the state-of-the-art models for these datasets:

• Cifar10: EffNet-L2 - 99.70%[232];

• CKP: CNN - 99.60%[233];

• MNIST: Branching/Merging CNN + Homogeneous Vector Capsules -
99.87%[234];

• Fashion MNIST: Fine-Tuning DARTS - 96.91%[235];

• IMDb: NB-weighted-BON + Dv-cosine - 97.4%[236].

4.3.2 Experimental Setup

The experimental environment used here is an Intel Core i5 1.8 GHz with 8 GB
DDR. The ReW and CReW implementations used here are available, along with
other weightless models, in the C++/Python wisardpkg library1. The ensemble
implementations are in Python. All datasets were previously preprocessed in other
environments and their binarizations were stored in .wpkds objects, so the training
and test times listed here do not include the preprocessing time.

All image datasets - Cifar10, CKP, and Fashion MNIST - were preprocessed us-
ing Local Threshold, Mean Threshold, Otsu, and Yen’s Binarizations. Cifar10 and
CKP were converted to gray-scale before the preprocess. MNIST was preprocessed
using Mean Threshold and Deskewing. IMDB was preprocessed with tf-idf in pre-
viously selected features. MovieLens was binarized with the Mean Threshold. All
experiments were run three times.

4.3.3 Experimental Results

About the datasets: Cifar10, Fashion MNIST, and MNIST are balanced datasets,
with CIFAR10 presenting 5000 copies of each class in the training set and 1000
copies of each class in the test set. Fashion MNIST and MNIST have 6000 and
1000, respectively.

1Detailed in Appendix G

58

CKP has 7 classes and the number of copies in the training and test sets are,
respectively: Angry - 36, 9; Disgust - 10, 8; Fear - 45, 14; Happy - 33, 3; Sadness -
58, 11; Surprise - 23, 6; Contempt - 67, 16. The great difficulty of this dataset lies
in the small number of copies in the training set and the fact that many expressions
of the same class are very heterogeneous.

IMDb and MovieLens are both binary classification datasets, where IMDb is
balanced, with 12500 copies in each class (positive and negative), both in training
and in the test set. And MovieLens has two classes, "F" and "M", with 217 copies
in the training set, 56 in the test set, and 537 in the training set and 133 in the test
set, respectively.

In these experiments, WiSARD and ClusWiSARD were tested with all address
sizes in the range [5, 31], and for ClusWiSARD the min score and growth interval
parameters were kept fixed at 0.1 and 100, respectively. The maximum number of
discriminators per class of ClusWiSARD was varied in the range [3, 5]. All ensembles
were tested with a composition of 10 and 20 learners and those based on the Bagging
structure were tested with both 60% and 80% of the training set. All Borda Count
and Tie-break ensembles policies were used. The comparison of accuracy, training
time, and test time for WiSARD and ClusWiSARD, with its three possibilities of
discriminator limits, is shown in Appendix C. The main results of each model in each
dataset are shown in Tables 5.5-5.10 and the complete results of the experiments
are found in Appendix B.

4.3.4 Discussion

Some considerations about the experiments described in 4.3.3.

• Mean threshold and Otsu’s Binarization were the best preprocessing in all
image datasets;

• In Cifar10 dataset the best models or ensembles in each binarization were:
local threshold - WiSARD, mean threshold - Bagging and Borda Count (start
at 0) ensembles, Otsu’s Binarization - Bagging, Yen’s Binarization - Borda
Count (start at 1). The best model was Bagging;

• In CKP dataset the best results were: local threshold - WiSARD, mean thresh-
old - Tie break (with threshold) and Weighted Votes ensembles, Otsu’s Bina-
rization - Borda Count (dowdall) and Tie-break (with threshold), Yen’s Bina-
rization - Bagging. The best model was Tie-break (with threshold);

• In Fashion MNIST dataset the best results were: local threshold - Bagging
and Borda Count (start at 0) ensembles, mean threshold - Bagging and Borda

59

Table 4.6: The best results per model in Cifar10 dataset. Abbreviations: PP -
preprocessing, n - tuple size, Pt - partition, training set size used, w; - number
of weak learners, TrT - training time; LT - Local Threshold, MT - Mean Thresh-
old, OB - Otsu’s Binarization, YB - Yen’s Binarization, WSD - WiSARD, Clus -
ClusWiSARD, Bg - Bagging, BC - Borda Count, Tb - Tie-break, WV - Weighted
Votes.
PP Mod n Pt wl Pol Accuracy TrT Test time

LT

WSD 14 - - - 0.27 ± 0.00 1.26 ± 0.00 1.96 ± 0.01
Clus 14 - - M5 0.27 ± 0.02 2.46 ± 0.01 3.70 ± 0.06
Bg - 0.6 10 Mix 0.24 ± 0.02 10.75 ± 0.67 61.49 ± 11.07
Boost - - 10 Mix 0.22 ± 0.02 48.89 ± 49.98 112.96 ± 30.64
BC - 0.6 20 Dwd 0.23 ± 0.04 13.87 ± 1.26 53.95 ± 10.37
Tb - 0.6 10 Th 0.18 ± 0.01 5.86 ± 0.29 22.44 ± 2.48
WV - 0.6 10 - 0.18 ± 0.04 6.10 ± 0.42 23.12 ± 0.38

MT

WSD 16 - - - 0.31 ± 0.00 1.12 ± 0.01 1.84 ± 0.01
Clus 17 - - M3 0.31 ± 0.00 1.62 ± 0.02 2.73 ± 0.08
Bg - 0.6 20 Clus 0.34 ± 0.01 34.70 ± 4.41 137.29 ± 36.64
Boost - - 10 Mix 0.28 ± 0.03 27.53 ± 15.79 99.035 ± 15.93
BC - 0.8 20 St0 0.34 ± 0.01 17.84 ± 0.59 73.54 ± 20.31
Tb - 0.6 20 Ot 0.24 ± 0.01 10.92 ± 0.69 54.05 ± 0.91
WV - 0.6 20 - 0.22 ± 0.02 10.58 ± 0.34 56.63 ± 6.18

OB

WSD 16 - - - 0.32 ± 0.00 1.05 ± 0.00 1.83 ± 0.01
Clus 18 - - M3 0.31 ± 0.00 1.63 ± 0.02 2.86 ± 0.01
Bg - 0.8 20 WSD 0.36 ± 0.01 13.23 ± 0.77 46.52 ± 9.38
Boost - - 10 Mix 0.30 ± 0.02 57.22 ± 62.84 110.43 ± 63.64
BC - 0.6 20 St1 0.35 ± 0.01 10.51 ± 0.49 73.71 ± 28.59
Tb - 0.6 20 All 0.23 ± 0.02 10.47 ± 0.68 50. ± 3.93
WV - 0.8 20 - 0.24 ± 0.00 13.75 ± 0.99 54.90 ± 5.66

YB

WSD 16 - - - 0.31 ± 0.00 0.99 ± 0.00 1.79 ± 0.01
Clus 17 - - M3 0.30 ± 0.00 1.64 ± 0.03 3.33 ± 0.12
Bg - 0.8 20 WSD 0.35 ± 0.00 9.98 ± 0.60 41.66 ± 9.55
Boost - - 10 WSD 0.30 ± 0.01 36.03 ± 22.70 122.49 ± 33.98
BC - 0.8 20 St1 0.35 ± 0.00 14.21 ± 0.69 74.45 ± 25.80
Tb - 0.8 20 Ot 0.23 ± 0.01 13.29 ± 0.85 48.00 ± 1.69
WV - 0.6 20 - 0.23 ± 0.01 10.19 ± 0.52 23.75 ± 2.80

60

Table 4.7: The best results per model in CKP dataset; Pol - Policy; M - Max; St1 -
Start at 1; Ot - Only ties; Dowdall - Dwd; Threshold - Th.
PP Mod n Pt wl Pol Accuracy TrT Test time

LT

WSD 13 - - - 0.51 ± 0.04 0.03 ± 0.00 1.96 ± 0.01
Clus 12 - - M5 0.49 ± 0.02 0.09 ± 0.00 3.70 ± 0.06
Bg - 0.8 20 WSD 0.45 ± 0.02 0.36 ± 0.03 0.54 ± 0.026
Boost - - 10 Mix 0.33 ± 0.06 0.19 ± 0.02 2.21 ± 0.06
BC - 0.6 20 St0 0.42 ± 0.05 0.39 ± 0.01 53.95 ± 10.37
Tb - 0.8 20 Th 0.47 ± 0.03 0.54 ± 0.03 22.44 ± 2.48
WV - 0.8 20 - 0.47 ± 0.11 0.56 ± 0.06 23.12 ± 0.38

MT

WSD 13 - - - 0.57 ± 0.01 0.02 ± 0.00 1.84 ± 0.01
Clus 14 - - M3 0.57 ± 0.02 0.06 ± 0.00 2.86 ± 0.01
Bg - 0.8 10 WSD 0.55 ± 0.03 0.16 ± 0.03 0.26 ± 0.01
Boost - - 10 WSD 0.52 ± 0.04 0.20 ± 0.02 2.03 ± 0.03
BC - 0.8 10 St0 0.57 ± 0.03 0.26 ± 0.02 73.54 ± 20.31
Tb - 0.6 20 Th 0.62 ± 0.09 0.40 ± 0.01 54.05 ± 0.91
WV - 0.8 20 - 0.62 ± 0.08 0.49 ± 0.03 56.63 ± 6.18

OB

WSD 15 - - - 0.54 ± 0.02 0.02 ± 0.00 1.83 ± 0.01
Clus 6 - - M3 0.55 ± 0.01 0.10 ± 0.00 2.73 ± 0.08
Bg - 0.6 20 WSD 0.54 ± 0.01 0.26 ± 0.01 0.48 ± 0.03
Boost - - 10 WSD 0.46 ± 0.05 0.21 ± 0.03 2.06 ± 0.02
BC - 0.8 20 Dwd 0.56 ± 0.02 0.49 ± 0.02 73.71 ± 28.59
Tb - 0.6 20 Th 0.56 ± 0.05 0.37 ± 0.02 50.80 ± 3.93
WV - 0.8 20 - 0.55± 0.04 0.51 ± 0.04 54.90 ± 5.66

YB

WSD 5 - - - 0.50 ± 0.02 0.03 ± 0.00 1.79 ± 0.01
Clus 5 - - M4 0.50 ± 0.02 0.12 ± 0.00 0.21 ± 0.00
Bg - 0.6 20 WSD 0.54 ± 0.01 0.26 ± 0.01 0.45 ± 0.022
Boost - - 10 WSD 0.40 ± 0.05 0.19 ± 0.02 2.04 ± 0.05
BC - 0.6 10 St0 0.43 ± 0.02 0.20 ± 0.01 74.45 ± 25.80
Tb - 0.8 20 All 0.43 ± 0.03 0.48 ± 0.01 48.00 ± 1.69
WV - 0.8 20 - 0.44 ± 0.07 0.48 ± 0.01 50.72 ± 2.09

61

Table 4.8: The best results per model in Fashion MNIST dataset; Mod - Models;
Pol - Policy; M - Max; St1 - Start at 1; Ot - Only ties; Dowdall - Dwd.
PP Mod n Pt wl Pol Accuracy TrT Test time

LT

WSD 24 - - - 0.80 ± 0.04 0.42 ± 0.00 0.72 ± 0.00
Clus 24 - - M5 0.81 ± 1.95 ± 0.07 3.19 ± 0.02
Bg - 0.8 10 WSD 0.83 ± 0.00 3.09 ± 0.05 18.66 ± 7.93
Boost - - 10 Clus 0.82 ± 0.00 19.22 ± 4.45 96.34 ± 29.47
BC - 0.8 10 St0 0.83 ± 0.01 4.37 ± 0.07 26.75 ± 3.52
Tb - 0.8 10 All 0.75 ± 0.01 3.89 ± 0.08 17.12 ± 1.04
WV - 0.6 20 - 0.77 ± 0.00 5.70 ± 0.10 33.44 ± 3.56

MT

WSD 28 - - - 0.81 ± 0.00 0.30 ± 0.00 0.54 ± 0.00
Clus 28 - - M4 0.82 ± 0.00 1.25 ± 0.13 2.32 ± 0.02
Bg - 0.8 20 WSD 0.84 ± 0.00 4.93 ± 0.07 30.42 ± 2.26
Boost - - 20 WSD 0.82 ± 0.00 42.33 ± 10.97 168.16 ± 63.23
BC - 0.8 10 Dwd 0.84 ± 0.01 3.60 ± 0.14 18.34 ± 1.60
Tb - 0.6 20 Ot 0.78 ± 0.00 5.04 ± 0.07 34.58 ± 4.23
WV - 0.6 20 - 0.78 ± 0.01 5.16 ± 0.15 34.66 ± 3.14

OB

WSD 27 - - - 0.80 ± 0.00 0.33 ± 0.01 0.62 ± 0.00
Clus 28 - - M5 0.81 ± 0.00 1.68 ± 0.13 3.13 ± 0.07
Bg - 0.6 20 Clus 0.84 ± 0.00 23.22 ± 4.19 152.88 ± 51.18
Boost - - 10 WSD 0.82 ± 0.00 19.91 ± 4.69 54.71 ± 5.05
BC - 0.6 10 St0 0.83 ± 0.00 2.59 ± 0.16 24.51 ± 1.36
Tb - 0.6 20 Ot 0.77 ± 0.00 5.06 ± 0.09 34.61 ± 0.29
WV - 0.8 20 - 0.77 ± 0.01 5.19 ± 0.07 35.79 ± 3.68

YB

WSD 23 - - - 0.75 ± 0.00 0.45 ± 0.00 0.74 ± 0.00
Clus 23 - - M4 0.76 ± 0.01 1.63 ± 0.01 2.77 ± 0.07
Bg - 0.6 20 WSD 0.80 ± 0.00 4.08 ± 0.24 20.57 ± 4.99
Boost - - 10 WSD 0.77 ± 0.00 20.06 ± 6.67 72.97 ± 15.91
BC - 0.8 10 Dwd 0.79 ± 0.01 3.86 ± 0.06 22.40 ± 3.13
Tb - 0.6 20 Ot 0.69 ± 0.01 5.61 ± 0.13 31.36 ± 0.61
WV - 0.8 20 - 0.70 ± 0.01 7.63 ± 0.06 34.02 ± 4.81

Table 4.9: The best results per model in MNIST dataset.
Models n Pt wl Policy Accuracy TrT Test time
WSD 30 - - - 89 ± 0.00 0.61 ± 0.13 0.63 ± 0.00
Clus 28 - - Max = 3 89 ± 0.00 0.88 ± 0.01 2.24 ± 0.034
Bg - 0.6 10 WiSARD 0.93 ± 0.00 1.33 ± 0.05 10.36 ± 3.85
Boost - - 10 WiSARD 0.91 ± 0.00 20.50 ± 5.77 57.69 ± 13.04
BC - 0.6 20 Start at 1 0.93 ± 0.00 4.50 ± 0.09 37.61 ± 11.32
Tb - 0.8 20 Only 0.76 ± 0.02 6.15 ± 0.07 30.03 ± 2.03
WV - 0.6 20 - 0.81 ± 0.01 4.76 ± 0.06 28.19 ± 3.15

62

Table 4.10: The best results per model in IMDb dataset.
Models n Pt wl Policy Accuracy TrT Test time
WSD 5 - - - 0.59 ± 0.00 1.49 ± 0.44 7.33 ± 0.28
Clus 5 - - Max = 4 0.59 ± 0.00 4.94 ± 4.94 41.94 ± 5.68
Bg - 0.6 20 Mix 0.70 ± 0.00 51.21 ± 5.78 22.39 ± 0.82
Boost - - 20 WiSARD 0.77 ± 0.00 21.08 ± 2.52 1329.95 ± 87.27
BC - 0.6 20 Dowdall 0.70 ± 0.01 17.71 ± 1.92 190.16 ± 33.60
Tb - 0.6 20 All 0.68 ± 0.05 18.22 ± 1.41 176.84 ± 21.13
WV - 0.8 20 - 0.68 ± 0.03 24.11 ± 1.02 167.74 ± 29.76

Table 4.11: The best results per model in MovieLens dataset.
Models n Pt wl Policy Accuracy TrT Test time
WSD 31 - - - 0.70 ± 0.02 0.03 ± 0.00 0.01 ± 0.00
Clus 30 - - Max = 5 0.72 ± 0.01 0.12 ± 0.00 0.06 ± 0.00
Bg - 0.6 10 WiSARD 0.71 ± 0.00 0.17 ± 0.00 0.16 ± 0.02
Boost - - 10 WiSARD 0.70 ± 0.00 0.27 ± 0.05 4.67 ± 0.06
BC - 0.6 10 Dowdall 0.70 ± 0.01 0.31 ± 0.02 0.72 ± 0.02
Tb - 0.8 10 Threshold 0.46 ± 0.07 0.43 ± 0.03 0.70 ± 0.01
WV - 0.6 10 - 0.45 ± 0.02 0.32 ± 0.02 0.69 ± 0.021

Count (dowdall), Otsu’s Binarization - Bagging, Yen’s Binarization - Bagging.
The best model were Bagging and Borda Count (dowdall);

• In MNIST dataset the best models were Bagging and Borda Count (start at
1);

• IMDb dataset the best result was Boosting;

• In MovieLens dataset the best model was ClusWiSARD;

• In IMDb dataset all ensembles were more accurate than individual models;

• Considering only the ensembles, the best results in terms of training time were:
Cifar10 - Tie-break and Weighted Votes, CKP - Boosting, Fashion MNIST -
Borda Count, MNIST - Bagging, IMDb - Borda Count, MovieLens - Bagging;

• Regarding the test time: Cifar10 - Weighted Votes, CKP - Bagging, FASHION
MNIST - Borda Count, MNIST - Bagging, IMDb - Bagging, MovieLens -
Bagging;

• This comparison of training and testing time is not entirely appropriate, since
the models that make up the ensemble are random, an ensemble may have had
more ClusWiSARDs and therefore slower training. Not only structure of the
ensemble and its policies influence time, but also the models that composed it
and the size of their address;

63

• In general, it is expected that Bagging-based ensembles will have the fastest
training, as it does not have the cost of validation, and that Borda Count, Tie-
break and Weighted Votes will have the fastest classification since their weak
learners do not perform bleaching, using only the scores of the discriminators
of each weak learner and making the tiebreaker externally through the policies
of the ensembles;

• In general, all ensembles had low standard deviation and variance both in ac-
curacy, training and testing times. The exception is due to the IMDb dataset,
where all models had a high standard deviation in all these metrics;

• No ensemble used here has been strictly optimized. While the models were
programmed in C, all ensembles were done in Python. It would also be possible
to perform in parallel the training and classification of all training models,
including WiSARD Boosting, as it does not build each weak learner based on
the performance of the previous one, different from traditional Boosting. It is
also possible to perform in parallel the training of the different examples of the
training set, since each training at WiSARD and ClusWiSARD is independent
from the others;

• In Cifar10 dataset, the best ensemble outperforms WiSARD in 4% and
ClusWiSARD in 5%;

• In CKP dataset, the best ensemble outperforms WiSARD and ClusWiSARD
in 5%;

• In Fashion MNIST dataset, the best ensemble outperforms WiSARD in 3%
and ClusWiSARD in 2%;

• In MNIST dataset, the best ensemble outperforms WiSARD and ClusWiS-
ARD in 4%;

• In IMDb dataset, the best ensemble outperforms WiSARD and ClusWiSARD
in 18%;

• In MovieLens, the best ensemble outperforms WiSARD in 1% and is outper-
formed by ClusWiSARD in 1%.

4.3.5 Additional Results in Cifar 10

In this subsection I will present additional results in Cifar 10. All models and
ensembles used previously were used again. The difference here was in relation to

64

Figure 4.3: Comparison of WiSARD’s accuracy in Cifar10 dataset with 10 and 15
bits in traditional and circular thermometer in RGB channels.

Table 4.12: The best results per model in Cifar10 dataset with traditional ther-
mometer in RGB channels; Mod - Models; Pol - Policy;M3 - Max = 3; St1 - Start
at 1; Ot - Only ties.
Mod n Tl Pt wl Pol Accuracy TrT Test Time
WSD 22 15 - - - 43.66 ± 0.1 37.00 ± 0.03 62.34 ± 0.02
Clus 17 15 - - M3 31.22 ± 0.11 271.69 ± 2.71 503.01 ± 12.02
Bg - 10 0.8 20 WSD 42.34 ± 0.35 516.24 ± 22.21 1325.89 ± 102.68
Boost - 10 - 10 WSD 39.25 ± 0.09 70.55 ± 2.96 2560.81 ± 101.04
BC - 10 0.8 20 St1 42.98 ± 0.4 818.89 ± 41.77 1571.29 ± 57.23
Tb - 10 0.6 20 Ot 32.49 ± 0.80 637.87 ± 15.74 1487.55 ± 43.33
WV - 10 0.8 20 - 32.60 ± 0.50 606.85 ± 28.28 1431.69 ± 63.52

preprocessing: a thermometer is applied to each color channel (R, G, B) and all
data words are concatenated to form the network input.

A variation of the traditional thermometer was used here. This is the circular
thermometer, which has half its content filled with "0" s and the other half with
"1" s, both of which are contiguous. The minimum value of the thermometer and
any value less than that that eventually appears in the test set will be represented
with the first "0" occupying the first bit of the thermometer. As the value of the
number to be converted exceeds the threshold maxV alue−minV alue

thermometerSize
the representation

of the thermometer will be shifted to the right. The motivation for this variation is
an attempt to reduce the sparsity of neural network.

Both the traditional and circular thermometers were tested, using 10 and 15 bits
per channel. The results of the WiSARD are shown in the Figures 4.3-4.5 and the
benchmark of all models and ensembles is shown in the Tables 5.11 and 5.12. Three
substantial differences from previous experiments: (i) the training and testing time

65

Figure 4.4: Comparison of WiSARD’s training time in Cifar10 dataset with 10 and
15 bits in traditional and circular thermometer in RGB channels.

Figure 4.5: Comparison of WiSARD’s test time in Cifar10 dataset with 10 and 15
bits in traditional and circular thermometer in RGB channels.

Table 4.13: The best results per model in Cifar10 dataset with circular thermometer
in RGB channels; Mod - Models; Pol - Policy;M3 - Max = 3; St1 - Start at 1; Ot -
Only ties.
Mod n Tl Pt wl Pol Accuracy TrT Test Time
WSD 22 15 - - - 42.19 ± 0.2 58.33 ± 0.24 98.26 ± 1.12
Clus 17 10 - - M3 19.38 ± 0.10 136.15 ± 6.02 241.92 ± 9.26
Bg - 10 0.8 20 WSD 41.67 ± 0.00 502.00 ± 0.00 1390.00 ± 0.00
Boost - 10 - 10 WSD 37.33 ± 0.70 63.63 ± 9.20 2062.79 ± 146.83
BC - 10 0.8 20 St1 42.29 ± 0.00 931.68 ± 0.00 1869.60 ± 0.00
Tb - 10 0.6 20 Ot 31.86 ± 3.70 714.42 ± 26.16 1799.27 ± 353.78
WV - 10 0.8 20 - 26.06 ± 2.06 927.16 ± 66.10 2729.95 ± 1698.17

66

has increased; (ii) accuracy has increased (7% increase); and (iii) WiSARD won
out of all ensembles. The increase in accuracy was probably due to the use of
more features from each pixel. This can be useful to the limitation of WiSARD
in dealing with variances related to rotation, translation, and scale. This can be a
valid alternative as long as a more robust multi-layer solution that learns variations
of the features and their correlations is not implemented or while another network
topology is not structured is add to model to able this to deal with variance. One
possibility consists in use a NC-WiSARD-like model[158] with convolution layers.

4.4 Chapter Conclusion

Based on traditional Bagging and Boosting ensemble learning techniques, two types
of ensembles using WiSARD and ClusWiSARD were created. Based on the structure
of WiSARD Bagging, three other types of ensembles were created. Its weak learners
do not perform tie-break internally, only generating ballots from the scores of their
discriminators. These ensembles are based on traditional voting systems. All these
types of ensembles were tested in six datasets and compared with the performance
of the models that compose them, evaluated individually. In some types of pre-
processing WiSARD and ClusWiSARD performed better than ensembles, probably
because no pruning technique was used, so that a combination of models can end up
propagating error. However, in most cases, some type of ensemble performed better.
Especially in the IMDb dataset, which was preprocessed using tf-idf, all ensembles
had better accuracy than the individual models and the winning ensemble, WiS-
ARD Boosting, had 18% more accuracy than the best WiSARD and ClusWiSARD
configuration, using only 20 WiSARDs. It is worth mentioning that no technique
was applied in the selection of the models used and in their parameters.

Ongoing works: adding pruning policies to the ensembles to remove networks
that have poor individual performance, combining different preprocesses in the same
weak learner, using the traditional Boosting policy to create new weak learners,
paralleling the training and classification process on weak learners, extend WiSARD
Bagging and WiSARD Boosting to perform clustering, use WiSARD in ensembles
that have other paradigms besides WANNs.

However, the main future work is to test the ensembles with statistical signifi-
cance tests, such as McNemar’s test or 5×2 cross-validation with a modified paired
Student t-test, to ensure that the difference in skill scores is statistically significant,
increasing the confidence in the interpretation of results. Since ensembles are much
more computationally costly, the improvement in accuracy or other performance
metrics must be considerably large.

67

Chapter 5

Extending WiSARD for Regression

Regression is a traditional and important machine learning task since there is a wide
range of practical situations in the real world where it is necessary to predict values
in a continuous space. Weightless Artificial Neural Networks (WANNs), due to their
simple, RAM-based architecture, seem to be a suitable computational intelligence
model for this type of task. Since WiSARD and its extensions are just classifiers
and many important domains in which ML is applied are related to regression tasks,
extending these models so that they can make predictions of continuous values
is essential for them to achieve more relevance. This chapter describes the new
WiSARD-based regressors and their advantages in relation to the classic weightless
regressor. Both of them are useful for any type of task that can be approximated
as a non-parametric regression problem.

In a precision agriculture scenario, it would be desirable that simple devices, such
as small sensors, could perform regression. This chapter explores the use of WANNs
in the KDD18 competition[237], a challenge which goal is to predict the palm oil
harvest productivity of a set of 28 different production fields using data provided
by an agribusiness company. The dataset contains information about palm tree
varieties, harvest dates, atmospheric data during the development of the trees, and
soil characteristics of the fields where the trees are located in. The WANN models
explored in this work are based on the n-tuple Regression Network[134], which was
proved to be successful when compared to other classical regression approaches in
non-linear plant approximation[145] and Mackey-Glass chaotic time series prediction
tasks[238]. Here, a wider theoretical background is presented, alongside a broader
exploration of their parameters and how the models perform when combined as
ensembles.

The content of this text is organized as follows. Section 5.2 presents the two
weightless models proposed for regression, and the ensemble techniques explored.
Section 5.3 discusses the various approaches used in the KDD18 competition, as
well as a comparison with state-of-the-art methods. This section also contains the

68

description of experiments using the new models in the House Prices, CalCOFI, and
Parkinson datasets. Concluding remarks and ongoing work are presented in Section
5.4.

5.1 Related Work

The most used non-parametric regression techniques in machine learning are:

• k-NN[239]: a special case of a variable-bandwidth, kernel density "balloon"
estimator with a uniform kernel. This model stores the entire training dataset
and compute the Euclidean distance from the sample to be predicted to the
training samples. Then, it orders the training samples by increasing distance
and find a heuristically optimal number k of nearest neighbors, based on RMSE
in cross validation. Then, calculate an inverse distance weighted average with
the k-nearest multivariate neighbors;

• XGBoost[240]: a scalable regression tree boosting for multiple scenarios.
This model can scale to billions of examples in distributed or memory-limited
settings. XGBoost has become popular as the state-of-the-art solution to
many of Kaggle’s challenges in recent years. It is very useful for tabular data,
however it is not very effective with unstructured data;

• Support Vector Regression[241]: a SVM-based model that depends only
on a subset of the training data, because the cost function for building the
model ignores any training data close to the model prediction.

The use of n-tuple classifier-based models for non-parametric regression was ex-
plored in literature[134, 145, 146]. It is more elaborated in Section 2.5. The main
limitation of this model is to use only a single kernel estimator to approximate pdf
in any domain. This comparison is better visualized in Table 5.1.

5.2 The New Weightless Regression Models

5.2.1 Regression WiSARD

Regression WiSARD (ReW) is an extension of the n-tuple Regression Network,
which adds to its original structure some characteristics of the WiSARD. There is
a description of its general architecture below.

• Each RAM location in the ReW model has two dimensions: a counter and
a sum(y), a value formed by sum of the predictions learned by the network,
both updated at each pattern training; initially all values are set to zero;

69

Table 5.1: Comparison between the main regressors in literature and non-parametric
weightless regressor.

Regression Kernel estimator

k-NN[239]

Stores the entire training dataset
and compute the Euclidean
distance from the sample to be
predicted to the training samples.

Kernel density "balloon"
estimator with a uniform
kernel.

XGBoost[240] Training Loss + Regularization -
SVR[241] Uses a curve as a linear boundary. Kernel trick

GRNN[144]

Stores the entire training dataset
and compute kernel estimator from
the sample to be predicted to the
training samples.

Nadaraya-Watson estimator

n-tuple
Regression
Network[134]

Stores in a implicit way the entire
training dataset and compute kernel
estimator from the sample to be
predicted to the training samples.

Nadaraya-Watson estimator

• ReW accepts binary data with exactly the size of its retina (N ∗ n) as input,
which normally requires some kind of preprocessing to transform the input
data into a binary representation; each pseudo-randomly mapped group of n
bits of the input retina will access the position corresponding to its values a
neuron (RAM node);

• When during the prediction phase, a memory location that was never accessed
during the training phase is accessed, ReW will respond as a "don’t know
answer" prediction, with the architecture of each system where ReW is used
to handle this response according to the domain of the problem. In this work,
a prediction 0 is made in cases of "don’t know answer";

• ReW uses WiSARD’s minZero and minOne.

5.2.1.1 Training

In the training phase (Fig. 5.1), k pairs (xi, yi) are submitted to the ReW network,
and each of their corresponding addressed memory locations will have their two
values updated; the counter is incremented and partial access is summed with the
yi of the example that generated the access.

5.2.1.2 Prediction

In the prediction phase the sum of counters (
∑
c) and partial y (

∑
y) of the positions

accessed by a given x are used to calculate the corresponding y (Fig. 5.2); unlike the

70

Figure 5.1: Example of a ReW model behavior in the training phase. A binary
input and a float value y are presented to the model. The pseudo-random mapping
is applied to the binary input and the new pattern is divided into n-tuples, each
one being assigned to one of the regression RAMs. The values related to the ad-
dress corresponding to the tuple are updated in the following way: the counter is
incremented by 1, while the summation is incremented by the value of y.

n-tuple Regression Network that uses only simple mean (
∑
y∑
c
) for this calculation,

ReW can also use:

• power mean:
p

√∑n
i=0(

yi
ci
)p

n

• median: central value of yi
ci
, with i in range [0, n])

• harmonic mean: (
∑n

k=1
yi
ci

−1

n
)−1

• harmonic power mean: p

√
n∑n

i=0
1

(
yi
ci

)p

• geometric mean: (
∏n

i=0
yi
ci
)

1
n

• exponential mean: log(
∑n

i=0 e
yi
ci

n
)

Associated with each type of mean is an influence on the response set of RAMs.
The median allows escape from the influence of outliers and the other mean types
favor the influence of the contribution of memory locations that were most accessed
during training, with different degrees of intensity (Harmonic, Power, Harmonic
Power, and Geometric Mean, in ascending order). The Arithmetic Mean was kept
since it was adopted by the original n-tuple Regression Network and is the only one
that does not differentiate among RAM responses.

71

Figure 5.2: Prediction of the same example with different minZero and minOne
values (simple mean).

Arithmetic Mean approximates the Nadaraya-Watson kernel regression estima-
tor, as seen in Section 2.5.1. All of these means are based on the sum of counters and
partial ys and therefore share the same kernel used in the original n-tuple regression
method. Other means alter the kernel estimator, which together with the smoothing
factor (amount of RAMs) changes how the neural network estimates pdf . However,
to change the kernel, allowing the network to have greater opportunities to cover a
wider range of possible functions, it would be necessary to change the way of using
the contents of the memory locations, which is not addressed in this work.

This possibility to change the kernel estimator is the biggest difference and also
the biggest contribution of Regression WiSARD in relation to the n-tuple Regres-
sion Network, since topologically and in terms of training algorithm, both models
are identical. Other minor differences include the possibility of ignoring memory
locations formed by tuples composed only of zeros or the minZero and MinOne
parameters.

5.2.2 ClusRegression WiSARD

Inspired by ClusWiSARD, the ClusRegression WiSARD (CReW) is a network
formed by several ReWs, each with distinct mappings, but with retinas of the same
size and same address size as well.

5.2.2.1 Training

In the training phase, when a pair (xi, yi) is submitted to the network, x is presented
for each ReW, which behaves like a class discriminator of the WiSARD in the

72

Algorithm 1 ClusRegression WiSARD algorithm
1: procedure Training
2: Require r0 = minimum score
3: Require γ = threshold growth interval
4: Require µ = maximum discriminators
5: Require T = training data
6: Ensure CReW is a trained ClusRegression WiSARD regressor
7: for each observation o ∈ T do
8: for each discriminator d currently in CReW do
9:

10: if score(d, o) ≥ min
(
N, r0 +

N |d|
γ

)
then

11: ReW discriminator d learns o
12: if no ReW discriminator learned the observation o and size(CReW) < µ

then
13: A new discriminator d0 is created
14: d0 is added to the collection of ReW discriminators of CReW
15: Discriminator d0 learns observation o
16: Return CReW

classification phase. Each ReW will return a score obtained from the number of
positions of its memories that have been accessed and have countered with a value
greater than zero. All ReW discriminators that satisfy the learning policy are trained
with (xi, yi).

If an observation is submitted to CReW but does not meet the requirement to be
learned by any of its discriminators and the threshold for creating new discriminators
(if it has been established) has already been reached, then this observation will not
be learned because it is likely to be an outlier. The CReW training algorithm is
detailed in Algorithm 1.

5.2.2.2 Prediction

In the prediction phase, when an input x is submitted to the CReW, it will be sorted
by each ReW and the highest score will predict its corresponding y. If there is a tie
between the ReWs, the tie-break policy known as bleaching, native to WiSARD, will
be used. In it, a threshold initialized with value zero is incremented with each tie
and a new classification occurs, being considered for the score of each discriminator
only the memory locations whose counter is superior to the bleaching. Just like
WiSARD, if there is an absolute tie, that is, the value of the bleaching is greater
than the cardinality of the training set used, a previously chosen ReW default is
elected.

73

5.2.3 Regression WiSARD Ensembles

To improve the predictive power of the new models, ensembles formed exclusively
with ReW and CReW were also tested.

Three ensemble models were tested using ReW and CReW: Naïve (all models are
trained with the entire training dataset and there is no restriction on the existence of
fully redundant models), Bagging and Boosting. The weak learners are obtained by
simple draw, and in the case of ReW the following parameters are drawn: address
size (in the range [5, 32]), type of mean, minZero and minOne. For CReW, in
addition to the parameters used in ReW are also randomized the minimum response,
growth interval, and the maximum of ReW discriminators (in range [2, 6]).

In ReW Bagging, each weak learner is trained with subsets of the training dataset
of the same size, with resampling. At training time, two parameters are selected:
the number of weak learners and the size of the subset. ReW Boosting training also
uses, for each weak learner, subsets of the same size, without resampling. 90% of
the training subset is used for training and 10% for validation. The weight of the
vote of each learner is determined by the normalization of its score in the validation
phase.

Simple Mean, Median, and Harmonic Mean can be chosen to calculate the aver-
age of the individual predictions, resulting in ensemble prediction. These ensembles
do not yet have any refined type of pruning, and ReW Bagging only discards strictly
redundant learners, that is, learners with the same parameters trained with the same
subset, and ReW Boosting and Naïve ReW Ensemble never discards any learner.

CReW can be considered an ensemble too. Ensembles don’t necessarily need to
combine individual predictions for generating a more accurate prediction. It can
generate a prediction by choosing the best weak learner as CReW does.

5.3 Experimental Results

This section presents the results of ReW, CReW, and their ensembles in the dataset
that motivated their creation: KDD18 dataset. Additionally, three other datasets
were used in their validation. The experimental environment used here is an Intel
Core i5 1.8 GHz with 8 GB DDR. The ReW and CReW implementations used here
are available, along with other weightless models, in the C++/Python wisardpkg
library1. All experiments were run three times.

1https://github.com/IAZero/wisardpkg

74

5.3.1 KDD18 Experimental Setup

The data available to the competitors was divided into three types of files: first,
the training and testing files, containing 5243 and 4110 observations, respectively.
Both files contain as features i) the id of the observation; ii) the id of the field the
observation was planted; iii) the age of the palm tree [3, 26]; iv) the type of the palm
tree; v) the year of harvest [2004, 2011]; and vi) the month of harvest [1, 12]. The
training file also has information regarding the target y, which is the total amount
of palm oil produced by the tree. Second, a file containing information regarding
the soil properties of the field in which the palm tree is planted. Finally, 28 files
containing historical data regarding weather measured in each field from January
2002 to December 2007. The production field, i.e, the y to be predicted, varies
between 0 and 1.

The initial modeling removes the id and the field_id and adds additional in-
formation from the other files. First, a time window is defined to search weather
information in a specific period going backward from the month before the harvest
of the tree. Second, all 66 features related to the soil data are added. The new ob-
servation is then composed of 68 features (age, type, and 66 ground-related features)
plus 8 features for each month contemplated by the time window.

In the second round of experiments, variations of the initial modeling were per-
formed. One of them ignores the soil data by creating a total of 28 ReWs, each one
responsible for predicting the production of trees planted in a specific field. Other
variations aim to overcome the problem of the type feature: there are values in the
testing file that are not present in the training file. These variations included the
removal of the feature and the usage of one-hot encoding of all possible values.

Since the features must be binarized, a thermometer encoding is applied. Due to
the short space of time, it was not possible to perform experiments aiming for the
best thermometer value for each feature. As a result, the same value was applied
to all features. However, a small set of different values were used for an empirical
evaluation. In addition, since a binary word of size w can be divided into different
sizes of n tuples, all possible n values that are less than 32 were tested.

5.3.2 Analysis of the KDD18 Experiments

The best of RAM-based solutions reached the seventh position of 51 teams2.
Since the KDD18 test set annotations are not public, it was necessary to submit

the results of the experiments to Kaggle to obtain their respective MAE and how
the Kaggle API behaves problematically, losing results and even disrupting when a
large flow of results is submitted, the experiments for KDD18 were not performed

2https://www.kaggle.com/c/kddbr-2018/leaderboard

75

Figure 5.3: Address size X MAE for ReW, CReW and n-tuple Regression Network
in KDD18 dataset.

multiple times to obtain the standard deviation (except for ensembled tests, where
each had 10 rounds). Since the data is private, it was also not possible to measure
the result with any other metric than that used in the challenge, MAE.

A dataset exploration varying the address size for the ReW, CReW and n-tuple
Regression Network models and the amount of ReW Bagging, ReW Boosting and
Naïve ReW Ensemble learners with their respective MAE, training time and test
time obtained can be found in the Figs. 5.3, 5.4, 5.5, 5.6.

The best results obtained by the weightless regression models and their ensembles
are compared with the state-of-the-art of this task and other relevant results in the
Kaggle challenge in Table 5.2.

Table 5.2: Comparison of WANN regressor models with state-of-the-art in Private
Score of KDD18 Challenge

Model MAE Training time (s) Test time (s)
XGBoost 0.07983 4.12962484 0.08239889145
GradientBoost 0.08239 3864.08913588 0.00241994858
n-tuple Regression 0.09211 0.0037262439727 0.000348329544
RegressionWiSARD 0.09097 0.00035619736 0.00017619133
ClusRegressionWiSARD 0.09173 0.00040984154 0.00021290781
Naïve ReW Ensemble 0.08814 71.24 3523.83
ReW Bagging 0.13867 58.4 3308.82
ReW Boosting 0.14996 5.16 4689.94

In the Public Score of the KDD18 competition [237], all results were obtained
from the validation dataset. ReW and CReW obtained MAE of 0.08737 and 0.08938,
respectively, while XGBoost[240], the state-of-the-art, obtained MAE of 0.07569. A
Naïve ReW Ensemble got MAE of 0.08468. The following experiments will only
take into account results obtained with the test dataset, the Private Score of the

76

Figure 5.4: Address size X training time (s) for: (a) ReW, CReW and n-tuple
Regression Network in KDD18 dataset; (b) ReW and n-tuple Regression Network
in KDD18 dataset.

77

Figure 5.5: Address size X test time (s) for: (a) ReW, CReW and n-tuple Regression
Network in KDD18 dataset; (b) ReW and n-tuple Regression Network in KDD18
dataset.

78

Figure 5.6: Number of weak learners X MAE for ReW Bagging, ReW Boosting and
Naïve ReW Ensemble in KDD18.

KDD18 challenge.
One caveat: the n-tuple Regression Network used here shares the current im-

plementation of dictionary-based WiSARD models where only memory locations
accessed at some point in the training phase are allocated, causing the memory con-
sumption of the model to be quite small. Experimental results show that, in general,
ReW and CReW outperform n-tuple Regression Network in MAE, training, and test
time.

Some considerations: when the address size n of a network increases, it becomes
naturally more sparse, so the confidence of the network decreases; both ReW and
CReW consistently present accuracy/MAE with low standard deviation; the output
of an ensemble is obtained by the average output of all its members, using the same
modalities used internally in the ReW model.

It can be seen from the results of Table 5.2 that both proposed models presented
small differences from the state-of-the-art while surpassing its speed in many orders
of magnitude. Another experiment carried out involved several ReW configurations
using the KDD18 challenge winner preprocessing setup (ignoring categorical vari-
ables) and the best result was 0.09447 (thermometer = time window size = 10, n
= 30, minZero = minOne = 0, harmonic power mean). Experiments with Naïve
ReW ensembles introduced a slight improvement in the performance of the models,
despite the natural drop in speed.

The best results from ReWBagging and ReW Boosting are 0.13867 (40% of train-
ing set, 705 learners, harmonic mean, training time = 1.54s, test time = 3308.82s)
and 0.14996 (905 learners, simple mean, training time = 5.16s, test time = 4689.84s),
respectively. These ensembles have been found to have worse results than the indi-
vidual models and were obviously much slower. This comes as no surprise since there
is no evidence that an ensemble will outperform the best model on the committee,

79

only that it will do so to the worst model. Additionally, since no pruning strategy
was applied and only ReWs and CReWs were used, the great advantage of ensembles
in using the diversity of models to improve the predictive power of the system may
have been missed. In this sense, one possibility of increasing the accuracy of ReW
Ensembles would be to use preprocessing or even different features for each learner,
rather than just increasing the number of learners by varying their parameters. A
hybrid ensemble of 45 ReWs (with different n, minZero, minOne and averages) and
a GradientBoost (n estimators = 8000, max depth = 1, loss = lad, learning rate =
0.01) achieved 0.08814 in MAE.

5.3.3 Analysis of Experiments in Other Datasets

For a better analysis of the behavior of weightless regression models, they have been
validated on datasets other than KDD18. The scale of values to be predicted is
given in each of the datasets so that the MAE-based comparison makes sense, as
this metric is related to absolute error. The datasets used here are:

• House Prices[242]: The most famous regression model benchmark, has 77
features (both categorical and numerical) and the challenge here is to predict
the selling value of each home from its attributes (the training set has 973
examples and the test set has 480). Its y varies between 34.9k and 755k;

• CalCOFI[243]: This data set represents the longest and most complete time
series of oceanographic and larval fish in the world. Although this dataset can
be used for many different domains, here it was used to predict sea temperature
from salinity level (training set: 579458, test set: 285405). Its y varies between
1.44 and 31.1;

• Parkinson’s Telemonitoring dataset[244]: The purpose of this dataset is
to predict for each patient their UPDRS, a continuous value on a scale that
measures an individual’s motor disorder level. 16 features are provided per
patient (training set: 3936, test set: 1939). Its y varies between 0.00083 and
0.09999.

The choice of datasets was as follows: House Prices is a dataset traditionally used
in benchmark of regression models, having many features and little data; CalCOFI
is a dataset where the explanatory random variable is composed of a single feature
and has a lot of data for training and testing; Parkinson’s dataset is a balanced base
regarding the number of features and data.

In these datasets, ReW, CReW and their ensembles were compared to the n-tuple
Regression Network, GradientBoost, and XGBoost. The metrics collected in these

80

experiments were Mean Absolute Error, the standard deviation for Mean Absolute
Error, training, and test time. The models were validated 10 rounds each. For the
experiments using weightless models, data preprocessing was done using one-hot
encoding for categorical variables and a thermometer for numerical variables. The
thermometer had its size varied from 5 to 30 bits and the tuple address size range
was calculated according to the size of the thermometer (all values divisible by data
word length from 2 bits were used). The results of these validations are shown in
Fig. 5.7-5.21 and Table 5.3. Overall, the average type had little impact on model
error.

About the models used in the benchmark:

• GradientBoost[245, 246]: a specific type of boosting algorithm, whose models
are usually decision/regression trees, that generalizes their models by optimiz-
ing an arbitrary differentiable loss function;

• XGBoost[240]: an implementation of GradientBoosting that can be used by
distributed processing frameworks and has become very popular because it
has won many competitions within the machine learning community.

In the House Prices dataset, XGBoost and GradientBoost performed better, but
the weightless models were competitive, especially ReW. ReW and n-tuple Regres-
sion Network were the fastest training models, followed by CReW, while XGBoost
and GradientBoost achieved the worst performance. Regarding the test speed, XG-
Boost and GradientBoost had better performance compared to the weightless mod-
els, being CReW the slower model, due to successive draws during the classification
it performs during the prediction. In the Parkinson dataset, XGBoost and Gra-
dientBoost had the smallest error, followed by ReW and CReW, which were still
competitive. ReW and n-tuple Regression Network performed better on both train-
ing and test times, followed by CReW.

In the CalCOFI dataset, all weightless models performed equally in validation.
This is because only one feature was used in these experiments and no thermometer
setup made any significant changes to the resulting data words. CReW also did not
create any ReW discriminators other than the original in these experiments. In both
the training set and the test set, the weightless models outperformed GradientBoost,
but had higher error than XGBooost. At training time, ReW and n-tuple Regression
Network outperformed CReW, which in turn was faster than GradientBoost and
XGBoost. At test time, the increasing order of performance was XGBoost, CReW,
ReW, n-tuple Regression Network, and GradientBoost.

In all cases, when large-size thermometers were used for preprocessing, the new
weightless models are competitive with XGBoost and GradientBoost. In general

81

Figure 5.7: Thermometer size X MAE for ReW, CReW, n-tuple Regression Network,
GradientBoost and XGBoost in House Prices.

Figure 5.8: Thermometer size X training time(s) for ReW, CReW, n-tuple Regres-
sion Network, GradientBoost and XGBoost in House Prices.

Figure 5.9: Thermometer size X test time(s) in training set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in House Prices.

82

Figure 5.10: Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in House Prices.

Figure 5.11: Number of weak learners X MAE for ReW Bagging, ReW Boosting
and Naïve ReW Ensemble in House Prices.

Figure 5.12: Thermometer size X MAE for ReW, CReW, n-tuple Regression Net-
work, GradientBoost and XGBoost in Parkinson.

83

Figure 5.13: Thermometer size X training time(s) for ReW, CReW, n-tuple Regres-
sion Network, GradientBoost and XGBoost in Parkinson.

Figure 5.14: Thermometer size X test time(s) in training set for ReW, CReW,
n-tuple Regression Network, GradientBoost and XGBoost in Parkinson.

Figure 5.15: Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in Parkinson.

84

Figure 5.16: Number of weak learners X MAE for: (a) ReW Bagging, ReW Boosting
and Naïve ReW Ensemble in Parkinson; (b) ReW Bagging and Naïve ReW Ensemble
in Parkinson.

Table 5.3: Best results for weightless models with standard deviation and best
median type. Caption: Md: median; PM: Power Mean; HM: Harmonic Mean; GM:
Geometric Mean.

House Prices Parkinson CalCOFI
ReW 0.278 ± 0 (Md) 4.806 ± 0 (HM) 2.412± 4.44 ∗ e−16 (PM)
CReW 0.194 ± 0 (PM) 4.893 ± 0.105 (GM) 2.412± 4.44 ∗ e−16 (PM)
n-Tuple RN 0.302 ± 0 6.75 ± 0 2.412 ± 0

85

Figure 5.17: Thermometer size X MAE for ReW, CReW, n-tuple Regression Net-
work, GradientBoost and XGBoost in CalCOFI.

Figure 5.18: Thermometer size X training time(s) for ReW, CReW, n-tuple Regres-
sion Network, GradientBoost and XGBoost in CalCOFI.

Figure 5.19: Thermometer size X test time(s) in training set for ReW, CReW,
n-tuple Regression Network, GradientBoost and XGBoost in CalCOFI.

86

Figure 5.20: Thermometer size X test time(s) in test set for ReW, CReW, n-tuple
Regression Network, GradientBoost and XGBoost in CalCOFI.

ReW and CReW outperformed the n-tuple Regression Network, except for CalCOFI
dataset, where the three models were completely equivalent.

5.3.4 Regression WiSARD’s Learning Curves

Since one of the key features of WANN is precisely its training speed, this type
of model becomes a strong candidate for tasks that require online learning, which
necessarily implies that the model has to be able to generalize its learning from few
examples. to provide an effective prediction for new examples.

ReW, CReW, and n-tuple Regression Network had their learning curves obtained
from an experiment using the House Prices dataset, where at each iteration the
model learned a new example of the training set and predicted the entire test set.
The results presented here are the average of 10 rounds of experiments.

The learning curves for MAE are shown in Fig. 5.22, proving that ReW and
CReW can perform well from a reduced training set, performing well with far fewer
examples than the original model.

5.3.5 Analysis of Ensemble Composition

An analysis of the influence of the type of model that makes up an ensemble (ReW
only, CReW only, or both models) was made through a comparison of the three
different ensembles types in KDD18 dataset using a fixed size 28 bits thermometer
and 500 learners each. Experiments were performed 10 rounds each, and the MAE,
standard deviation, training and test time of the ensembles are laid out in Table 5.4.

Concerning MAE, the advantage of Naïve ReW Ensemble possibly came from the
large training set learned by its models. Once no pruning techniques were employed
in these ensembles, probably the smallest training set used in ReW Bagging and

87

Figure 5.21: Number of weak learners X MAE for: (a) ReW Bagging, ReW Boosting
and Naïve ReW Ensemble in CalCOFI; (b) ReW Bagging and Naïve ReW Ensemble
in CalCOFI.

88

Figure 5.22: Length of training set X MAE for ReW, CReW and n-tuple Regression
Network in House Prices.

Table 5.4: Comparison of the three types of ensembles using only ReW, only CReW
and both models. Caption: MAE: mean absolute error; TrT: training time (s); TT:
test time (s)

Type of
Ensemble Metric Only ReW Only CReW Mix

Bagging
ReW

MAE 0.162 ± 5.92× 10−4 0.16 ± 4.94× 10−4 0.16 ± 1.93× 10−3

TrT 19.93 ±2.23 92.07 ± 8.09 58.14 ± 5.73
TT 4831.29 ± 201.64 4667.07 ± 1386.91 4571.79 ± 1326.17

Boost
ReW

MAE 0.168 ± 2.26× 10−4 0.168 ± 4.14× 10−4 0.168 ± 2.17× 10−4

TrT 2.12 ± 0.27 9.84 ± 1.16 5.93 ± 0.7
TT 4902.03 ± 192.67 5136.76 ± 459.88 5043.16 ± 261.35

Naïve
ReW

Ensemble

MAE 0.162 ± 4.21× 10−4 0.161 ± 4.62× 10−4 0.162 ± 7.54× 10−4

TrT 26.74 ± 1.75 121.42 ± 11.83 74.01 ± 11.24
TT 5034.41 ± 174.12 5241.58 ± 501.5 4504.95 ± 1633.41

89

Boosting do not turn the weak learners into specialists in specific features but just
networks with less training. In most of the cases Naïve ReW Ensemble outperforms
ReW Bagging, but both ensembles are competitive. In these cases, ReW Bagging
has as advantage less computational cost and training/test speed due to the less
training of the weak learners, which implies in test speed due to the number of
turns in bleaching.

These data show that the increasing order of training speed is ReW Boosting,
ReW Bagging, and Naïve ReW Ensemble, which is intuitive as this is the order in
which the size of training sets increases. The time to validate and determine the
weight of each weak learner’s vote has made ReW Boosting the slowest, yet least
trained ensemble.

The testing speed of ReW Bagging and Naïve ReW Ensemble was equivalent
since the procedure for prediction of these ensembles is equal. ReW Boosting was
slightly slower in prediction, due to the calculation of each learner’s vote value based
on the weights obtained in validation.

As for the choice of models that make up the ensemble, ReW, CReW, and both at
the same time obtained equivalent MAE. Ensembles with only ReW were obviously
faster in training and prediction, as CReW performs a classification step in both of
these phases. As expected, mixed ensembles had intermediate performance between
homogeneous ReW and CReW ensembles since they had both types of models.

5.3.6 Logistic Regression

Using ReW’s multi-dimensional RAM, an extension of the model was made to deal
with logistic regression, storing probabilistic values in the y dimension and using the
logistic function as a mean.

5.3.6.1 The Model

Regression WiSARD’s additions to the original model include the ability to perform
logistic regression, that is, to estimate the probability associated with the occurrence
of a given event in the face of a set of explanatory variables.

Logistic regression is equivalent to separating events in a plane with a linear
boundary, which could be represented by the equation β1x+β2y+ c = 0. Therefore,
any other point (a, b) can have its position in relation to the linear boundary
expressed by E(a, b) = β1a + β2b + γ. To ensure that this function is limited to
the range (0, 1), the logistic function (g(x) = 1

1+e−x) is applied to it.
Therefore, it has as hypothesis:

H(x, y) = g(E(x, y)) =
1

1 + (e−(β1x+β2y)+γ)
(5.1)

90

Of course, a dataset with binary events (may or may not have happened) will
have annotations on the status of each event. If you want to calculate the probability
of an event occurring using the WiSARD Regression, simply train them with the
dataset examples, using y = 0 for no occurrence of the event and y = 1 if it occurred.
Then it is enough to predict the event that it is desired to calculate the probability,
using as average the logistic hypothesis, where x will be the sum of the counters, y
will be the number of memory locations accessed with sum(y) not null, β1 will be
the ratio between examples learned and those where the event actually has occurred,
β2 is the degree of activation of the RAMs and γ is a hyper-parameter which must
be calibrated.

5.3.6.2 Validation

To validate ReW’s logistic regression was used the Criteo dataset [247], a database
where each sample represents the behavior of a person browsing a site, and the
event whose probability is to be estimated is that of clicking on an advertisement
link on that page. The dataset has 24 days of click logs, where each day has 18
million events (48 GB of data). Each sample has 39 features (13 continuous and 26
categorical), all of which are anonymous. This is a very unbalanced classification
problem (class "did not click" has 52% more occurrences than class "clicked").

For this test, only 1.8 million events were used, 90% for training and 10% for
testing. The categorical variables were not used and the continuous variables were
preprocessed with a binary thermometer. The estimated probability for the click
was validated using logarithmic loss:

logloss = −(y log(p) + (1− y) log(1− p)), (5.2)

where y will be 0 when the event has not occurred and 1 case has occurred and p is
the probability estimated for its occurrence.

The lower the logarithmic loss, the better the prediction. Were used ReW with
n = [5,15,25,35] and all obtained log loss = 0.493. The training and test time of
each network is indicated in Table 5.5.

Table 5.5: Time spent by ReW to perform logistic regression on the test set
Address size Training time (s) Prediction time (s)
5 2.19 1.10
15 6.89 3.23
25 11.43 5.42
35 15.79 7.27

91

5.3.6.3 Discussion

In practice, this demonstrates how ReW can be used in other domains, where it
needs to approximate functions that are not necessarily non-parametric, just using
an appropriate estimator and, perhaps, using a different kernel. This is one more
contribution that this model offers in reaction to the original n-Tuple Regression
Network. In this case, the kernel estimator used was the logistic regression equation
instead of the traditional Nadaraya-Watson estimator, while the kernel (x−xi) was
kept.

5.4 Chapter Conclusion

This chapter presented two new weightless neural networks for regression tasks based
on the n-tuple Regression Network model, both competitive in terms of state-of-the-
art accuracy and other results relevant to the prediction problem of productivity of
palm oil of the KDD18 competition. These results were published in [2, 195]. In
terms of learning and prediction times, the two weightless models proved to be
superior to all other solutions and, due to their simplicity, these networks are ideal
candidates for situations that require online learning and low computational costs.

This work also explores the use of three types of weightless neural networks
regression ensemble: Naïve ReW Ensemble, ReW Bagging, and ReW Boosting, with
Naïve ReW Ensemble achieving better performance than the others. An exploration
of the minZero and minOne thresholds was also done for the weightless regressors
and their impact, mainly on ensembles, was demonstrated by the results.

Other works that used ReW in other contexts include an agnostic classi-
fier interpreter[248] and a controller on DC STATCOM converter under fault
conditions[249].

An interesting legacy of Regression WiSARD consists of its multi-dimensional
RAM nodes, where each memory location stores not only a counter but an array of
values. In the models proposed here, the content of this array is reduced to just one
counter and the sum of the prediction values associated with the examples learned
by the model, however, many other values could be added, according to the problem
domain. This type of RAM can be used for both classification and regression tasks,
in addition to more complex tasks, such as reinforcement learning.

ReW with other regression models, such as deep neural networks. Other metrics
must be used in this benchmark since this work used only MAE and MSE, which
measures the absolute magnitude of errors. Other metrics, such as Mean Error
(which measures the additive bias in the error), Mean Squared Log (useful when
dealing with right-skewed targets), Median Absolute Deviation (standard deviation

92

robust to outliers), and coefficient of determination R2 (a measure of the ratio
of variability that the model can capture vs the natural variability in the target
variable) need to be used in validations involving ReW and other models so that a
fairer and more complete comparison is made and the strengths and weaknesses of
the weightless regressors are more evidenced.

Ongoing and future research include: (i) adding new policies to update sum(y);
(ii) exploring the possibility of different address sizes inside CReW discriminators,
with new decision policies adapted to different neurons (since each discriminator will
be trained with a sub-profile of the data due to their similarity to each other while
distancing themselves from the samples learned by other discriminators, it may be
interesting to try to estimate the pdf for each data group using a smoothing factor
distinct, or even a distinct estimator and kernel); (iii) varying the types of prepro-
cessing and features used in the ensembles; (iv) exploring the Logistic WiSARD in
different scenarios; (v) adding strategies for ensemble pruning; (vi) apply ReW in
auto-regression tasks and (vii) change the kernel used in the prediction.

93

Chapter 6

A Weightless Multi-modal Empathy
Predictor

The ability to experience and evaluate the degree of empathy is a vital skill for
human survival and the construction of its social interactions. Empathy prediction
is, consequently, an area of great interest within affective computing, since many
other computational tools can make a great profit from it, for instance, virtual
tutors, security systems, and dynamic customization of applications oriented to the
detection of instant emotions.

A usual way of categorizing emotions is through valence and arousal attributes,
both assuming continuous values. Valence refers to how pleasant a particular feeling
was (a negative valence refers to an unpleasant event) and arousal to how intense
it was. A slightly happy situation would have a positive and high valence, while it
would tend to have arousal close to zero. Thus, a trend in affective computing is to
predict each of these attributes separately in tasks of emotional analysis.

The prediction of those values becomes even more complex considering real-world
scenarios, in which multiple subjects are interacting with each other simultaneously
and with concomitant noisy information provided by the background. Moreover,
there are different levels of emotive signals that provide an additional layer of com-
plexity, e.g., facial information, the body language of the individuals, the sound
spectrum of the conversation, and possible semantic content of the dialogues. All
this amount of complexity makes it difficult to create highly accurate affective pre-
diction systems that operate in real-time.

Aiming to offer an approach that is capable of providing fast and effective re-
sponses, in addition to having the ability to learn online, this work presents an affec-
tive valence prediction system based on weightless neural networks. This system is
validated on the OMG-Empathy Prediction dataset[5], which consists of dialogues
on a wide range of previously chosen topics.

This chapter has a highly experimental bias, without dwelling on an elaborate

94

Table 6.1: A comparison between the multi-modal solutions in literature.
Video mode Audio mode Text mode Fusion

[250]
VGGFace2-based
CNN and VGG
FERCNN

PANN-based
DNNs and
1DCNN +
LSTM-based
DNNs

- Weighted fusion score

[251] VGG16 CN ELECTRA TRILL Transformer

[252] DNN DNN DNN
Multi-modal
DNN-based
embedding generator

theoretical exploration of multi-modal learning. The main purpose of this work was
to validate the potential of Regression WiSARD in an open and complex task, whose
solution is still being explored by the community.

6.1 Related Work

Multimodal learning is an area that has received increasing attention, given the in-
creasing complexity of real-world problems. Some work related to video: Dresvyan-
skiy et al.[250] uses VGGFace2-based CNN, VGG-FERCNN-based video features
combined with PANN-based-deep networks and 1DCNN + LSTM-based deep net-
works audio features through weighted fusion scores.

Yu et al.[251] incorporates frame features extracted from VGG16 CN, text fea-
tures from ELECTRA, and audio features from TRILL. After feature extraction,
the time-series features, frames and audio are fed into Transformer encoder layers
to return a vector representing their corresponding modality. Frames, title, descrip-
tion, audios features pass through a context gating layer before concatenation. Then
a vector in the latent space is generated and select the frame that is most similar to
this vector in the latent space.

Moon et al.[252] proposes a multimodal deep learning framework that can trans-
fer the knowledge obtained from a single-modal neural network to a network with a
different modality. This approach learns the analogy-preserving embeddings between
the abstract representations learned from each network, allowing for semantics-level
transfer or reconstruction of the data among different modalities. This method is
thus specifically useful when one of the modalities is more scarce in labeled data
than other modalities. This comparison is better visualized in Table 6.1.

95

6.2 Empathy Prediction

A classic issue of affective computing involves the attainment and use of spontaneous
emotions. In the study of emotive valence, the degree of positivity or desirability of
an affective state, spontaneity, becomes even more indispensable. Measuring valence
in the dialogue between an actor and a listener, vaguely scripted, is the basis of the
OMG-Empathy Prediction Challenge.

The dataset is composed of 80 videos, each lasting approximately 5 minutes, in
which actors tell stories to listeners and adapt their performance according to the
emotions expressed by the listeners, who then evaluated their valence level with a
continuous value between -1 and 1 at each point in the conversation. A example of
OMG video is displayed in Figure 6.1.

The OMG-Empathy Prediction dataset is divided into training, validation, and
test (with 4, 1, and 3 stories, respectively). The challenge is separated into two
tracks: Personalized Empathy and Generalized Empathy. In the former, the goal is
to predict the empathy of the individual subjects and in the latter the empathy of
the conversation itself. During the challenge, we use the validation dataset to find
the best combination of hyper-parameters for the model for the test set. However,
once the annotated test set was released, we looked for the best parameters in it
directly. Here you can find the results of the experiments in both data sets, but it
should be noted that the test set had a particular hyper-parameter exploration.

The metric for assessing the proximity between predicted values and those pro-
vided by subjects is the concordance correlation coefficient (CCC) ρc, which mea-
sures the agreement between two variables, x and y. CCC is given by

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (6.1)

where µx and µy are the means of x and y, σx and σy their standard deviations, and
ρ is the Pearson’s correlation coefficient between both variables.

6.3 Experimental Results

6.3.1 Experimental Setup

The proposed architecture uses the pipeline described below.

• Preprocessing: this step consists of preprocessing each frame and obtaining
a binary input for the networks. Two preprocessing procedures occur here:
I. the binarization of the subject face in the Personalized Track and the face
of both individuals in the Generalized Track, being obtained from the facial

96

Figure 6.1: Example of the Sub Track Empathy prediction of OMG-Empathy
datase[5].

extraction script provided by the challenge, and II. the extraction of features
from the audio contained in the interval that spans from 30 seconds before
to 30 seconds after a given frame being treated. These two inputs are then
concatenated. This pipeline is illustrated in Figure 6.2;

• Storage: because preprocessing is the slowest and most costly phase of the
entire validation process, it was opted to store the frames of a given story that
were are preprocessed in structures called ReW datasets (a type of dictionary
with inputs and their respective predictions). This would make it simpler for
that preprocessed data to be reused in tests with different network configura-
tions. Each ReW dataset contains a complete story for a combination of one
type of image preprocessing and one of audio, using a single combination of
hyperparameters;

• Validation: a given network (ReW or CReW) receives training and test ReW
datasets, which are employed to perform the desired prediction. The same
network can use ReW datasets of the same story with distinct preprocessing
methods at the cost of treating the difference in the size of its inputs. If an
input is smaller than the retina, it is padded with 0s until the appropriate size.
If it is larger, it will be staggered by joining its bits with a logical ‘or’, that is,
given two bits this operation returns that with the highest value.

The experiments were performed using single instances of ReWs and CReWs,
addressing n-tuples ranging in length from 5 to 30 bits. The experimental environ-
ment was an Intel Core i7-6700, CPU @ 3.40GHz with 4 cores, 32GB of RAM, and
GeForce GTX 960. All experiments were run just one time due to the dataset’s size
and the preprocessing time.

97

Figure 6.2: WiSARD’s multi-modal pipeline

6.3.2 Results in Validation Set

This section will describe the results of different types of networks and preprocessing
methods employed on the Personalized Track in Validation Set.

Initially, a validation of the proposed architecture was performed by using 90%
of the training base and subjects 1, 2, 3, 4, 6, 7, 8, and 9 of the validation base (story
1), with Regression WiSARD and ClusRegression WiSARD using only Sauvola and
MFCC preprocessing methods. Table 6.2 shows the average time of each prepro-
cessing method.

Because of the dimensions of the dataset, it was split into several parts, which
were then preprocessed simultaneously. Once already binarized, the dataset was
stored in two RegressionDatasets, one for training and the other for validation. The
networks employed for this had to address n-tuples whose length ranged from 2 to
30 bits. It is notable that despite the preprocessing time is high since all the datasets
had already been binarized, it was a low cost one could pay to explore the whole
space of hyperparameters of the network. Table 6.3 shows the values of CCC for
each story given the prediction performed by ReWs with different addressing n-tuple
lengths, with the best CCC for each subject properly marked in bold. Analogously,
Table 6.4 presents the CCC for CReWs. Figures 6.3-6.6 depicts the variation of the
mean CCC, correlation coefficient (ρ), training time and validation time for different
addresses of ReW using only image mode. Figure 6.7 displays the CCC for ReW
and CReW using both image and audio modes.

Tables 6.3 and 6.4 show the results in the validation set for ReW and CReW,
respectively. The results of the ensembles in the Validation set are in Table 6.5,

98

Preprocessing Average time (s)
Sauvola 4*10−4

Canny 2*10−4

Gaussian 1*10−3

Otsu 5*10−5

MFCC 10.54

Table 6.2: Average time of each preprocessing method.

n
Subject 5 10 15 20 25 30
2 0.09 0.08 0.04 -0.28 0.6 0.34
3 -0.02 -0.01 0.04 0.17 0.36 0.38
4 -0.25 -0.19 -0.07 0.19 0.44 0.45
6 0.13 0.12 0.18 0.24 0.26 0.2
7 0.21 0.25 0.3 -0.05 0.08 0.04
8 0.51 -0.35 0.06 0.26 0.31 0.25
9 0 0 0 -0.01 -3.16 0.06

Table 6.3: CCC for each story with different addressing values with ReW model.

n
Subject 5 10 15 20 25 30
2 0.09 0.08 -0.06 -0.29 0.61 0.35
3 -0.02 -0.01 0.11 0.17 0.35 0.38
4 -0.2 -0.19 0.08 0.19 0.44 0.45
6 0.09 0.12 0.22 0.24 0.25 0.2
7 0.26 0.25 -1 -0.06 0.07 0.03
8 -0.31 -0.37 0.24 0.27 0.31 0.25
9 0 0 -0.01 -0.02 -1 0.06

Table 6.4: CCC for each story with different addressing values with CReW model.

Figure 6.3: n X CCC for ReW in the validation set using only image mode.

99

Figure 6.4: n X correlation coefficient for ReW in the validation set using only image
mode.

Figure 6.5: n X training time for ReW using only image mode.

Figure 6.6: n X validation time for ReW in the validation set using only image
mode.

all ensembles achieved CCC tending to zero, regardless of the preprocessing used.
Bagging ReW was also tested in the test set, with virtually identical results.

100

Figure 6.7: n X CCC for ReW and CReW in the validation set using image and
audio modes.

Ensemble Binarization Training (s) Validation (s) CCC

Bagging

Gaussian 1.56 7523.65 0
Sauvola 1.31 7396.88 9.93*e-05
Canny 2.23 7481.77 -0.0003
Otsu 1.15 7453.75 0.0001

Naïve

Gaussian 3.13 7571.90 0
Sauvola 2.99 7678.32 -1.93*e-05
Canny 1.34 7421.09 9.73*e-06
Otsu 2.7 7459.93 -6.19*e-06

Table 6.5: CCC for each BaggingReW and Naïve ReW ensemble in Validation set
of Personalized Track

6.3.3 Results in Test Set

Next, new experiments were performed using the entire training base and the entire
test base, together with all combinations of image and audio preprocessing pro-
cedures. The mean CCC, correlation coefficient and prediction time for different
network addresses of ReW are presented in Figures 6.8-6.10 using only image mode.
Additional tests were realized using both image and audio modes and training plus
validation sets for training the models. These results are displayed in Figures 6.11
- 6.20.

The comparison with the models submitted to the challenge that originated this
domain is shown in Table 7.5. Except for the baseline, no model has its details
available. This leaderboard is a partial representation of the one officially made
available by the curators of the dataset[253].

6.3.4 Preprocessing Analysis

Concerning the preprocessing methods that were employed, it can be inferred from
experimental results that:

101

Figure 6.8: n (address size) X CCC for ReW in the test set using only image mode.

Figure 6.9: n (address size) X correlation coefficient for ReW in the test set using
only image mode.

Figure 6.10: n (address size) X test time for ReW in the test set using only image
mode.

• Otsu performed much faster than other methods, both in training and in
testing, due to the reduced number of steps of its algorithm;

102

Figure 6.11: n (address size) X CCC for ReW and CReW in the test set (Sauvola
method) using image and audio modes.

Figure 6.12: n (address size) X CCC for ReW and CReW in the test set (Canny
Filter using image and audio modes.

• Gaussian adaptive filter and Otsu’s binarization had their performance over
time increased considerably as n-tuple size increased;

• ReW’s performance degenerated faster than that of CReW with Otsu’s bina-
rization;

• ReW’s performance increases faster as n-tuple size increases,

• Canny filter performed considerably better over test time than training time;
and

• Sauvola method performed slower than the other preprocessing schemes in all
cases.

103

Figure 6.13: n (address size) X training time for ReW and CReW in the test set
(Canny Filter) using image and audio modes.

Figure 6.14: n (address size) X test time for ReW and CReW in the test set (Canny
Filter) using image and audio modes.

6.3.5 Discussion

Some observations can be made from the analysis of the collected data: (i) in the
validation set, where the networks are trained with a single story, although with
distinct subjects, CCC tends to oscillate as the size of the n-tuple increases, reaching
its apex for the more specializing configuration (n-tuple with the greatest length) for
both ReW and CReW; (ii) in the test set, where the networks are trained with several
stories, CCC tends to oscillate as n-tuple size increases for the ReW, and tends to
decay for the CReW; (iii) training and prediction times decrease as n-tuple size
increases, both for ReW and CReW, because as n-tuple size increases the number
of RAMs decreases, and training and prediction times are directly proportional to
the number of RAMs of the model; and (iv) CReW performance is always slower
than that of ReW, because both in training and in prediction it needs to employ
classification to determine which discriminator to use.

104

Figure 6.15: n (address size) X CCC for ReW and CReW in the test set (Adaptive
Gaussian Filter) using image and audio modes.

Figure 6.16: n (address size) X training time for ReW and CReW in the test set
(Adaptive Gaussian Filter) using image and audio modes.

It can be concluded that the discrepancy of the behavior of the networks in
validation and test sets are associated with the diversity of stories used for training.
The variety of facial expressions and audio spectra resulting from this multiplicity
of narratives might have produced similar inputs for different valencies, leading
to the training of multiple distant values in the same memory positions, making
a particular RAM contribute in the prediction phase with a value that does not
genuinely correspond to the whole scope of valences related to the features trained
there. So, this issue indicates that it would be required a system in which there are
multiple networks, each one focused on a specific emotion and/or behavior. This
would potentially avoid the overlapping of distinct features in the networks, thus
enhancing its performance.

Individual neural networks outperform their ensembles in validation, probably

105

Figure 6.17: n (address size) X test time for ReW and CReW in the test set (Adap-
tive Gaussian Filter) using image and audio modes.

Figure 6.18: n (address size) X CCC for ReW and CReW in the test set (Otsu
Binarization using image and audio modes.

Figure 6.19: n (address size) X training time for ReW and CReW in the test set
(Otsu Binarization) using image and audio modes.

106

Figure 6.20: n (address size) X test time for ReW and CReW in the test set (Otsu
Binarization) using image and audio modes.

Table 6.6: A general benchmark in OMG-Empathy Prediction dataset
Team Model CCC Modality
Alpha-City Manual 0.17 Audio + Image + Text
USTC-AC Unknown 0.14 Audio + Image + Time
A*STAR AI LSTM 0.14 Audio + Text
Alpha-City Filters 0.12 Audio + Image + Text
Rosie SVM 0.08 Audio + Image + Semantic
WANN ReW 0.08 Image
Rosie NN 0.07 Audio + Image + Semantic
A*STAR AI LSTM 0.07 Text
Baseline DNN 0.06 Audio + Image
Affective Bulls Unknown 0.02 Audio + Image
WANN ReW 0.01 Audio + Image

because the number of weak learners was not sufficiently representative. The lack
of bootstrap and pruning algorithms for Bagging ReW probably caused the reduced
learning of each learner to generate noise propagated by the ensemble, instead of
efficiently combining the specialized learning of each weak learner. However, ReW
and CReW used multimodal learning, while the ensembles used information provided
only by the face image, so we see here the impact of adding more modes in this type
of task.

6.4 Chapter Conclusion

This chapter explores the use of weightless neural networks in an empathy prediction
task. These results were partially published[131]. Its major contribution is the
unprecedented use of weightless regressors in a multimodal environment and the
pioneering exploration of RAM-based models for the prediction of affective valences.

107

This task is an open question for the affective computing community, is considered
a hard task, especially for in-the-wild settings. Given such a scenario, one could
consider that weightless nets performed adequately for this task, as demonstrated
in the validation set, where ReW obtained a CCC of 0.2 and had more than half the
possible agreement for some subjects. In the test set ReW achieved 0.08 of CCC,
being very competitive with the state-of-the-art, which obtained CCC 0.17 with
a much more complex model. The performance of a weightless neural network is
tightly tied to the employed data preprocessing methods. So, different combinations
of preprocessing techniques were tested to assess the WiSARD performance. Image
preprocessing techniques: Sauvola binarization; adaptive Gaussian filter; Canny
filter; and Otsu binarization. Audio preprocessing techniques: MFCC.

The main motivation for choosing weightless neural systems for this task was
that they performed training and regression procedures faster than other learning
models[195], which is highly desired for scenarios involving combinations of complex
data, such as facial emotions, body language, audio, and text. The work here pre-
sented supports this motivation, given that Regression WiSARD could be trained
with the whole preprocessed train set in less than 1h30 and generate the prediction
of the whole test set in less than 40 minutes, once they have already been binarized.
It can be inferred from the performance of ReW and CReW that through the proper
exploitation of the preprocessing techniques, that is, the combination of their pa-
rameters, weightless neural systems can be considered a potential model for the fast
and online resolution of the new and challenging questions that arise on the horizon
of affective computing.

Results highlight that the solution using the only image was superior to the
result of multi-modal architectures. This may have occurred due to the patterns
generated by the audio preprocessing or due to noise created by the concatenation
of image and audio signals in a single input. An architecture that processes modes
or sub-patterns separately, similarly to NC-WiSARD, could alleviate this deficiency.

Other potential problem is the use of audio of actor in Personalized Track, where
is supposed predict only the empathy of the listener, can imply in generating noise
for the binary input, since the image-based approach performs better than the multi-
modal approach in every scenario.

Currently, some researches are being made to overcome some issues that appeared
during this task and others that aim to explore further the capability of weightless
neural networks for empathy prediction. They are execution of prediction on the
Generalized Track; usage of the transcription of conversations in the generation of
the binary input; utilization of histogram descriptors (Local Binary Pattern, for
example) in face preprocessing; testing of prediction policies in the CReW model
involving the combination of results of ReW discriminators; exploration of the con-

108

catenation of multiple preprocessing methods of the same type (image or audio)
into a single input; exploration of other combinations of hyperparameters in the
preprocessing techniques already employed in this work; usage of other parameters
in weightless neural systems (e.g., thresholds that limit the participation of a given
memory location in prediction calculation depending on the number of zeros and
ones in binary word); evaluation of the performance of ReW and CReW with other
types of means (regression estimators) and kernels.

109

Chapter 7

Conclusion

Cognitive architectures aim to build agents whose features enable them to handle
different tasks and environments autonomously. Such features include language,
reasoning, problem-solving, decision-making, and planning. Such architectures are
also fundamental to research related to machine consciousness. Naturally, the ad-
vancement of research in cognitive architectures depends on the available machine
learning models.

Machine Learning has undergone major developments in recent years and
achieved great performance in areas that until recently had no viable solutions. How-
ever, many of the main ML algorithms are extremely complex, especially its flagship,
deep neural network, needing a lot of data to obtain a good performance, needing a
considerably large training time[254], having great energy consumption[255], suffer
from serious failures in security issues[256], in addition to the fact that we do not
have a completely satisfactory explanation of how such algorithms work[32].

WiSARD is a type of neural network that responds to several of these challenges
of deep nets, having online learning, ease of implementation in hardware, low mem-
ory cost, and with ease to implement forgetting mechanisms (as seen in Chapter 2).
WiSARD is also a weightless artificial network, a type of ML model that has already
proven itself efficient in building cognitive architectures[13, 16]. On the other hand,
this model has some limitations due to the need for data binarization, the difficulty
of dealing with data variance, and the fact that the model is just a classifier.

In this work, some contributions were made to expand the scope of use of WiS-
ARD: its application in multi-label classification, the combination of WiSARD mod-
els in ensembles, WiSARD extensions for regression tasks, and its use in multi-modal
prediction. The most significant contribution was the creation of an enhanced ver-
sion of the n-tuple regression network adapted to use multiple kernel estimators and
local pdf behaviors. Given the importance of machine learning regression for mul-
tiple tasks, such as statistical inference, feature importance, reinforcement learning,
the WiSARD model needed to be extended to include regression in order to remain

110

relevant and useful for consciousness research.
Some advantages and disadvantages of the WiSARD model to deep models that

can be inferred from the experiments carried out in this thesis: a) advantages:
fast training (disregarding preprocessing), easy implementation of forgetting mech-
anisms, easy handling for multi-modal data, storage of the whole training dataset
implicitly, easy to deal with multi-output problems; b)disadvantages: difficulty in
dealing with image variation and in learning intermediate representations of the
data, total dependence on preprocessing techniques, choice of topology fully oriented
to hyper-parameter exploration, impossibility of reusing models already trained in
other domains.

In none of the experiments performed in this thesis WiSARD outperformed state-
of-the-art in accuracy, despite being competitive in some datasets, however, in all
of these tasks, WiSARD outperformed state-of-the-art in training time, even in
some datasets training time has been high for WiSARD. However, given the high
learning capability of the WiSARD model proven by its VC-dimension, this model
is potentially competitive with the state-of-the-art. To reach this potential, further
studies are needed regarding the pre-processing techniques used, as well as a greater
understanding of the exact role of tuple selection in the model’s topology.

All experiments reported in this thesis are reproducible, since all experiment
code can be found at https://github.com/Lusquino/PhD-Thesis.git. The imple-
mentation of all models used in this thesis are map-based. The libraries used in
these experiments are described in Appendix G.

7.1 Summary of the Thesis

Here is a summary of each chapter of the previous chapters:

7.1.1 Chapter 1

This chapter introduces the reader to the motivation of this work, giving a cogni-
tive architecture’s background, demonstrating the need to develop machine learning
models in addition to the model paradigms. The classifier WiSARD was presented
and located concerning the most used models in current machine learning scenario,
especially deep neural network.

7.1.2 Chapter 2

A presentation of Weightless Artificial Neural Networks with some historical back-
ground. This chapter presents n-tuple classifier, the first model in this family. WiS-
ARD’s training and classification mechanisms were discussed in details, as well as

111

their variations aimed at mitigating overfitting. There was also a survey on WiS-
ARD extensions, such as ClusWiSARD for semi-supervised learning, clustering, and
subprofile learning. Other WANNs have been explained. The chapter provides a
recap on recent uses of WANNs.

Finally, this chapter discusses about the preprocessing techniques. Traditional
WiSARD networks operate on base 2, therefore being able to handle only binary
data, so that preprocessing is necessary both in the training phase and in the test
phase. Although WiSARD extensions allow the increase of its base, the restriction
on the mandatory preprocessing remains. The choice of binarization has a direct
impact on an efficient representation of the data and, consequently, on the learning
capacity and classification of the network. Given the importance of preprocessing
for the WiSARD model, this chapter is specifically designed to describe the main
binary strategies used in the experiments reported in this thesis.

7.1.3 Chapter 3

WiSARD and its ClusWiSARD extension were used in two multi-label classification
architectures (Binary Relevance and Label Powerset) in a task of classifying facial
muscles involved in expressing emotions. This challenge presents in particular the
difficulty of dealing with some of the combinations of the original classes that distort
their characteristics.

Label Powerset treats each combination of classes present in the training set as
a class itself. At WiSARD this is done by creating new discriminators for each new
combination of classes found. Binary Relevance deals with the presence of each class
in the sample individually. WiSARD uses this approach and I try a network for each
class with a presence discriminator and an absence discriminator. The advantages
and disadvantages of these approaches are covered in this chapter.

Both weightless models were compared with state-of-the-art, showing compet-
itive results in many classes, although the performance of WiSARD was poor in
classes underrepresented in the dataset. In 10-fold cross validation, the best values
found for accuracy and F1-score are, respectively, 89.66% and 49.11%.

7.1.4 Chapter 4

WiSARD and ClusWiSARD have been combined into five different types of en-
semble (Bagging, Boosting, Borda Count, Tie-break, and Weighted Votes), all in-
spired by the traditional ensemble learning algorithms. Borda Count, Tie-break, and
Weighted Votes ensembles have voting policies based on known voting systems. All
of these ensembles and individual models have been validated in six datasets from
widely varying domains, with the ensembles outperforming both original models in

112

five of these. This was an initial exploration of WiSARD ensembles and no pruning
technique was used, as the choice of parameters for the models used was random.

7.1.5 Chapter 5

Two non-parametric regression models based on WiSARD and n-tuple regression
network were also created (Regression WiSARD and ClusRegression WiSARD),
and they and their ensembles were validated in four datasets and compared with
the famous GradientBoost and XGBoost techniques. The new models had very
competitive results, with considerably less training time. In a palm oil prediction
dataset, the WiSARD-based solution was outperformed by XGBoost in 0.011 in
MAE, while outperforms it by four orders of magnitude at training time and two
orders of magnitude at test time.

7.1.6 Chapter 6

Finally, Regression WiSARD was applied in a multi-modal emotion prediction chal-
lenge where it should predict the degree of empathy between interlocutors in each
frame of a video. This is a very complex task, which involves a lot of background
noise. There are few results in the literature involving this task, but the solution
presented here has been compared with all of them and has shown promise. Weight-
less models were explored using only the image and the combination of image and
audio. In the test set ReW achieved 0.08 of CCC, being competitive with the state-
of-the-art, which obtained CCC 0.17 with a much more complex model.

7.2 WiSEMAN: Towards a WiSARD-based Cogni-

tive Architecture

From the WiSARD’s extensions achieved in this thesis, it was possible to envision a
WiSARD-based cognitive architecture. This is called WiSEMAN (WiSARD Emo-
tional Multi-Agent Network) and it is based on Aleksander’s Kernel Architecture[12],
which aims to create an agent with behavior similar to that of a conscious being,
incorporating in all modules the consciousness requirements of the Fundamental Pos-
tulate of Consciousness[8]. The schema of this architecture is displayed in Lusquino
et al.E.1

Each WiSEMAN agent has four operational modules:

• Depiction: Analogous to the process of empirical recognition of the environ-
ment, this module is responsible for interpreting the environment where the

113

agent is. The multi-label and multi-modal systems developed in this thesis
can be incorporated into this module;

• Imagination: This module proposes possible actions to be taken by the
agent,considering its current state and the environment;

• Emotion: A quantitative evaluation of the action possibilities generated by
the Imagination Module is made here, using a Regression WiSARD-based
multidimensional RAM;

• Attention: In this module, each feature that forms the representation of the
actions that can be performed from the states contemplated by the Imagination
Module is evaluated separately.

Considering the use of WiSARD in an architecture that tries to satisfy the Fun-
damental Postulate and its corollaries, Regression WiSARD directly implies the
possibility of satisfying the predictive capacity of the model. The multi-dimensional
RAM neuron can also have learning fields and use a feedback function to meet the
Will, Instinct, and Emotion corollaries, although such a solution is neurosymbolic
and not strictly connectionist, as intended by Aleksander. WiSEMAN is more elab-
orated in Appendix E.

7.3 Final Remarks

In an attempt to expand the scope of the use of WiSARD this thesis made ex-
periments both with systems that use the model and, therefore, externally expand
its capacities (ensembles, multi-label and multi-modal), as well as with the model
structure itself (non-parametric regression and logistic regression).

Both types of experimentation proved to be promising: (i) the use of WiSARD
as an atomic component of a larger system, the model being capable of handling a
variety of types of inputs, and using the score of its discriminators as function vari-
ables to generate more complex outputs; and (ii) the structure of WiSARD can still
receive many extensions, with the addition of new content in its memory locations
and functions to be applied on such content both in training and in classification.
ReW introduced the possibility of using multiple contents per memory location and
the combination of such contents.

The theoretical foundations behind the topology of the WiSARD models are
not fully understood yet, but previous results show that it has a high learning
potential[31, 116, 119]; a more comprehensive study of the choice of tuples can con-
siderably expand the classification power of WiSARD. With a developed theoretical

114

base, it would be possible to even expand the use of WiSARD as a training ac-
celerator, embeddings generator, or component of hybrid systems with mainstream
models, as it has already been used in other works[62, 63].

A more formal and extensive knowledge about mapping can expand the inter-
pretability potential of the model (still limited to mental images), make it more
suitable for neurosymbolic systems and partially solve the credit assignment prob-
lem, since each RAM can be understood as a feature, if there is some kind of semantic
criterion in choosing the tuple.

It can be seen that despite the gains from the proposed extensions, WiSARD
has some fundamental limitations, such as its dependence on preprocessing, which
always implies the loss of information from the original data. In more complex
datasets, hardly a single preprocessing technique will be enough to capture the
relationship of the features and there is no guarantee that some combination of
preprocessing can be efficient, since there is a lack of knowledge about the relation-
ship between learning and the formation of n-tuples, in addition to this potentially
introducing noise in the binary data and increasing the training and testing time,
in addition to the extra preprocessing time, thus reducing the advantages of using
WiSARD-like models. We saw this in Chapter 6.3.5, in which the use of only the
image had a better result than the multi-modal solution. However, the concatena-
tion of the binarization of the RGB channels in the tests with Cifar-10 shown in
Chapter 6 has improved accuracy. The construction of a network that uses sev-
eral WiSARD nodes that deal with different binarizations of the input, such as the
NC-WiSARD[158], can be an adequate solution to this problem, especially in cases
where the network needs robustness against rotation variance, translation, scale,
etc.

Another significant limitation lies in bleaching, since the higher the training
dataset and, supposedly, the more data for learning, the greater the chance that
there will be a tie for a greater number of rounds, thus considerably increasing the
classification time, or in the case of some variations of ClusWiSARD the training
time as well. Thus, the creation of other tie-break mechanisms that circumvent
this limitation can mitigate the current limitations of WiSARD, while increasing its
main qualities.

Some branches of Roy Bhaskar’s critical realism[257] have shown that ontology
should precede epistemology in the scientific method. Its application in computer
studies[258–261] has generated interesting observations about the need to study each
computational model from its idiosyncrasies, that is, the analysis of a model must
be done a posteriori and not from characteristics that are expected a priori that it
has due to biases created in the community by the mainstream model.

The formation of a solid theory about n-tuple subspace must start from the

115

model’s characteristics and must not be contaminated by any prejudice from the
community that originated from the deep model structure. This will allow the
expansion of knowledge and the application of these models, as well as a mitigation
of their natural limitations.

In addition to the WiSEMAN agent, the future works mentioned at the end of
each chapter and a theoretical study on the features obtained through the mapping,
mentioned in the previous section, there is another interesting derivation of this
thesis, which is an ongoing work. An important aspect of the creation of regres-
sion models was the expansion of the neuron RAMs of the traditional WiSARD to
multi-dimensional RAMs, inspired by the Kolcz model[145]. This neuron can store
different types of information and can use any function to generate a continuous
output. This new type of neuron can be used in a WiSARD-based multi-layer archi-
tecture (it is possible to use any loss function in place of the kernel estimator used
for non-parametric regression), in reinforcement learning tasks, in transfer learning
and, may even have storage fields linked to emotional feedback or any other type of
specialized contempt based on specific domains.

116

References

[1] W. W. Bledsoe and I. Browning, “Pattern recognition and reading by machine,”
in Papers of the Eastern Joint IRE-AIEE-ACM Computer Conference,
pp. 225–232, 1959.

[2] L. A. Lusquino Filho, L. F. Oliveira, A. Lima Filho, G. P. Guarisa, L. M. Felix,
P. M. Lima, and F. M. França, “Extending the weightless wisard classifier
for regression,” Neurocomputing, vol. 416, pp. 280–291, 2020.

[3] M. Valstar and M. Pantic, “Induced disgust, happiness and surprise: an addition
to the mmi facial expression database,” in Proc. 3rd Intern. Workshop on
EMOTION (satellite of LREC), p. 65, Paris, France., 2010.

[4] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial expres-
sion analysis,” in Proc. IEEE Intl Conference Face and Gesture Recogni-
tion (AFGR 00), pp. 46–53, 2000.

[5] P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and
S. Wermter, “The omg-emotion behavior dataset,” in Proc. of the Int.
Joint Conf. on Neural Networks (IJCNN 2018), pp. 1408–1414, 2018.

[6] I. Aleksander, W. Thomas, and P. Bowden, “Wisard, a radical new step forward
in image recognition,” Sensor Rev., vol. 4(3), pp. 120–124, 1984.

[7] I. Aleksander, M. D. Gregorio, F. França, P. Lima, and H. Morton, “A brief intro-
duction to weightless neural systems,” in Proceedings of the 17th European
Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, pp. 299–305, 2009.

[8] I. Aleksander, “Artificial consciousness: An update,” in Proc. of IWANN, vol. 3,
pp. 566–583, 1995.

[9] I. Aleksander and D. Gamez, “Iconic training and effective information: Evaluat-
ing meaning in discrete neural networks,” in 2009 AAAI Fall Symposium
Series, 2009.

117

[10] D. Gamez and I. Aleksander, “Accuracy and performance of the state-based
φ and liveliness measures of information integration,” Consciousness and
Cognition, vol. 20, no. 4, pp. 1403–1424, 2011.

[11] I. Aleksander and D. Gamez, “Informational theories of consciousness: a review
and extension,” in From brains to systems, pp. 139–147, Springer, 2011.

[12] I. Aleksander and H. Morton, “Axiomatic consciousness theory for visual phe-
nomenology in artificial intelligence,” in AAAI Fall Symposium: AI and
Consciousness, pp. 18–23, 2007.

[13] I. Aleksander and H. Morton, “Phenomenal weightless machines.,” in ESANN,
Citeseer, 2009.

[14] D. Gamez and I. Aleksander, “Taking a mental stance towards artificial sys-
tems,” in 2009 AAAI Fall Symposium Series, 2009.

[15] I. Aleksander and D. Gamez, “Iconic training and effective information: Evalu-
ating meaning in discrete neural networks,” in 2009 AAAI Fall Symposium
Series, 2009.

[16] M. Shanahan, “Consciousness, emotion, and imagination: a brain-inspired ar-
chitecture for cognitive robotics,” in In Proceedings of the AISB’05 Work-
shop: Next Generation Approaches to Machine Consciousness, Citeseer,
2005.

[17] G. F. Ellis, “Top-down causation and the human brain,” in Downward causation
and the neurobiology of free will, pp. 63–81, Springer, 2009.

[18] K. Rauss and G. Pourtois, “What is bottom-up and what is top-down in pre-
dictive coding?,” Frontiers in psychology, vol. 4, p. 276, 2013.

[19] K. Rauss and G. Pourtois, “What is bottom-up and what is top-down in pre-
dictive coding?,” Frontiers in psychology, vol. 4, p. 276, 2013.

[20] T. Sikkens, C. A. Bosman, and U. Olcese, “The role of top-down modulation
in shaping sensory processing across brain states: implications for con-
sciousness,” Frontiers in systems neuroscience, vol. 13, p. 31, 2019.

[21] I. Panella, L. Z. Fragonara, and A. Tsourdos, “A deep learning cognitive ar-
chitecture: Towards a unified theory of cognition,” in Proceedings of SAI
Intelligent Systems Conference, pp. 566–582, Springer, 2020.

[22] A. Newell, “Précis of unified theories of cognition,” Behavioral and Brain Sci-
ences, vol. 15, no. 3, pp. 425–437, 1992.

118

[23] A. Newell, “Unified theories of cognition and the role of soar,” in SOAR: A
cognitive architecture in perspective, pp. 25–79, Springer, 1992.

[24] A. Newell, Unified theories of cognition. Harvard University Press, 1994.

[25] D. Vernon, G. Metta, and G. Sandini, “A survey of artificial cognitive systems:
Implications for the autonomous development of mental capabilities in
computational agents,” IEEE transactions on evolutionary computation,
vol. 11, no. 2, pp. 151–180, 2007.

[26] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures: Research issues
and challenges,” Cognitive Systems Research, vol. 10, no. 2, pp. 141–160,
2009.

[27] A. Lieto, M. Bhatt, A. Oltramari, and D. Vernon, “The role of cognitive archi-
tectures in general artificial intelligence,” 2018.

[28] P. Ye, T. Wang, and F.-Y. Wang, “A survey of cognitive architectures in the
past 20 years,” IEEE transactions on cybernetics, vol. 48, no. 12, pp. 3280–
3290, 2018.

[29] R. Kingdon, “A review of cognitive architectures,” ISO Project report, 2008.

[30] G. A. Kelly, The psychology of personal constructs. Volume 1: A theory of
personality. 500 Fifth Avenue, New York: WW Norton and Company,
1955.

[31] H. C. C. Carneiro, C. E. Pedreira, F. M. G. França, and P. M. V. Lima, “The ex-
act vc dimension of the wisard n-tuple classifier,” in Neural Computation,
vol. 31, Issue 1, pp. 176–207, 2019.

[32] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint
arXiv:1801.00631, 2018.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information
processing systems, pp. 1097–1105, 2012.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[35] S. J. Pan, J. T. Kwok, Q. Yang, et al., “Transfer learning via dimensionality
reduction.,” in AAAI, vol. 8, pp. 677–682, 2008.

119

[36] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4401–4410, 2019.

[37] M. Oza, H. Vaghela, and K. Srivastava, “Progressive generative adversarial
binary networks for music generation,” in International Conference on
Innovative Computing and Communications, pp. 181–192, Springer, 2020.

[38] Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, “Imaginator: Condi-
tional spatio-temporal gan for video generation,” in The IEEE Winter
Conference on Applications of Computer Vision, pp. 1160–1169, 2020.

[39] M. A. Haidar and M. Rezagholizadeh, “Textkd-gan: Text generation using
knowledge distillation and generative adversarial networks,” in Canadian
Conference on Artificial Intelligence, pp. 107–118, Springer, 2019.

[40] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in
Advances in neural information processing systems, pp. 3856–3866, 2017.

[41] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with
deep bidirectional lstm,” in 2013 IEEE workshop on automatic speech
recognition and understanding, pp. 273–278, IEEE, 2013.

[42] A. Bérard, O. Pietquin, C. Servan, and L. Besacier, “Listen and translate: A
proof of concept for end-to-end speech-to-text translation,” arXiv preprint
arXiv:1612.01744, 2016.

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779–788, 2016.

[44] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level con-
cept learning through probabilistic program induction,” Science, vol. 350,
no. 6266, pp. 1332–1338, 2015.

[45] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral and brain sciences,
vol. 40, 2017.

[46] D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi,
X. Lou, Z. Meng, Y. Liu, H. Wang, et al., “A generative vision model that
trains with high data efficiency and breaks text-based captchas,” Science,
vol. 358, no. 6368, 2017.

120

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[48] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou,
N. Dorfman, S. Sidor, S. Phoenix, and D. George, “Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics,”
arXiv preprint arXiv:1706.04317, 2017.

[49] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversar-
ial attacks on neural network policies,” arXiv preprint arXiv:1702.02284,
2017.

[50] R. Jia and P. Liang, “Adversarial examples for evaluating reading comprehen-
sion systems,” arXiv preprint arXiv:1707.07328, 2017.

[51] B. Lake and M. Baroni, “Still not systematic after all these years: On the
compositional skills of sequence-to-sequence recurrent networks,” 2018.

[52] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large anno-
tated corpus for learning natural language inference,” arXiv preprint
arXiv:1508.05326, 2015.

[53] A. Williams, N. Nangia, and S. R. Bowman, “A broad-coverage challenge
corpus for sentence understanding through inference,” arXiv preprint
arXiv:1704.05426, 2017.

[54] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models,” arXiv
preprint arXiv:1708.08296, 2017.

[55] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explain-
ing the predictions of any classifier,” in Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data min-
ing, pp. 1135–1144, 2016.

[56] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 427–
436, 2015.

[57] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, no. 3,
pp. 31–57, 2018.

121

[58] B. Zohuri and F. M. Rahmani, “Artificial intelligence driven resiliency with
machine learning and deep learning components,” International Journal
of Nanotechnology & Nanomedicine, vol. 4, no. 2, pp. 1–8, 2019.

[59] F. Fan, J. Xiong, M. Li, and G. Wang, “On interpretability of artificial neural
networks: A survey,” arXiv preprint arXiv:2001.02522, 2020.

[60] W. Zheng, H. Liu, B. Wang, and F. Sun, “Cross-modal learning for material
perception using deep extreme learning machine,” International Journal
of Machine Learning and Cybernetics, pp. 1–11, 2019.

[61] C. Zhang, Q. Dai, and G. Song, “Deepcascade-wr: a cascading deep architecture
based on weak results for time series prediction,” International Journal of
Machine Learning and Cybernetics, vol. 11, no. 4, pp. 825–840, 2020.

[62] A. T. L. Bacellar, B. F. Goldstein, V. C. Ferreira, L. Santiago, P. Lima, and
F. França, “Fast deep neural networks convergence using a weightless neu-
ral model,” in ESANN, 2020.

[63] S. Milhomem, T. d. S. Almeida, W. G. da Silva, E. M. da Silva, and R. L.
de Carvalho, “Weightless neural network with transfer learning to detect
distress in asphalt,” arXiv preprint arXiv:1901.03660, 2019.

[64] A. Sivasankari, S. Sudarvizhi, and S. R. A. Bai, “Comparative study of dif-
ferent clustering and decision tree for data mining algorithm,” Interna-
tional Journal of Computer Science and Information Technology Research,
vol. 2, no. 3, pp. 221–232, 2014.

[65] A. Pradhan, “Support vector machine - a survey,” International Journal of
Emerging Technology and Advanced Engineering, vol. 2, no. 8, pp. 82–85,
2012.

[66] C. Bielza and P. Larrañaga, “Discrete bayesian network classifiers: a survey,”
ACM Computing Surveys (CSUR), vol. 47, no. 1, pp. 1–43, 2014.

[67] D. L. Abd AL-Nabi and S. S. Ahmed, “Survey on classification algorithms
for data mining:(comparison and evaluation),” International Journal of
Computer Engineering and Intelligent Systems, vol. 4, no. 8, pp. 18–27,
2013.

[68] L. S. de Araújo, V. C. Patil, C. B. Prado, T. A. Alves, L. A. Marzulo, F. M.
França, and S. Kundu, “Design of robust, high-entropy strong pufs via
weightless neural network,” Journal of Hardware and Systems Security,
vol. 3, no. 3, pp. 235–249, 2019.

122

[69] L. Santiago, V. C. Patil, C. B. Prado, T. A. Alves, L. A. Marzulo, F. M.
França, and S. Kundu, “Realizing strong puf from weak puf via neural
computing,” in 2017 IEEE international symposium on defect and fault
tolerance in VLSI and nanotechnology systems (DFT), pp. 1–6, IEEE,
2017.

[70] V. C. Ferreira, A. S. Nery, L. A. J. Marzulo, L. Santiago, D. Souza, B. F.
Goldstein, F. M. G. França, and V. Alves, “A feasible fpga weightless
neural accelerator,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5, 2019.

[71] X. Chen, D. Z. Chen, and X. S. Hu, “modnn: Memory optimal dnn training on
gpus,” in 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 13–18, 2018.

[72] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-
able neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[73] M. G. F. Coutinho, M. F. Torquato, and M. A. C. Fernandes, “Deep neural
network hardware implementation based on stacked sparse autoencoder,”
IEEE Access, vol. 7, pp. 40674–40694, 2019.

[74] F. Yang, Z. Zhang, H. Wang, Y. Li, and X. Hu, “Xdeep: An interpretation tool
for deep neural networks,” arXiv preprint arXiv:1911.01005, 2019.

[75] V. G. T. da Costa, A. C. P. de Leon Ferreira, S. B. Junior, et al., “Strict very fast
decision tree: a memory conservative algorithm for data stream mining,”
Pattern Recognition Letters, vol. 116, pp. 22–28, 2018.

[76] O. Asian, O. T. Yildiz, and E. Alpaydin, “Calculating the vc-dimension of
decision trees,” in 2009 24th International Symposium on Computer and
Information Sciences, pp. 193–198, IEEE, 2009.

[77] J. Struharik, “Implementing decision trees in hardware,” in 2011 IEEE 9th
International Symposium on Intelligent Systems and Informatics, pp. 41–
46, IEEE, 2011.

[78] M. Moshkovitz, Y.-Y. Yang, and K. Chaudhuri, “Connecting interpretability
and robustness in decision trees through separation,” 2021.

[79] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for op-
timal margin classifiers,” in Proceedings of the fifth annual workshop on
Computational learning theory, pp. 144–152, 1992.

123

[80] N. Bajaj, G. T.-C. Chiu, and J. P. Allebach, “Reduction of memory footprint
and computation time for embedded support vector machine (svm) by
kernel expansion and consolidation,” in 2014 IEEE International Work-
shop on Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE,
2014.

[81] C. J. Burges, “A tutorial on support vector machines for pattern recognition,”
Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[82] S. Kumar, J. Manikandan, and V. K. Agrawal, “Hardware implementation of
support vector machine classifier using reconfigurable architecture,” in
2017 International Conference on Advances in Computing, Communica-
tions and Informatics (ICACCI), pp. 45–50, 2017.

[83] D.-H. Nguyen and M.-T. Le, “Improving the interpretability of support vector
machines-based fuzzy rules,” arXiv preprint arXiv:1408.5246, 2014.

[84] D. Roth, “Learning in natural language,” in IJCAI, pp. 898–904, 1999.

[85] H. R. Seth and H. Banka, “Hardware implementation of naïve bayes classifier: A
cost effective technique,” in 2016 3rd International Conference on Recent
Advances in Information Technology (RAIT), pp. 264–267, 2016.

[86] C. Molnar, Interpretable Machine Learning.
https://christophm.github.io/interpretable-ml-book/, 2018. https:

//christophm.github.io/interpretable-ml-book/.

[87] L. I. Kuncheva and M. Galar, “Theoretical and empirical criteria for the edited
nearest neighbour classifier,” in 2015 IEEE International Conference on
Data Mining, pp. 817–822, IEEE, 2015.

[88] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J.-s. Seo, “K-nearest neighbor hardware
accelerator using in-memory computing sram,” in 2019 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
pp. 1–6, 2019.

[89] T. S. Kuhn, “The structure of scientific revolutions. 50th anniversary,” Argu-
ment: Biannual Philosophical Journal, vol. 3, no. 2, pp. 539–543, 2013.

[90] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49,
no. 1, pp. 8–30, 1961.

[91] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural net-
works, vol. 61, pp. 85–117, 2015.

124

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[92] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées, vol. 33. Paris, Avenue du President Kennedy: Im-
primerie nationale, 1908.

[93] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal, vol. 30,
no. 10, pp. 947–954, 1960.

[94] A. E. Bryson, “A gradient method for optimizing multi-stage allocation pro-
cesses,” in Proc. Harvard Univ. Symposium on digital computers and their
applications, vol. 72, p. 22, 1961.

[95] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamrelidze, and E. F. Mishchenko,
Mathematical theory of optimal processes. Abingdon, England; New York:
Routledge, 1961.

[96] A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving opti-
mum programming problems,” 1962.

[97] S. Dreyfus, “The numerical solution of variational problems,” Journal of Math-
ematical Analysis and Applications, vol. 5, no. 1, pp. 30–45, 1962.

[98] J. H. Wilkinson, The algebraic eigenvalue problem, vol. 87. Oxford: Clarendon
Press Oxford, 1965.

[99] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Transactions on
Electronic Computers, no. 3, pp. 299–307, 1967.

[100] S. Director and R. Rohrer, “Automated network design-the frequency-domain
case,” IEEE Transactions on Circuit Theory, vol. 16, no. 3, pp. 330–337,
1969.

[101] A. E. Bryson, Applied optimal control: optimization, estimation and control.
Boca Raton, Florida: CRC Press, 1975.

[102] S. Linnainmaa, “The representation of the cumulative rounding error of an
algorithm as a taylor expansion of the local rounding errors,” Master’s
Thesis (in Finnish), Univ. Helsinki, pp. 6–7, 1970.

[103] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT
Numerical Mathematics, vol. 16, no. 2, pp. 146–160, 1976.

[104] K. Fukushima, “Neural network model for a mechanism of pattern recognition
unaffected by shift in position-neocognitron,” IEICE Technical Report, A,
vol. 62, no. 10, pp. 658–665, 1979.

125

[105] K. Fukushima, “A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36,
pp. 193–202, 1980.

[106] R. M. Haralick and A. C. Yuksel, “The n-tuple subspace classifier: Extensions
and survey,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 2020.

[107] L. A. D. Lusquino Filho, “Classificação de emoções faciais utilizando a rede
neural sem pesos wisard,” Master’s thesis, Universidade Federal do Rio de
Janeiro, 2018.

[108] W. Bledsoe and C. Bisson, “Improved memory matrices for the n-tuple pattern
recognition method,” IRE Transactions on Electronic Computers, no. 3,
pp. 414–415, 1962.

[109] B. Grieco, P. Lima, M. De Gregorio, and F. França, “Extracting fuzzy rules
from “mental” images generated by modified wisard perceptrons,” in Proc.
of ESANN, vol. 16, pp. 101–773, 2008.

[110] D. F. P. de Souza, H. C. C. Carneiro, F. M. G. França, and P. M. V. Lima,
“Rock-paper-scissors wisard,” in 2013 BRICS Congress on Computational
Intelligence and 11th Brazilian Congress on Computational Intelligence
(BRICS-CCI 2013 & CBIC 2013), pp. 178–182, 2013.

[111] J. Bishop, A. Crowe, P. Michinton, and R. Mitchell, “Evolutionary learning to
optimise mapping in n-tuple networks,” in IEE Colloquium on Machine
Learning, pp. 3–1, IET, 1990.

[112] M. Giordano and M. De Gregorio, “An evolutionary approach for optimizing
weightless neural networks.,” in ESANN, 2019.

[113] C. Soares, C. da Silva, M. De Gregorio, and F. França, “Uma implementação
em software do classificador wisard,” V Simpósio Brasileiro de Redes Neu-
rais, vol. 2, pp. 225–229, 1998.

[114] H. B. Azhar and K. Dimond, “A stochastic search algorithm to optimize an n-
tuple classifier by selecting its inputs,” in International Conference Image
Analysis and Recognition, pp. 556–563, Springer, 2004.

[115] M. H. B. Azhar, F. Deravi, and K. Dimond, “Criticality dispersion in swarms
to optimize n-tuples,” in Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pp. 1–8, 2008.

126

[116] G. P. Guarisa, “Estudo comparativo de técnicas de mapeamento no classifi-
cador wisard,” Master’s thesis, Universidade Federal do Rio de Janeiro,
2020.

[117] M. Ettaouil and C. Loqman, “A new optimization model for solving the con-
straint satisfaction problem,” Journal of Advanced Research in Computer
Science, vol. 1, no. 1, pp. 13–31, 2009.

[118] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative
frequencies of events to their probabilities,” in Measures of complexity,
pp. 11–30, Springer, 2015.

[119] N. P. Bradshaw, An Analysis in Weightless Neural Systems. PhD thesis, Im-
perial College London, 1996.

[120] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system,” Neural networks, vol. 4, no. 6, pp. 759–771, 1991.

[121] I. Wickert and F. M. França, “Autowisard: Unsupervised modes for the wis-
ard,” in International Work-Conference on Artificial Neural Networks,
pp. 435–441, Springer, 2001.

[122] I. Wickert and F. M. França, “Validating an unsupervised weightless percep-
tron,” in Proceedings of the 9th International Conference on Neural Infor-
mation Processing, 2002. ICONIP’02., vol. 2, pp. 537–541, IEEE, 2002.

[123] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist
networks: The sequential learning problem,” in Psychology of learning
and motivation, vol. 24, pp. 109–165, Elsevier, 1989.

[124] D. O. Cardoso, D. Carvalho, D. S. F. Alves, D. F. P. de Souza, H. C. C.
Carneiro, C. E. Pedreira, P. M. V. Lima, and F. M. G. França, “Financial
credit analysis via a clustering weightless neural classifier,” Neurocomput-
ing, vol. 183, pp. 70–78, 2016.

[125] L. A. D. Lusquino Filho, G. P. Guarisa, A. Lima Filho, L. F. R. de Oliveira,
F. M. G. França, and P. M. V. Lima, “Classifying actions units with
cluswisard,” in Proceedings of the 28th International Conference on Arti-
ficial Neural Networks, 2019.

[126] D. d. O. Cardoso, P. M. Lima, M. De Gregorio, J. Gama, and F. M. França,
“Clustering data streams with weightless neural networks,” in ESANN

127

2011, 19th European Symposium on Artificial Neural Networks, (Bruges,
Belgium), pp. 201 – 206, 2011.

[127] D. Cardoso, M. De Gregorio, P. Lima, J. Gama, and F. França, “A weightless
neural network-based approach for stream data clustering,” in Intelligent
Data Engineering and Automated Learning - IDEAL 2012 - 13th Inter-
national Conference, (Natal, Brazil), pp. 328—-335, 2012.

[128] D. O. Cardoso, F. M. França, and J. Gama, “Wcds: A two-phase weightless
neural system for data stream clustering,” New Generation Computing,
vol. 35, no. 4, pp. 391–416, 2017.

[129] D. O. Cardoso, J. Gama, and F. M. França, “Weightless neural networks for
open set recognition,” Machine Learning, vol. 106, no. 9-10, pp. 1547–
1567, 2017.

[130] D. F. P. de Souza, F. M. G. França, and P. M. V. Lima, “Spatio-temporal
pattern classification with kernelcanvas and wisard,” in 2014 Brazilian
Conference on Intelligent Systems (BRACIS 2014), pp. 228–233, 2014.

[131] L. A. Lusquino Filho, L. F. Oliveira, H. C. Carneiro, G. P. Guarisa,
A. Lima Filho, F. M. França, and P. M. Lima, “A weightless regres-
sion system for predicting multi-modal empathy,” in 2020 15th IEEE In-
ternational Conference on Automatic Face and Gesture Recognition (FG
2020)(FG), pp. 554–558, 2020.

[132] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in
dynamic environments,” Journal of artificial intelligence research, vol. 11,
pp. 391–427, 1999.

[133] D. F. P. de Souza, F. M. G. França, and P. M. V. Lima, “Real-time mu-
sic tracking based on a weightless neural network,” in Proceedings of the
2015 Ninth International Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, 2015.

[134] A. Kolcz and A. N.M., “n-tuple regression network,” Neural Networks, vol. 9,
pp. 855–869, 1996.

[135] B. Widrow and S. Stearns, Adaptive signal processing. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

[136] W. Härdle, Applied nonparametric regression. No. 19, University Printing
House Shaftesbury Road Cambridge CB2 8BS United Kingdom: Cam-
bridge University Press, 1990.

128

[137] R. A. Davis, K.-S. Lii, and D. N. Politis, “Remarks on some nonparametric
estimates of a density function,” in Selected Works of Murray Rosenblatt,
pp. 95–100, Springer, 2011.

[138] E. Parzen, “On estimation of a probability density function and mode,” The
annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[139] T. Cacoullos, “Estimation of a multivariate density,” tech. rep., University of
Minnesota, 1964.

[140] D. J. Hand, “Kernel discriminant analysis.,” John Wiley & Sons, Inc., One
Wiley Dr., Somerset, N. J. 08873, 1982, 264, 1982.

[141] D. W. Scott, Multivariate density estimation: theory, practice, and visualiza-
tion. Inc. 90 Eglinton Ave.: John Wiley & Sons, 2015.

[142] E. A. Nadaraya, “On estimating regression,” Theory of Probability & Its Ap-
plications, vol. 9, no. 1, pp. 141–142, 1964.

[143] G. S. Watson, “Smooth regression analysis,” Sankhyā: The Indian Journal of
Statistics, Series A, pp. 359–372, 1964.

[144] D. F. Specht et al., “A general regression neural network,” IEEE transactions
on neural networks, vol. 2, no. 6, pp. 568–576, 1991.

[145] A. Kolcz, Approximation Properties of Memory-based. PhD thesis, University
of Manchester - Institute of Science and Technology, Manchester, United
Kingdom, 1996.

[146] A. Kolcz and N. Allinson, “Distance relationships in the n-tuple mapping,”
Pattern Recognition, 1995.

[147] N. Allinson, M. J. Johnson, et al., “Self-organising n-tuple feature maps,”
Neural Network World, vol. 5, pp. 511–530, 1993.

[148] G. D. Tattersall, S. Foster, and R. D. Johnston, “Single-layer lookup percep-
trons,” in IEE Proceedings F (Radar and Signal Processing), vol. 138,
pp. 46–54, IET, 1991.

[149] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way func-
tions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[150] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasche, W. Caarls,
M. B. Jr, S. Kundu, P. M. Lima, and F. M. França, “Memory efficient

129

weightless neural network using bloom filter,” in 27 th European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning, 2019.

[151] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasché, W. Caarls,
M. Breternitz Jr, S. Kundu, P. M. Lima, and F. M. França, “Weightless
neural networks as memory segmented bloom filters,” Neurocomputing,
2020.

[152] U. Manber and S. Wu, “An algorithm for approximate membership checking
with application to password security,” Information Processing Letters,
vol. 50, no. 4, pp. 191–197, 1994.

[153] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[154] P. C. Dillinger and P. Manolios, “Bloom filters in probabilistic verification,” in
International Conference on Formal Methods in Computer-Aided Design,
pp. 367–381, Springer, 2004.

[155] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51,
no. 2, pp. 122–144, 2004.

[156] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and
Technologies, pp. 75–88, 2014.

[157] A. Geil, M. Farach-Colton, and J. D. Owens, “Quotient filters: Approximate
membership queries on the gpu,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 451–462, IEEE, 2018.

[158] L. C. Bandeira, H. L. França, F. M. França, and C. Computaçao, “Nc-wisard:
Uma interpretação booleana da arquitetura neocognitron,” in Anais do
IX Congresso Brasileiro de Redes Neurais/Inteligência Computacional.

[159] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual
pattern recognition,” Neural networks, vol. 1, no. 2, pp. 119–130, 1988.

[160] I. Aleksander and W. Kan, “A probabilistic logic neuron network for associa-
tive learning,” in Proceedings of the First Int. Conf. on Neural Networks,
pp. 541–548, IEEE, 1987.

[161] I. Aleksander, An introduction to neural computing. London: Chapman and
Hall, 1990.

130

[162] J. G. Taylor, “Spontaneous behaviour in neural networks,” Journal of Theo-
retical Biology, vol. 36, no. 3, pp. 513–528, 1972.

[163] F. ECDBC, D. Bisset, and M. Fairhurst, “A goal seeking neuron for boolean
neural networks,” in International Neural Network Conference, pp. 894–
897, Springer, 1990.

[164] I. Aleksander, “Ideal neurons for neural computers,” Parallel Processing in
Neural Systems and Computers, pp. 225–228, 1990.

[165] J. Mrsic-Flogel, “Approaching cognitive system design,” in Proceedings of
the International Conference on Artificial Neural Networks (ICANN 91),
pp. 879–883, 1991.

[166] I. Aleksander and H. Morton, “General neural unit: retrieval performance,”
Electronics letters, vol. 27, no. 19, pp. 1776–1778, 1991.

[167] I. Aleksander, The world in my mind, my mind in the world. Mall Luton:
Andrews UK Limited, 2013.

[168] J. Austin, “Adam: A distributed associative memory tor scene analysis,” in
pp. IV-285 in Proceedings of First International Conference on Neural
Networks, ed. M. Caudill, C. Butler, IEEE, San Diego (June, 1987), 1987.

[169] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-holographic
associative memory,” Nature, vol. 222, no. 5197, pp. 960–962, 1969.

[170] A. Alarcón-Paredes and A.-J. Argüelles-Cruz, “Cainn-weightless alpha-beta
neural network,” in 2008 Electronics, Robotics and Automotive Mechanics
Conference (CERMA’08), pp. 434–438, IEEE, 2008.

[171] P. Kanerva, Sparse distributed memory. Rogers Street, Cambridge: MIT press,
1988.

[172] J. Tome, “Neural activation ratio based fuzzy reasoning,” in 1998 IEEE Inter-
national Conference on Fuzzy Systems Proceedings. IEEE World Congress
on Computational Intelligence (Cat. No. 98CH36228), vol. 2, pp. 1217–
1222, IEEE, 1998.

[173] W. R. de Oliveira, “Quantum ram based neural netoworks.,” in ESANN, vol. 9,
pp. 331–336, 2009.

[174] D. N. Nascimento, R. L. de Carvalho, Mora-Camino, P. M. V. F., Lima, and
F. M. G. França, “A wisard-based multi-term memory framework for on-
line tracking of objects,” in Proceedings of the 23rd European Symposium

131

on Artificial Neural Networks, Computational Intelligence and Machine
Learning, pp. 19–24, 2015.

[175] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[176] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for multi-
class classification,” in Advances in neural information processing systems,
pp. 547–553, 2000.

[177] R. Barbosa, D. O. Cardoso, D. Carvalho, and F. M. França, “A neuro-symbolic
approach to gps trajectory classification,” ESANN, 2017.

[178] R. Barbosa, D. O. Cardoso, D. Carvalho, and F. M. França, “Weightless neuro-
symbolic gps trajectory classification,” Neurocomputing, vol. 298, pp. 100–
108, 2018.

[179] H. C. Carneiro, F. M. França, and P. M. Lima, “Wann-tagger-a weightless arti-
ficial neural network tagger for the portuguese language,” in International
Conference on Neural Computation, vol. 2, pp. 330–335, SciTePress, 2010.

[180] H. C. C. Carneiro, F. M. G. França, and P. M. V. Lima, “Multilingual part-of-
speech tagging with weightless neural networks,” Neural Networks, vol. 66,
pp. 11–21, 2015.

[181] H. C. C. Carneiro, C. E. Pedreira, F. M. G. França, and P. M. V. Lima, “A
universal multilingual weightless neural network tagger via quantitative
linguistics,” Neural Networks, vol. 91, pp. 85–101, 2017.

[182] Y. Yusof, H. A. H. Mansor, and A. Ahmad, “Utilizing unsupervised weightless
neural network as autonomous states classifier in reinforcement learning
algorithm,” in 2017 IEEE 13th International Colloquium on Signal Pro-
cessing & its Applications (CSPA), pp. 264–269, IEEE, 2017.

[183] Y. Yusof, H. A. H. Mansor, and H. D. Baba, “Applying hybrid reinforce-
ment and unsupervised wieghtless neural network learning algorithm on
autonomous mobile robot navigation.,” Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), vol. 9, no. 1-3, pp. 133–
138, 2017.

[184] Y. Yusof, H. A. H. Mansor, and H. D. Baba, “Simulation of mobile robot navi-
gation utilizing reinforcement and unsupervised weightless neural network
learning algorithm,” in 2015 IEEE Student Conference on Research and
Development (SCOReD), pp. 123–128, IEEE, 2015.

132

[185] M. De Gregorio and M. Giordano, “Memory transfer in drasiw–like systems,”
in Proceedings ESANN, p. 25, Presses universitaires de Louvain, 2015.

[186] J. Gryak, R. M. Haralick, and D. Kahrobaei, “Solving the conjugacy decision
problem via machine learning,” Experimental Mathematics, vol. 29, no. 1,
pp. 66–78, 2020.

[187] R. Cheruku, D. R. Edla, V. Kuppili, R. Dharavath, and N. R. Beechu, “Au-
tomatic disease diagnosis using optimised weightless neural networks for
low-power wearable devices,” Healthcare technology letters, vol. 4, no. 4,
pp. 122–128, 2017.

[188] N. G. Haider and A. Karim, “Ram based neural-network controlled vehicle:
path-tracking & collision avoidance,” in 2013 3rd IEEE International Con-
ference on Computer, Control and Communication (IC4), pp. 1–8, IEEE,
2013.

[189] J.-C. Yen, F.-J. Chang, and S. Chang, “A new criterion for automatic multi-
level thresholding,” IEEE Transactions on Image Processing, vol. 4, no. 3,
pp. 370–378, 1995.

[190] J. Sauvola and M. Pietikainen, “Adaptive document image binarization,” Pat-
tern Recognition, vol. 33, 2000.

[191] H. P. Luhn, “A statistical approach to mechanized encoding and searching of
literary information,” IBM Journal of research and development, vol. 1,
no. 4, pp. 309–317, 1957.

[192] K. S. Jones, “A statistical interpretation of term specificity and its application
in retrieval,” Journal of documentation, 1972.

[193] A. Kappaun, K. Camargo, F. Rangel, F. Firmino, P. M. V. Lima, and
J. Oliveira, “Evaluating binary encoding techniques for wisard,” in 2016
5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 103–108,
IEEE, 2016.

[194] L. A. D. Lusquino Filho, F. M. G. França, and P. M. V. Lima, “Near-optimal
facial emotion classification using wisard-based weightless system,” in Pro-
ceedings of the 26th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, pp. 85–90, 2018.

[195] L. A. D. Lusquino Filho, L. F. R. Oliveira, A. Lima Filho, G. P. Guarisa,
P. M. V. Lima, , and F. M. G. França, “Prediction of palm oil produc-
tion with an enhanced n-tuple regression network,” in Proceedings of the

133

27th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pp. 301–306, 2019.

[196] P. Ekman and F. W.V, “Manual for the facial action coding system,” 1977.

[197] V. Bettadapura, “Face expression recognition and analysis: The state of the
art.”

[198] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” in Data
mining and knowledge discovery handbook, pp. 667–685, Springer, 2009.

[199] K. R. Scherer, Handbook of methods in nonverbal behavior research. Cambridge
University Press, 1985.

[200] Q. Li, J. Yu, T. Kurihara, and S. Zhan, “Micro-expression analysis by fusing
deep convolutional neural network and optical flow,” in 2018 5th Inter-
national Conference on Control, Decision and Information Technologies
(CoDIT), pp. 265–270, IEEE, 2018.

[201] X. Xu, C. Quan, and F. Ren, “Facial expression recognition based on gabor
wavelet transform and histogram of oriented gradients,” in 2015 IEEE
International Conference on Mechatronics and Automation (ICMA),
pp. 2117–2122, IEEE, 2015.

[202] L.-J. Xie, H. Wen, and N.-F. Xiao, “Affective computing model based on hmm
for home-service robot,” Computer Engineering and Design, vol. 33, no. 1,
pp. 322–327, 2012.

[203] R. Asmara, P. Choirina, C. Rahmad, A. Setiawan, F. Rahutomo, R. Yusron,
and U. Rosiani, “Study of drmf and asm facial landmark point for micro
expression recognition using klt tracking point feature,” in Journal of
Physics: Conference Series, vol. 1402, p. 077039, IOP Publishing, 2019.

[204] H. Tao and T. S. Huang, “Connected vibrations: a modal analysis approach
for non-rigid motion tracking,” in Proceedings. 1998 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (Cat. No.
98CB36231), pp. 735–740, IEEE, 1998.

[205] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”
Machine learning, vol. 29, no. 2, pp. 131–163, 1997.

[206] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of
finite state markov chains,” The annals of mathematical statistics, vol. 37,
no. 6, pp. 1554–1563, 1966.

134

[207] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[208] P. Khorrami, T. L. Paine, and T. S. Huang, “Do deep neural networks learn
facial action units when doing expression recognition?,” 2017.

[209] P. Prajod, D. Schiller, T. Huber, and E. André, “Do deep neural networks
forget facial action units? – exploring the effects of transfer learning in
health related facial expression recognition,” 2021.

[210] J.-Y. Chang and J.-L. Chen, “A facial expression recognition system using
neural networks,” in IJCNN’99. International Joint Conference on Neural
Networks. Proceedings (Cat. No.99CH36339), vol. 5, pp. 3511–3516 vol.5,
1999.

[211] B. Martinez, M. F. Valstar, B. Jiang, and M. Pantic, “Automatic analysis of
facial actions: A survey,” in IEEE Transactions on Affective Computing,
2018.

[212] W.-S. Chu, F. D. la Torre, and J. F. Cohn, “Learning spatial and temporal
cues for multi-label facial action unit detection,” 2016.

[213] T. Almaev, B. Martinez, and M. Valstar, “Learning to transfer: Transferring
latent task structures and its application to person-specific facial action
unit detection,” in IEEE International Conference on Computer Vision
(ICCV), pp. 3774–3782, 2015.

[214] R. Breuer and R. Kimmel, “A deep learning perspective on the origin of facial
expressions,” 2017.

[215] I. Abbasnejad, S. Sridharan, D. Nguyen, S. Denman, C. Fookes, and S. Lucey,
“Using synthetic data to improve facial expression analysis with 3d convo-
lutional networks,” in 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW), 2017.

[216] G. Pons and D. Masip, “Multi-task, multi-label and multi-domain learning
with residual convolutional networks for emotion recognition,” 2018.

[217] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[218] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,”
Journal of artificial intelligence research, vol. 11, pp. 169–198, 1999.

135

[219] R. da Silva Moreira and N. F. F. Ebecken, “Maritime vessel tracking with an
ensemble of wisard classifiers in video,” International Journal of Systems
Applications, Engineering and Development, vol. 9, 2015.

[220] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 12(10), pp. 993–1001,
1990.

[221] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 8, 2018. Issue 4,
e1249.

[222] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24(2), pp. 123–140,
1996.

[223] R. E. Schapire, “The strength of weak learnability,” Machine Learning,
vol. 5(2), pp. 197–227, 1990.

[224] L. Breiman, “Arcing classifier (with discussion and a rejoinder by the author),”
The annals of statistics, vol. 26, no. 3, pp. 801–849, 1998.

[225] R. Schapire, Y. Freund, et al., “A decision-theoretic generalization of on-line
learning and an application to boosting,” in Second European Conference
on Computational Learning Theory, pp. 23–37, 1995.

[226] D. Lippman, “Voting theory,” Creative Commons BY-SA (A summary docu-
ment), 2013.

[227] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” 2009.

[228] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[229] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[230] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, (Portland, Oregon, USA), pp. 142–150, Associa-
tion for Computational Linguistics, June 2011.

136

[231] F. M. Harper and J. A. Konstan, “The movielens datasets: History and con-
text,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[232] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” arXiv preprint
arXiv:2010.01412, 2020.

[233] P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki, “Dexpres-
sion: Deep convolutional neural network for expression recognition,” arXiv
preprint arXiv:1509.05371, 2015.

[234] A. Byerly, T. Kalganova, and I. Dear, “No routing needed between capsules,”
2021.

[235] M. S. Tanveer, M. U. K. Khan, and C.-M. Kyung, “Fine-tuning darts for
image classification,” in 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 4789–4796, IEEE, 2021.

[236] T. Thongtan and T. Phienthrakul, “Sentiment classification using document
embeddings trained with cosine similarity,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: Student
Research Workshop, pp. 407–414, 2019.

[237] “Kdd br competition 2018.” https://www.kaggle.com/c/kddbr-2018/.

[238] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, pp. 287–289, 1977.

[239] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric discrimi-
nation: Consistency properties,” International Statistical Review/Revue
Internationale de Statistique, vol. 57, no. 3, pp. 238–247, 1989.

[240] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pp. 785–794, 2016.

[241] M. Awad and R. Khanna, “Support vector regression,” in Efficient learning
machines, pp. 67–80, Springer, 2015.

[242] “House prices: Advanced regression techniques.”

[243] “Calcofi: Over 60 years of oceanographic data.”

[244] “Parkinson’s telemonitoring dataset.”

137

[245] L. Breiman, “Arcing the edge,” in Technical Report 486, Statistics Department,
University of California, Berkeley, 1997.

[246] J. Friedman, “Greedy function approximation: A gradient boosting machine,”
in Annals of Statistics, vol. 29, pp. 1189–1232, 2001.

[247] “Kaggle display advertising challenge dataset.”
http://labs.criteo.com/2014/02/kaggle-displayadvertising-challenge-
dataset/.

[248] A. Lima Filho, G. P. Guarisa, L. A. D. Lusquino Filho, L. F. R. Oliveira,
C. A. N. Cosenza, F. M. G. França, and P. M. V. Lima, “Interpretation of
model agnostic classifiers via local mental images,” in Proceedings of the
28th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2020.

[249] R. N. Rocha, L. Leopoldo Filho, M. Aredes, F. M. França, and P. M. Lima,
“Regression wisard application of controller on dc statcom converter under
fault conditions,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 860–867, IEEE, 2020.

[250] D. Dresvyanskiy, E. Ryumina, H. Kaya, M. Markitantov, A. Karpov, and
W. Minker, “An audio-video deep and transfer learning framework for
multimodal emotion recognition in the wild,” 2020.

[251] Z. Yu and N. Shi, “A multi-modal deep learning model for video thumbnail
selection,” 2020.

[252] S. Moon, S. Kim, and H. Wang, “Multimodal transfer deep learning for au-dio
visual recognition,” arXiv preprint arXiv:1412.3121, 2014.

[253] P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and
S. Wermter, Results of the 2018 OMG-Empathy Prediction Challenge,
2019 (accessed September 27, 2020).

[254] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applica-
tions,” Computer Science Review, vol. 40, p. 100379, 2021.

[255] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of
energy consumption in machine learning,” Journal of Parallel and Dis-
tributed Computing, vol. 134, pp. 75–88, 2019.

[256] Y. He, G. Meng, K. Chen, X. Hu, and J. He, “Towards security threats of deep
learning systems: A survey,” IEEE Transactions on Software Engineering,
2020.

138

[257] R. Bhaskar, Reclaiming reality: A critical introduction to contemporary phi-
losophy. 11 Main Street, Germantown, NY: Taylor & Francis, 2010.

[258] S. Fox and T. Do, “Getting real about big data: applying critical realism to
analyse big data hype,” International Journal of Managing Projects in
Business, 2013.

[259] T. Rogers, “Critical realism and learning analytics research: epistemological
implications of an ontological foundation,” in Proceedings of the fifth in-
ternational conference on learning analytics and knowledge, pp. 223–230,
2015.

[260] K. D. Miller, “Agent-based modeling and organization studies: A critical real-
ist perspective,” Organization Studies, vol. 36, no. 2, pp. 175–196, 2015.

[261] P. Törnberg and A. Törnberg, “The limits of computation: A philosophical
critique of contemporary big data research,” Big Data & Society, vol. 5,
no. 2, 2018.

[262] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative multi-
agent planning: A survey,” ACM Computing Surveys, vol. 50 (6), 2017.

[263] D. Gamez, “Progress in machine consciousness,” vol. 17 (3), pp. 887–910, 2008.

[264] R. Brooks, C. Breazeal, M. Marjanović, B. Scassellati, and M. Williamson,
“The cog project: Building a humanoid robot,” 1998.

[265] S. Franklin, “Autonomous software agent for navy personnel work: A case
study,” in Papers from 2003 AAAI Spring Symposium, 2003.

139

Appendices

140

Appendix A

Supplementary Action Units
Experiments

Figures A.1-A.12 show results of accuracy, F1-Score, precision, recall, training time
mean, and classification time mean for the Binary Relevance and Label Powerset
approaches applied in WiSARD and ClusWiSARD, respectively. In these figures n
means the tuple size of the models. ClusWiSARD with Binary Relevance presented
the best accuracy and the same network with Label Powerset presented the best
F1-Score.

Figure A.1: Accuracy of Binary Relevance vs Label Powerset approaches using
WiSARD; n = the tuple size.

Figure A.2: Accuracy of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size.

141

Figure A.3: F1-Score of Binary Relevance vs Label Powerset approaches using WiS-
ARD; n = the tuple size.

Figure A.4: F1-Score of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size.

Figure A.5: Precision of Binary Relevance vs Label Powerset approaches using WiS-
ARD; n = the tuple size.

Figure A.6: Precision of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size.

142

Figure A.7: Recall of Binary Relevance vs Label Powerset approaches using WiS-
ARD; n = the tuple size.

Figure A.8: Recall of Binary Relevance vs Label Powerset approaches using
ClusWiSARD; n = the tuple size.

Figure A.9: Training time mean of Binary Relevance vs Label Powerset approaches
using WiSARD; n = the tuple size.

Figure A.10: Training time mean of Binary Relevance vs Label Powerset approaches
using ClusWiSARD; n = the tuple size.

143

Figure A.11: Classification time mean of Binary Relevance vs Label Powerset ap-
proaches using WiSARD; n = the tuple size.

Figure A.12: Classification time mean of Binary Relevance vs Label Powerset ap-
proaches using ClusWiSARD; n = the tuple size.

The confusion matrix of best scored AUs in this result is expressed in Table A.

Table A.1: Multi-label confusion matrix for best scored classes (ClusWiSARD,
Adaptive Mean, Binary Relevance): AUs 10 and 31, respectively; M0,0 is the count
of true negatives, M0,1 is false positives, M1,0 is false negatives and M1,1 is true
positives.

AU 10
347 41
182 18

AU 31
360 37
169 22

144

Appendix B

Supplementary Ensemble
Experiments

This appendix displays the complete results for all models of ensembles to the ex-
periments reported in the Chapter 4.

The accuracy variance in all experiments described here was 0.

B.1 Cifar10 Dataset

Here are the results obtained in the Cifar10 dataset.

B.1.1 Local Threshold

The results are found in Tables B.1-B.5.

Table B.1: Results for WiSARD Bagging Ensembles in Cifar10 Dataset with Local
Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.19 ± 0.01 4.35 ± 0.32 1.76e+01 ± 4.59

Clus 0.20 ± 0.05 13.22 ± 1.92 9.61e+01 ± 44.32
Mix 0.19 ± 0.04 11.17 ± 0.84 4.58e+01 ± 12.44

20
WiSARD 0.17 ± 0.02 9.84 ± 0.68 3.79e+01 ± 4.86

Clus 0.20 ± 0.05 21.99 ± 1.38 8.48e+01 ± 16.73
Mix 0.20 ± 0.04 23.97 ± 1.34 8.45e+01 ± 19.83

0.8

10
WiSARD 0.21 ± 0.07 6.10 ± 0.74 2.36e+01 ± 1.13

Clus 0.25 ± 0.03 17.87 ± 2.94 7.37e+01 ± 45.69
Mix 0.23 ± 0.05 15.44 ± 1.65 5.57e+01 ± 26.24

20
WiSARD 0.21 ± 0.07 12.93 ± 1.84 4.58e+01 ± 9.88

Clus 0.22 ± 0.04 33.92 ± 4.20 1.28e+02 ± 31.92
Mix 0.24 ± 0.05 33.63 ± 1.70 1.32e+02 ± 23.71

145

Table B.2: Results for WiSARD Boosting Ensembles in Cifar10 Dataset with Local
Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.14 ± 0.00 6.05 ± 0.68 22.01 ± 9.79 8.13e+01 ± 18.69

Clus 0.17 ± 0.04 6.05 ± 0.27 12.18 ± 3.94 5.94e+01 ± 9.00
Mix 0.20 ± 0.06 5.92 ± 0.44 52.37 ± 56.69 1.42e+02 ± 112.79

20
WiSARD 0.17 ± 0.05 6.14 ± 0.20 39.06 ± 23.88 1.57e+02 ± 53.03

Clus 0.16 ± 0.02 6.23 ± 0.24 36.45 ± 15.56 1.50e+02 ± 34.83
Mix 0.15 ± 0.02 6.07 ± 0.15 62.80 ± 9.01 2.03e+02 ± 17.23

Table B.3: Results for Borda Count Ensembles in Cifar10 Dataset with Local
Threshold

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.21 ± 0.06 5.91 ± 1.22 2.81e+01 ± 1.14
Start at 1 0.18 ± 0.02 5.85 ± 0.34 2.10e+01 ± 2.55
Dowdall 0.22 ± 0.02 6.01 ± 0.27 2.95e+01 ± 5.91

20
Start at 0 0.19 ± 0.04 11.79 ± 0.28 4.65e+01 ± 4.78
Start at 1 0.21 ± 0.01 11.92 ± 0.31 5.09e+01 ± 9.83
Dowdall 0.26 ± 0.01 12.55 ± 0.64 6.61e+01 ± 1.48

0.8

10
Start at 0 0.24 ± 0.02 7.78 ± 0.53 3.46e+01 ± 3.28
Start at 1 0.17 ± 0.07 7.24 ± 1.13 3.26e+01 ± 4.36
Dowdall 0.21 ± 0.06 7.91 ± 0.96 2.99e+01 ± 9.90

20
Start at 0 0.19 ± 0.05 14.85 ± 2.17 6.24e+01 ± 8.54
Start at 1 0.20 ± 0.03 15.92 ± 0.29 6.45e+01 ± 6.89
Dowdall 0.18 ± 0.02 15.26 ± 0.66 5.48e+01 ± 15.38

Table B.4: Results for Tie-break Ensembles in Cifar10 Dataset with Local Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.15 ± 0.04 5.30 ± 0.88 2.26e+01 ± 3.50

Only Ties 0.15 ± 0.03 6.34 ± 0.43 2.58e+01 ± 1.62
Threshold 0.14 ± 0.02 6.20 ± 0.29 2.49e+01 ± 2.96

20
All Candidates 0.14 ± 0.03 13.65 ± 0.10 4.91e+01 ± 1.50

Only Ties 0.15 ± 0.02 12.52 ± 0.95 5.20e+01 ± 3.83
Threshold 0.15 ± 0.00 12.04 ± 0.32 5.19e+01 ± 3.78

0.8

10
All Candidates 0.15 ± 0.03 8.80 ± 1.19 2.82e+01 ± 2.26

Only Ties 0.14 ± 0.01 8.59 ± 0.35 2.78e+01 ± 1.82
Threshold 0.13 ± 0.01 8.09 ± 0.62 2.90e+01 ± 2.93

20
All Candidates 0.16 ± 0.01 19.16 ± 0.95 5.17e+01 ± 2.02

Only Ties 0.16 ± 0.03 18.20 ± 1.68 5.06e+01 ± 2.48
Threshold 0.13 ± 0.01 15.72 ± 0.41 5.15e+01 ± 2.60

B.1.2 Mean Threshold

The results are found in Tables B.6-B.10.

146

Table B.5: Results for Weighted Votes Ensembles in Cifar10 Dataset with Local
Threshold

Partition wl Acc Training time Test time

0.6 10 0.16 ± 0.03 7.00 ± 0.89 2.56e+01 ± 2.85
20 0.14 ± 0.03 12.68 ± 1.32 5.28e+01 ± 0.53

0.8 10 0.12 ± 0.00 8.18 ± 0.22 2.67e+01 ± 3.40
20 0.13 ± 0.01 18.25 ± 2.07 4.99e+01 ± 2.98

Table B.6: Results for WiSARD Bagging Ensembles in Cifar10 Dataset with Mean
Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.31 ± 0.02 4.61 ± 0.29 1.99e+01 ± 4.88

Clus 0.33 ± 0.00 15.45 ± 1.03 5.67e+01 ± 7.21
Mix 0.31 ± 0.01 16.11 ± 1.21 7.51e+01 ± 20.41

20
WiSARD 0.32 ± 0.01 9.64 ± 0.77 3.77e+01 ± 4.27

Clus 0.33 ± 0.01 29.41 ± 1.94 1.31e+02 ± 18.10
Mix 0.33 ± 0.01 35.42 ± 6.67 1.89e+02 ± 97.75

0.8

10
WiSARD 0.33 ± 0.02 6.31 ± 1.05 2.20e+01 ± 2.15

Clus 0.32 ± 0.01 21.09 ± 4.65 8.64e+01 ± 46.97
Mix 0.32 ± 0.01 20.82 ± 4.75 6.77e+01 ± 15.81

20
WiSARD 0.34 ± 0.00 13.44 ± 1.00 5.01e+01 ± 12.18

Clus 0.33 ± 0.02 44.38 ± 8.18 1.58e+02 ± 32.97
Mix 0.34 ± 0.01 39.49 ± 4.63 1.29e+02 ± 26.42

Table B.7: Results for WiSARD Boosting Ensembles in Cifar10 Dataset with Mean
Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.26 ± 0.03 5.92 ± 0.29 22.14 ± 8.85 8.44e+01 ± 19.26

Clus 0.29 ± 0.02 6.07 ± 0.25 18.22 ± 7.06 7.70e+01 ± 17.89
Mix 0.26 ± 0.03 6.09 ± 0.29 16.47 ± 5.92 7.56e+01 ± 17.43

20
WiSARD 0.25 ± 0.01 6.16 ± 0.22 42.53 ± 19.57 1.71e+02 ± 32.99

Clus 0.27 ± 0.03 6.34 ± 0.15 48.69 ± 18.93 1.89e+02 ± 40.89
Mix 0.26 ± 0.01 6.37 ± 0.13 49.72 ± 28.83 1.90e+02 ± 60.98

B.1.3 Otsu’s Binarization

The results are found in Tables B.11-B.15.

B.1.4 Yen’s Binarization

The results are found in Tables B.16-B.20.

B.2 CKP Dataset

Here are the results obtained in the CKP dataset.

147

Table B.8: Results for Borda Count Ensembles in Cifar10 Dataset with Mean
Threshold

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.31 ± 0.03 6.43 ± 0.75 3.33e+01 ± 13.31
Start at 1 0.31 ± 0.03 6.14 ± 0.97 2.92e+01 ± 3.79
Dowdall 0.32 ± 0.02 6.91 ± 0.66 2.96e+01 ± 5.37

20
Start at 0 0.34 ± 0.01 12.68 ± 0.55 6.63e+01 ± 3.69
Start at 1 0.33 ± 0.01 12.91 ± 0.61 6.93e+01 ± 14.57
Dowdall 0.34 ± 0.01 14.58 ± 1.14 6.41e+01 ± 17.47

0.8

10
Start at 0 0.32 ± 0.01 8.52 ± 0.57 3.67e+01 ± 2.68
Start at 1 0.33 ± 0.01 8.74 ± 0.22 3.77e+01 ± 9.43
Dowdall 0.33 ± 0.01 8.65 ± 0.45 3.02e+01 ± 6.47

20
Start at 0 0.34 ± 0.01 16.66 ± 1.30 7.52e+01 ± 10.30
Start at 1 0.32 ± 0.01 15.79 ± 0.94 5.81e+01 ± 5.74
Dowdall 0.33 ± 0.01 16.15 ± 0.83 5.74e+01 ± 13.72

Table B.9: Results for Tie-break Ensembles in Cifar10 Dataset with Mean Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.19 ± 0.01 6.43 ± 0.59 2.36e+01 ± 3.25

Only Ties 0.20 ± 0.02 6.36 ± 0.45 2.71e+01 ± 2.06
Threshold 0.18 ± 0.02 6.35 ± 0.53 2.47e+01 ± 1.99

20
All Candidates 0.21 ± 0.02 13.05 ± 1.32 5.38e+01 ± 4.99

Only Ties 0.21 ± 0.03 14.89 ± 0.71 5.00e+01 ± 5.32
Threshold 0.19 ± 0.03 11.33 ± 0.12 4.60e+01 ± 3.42

0.8

10
All Candidates 0.20 ± 0.01 8.73 ± 0.58 2.79e+01 ± 0.77

Only Ties 0.21 ± 0.02 8.08 ± 0.06 2.51e+01 ± 3.46
Threshold 0.18 ± 0.01 8.19 ± 0.68 2.70e+01 ± 2.21

20
All Candidates 0.20 ± 0.00 17.43 ± 0.62 5.48e+01 ± 2.25

Only Ties 0.23 ± 0.01 17.32 ± 1.31 4.67e+01 ± 2.25
Threshold 0.20 ± 0.01 15.89 ± 0.98 5.01e+01 ± 3.18

Table B.10: Results for Weighted Votes Ensembles in Cifar10 Dataset with Mean
Threshold

Partition wl Acc Training time Test time

0.6 10 0.21 ± 0.00 6.65 ± 0.23 2.62e+01 ± 1.10
20 0.20 ± 0.01 11.19 ± 0.54 5.03e+01 ± 4.70

0.8 10 0.20 ± 0.01 7.48 ± 0.55 2.32e+01 ± 0.73
20 0.21 ± 0.02 17.65 ± 1.59 4.98e+01 ± 0.91

B.2.1 Local Threshold

The results are found in Tables B.21-B.25.

B.2.2 Mean Threshold

The results are found in Tables B.26-B30.

148

Table B.11: Results for WiSARD Bagging Ensembles in Cifar10 Dataset with Otsu’s
Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.34 ± 0.01 4.67 ± 0.48 2.23e+01 ± 0.59

Clus 0.34 ± 0.00 12.72 ± 0.28 5.16e+01 ± 13.59
Mix 0.34 ± 0.01 15.06 ± 2.41 6.44e+01 ± 25.19

20
WiSARD 0.35 ± 0.00 9.55 ± 0.33 4.33e+01 ± 2.41

Clus 0.36 ± 0.01 37.05 ± 4.61 1.75e+02 ± 37.38
Mix 0.34 ± 0.01 30.55 ± 4.34 1.33e+02 ± 48.20

0.8

10
WiSARD 0.35 ± 0.01 6.52 ± 0.98 2.64e+01 ± 3.97

Clus 0.34 ± 0.01 25.54 ± 3.57 1.07e+02 ± 43.50
Mix 0.32 ± 0.01 31.27 ± 6.25 1.76e+02 ± 53.04

20
WiSARD 0.35 ± 0.00 12.18 ± 0.76 3.57e+01 ± 5.43

Clus 0.36 ± 0.00 41.61 ± 1.05 1.48e+02 ± 22.34
Mix 0.36 ± 0.00 44.19 ± 6.87 1.59e+02 ± 40.37

Table B.12: Results for WiSARD Boosting Ensembles in Cifar10 Dataset with
Otsu’s Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.29 ± 0.01 6.03 ± 0.12 22.72 ± 7.15 9.09e+01 ± 16.39

Clus 0.31 ± 0.00 6.07 ± 0.19 31.29 ± 24.22 1.05e+02 ± 45.63
Mix 0.30 ± 0.01 5.90 ± 0.31 32.58 ± 26.58 1.05e+02 ± 53.36

20
WiSARD 0.29 ± 0.01 6.05 ± 0.02 35.66 ± 11.32 1.63e+02 ± 27.74

Clus 0.29 ± 0.02 6.52 ± 0.26 58.79 ± 26.45 2.12e+02 ± 52.85
Mix 0.28 ± 0.01 6.20 ± 0.18 46.23 ± 17.33 1.88e+02 ± 40.57

Table B.13: Results for Borda Count ensembles in Cifar10 dataset with Otsu’s
Binarization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.34 ± 0.01 6.12 ± 0.35 3.05e+01 ± 5.60
Start at 1 0.34 ± 0.01 6.39 ± 0.23 2.85e+01 ± 5.87
Dowdall 0.31 ± 0.01 5.53 ± 0.41 4.14e+01 ± 4.14

20
Start at 0 0.36 ± 0.00 13.15 ± 0.66 6.27e+01 ± 0.89
Start at 1 0.35 ± 0.01 12.97 ± 1.79 6.85e+01 ± 14.09
Dowdall 0.34 ± 0.02 12.65 ± 0.26 5.72e+01 ± 8.77

0.8

10
Start at 0 0.34 ± 0.01 8.46 ± 0.49 3.63e+01 ± 1.73
Start at 1 0.33 ± 0.00 7.80 ± 0.39 4.51e+01 ± 11.56
Dowdall 0.33 ± 0.01 8.29 ± 0.17 3.70e+01 ± 9.26

20
Start at 0 0.35 ± 0.01 16.41 ± 1.75 6.74e+01 ± 2.78
Start at 1 0.35 ± 0.01 15.53 ± 1.07 6.73e+01 ± 13.07
Dowdall 0.35 ± 0.01 14.89 ± 0.53 5.71e+01 ± 10.71

B.2.3 Otsu’s Binarization

The results are found in Tables B.31-B.35.

149

Table B.14: Results for Tie-break Ensembles in Cifar10 Dataset with Otsu’s Bina-
rization
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.21 ± 0.01 5.34 ± 0.28 2.34e+01 ± 2.24

Only Ties 0.20 ± 0.01 5.50 ± 0.61 2.35e+01 ± 4.82
Threshold 0.18 ± 0.01 6.14 ± 0.19 2.56e+01 ± 3.56

20
All Candidates 0.23 ± 0.02 11.53 ± 1.02 4.70e+01 ± 3.62

Only Ties 0.23 ± 0.02 11.05 ± 0.97 4.61e+01 ± 0.31
Threshold 0.20 ± 0.01 11.59 ± 0.71 4.93e+01 ± 6.05

0.8

10
All Candidates 0.21 ± 0.02 7.77 ± 0.97 2.54e+01 ± 3.60

Only Ties 0.20 ± 0.01 7.62 ± 0.06 2.59e+01 ± 2.76
Threshold 0.17 ± 0.02 7.79 ± 0.50 2.49e+01 ± 1.10

20
All Candidates 0.24 ± 0.00 14.70 ± 0.65 4.99e+01 ± 1.82

Only Ties 0.24 ± 0.01 15.20 ± 1.10 4.65e+01 ± 2.45
Threshold 0.20 ± 0.01 15.28 ± 0.55 5.00e+01 ± 3.33

Table B.15: Results for Weighted Votes Ensembles in Cifar10 Dataset with Otsu’s
Binarization

Partition wl Acc Training time Test time

0.6 10 0.20 ± 0.01 5.56 ± 0.11 2.41e+01 ± 3.21
20 0.24 ± 0.02 11.06 ± 0.25 4.31e+01 ± 1.40

0.8 10 0.21 ± 0.01 7.96 ± 0.39 2.51e+01 ± 2.32
20 0.23 ± 0.01 16.20 ± 0.74 4.72e+01 ± 4.04

Table B.16: Results for WiSARD Bagging Ensembles in Cifar10 Dataset with Yen’s
Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.33 ± 0.00 4.01 ± 0.37 1.85e+01 ± 3.81

Clus 0.32 ± 0.01 15.61 ± 7.41 7.03e+01 ± 46.86
Mix 0.32 ± 0.01 15.74 ± 4.00 7.16e+01 ± 34.46

20
WiSARD 0.34 ± 0.01 7.72 ± 0.67 3.64e+01 ± 12.10

Clus 0.33 ± 0.01 34.35 ± 6.12 1.56e+02 ± 23.56
Mix 0.34 ± 0.01 37.20 ± 4.98 1.74e+02 ± 18.31

0.8

10
WiSARD 0.34 ± 0.01 5.35 ± 0.43 2.27e+01 ± 6.29

Clus 0.33 ± 0.00 18.09 ± 2.80 6.61e+01 ± 11.93
Mix 0.33 ± 0.01 21.08 ± 1.80 8.35e+01 ± 31.95

20
WiSARD 0.35 ± 0.00 13.11 ± 0.77 4.54e+01 ± 0.07

Clus 0.34 ± 0.01 45.18 ± 4.61 1.43e+02 ± 33.99
Mix 0.34 ± 0.00 53.28 ± 7.83 1.91e+02 ± 36.35

B.2.4 Yen’s Binarization

The results are found in Tables B.36-B.40.

150

Table B.17: Results for WiSARD Boosting Ensembles in Cifar10 Dataset with Yen’s
Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.30 ± 0.00 5.95 ± 0.72 19.22 ± 9.15 8.30e+01 ± 19.60

Clus 0.30 ± 0.01 5.81 ± 0.28 18.20 ± 9.25 8.02e+01 ± 26.20
Mix 0.29 ± 0.01 5.81 ± 0.12 21.05 ± 1.72 8.52e+01 ± 2.70

20
WiSARD 0.27 ± 0.01 5.90 ± 0.23 33.19 ± 25.36 1.54e+02 ± 55.02

Clus 0.28 ± 0.01 6.13 ± 0.19 36.05 ± 13.26 1.62e+02 ± 28.51
Mix 0.29 ± 0.01 6.46 ± 0.19 60.20 ± 28.92 2.08e+02 ± 55.95

Table B.18: Results for Borda Count Ensembles in Cifar10 Dataset with Yen’s
Binarization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.33 ± 0.00 6.22 ± 0.21 2.85e+01 ± 1.17
Start at 1 0.33 ± 0.00 5.63 ± 0.25 3.24e+01 ± 2.17
Dowdall 0.32 ± 0.00 5.43 ± 0.32 3.18e+01 ± 9.68

20
Start at 0 0.34 ± 0.00 10.66 ± 0.45 6.00e+01 ± 10.77
Start at 1 0.34 ± 0.01 10.95 ± 0.73 5.63e+01 ± 10.17
Dowdall 0.34 ± 0.01 11.09 ± 0.76 4.60e+01 ± 0.65

0.8

10
Start at 0 0.32 ± 0.01 7.49 ± 0.50 3.25e+01 ± 9.15
Start at 1 0.32 ± 0.01 6.89 ± 0.29 3.84e+01 ± 12.63
Dowdall 0.33 ± 0.00 7.53 ± 0.26 2.66e+01 ± 5.54

20
Start at 0 0.34 ± 0.01 14.31 ± 0.20 6.71e+01 ± 12.97
Start at 1 0.35 ± 0.00 15.32 ± 0.71 6.12e+01 ± 9.94
Dowdall 0.34 ± 0.00 14.30 ± 0.86 5.53e+01 ± 10.30

Table B.19: Results for Tie-break Ensembles in Cifar10 Dataset with Yen’s Bina-
rization
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.21 ± 0.01 5.66 ± 0.43 2.19e+01 ± 1.30

Only Ties 0.20 ± 0.01 6.06 ± 0.36 2.55e+01 ± 1.47
Threshold 0.18 ± 0.01 5.76 ± 0.82 2.41e+01 ± 2.70

20
All Candidates 0.21 ± 0.01 10.94 ± 0.51 5.13e+01 ± 7.13

Only Ties 0.22 ± 0.01 11.50 ± 0.05 4.90e+01 ± 5.06
Threshold 0.19 ± 0.01 11.47 ± 1.04 5.00e+01 ± 5.74

0.8

10
All Candidates 0.20 ± 0.01 7.93 ± 0.31 2.83e+01 ± 2.58

Only Ties 0.21 ± 0.00 7.90 ± 0.72 2.48e+01 ± 2.82
Threshold 0.18 ± 0.00 7.84 ± 0.20 2.55e+01 ± 2.96

20
All Candidates 0.23 ± 0.01 15.01 ± 0.80 4.92e+01 ± 5.81

Only Ties 0.23 ± 0.01 15.32 ± 0.75 4.94e+01 ± 3.19
Threshold 0.19 ± 0.01 14.88 ± 0.47 4.84e+01 ± 2.37

B.3 Fashion MNIST Dataset

Here are the results obtained in the Fashion MNIST dataset.

151

Table B.20: Results for Weighted Votes Ensembles in Cifar10 Dataset with Yen’s
Binarization

Partition wl Acc Training time Test time

0.6 10 0.21 ± 0.01 5.98 ± 0.40 2.41e+01 ± 3.40
20 0.22 ± 0.01 11.10 ± 0.50 4.99e+01 ± 5.66

0.8 10 0.22 ± 0.01 7.85 ± 0.37 2.50e+01 ± 0.88
20 0.23 ± 0.02 15.60 ± 0.42 4.77e+01 ± 2.31

Table B.21: Results for WiSARD Bagging Ensembles in CKP Dataset with Local
Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.37 ± 0.02 0.15 ± 0.02 3.08e-01 ± 0.08

Clus 0.31 ± 0.07 0.46 ± 0.02 9.29e-01 ± 0.04
Mix 0.38 ± 0.03 0.54 ± 0.06 1.10e+00 ± 0.12

20
WiSARD 0.44 ± 0.02 0.28 ± 0.04 4.92e-01 ± 0.06

Clus 0.34 ± 0.05 0.93 ± 0.10 1.93e+00 ± 0.29
Mix 0.39 ± 0.04 1.00 ± 0.13 2.05e+00 ± 0.31

0.8

10
WiSARD 0.43 ± 0.03 0.18 ± 0.01 3.03e-01 ± 0.03

Clus 0.31 ± 0.07 0.62 ± 0.19 1.06e+00 ± 0.41
Mix 0.40 ± 0.03 0.62 ± 0.04 1.04e+00 ± 0.07

20
WiSARD 0.43 ± 0.02 0.40 ± 0.03 8.20e-01 ± 0.10

Clus 0.35 ± 0.02 1.32 ± 0.17 2.30e+00 ± 0.35
Mix 0.39 ± 0.03 1.20 ± 0.14 2.06e+00 ± 0.30

Table B.22: Results for WiSARD Boosting Ensembles in CKP Dataset with Local
Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.37 ± 0.01 0.08 ± 0.00 0.13 ± 0.00 2.23e+00 ± 0.01

Clus 0.34 ± 0.07 0.08 ± 0.02 0.13 ± 0.03 2.24e+00 ± 0.08
Mix 0.27 ± 0.03 0.09 ± 0.01 0.15 ± 0.02 2.27e+00 ± 0.05

20
WiSARD 0.27 ± 0.02 0.09 ± 0.01 0.16 ± 0.01 4.27e+00 ± 0.10

Clus 0.26 ± 0.02 0.10 ± 0.02 0.17 ± 0.03 4.30e+00 ± 0.13
Mix 0.26 ± 0.02 0.09 ± 0.01 0.17 ± 0.01 4.32e+00 ± 0.03

B.3.1 Local Threshold

The results are found in Tables B.41 - B.45.

B.3.2 Mean Threshold

The results are found in Tables B.46-B.50.

B.3.3 Otsu’s Binarization

The results are found in Tables B.51-B.55.

152

Table B.23: Results for Borda Count Ensembles in CKP Dataset with Local Thresh-
old

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.34 ± 0.04 0.19 ± 0.02 6.48e-01 ± 0.09
Start at 1 0.39 ± 0.02 0.20 ± 0.02 6.97e-01 ± 0.06
Dowdall 0.34 ± 0.06 0.19 ± 0.01 6.49e-01 ± 0.05

20
Start at 0 0.40 ± 0.01 0.40 ± 0.01 1.20e+00 ± 0.05
Start at 1 0.37 ± 0.01 0.38 ± 0.03 1.13e+00 ± 0.11
Dowdall 0.37 ± 0.02 0.40 ± 0.04 1.19e+00 ± 0.13

0.8

10
Start at 0 0.40 ± 0.03 0.25 ± 0.02 7.15e-01 ± 0.04
Start at 1 0.41 ± 0.04 0.25 ± 0.02 7.50e-01 ± 0.07
Dowdall 0.43 ± 0.02 0.31 ± 0.05 9.29e-01 ± 0.17

20
Start at 0 0.40 ± 0.05 0.47 ± 0.06 1.19e+00 ± 0.14
Start at 1 0.45 ± 0.03 0.55 ± 0.03 1.39e+00 ± 0.09
Dowdall 0.43 ± 0.02 0.56 ± 0.07 1.45e+00 ± 0.19

Table B.24: Results for Tie-break Ensembles in CKP Dataset with Local Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.51 ± 0.03 0.21 ± 0.01 6.60e-01 ± 0.04

Only Ties 0.55 ± 0.08 0.21 ± 0.02 6.83e-01 ± 0.06
Threshold 0.41 ± 0.21 0.22 ± 0.02 7.02e-01 ± 0.05

20
All Candidates 0.34 ± 0.15 0.42 ± 0.04 1.22e+00 ± 0.12

Only Ties 0.30 ± 0.22 0.39 ± 0.04 1.14e+00 ± 0.13
Threshold 0.43 ± 0.21 0.39 ± 0.03 1.12e+00 ± 0.08

0.8

10
All Candidates 0.39 ± 0.14 0.27 ± 0.00 7.48e-01 ± 0.02

Only Ties 0.39 ± 0.20 0.26 ± 0.02 7.16e-01 ± 0.04
Threshold 0.30 ± 0.15 0.22 ± 0.01 6.15e-01 ± 0.03

20
All Candidates 0.47 ± 0.15 0.59 ± 0.06 1.45e+00 ± 0.15

Only Ties 0.30 ± 0.21 0.51 ± 0.02 1.25e+00 ± 0.04
Threshold 0.44 ± 0.11 0.53 ± 0.04 1.31e+00 ± 0.09

Table B.25: Results for Weighted Votes Ensembles in CKP Dataset with Local
Threshold

Partition wl Acc Training time Test time

0.6 10 0.27 ± 0.09 0.17 ± 0.03 5.77e-01 ± 0.09
20 0.32 ± 0.20 0.39 ± 0.03 1.12e+00 ± 0.09

0.8 10 0.42 ± 0.21 0.26 ± 0.02 7.20e-01 ± 0.04
20 0.38 ± 0.17 0.50 ± 0.02 1.22e+00 ± 0.06

153

Table B.26: Results for WiSARD Bagging Ensembles in CKP Dataset with Mean
Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.55 ± 0.02 0.15 ± 0.01 3.17e-01 ± 0.03

Clus 0.53 ± 0.00 0.47 ± 0.08 1.01e+00 ± 0.20
Mix 0.53 ± 0.02 0.51 ± 0.08 1.09e+00 ± 0.18

20
WiSARD 0.54 ± 0.01 0.28 ± 0.00 5.30e-01 ± 0.02

Clus 0.54 ± 0.03 0.97 ± 0.04 2.04e+00 ± 0.11
Mix 0.55 ± 0.02 0.83 ± 0.03 1.61e+00 ± 0.10

0.8

10
WiSARD 0.56 ± 0.01 0.18 ± 0.02 3.11e-01 ± 0.04

Clus 0.52 ± 0.02 0.63 ± 0.08 1.12e+00 ± 0.18
Mix 0.54 ± 0.02 0.63 ± 0.08 1.15e+00 ± 0.14

20
WiSARD 0.55 ± 0.02 0.34 ± 0.04 5.38e-01 ± 0.11

Clus 0.56 ± 0.00 1.18 ± 0.18 2.02e+00 ± 0.39
Mix 0.54 ± 0.02 1.14 ± 0.06 1.93e+00 ± 0.13

Table B.27: Results for WiSARD Boosting Ensembles in CKP Dataset with Mean
Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.51 ± 0.01 0.07 ± 0.02 0.11 ± 0.03 2.22e+00 ± 0.07

Clus 0.45 ± 0.04 0.07 ± 0.01 0.12 ± 0.02 2.25e+00 ± 0.04
Mix 0.48 ± 0.03 0.08 ± 0.01 0.14 ± 0.01 2.28e+00 ± 0.03

20
WiSARD 0.43 ± 0.04 0.09 ± 0.01 0.16 ± 0.02 4.24e+00 ± 0.08

Clus 0.44 ± 0.02 0.08 ± 0.01 0.15 ± 0.02 4.03e+00 ± 0.07
Mix 0.46 ± 0.06 0.10 ± 0.00 0.17 ± 0.01 4.10e+00 ± 0.02

Table B.28: Results for Borda Count Ensembles in CKP Dataset with Mean Thresh-
old

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.53 ± 0.02 0.18 ± 0.01 6.48e-01 ± 0.03
Start at 1 0.52 ± 0.03 0.17 ± 0.01 6.03e-01 ± 0.03
Dowdall 0.55 ± 0.04 0.21 ± 0.02 7.25e-01 ± 0.06

20
Start at 0 0.55 ± 0.01 0.36 ± 0.02 1.11e+00 ± 0.08
Start at 1 0.55 ± 0.03 0.36 ± 0.02 1.08e+00 ± 0.04
Dowdall 0.56 ± 0.00 0.39 ± 0.01 1.18e+00 ± 0.05

0.8

10
Start at 0 0.54 ± 0.02 0.25 ± 0.04 7.64e-01 ± 0.13
Start at 1 0.55 ± 0.01 0.25 ± 0.01 7.58e-01 ± 0.01
Dowdall 0.56 ± 0.02 0.26 ± 0.00 7.80e-01 ± 0.00

20
Start at 0 0.56 ± 0.00 0.43 ± 0.00 1.07e+00 ± 0.02
Start at 1 0.56 ± 0.01 0.47 ± 0.02 1.21e+00 ± 0.06
Dowdall 0.54 ± 0.01 0.44 ± 0.01 1.10e+00 ± 0.02

154

Table B.29: Results for Tie-break Ensembles in CKP Dataset with Mean Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.56 ± 0.06 0.19 ± 0.01 6.04e-01 ± 0.03

Only Ties 0.59 ± 0.03 0.19 ± 0.01 6.21e-01 ± 0.04
Threshold 0.53 ± 0.02 0.18 ± 0.01 5.96e-01 ± 0.02

20
All Candidates 0.61 ± 0.10 0.38 ± 0.00 1.10e+00 ± 0.01

Only Ties 0.64 ± 0.01 0.40 ± 0.01 1.12e+00 ± 0.02
Threshold 0.58 ± 0.07 0.37 ± 0.04 1.06e+00 ± 0.11

0.8

10
All Candidates 0.58 ± 0.07 0.23 ± 0.02 6.37e-01 ± 0.05

Only Ties 0.58 ± 0.08 0.24 ± 0.02 6.71e-01 ± 0.04
Threshold 0.59 ± 0.04 0.24 ± 0.02 6.52e-01 ± 0.05

20
All Candidates 0.63 ± 0.01 0.48 ± 0.05 1.15e+00 ± 0.11

Only Ties 0.60 ± 0.04 0.45 ± 0.04 1.10e+00 ± 0.10
Threshold 0.61 ± 0.03 0.47 ± 0.03 1.14e+00 ± 0.08

Table B.30: Results for Weighted Votes Ensembles in CKP Dataset with Mean
Threshold

Partition wl Acc Training time Test time

0.6 10 0.60 ± 0.06 0.20 ± 0.03 6.43e-01 ± 0.07
20 0.59 ± 0.03 0.38 ± 0.01 1.08e+00 ± 0.02

0.8 10 0.61 ± 0.02 0.23 ± 0.03 6.60e-01 ± 0.07
20 0.60 ± 0.04 0.47 ± 0.01 1.14e+00 ± 0.03

Table B.31: Results for WiSARD Bagging Ensembles in CKP Dataset with Otsu’s
Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.51 ± 0.02 0.12 ± 0.01 2.05e-01 ± 0.03

Clus 0.48 ± 0.05 0.43 ± 0.06 8.85e-01 ± 0.17
Mix 0.51 ± 0.05 0.46 ± 0.03 9.43e-01 ± 0.06

20
WiSARD 0.54 ± 0.01 0.27 ± 0.03 5.07e-01 ± 0.11

Clus 0.50 ± 0.00 0.94 ± 0.09 2.04e+00 ± 0.26
Mix 0.53 ± 0.03 0.96 ± 0.06 2.04e+00 ± 0.20

0.8

10
WiSARD 0.53 ± 0.01 0.18 ± 0.02 2.88e-01 ± 0.02

Clus 0.47 ± 0.04 0.57 ± 0.07 9.97e-01 ± 0.15
Mix 0.49 ± 0.04 0.55 ± 0.03 9.08e-01 ± 0.06

20
WiSARD 0.53 ± 0.01 0.37 ± 0.03 6.52e-01 ± 0.07

Clus 0.49 ± 0.02 1.15 ± 0.09 2.00e+00 ± 0.21
Mix 0.51 ± 0.01 1.22 ± 0.11 2.11e+00 ± 0.23

155

Table B.32: Results for WiSARD Boosting Ensembles in CKP Dataset with Otsu’s
Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.47 ± 0.03 0.08 ± 0.01 0.13 ± 0.01 2.15e+00 ± 0.04

Clus 0.47 ± 0.04 0.08 ± 0.01 0.13 ± 0.01 2.17e+00 ± 0.02
Mix 0.46 ± 0.03 0.06 ± 0.01 0.08 ± 0.01 2.05e+00 ± 0.03

20
WiSARD 0.46 ± 0.01 0.09 ± 0.00 0.15 ± 0.01 4.08e+00 ± 0.06

Clus 0.43 ± 0.06 0.10 ± 0.01 0.17 ± 0.01 4.19e+00 ± 0.03
Mix 0.43 ± 0.06 0.10 ± 0.01 0.17 ± 0.01 4.20e+00 ± 0.03

Table B.33: Results for Borda Count Ensembles in CKP Dataset with Otsu’s Bina-
rization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.49 ± 0.01 0.20 ± 0.02 6.85e-01 ± 0.07
Start at 1 0.51 ± 0.02 0.19 ± 0.00 6.44e-01 ± 0.02
Dowdall 0.51 ± 0.03 0.19 ± 0.01 6.61e-01 ± 0.06

20
Start at 0 0.54 ± 0.02 0.35 ± 0.04 1.04e+00 ± 0.14
Start at 1 0.54 ± 0.02 0.38 ± 0.03 1.14e+00 ± 0.08
Dowdall 0.54 ± 0.01 0.39 ± 0.00 1.17e+00 ± 0.01

0.8

10
Start at 0 0.49 ± 0.02 0.24 ± 0.01 6.70e-01 ± 0.04
Start at 1 0.52 ± 0.00 0.25 ± 0.00 7.22e-01 ± 0.01
Dowdall 0.51 ± 0.01 0.24 ± 0.02 6.87e-01 ± 0.06

20
Start at 0 0.52 ± 0.00 0.49 ± 0.04 1.24e+00 ± 0.11
Start at 1 0.52 ± 0.02 0.49 ± 0.04 1.25e+00 ± 0.12
Dowdall 0.51 ± 0.02 0.52 ± 0.03 1.35e+00 ± 0.08

Table B.34: Results for Tie-break Ensembles in CKP Dataset with Otsu’s Binariza-
tion
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.53 ± 0.03 0.19 ± 0.03 5.98e-01 ± 0.07

Only Ties 0.53 ± 0.05 0.19 ± 0.03 5.90e-01 ± 0.08
Threshold 0.48 ± 0.05 0.20 ± 0.03 6.16e-01 ± 0.05

20
All Candidates 0.53 ± 0.06 0.38 ± 0.01 1.06e+00 ± 0.04

Only Ties 0.57 ± 0.03 0.37 ± 0.03 1.06e+00 ± 0.11
Threshold 0.55 ± 0.02 0.38 ± 0.01 1.08e+00 ± 0.04

0.8

10
All Candidates 0.47 ± 0.09 0.21 ± 0.05 5.81e-01 ± 0.10

Only Ties 0.53 ± 0.02 0.25 ± 0.03 6.82e-01 ± 0.06
Threshold 0.46 ± 0.05 0.22 ± 0.03 5.97e-01 ± 0.05

20
All Candidates 0.54 ± 0.02 0.50 ± 0.05 1.21e+00 ± 0.11

Only Ties 0.53 ± 0.03 0.48 ± 0.02 1.17e+00 ± 0.04
Threshold 0.51 ± 0.02 0.49 ± 0.01 1.20e+00 ± 0.03

156

Table B.35: Results for Weighted Votes Ensembles in CKP Dataset with Otsu’s
Binarization

Partition wl Acc Training time Test time

0.6 10 0.56 ± 0.01 0.19 ± 0.01 5.94e-01 ± 0.03
20 0.58 ± 0.04 0.38 ± 0.01 1.08e+00 ± 0.03

0.8 10 0.55 ± 0.03 0.25 ± 0.00 6.65e-01 ± 0.02
20 0.54 ± 0.02 0.50 ± 0.03 1.20e+00 ± 0.07

Table B.36: Results for WiSARD Bagging Ensembles in CKP Dataset with Yen’s
Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.39 ± 0.01 0.15 ± 0.02 3.18e-01 ± 0.08

Clus 0.39 ± 0.03 0.46 ± 0.01 9.73e-01 ± 0.05
Mix 0.41 ± 0.05 0.44 ± 0.01 8.88e-01 ± 0.02

20
WiSARD 0.43 ± 0.02 0.29 ± 0.03 5.47e-01 ± 0.06

Clus 0.42 ± 0.00 0.90 ± 0.07 1.89e+00 ± 0.18
Mix 0.40 ± 0.02 0.93 ± 0.05 1.87e+00 ± 0.13

0.8

10
WiSARD 0.41 ± 0.03 0.17 ± 0.01 3.08e-01 ± 0.03

Clus 0.36 ± 0.05 0.65 ± 0.03 1.17e+00 ± 0.07
Mix 0.40 ± 0.02 0.60 ± 0.12 1.07e+00 ± 0.29

20
WiSARD 0.43 ± 0.01 0.34 ± 0.02 5.68e-01 ± 0.06

Clus 0.39 ± 0.02 1.17 ± 0.08 2.03e+00 ± 0.15
Mix 0.40 ± 0.01 1.21 ± 0.04 2.09e+00 ± 0.09

Table B.37: Results for WiSARD Boosting Ensembles in CKP Dataset with Yen’s
Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.38 ± 0.03 0.08 ± 0.01 0.13 ± 0.02 2.26e+00 ± 0.04

Clus 0.36 ± 0.01 0.09 ± 0.02 0.16 ± 0.03 2.33e+00 ± 0.07
Mix 0.39 ± 0.02 0.08 ± 0.01 0.13 ± 0.02 2.26e+00 ± 0.05

20
WiSARD 0.36 ± 0.02 0.09 ± 0.01 0.17 ± 0.01 4.26e+00 ± 0.08

Clus 0.34 ± 0.02 0.10 ± 0.01 0.17 ± 0.02 4.28e+00 ± 0.07
Mix 0.35 ± 0.02 0.09 ± 0.01 0.16 ± 0.02 4.28e+00 ± 0.03

157

Table B.38: Results for Borda Count Ensembles in CKP Dataset with Yen’s Bina-
rization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.39 ± 0.02 0.19 ± 0.03 6.63e-01 ± 0.09
Start at 1 0.39 ± 0.02 0.19 ± 0.03 6.68e-01 ± 0.07
Dowdall 0.40 ± 0.01 0.18 ± 0.01 6.51e-01 ± 0.05

20
Start at 0 0.42 ± 0.02 0.39 ± 0.03 1.15e+00 ± 0.05
Start at 1 0.42 ± 0.02 0.39 ± 0.02 1.15e+00 ± 0.09
Dowdall 0.42 ± 0.02 0.36 ± 0.03 1.09e+00 ± 0.12

0.8

10
Start at 0 0.42 ± 0.03 0.27 ± 0.03 7.89e-01 ± 0.09
Start at 1 0.41 ± 0.01 0.24 ± 0.02 7.30e-01 ± 0.06
Dowdall 0.41 ± 0.02 0.25 ± 0.03 7.31e-01 ± 0.06

20
Start at 0 0.42 ± 0.02 0.47 ± 0.03 1.18e+00 ± 0.09
Start at 1 0.44 ± 0.00 0.48 ± 0.02 1.25e+00 ± 0.07
Dowdall 0.44 ± 0.03 0.46 ± 0.01 1.18e+00 ± 0.03

Table B.39: Results for Tie-break Ensembles in CKP Dataset with Yen’s Binariza-
tion
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.41 ± 0.06 0.20 ± 0.02 6.53e-01 ± 0.06

Only Ties 0.39 ± 0.03 0.18 ± 0.01 6.08e-01 ± 0.03
Threshold 0.37 ± 0.03 0.19 ± 0.01 6.35e-01 ± 0.02

20
All Candidates 0.41 ± 0.07 0.40 ± 0.05 1.12e+00 ± 0.13

Only Ties 0.42 ± 0.06 0.38 ± 0.01 1.09e+00 ± 0.04
Threshold 0.43 ± 0.04 0.38 ± 0.00 1.06e+00 ± 0.00

0.8

10
All Candidates 0.38 ± 0.04 0.25 ± 0.03 6.81e-01 ± 0.07

Only Ties 0.43 ± 0.07 0.26 ± 0.03 6.96e-01 ± 0.05
Threshold 0.39 ± 0.02 0.23 ± 0.01 6.53e-01 ± 0.02

20
All Candidates 0.40 ± 0.06 0.47 ± 0.02 1.13e+00 ± 0.05

Only Ties 0.41 ± 0.02 0.47 ± 0.02 1.12e+00 ± 0.04
Threshold 0.37 ± 0.02 0.46 ± 0.01 1.11e+00 ± 0.03

Table B.40: Results for Weighted Votes Ensembles in CKP Dataset with Yen’s
Binarization

Partition wl Acc Training time Test time

0.6 10 0.41 ± 0.02 0.20 ± 0.01 6.43e-01 ± 0.04
20 0.42 ± 0.03 0.39 ± 0.00 1.08e+00 ± 0.00

0.8 10 0.39 ± 0.05 0.25 ± 0.03 6.85e-01 ± 0.06
20 0.42 ± 0.02 0.50 ± 0.03 1.20e+00 ± 0.07

158

Table B.41: Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Local Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.82 ± 0.01 2.28 ± 0.25 1.32e+01 ± 1.55

Clus 0.83 ± 0.02 16.13 ± 1.78 9.21e+01 ± 51.34
Mix 0.83 ± 0.00 14.00 ± 2.27 6.89e+01 ± 19.36

20
WiSARD 0.83 ± 0.00 4.71 ± 0.02 2.53e+01 ± 7.39

Clus 0.84 ± 0.00 33.06 ± 2.59 1.76e+02 ± 21.79
Mix 0.84 ± 0.00 27.21 ± 2.64 1.19e+02 ± 12.65

0.8

10
WiSARD 0.83 ± 0.00 3.40 ± 0.19 1.14e+01 ± 1.38

Clus 0.83 ± 0.00 25.98 ± 1.15 9.71e+01 ± 2.99
Mix 0.83 ± 0.01 19.55 ± 2.79 9.25e+01 ± 38.28

20
WiSARD 0.83 ± 0.00 6.59 ± 0.38 2.95e+01 ± 7.22

Clus 0.84 ± 0.00 40.17 ± 3.93 1.61e+02 ± 28.77
Mix 0.84 ± 0.00 38.13 ± 1.04 1.69e+02 ± 44.98

Table B.42: Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Local Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.81 ± 0.01 7.80 ± 0.18 24.77 ± 10.79 8.37e+01 ± 15.79

Clus 0.81 ± 0.01 7.82 ± 0.15 25.44 ± 24.78 8.39e+01 ± 40.96
Mix 0.81 ± 0.00 7.94 ± 0.30 23.54 ± 15.38 8.39e+01 ± 30.00

20
WiSARD 0.81 ± 0.00 8.09 ± 0.26 39.68 ± 8.37 1.55e+02 ± 10.03

Clus 0.81 ± 0.00 8.39 ± 0.27 29.04 ± 14.25 1.35e+02 ± 36.94
Mix 0.81 ± 0.00 8.11 ± 0.11 34.74 ± 2.60 1.41e+02 ± 10.74

Table B.43: Results for Borda Count Ensembles in Fashion MNIST Dataset with
Local Threshold

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.83 ± 0.00 2.97 ± 0.22 1.84e+01 ± 3.01
Start at 1 0.82 ± 0.01 3.23 ± 0.08 2.19e+01 ± 10.24
Dowdall 0.83 ± 0.01 3.27 ± 0.12 1.96e+01 ± 4.63

20
Start at 0 0.83 ± 0.01 6.49 ± 0.06 4.94e+01 ± 16.35
Start at 1 0.83 ± 0.00 6.24 ± 0.07 3.67e+01 ± 5.55
Dowdall 0.83 ± 0.00 6.35 ± 0.08 4.72e+01 ± 6.18

0.8

10
Start at 0 0.83 ± 0.00 4.44 ± 0.07 2.46e+01 ± 5.10
Start at 1 0.83 ± 0.00 4.37 ± 0.04 2.12e+01 ± 4.93
Dowdall 0.83 ± 0.00 4.44 ± 0.07 2.09e+01 ± 4.94

20
Start at 0 0.83 ± 0.00 8.47 ± 0.14 4.93e+01 ± 10.98
Start at 1 0.84 ± 0.00 8.50 ± 0.07 4.47e+01 ± 7.78
Dowdall 0.83 ± 0.00 8.52 ± 0.08 4.65e+01 ± 2.21

159

Table B.44: Results for Tie-break Ensembles in Fashion MNIST Dataset with Local
Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.75 ± 0.01 3.08 ± 0.29 1.68e+01 ± 2.17

Only Ties 0.74 ± 0.01 3.42 ± 0.15 1.79e+01 ± 1.39
Threshold 0.74 ± 0.01 3.36 ± 0.03 1.91e+01 ± 2.53

20
All Candidates 0.76 ± 0.01 6.31 ± 0.20 3.37e+01 ± 5.15

Only Ties 0.76 ± 0.01 6.42 ± 0.07 3.66e+01 ± 3.32
Threshold 0.76 ± 0.00 6.28 ± 0.05 3.44e+01 ± 2.16

0.8

10
All Candidates 0.74 ± 0.01 4.39 ± 0.08 1.74e+01 ± 0.73

Only Ties 0.75 ± 0.00 4.37 ± 0.01 1.73e+01 ± 1.60
Threshold 0.73 ± 0.02 4.35 ± 0.05 1.68e+01 ± 1.92

20
All Candidates 0.78 ± 0.01 8.45 ± 0.01 3.40e+01 ± 2.06

Only Ties 0.77 ± 0.01 8.53 ± 0.08 3.50e+01 ± 1.25
Threshold 0.75 ± 0.00 8.39 ± 0.47 3.43e+01 ± 4.07

Table B.45: Results for Weighted Votes Ensembles in Fashion MNIST Dataset with
Local Threshold

Partition wl Acc Training time Test time

0.6 10 0.74 ± 0.01 3.37 ± 0.03 1.86e+01 ± 1.54
20 0.77 ± 0.01 6.26 ± 0.07 3.27e+01 ± 2.99

0.8 10 0.75 ± 0.01 4.42 ± 0.05 1.71e+01 ± 0.43
20 0.76 ± 0.02 8.65 ± 0.07 3.80e+01 ± 4.30

Table B.46: Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Mean Threshold

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.82 ± 0.02 1.87 ± 0.07 1.31e+01 ± 4.27

Clus 0.84 ± 0.00 13.32 ± 0.25 7.18e+01 ± 27.60
Mix 0.84 ± 0.00 14.18 ± 1.63 1.00e+02 ± 42.25

20
WiSARD 0.83 ± 0.01 3.83 ± 0.04 2.23e+01 ± 6.81

Clus 0.84 ± 0.00 26.43 ± 2.10 1.53e+02 ± 32.80
Mix 0.85 ± 0.00 26.31 ± 1.50 1.50e+02 ± 20.46

0.8

10
WiSARD 0.82 ± 0.01 2.76 ± 0.25 1.35e+01 ± 3.26

Clus 0.83 ± 0.00 21.98 ± 7.33 9.16e+01 ± 26.75
Mix 0.83 ± 0.00 15.98 ± 0.23 8.89e+01 ± 4.47

20
WiSARD 0.84 ± 0.01 5.28 ± 0.15 2.13e+01 ± 2.25

Clus 0.85 ± 0.00 33.59 ± 1.54 1.49e+02 ± 32.55
Mix 0.84 ± 0.00 38.22 ± 3.13 1.74e+02 ± 34.29

160

Table B.47: Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Mean Threshold
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.82 ± 0.00 8.13 ± 0.26 19.70 ± 8.28 7.50e+01 ± 12.60

Clus 0.82 ± 0.00 8.19 ± 0.22 15.34 ± 2.45 6.72e+01 ± 7.13
Mix 0.82 ± 0.00 8.37 ± 0.24 31.71 ± 13.43 9.95e+01 ± 23.69

20
WiSARD 0.82 ± 0.00 7.99 ± 0.04 35.66 ± 20.90 1.40e+02 ± 28.72

Clus 0.82 ± 0.00 8.03 ± 0.07 32.28 ± 4.22 1.47e+02 ± 11.19
Mix 0.82 ± 0.00 8.12 ± 0.33 43.14 ± 17.84 1.62e+02 ± 46.87

Table B.48: Results for Borda Count Ensembles in Fashion MNIST Dataset with
Mean Threshold

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.82 ± 0.00 2.92 ± 0.07 2.75e+01 ± 3.67
Start at 1 0.84 ± 0.00 2.71 ± 0.06 1.61e+01 ± 1.06
Dowdall 0.83 ± 0.00 2.80 ± 0.10 2.02e+01 ± 5.19

20
Start at 0 0.84 ± 0.01 5.38 ± 0.26 3.72e+01 ± 7.32
Start at 1 0.83 ± 0.01 5.78 ± 0.16 5.31e+01 ± 11.73
Dowdall 0.84 ± 0.00 5.37 ± 0.08 4.23e+01 ± 9.18

0.8

10
Start at 0 0.83 ± 0.00 3.82 ± 0.05 2.69e+01 ± 3.48
Start at 1 0.83 ± 0.01 3.74 ± 0.13 2.42e+01 ± 5.06
Dowdall 0.83 ± 0.01 3.67 ± 0.18 1.73e+01 ± 3.19

20
Start at 0 0.83 ± 0.01 7.54 ± 0.10 5.26e+01 ± 7.27
Start at 1 0.84 ± 0.00 7.33 ± 0.08 4.45e+01 ± 9.50
Dowdall 0.84 ± 0.00 7.40 ± 0.05 4.56e+01 ± 8.01

Table B.49: Results for Tie-break Ensembles in Fashion MNIST Dataset with Mean
Threshold
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.76 ± 0.01 2.95 ± 0.11 1.74e+01 ± 1.36

Only Ties 0.76 ± 0.01 2.94 ± 0.15 1.71e+01 ± 2.08
Threshold 0.76 ± 0.01 2.78 ± 0.04 1.57e+01 ± 0.29

20
All Candidates 0.78 ± 0.00 5.52 ± 0.13 3.38e+01 ± 1.86

Only Ties 0.78 ± 0.01 5.41 ± 0.07 3.23e+01 ± 1.10
Threshold 0.77 ± 0.01 5.59 ± 0.17 3.53e+01 ± 1.90

0.8

10
All Candidates 0.77 ± 0.01 3.82 ± 0.07 1.59e+01 ± 1.13

Only Ties 0.76 ± 0.01 3.81 ± 0.11 1.68e+01 ± 1.92
Threshold 0.75 ± 0.01 3.91 ± 0.24 1.73e+01 ± 1.99

20
All Candidates 0.77 ± 0.01 7.50 ± 0.10 3.50e+01 ± 2.29

Only Ties 0.78 ± 0.01 7.39 ± 0.13 3.43e+01 ± 2.12
Threshold 0.77 ± 0.01 7.52 ± 0.17 3.51e+01 ± 2.94

161

Table B.50: Results for Weighted Votes Ensembles in Fashion MNIST Dataset with
Mean Threshold

Partition wl Acc Training time Test time

0.6 10 0.77 ± 0.01 2.86 ± 0.12 1.70e+01 ± 2.46
20 0.78 ± 0.01 5.51 ± 0.10 3.40e+01 ± 1.98

0.8 10 0.77 ± 0.01 3.89 ± 0.12 1.77e+01 ± 1.07
20 0.78 ± 0.00 7.30 ± 0.16 3.20e+01 ± 1.54

Table B.51: Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Otsu’s Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.82 ± 0.01 1.54 ± 0.04 9.52e+00 ± 2.00

Clus 0.83 ± 0.01 14.77 ± 1.32 1.02e+02 ± 42.94
Mix 0.83 ± 0.00 13.71 ± 1.73 8.54e+01 ± 12.91

20
WiSARD 0.83 ± 0.00 3.84 ± 0.22 2.34e+01 ± 3.93

Clus 0.84 ± 0.00 26.82 ± 4.30 1.43e+02 ± 37.26
Mix 0.84 ± 0.00 27.11 ± 4.76 1.44e+02 ± 28.33

0.8

10
WiSARD 0.82 ± 0.01 2.65 ± 0.09 1.58e+01 ± 6.16

Clus 0.83 ± 0.00 22.56 ± 8.08 1.09e+02 ± 62.61
Mix 0.83 ± 0.00 22.37 ± 4.65 9.09e+01 ± 35.02

20
WiSARD 0.83 ± 0.00 5.13 ± 0.20 2.64e+01 ± 6.51

Clus 0.84 ± 0.00 37.52 ± 1.45 2.04e+02 ± 50.23
Mix 0.84 ± 0.00 38.13 ± 2.27 1.53e+02 ± 25.79

Table B.52: Results for WiSARD Boosting Ensembles in Fashion MNIST Dataset
with Otsu’s Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.81 ± 0.01 8.18 ± 0.35 38.84 ± 26.91 1.05e+02 ± 46.34

Clus 0.82 ± 0.00 7.99 ± 0.17 19.08 ± 15.50 6.99e+01 ± 25.64
Mix 0.81 ± 0.00 8.16 ± 0.09 20.14 ± 2.42 8.11e+01 ± 4.72

20
WiSARD 0.81 ± 0.00 7.91 ± 0.09 27.54 ± 4.33 1.28e+02 ± 7.70

Clus 0.82 ± 0.00 7.90 ± 0.07 33.83 ± 4.35 1.38e+02 ± 3.14
Mix 0.82 ± 0.00 7.95 ± 0.17 29.47 ± 8.97 1.29e+02 ± 18.14

162

Table B.53: Results for Borda Count Ensembles in Fashion MNIST Dataset with
Otsu’s Binarization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.82 ± 0.00 2.68 ± 0.18 2.05e+01 ± 1.35
Start at 1 0.82 ± 0.01 2.82 ± 0.13 2.19e+01 ± 6.09
Dowdall 0.83 ± 0.01 2.75 ± 0.13 1.75e+01 ± 3.51

20
Start at 0 0.83 ± 0.00 5.63 ± 0.13 4.07e+01 ± 3.65
Start at 1 0.83 ± 0.01 5.53 ± 0.23 4.35e+01 ± 7.21
Dowdall 0.83 ± 0.00 5.46 ± 0.09 4.33e+01 ± 6.38

0.8

10
Start at 0 0.82 ± 0.01 3.85 ± 0.13 2.37e+01 ± 8.79
Start at 1 0.83 ± 0.00 3.72 ± 0.03 2.11e+01 ± 3.49
Dowdall 0.82 ± 0.01 3.76 ± 0.08 2.51e+01 ± 1.86

20
Start at 0 0.83 ± 0.00 7.29 ± 0.17 4.10e+01 ± 7.24
Start at 1 0.83 ± 0.01 7.56 ± 0.37 4.99e+01 ± 12.30
Dowdall 0.83 ± 0.00 7.48 ± 0.23 4.62e+01 ± 9.99

163

Table B.54: Results for Tie-break Ensembles in Fashion MNIST Dataset with Otsu’s
Binarization
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.75 ± 0.01 2.76 ± 0.19 1.65e+01 ± 1.21

Only Ties 0.75 ± 0.02 2.93 ± 0.11 1.67e+01 ± 1.03
Threshold 0.75 ± 0.01 2.91 ± 0.14 1.69e+01 ± 1.75

20
All Candidates 0.76 ± 0.01 5.70 ± 0.29 3.55e+01 ± 3.92

Only Ties 0.77 ± 0.00 5.57 ± 0.07 3.39e+01 ± 0.86
Threshold 0.76 ± 0.01 5.60 ± 0.14 3.53e+01 ± 2.45

0.8

10
All Candidates 0.75 ± 0.01 4.02 ± 0.09 1.78e+01 ± 0.32

Only Ties 0.76 ± 0.01 3.96 ± 0.08 1.73e+01 ± 0.52
Threshold 0.76 ± 0.01 3.84 ± 0.05 1.60e+01 ± 0.93

20
All Candidates 0.77 ± 0.01 7.44 ± 0.10 3.35e+01 ± 2.05

Only Ties 0.77 ± 0.01 7.38 ± 0.20 3.33e+01 ± 2.80
Threshold 0.76 ± 0.00 7.29 ± 0.23 3.24e+01 ± 3.21

Table B.55: Results for Weighted Votes Ensembles in Fashion MNIST Dataset with
Otsu’s Binarization

Partition wl Acc Training time Test time

0.6 10 0.75 ± 0.01 2.98 ± 0.15 1.77e+01 ± 1.22
20 0.76 ± 0.02 5.63 ± 0.26 3.47e+01 ± 3.46

0.8 10 0.76 ± 0.01 3.89 ± 0.16 1.64e+01 ± 1.16
20 0.77 ± 0.01 7.75 ± 0.02 3.71e+01 ± 0.77

B.3.4 Yen’s Binarization

The results are found in Tables B.56-B.60.

Table B.56: Results for WiSARD Bagging Ensembles in Fashion MNIST Dataset
with Yen’s Binarization

Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.79 ± 0.00 2.20 ± 0.23 9.08e+00 ± 1.12

Clus 0.78 ± 0.01 15.37 ± 3.31 8.62e+01 ± 48.92
Mix 0.79 ± 0.01 16.07 ± 3.12 7.76e+01 ± 19.31

20
WiSARD 0.80 ± 0.00 4.61 ± 0.11 2.43e+01 ± 2.54

Clus 0.80 ± 0.00 30.51 ± 1.83 1.67e+02 ± 22.26
Mix 0.80 ± 0.00 25.11 ± 4.80 1.20e+02 ± 6.03

0.8

10
WiSARD 0.79 ± 0.00 3.22 ± 0.17 1.28e+01 ± 3.42

Clus 0.79 ± 0.00 19.34 ± 1.94 6.73e+01 ± 21.75
Mix 0.79 ± 0.00 18.25 ± 1.95 8.73e+01 ± 41.77

20
WiSARD 0.80 ± 0.00 6.51 ± 0.11 2.52e+01 ± 4.00

Clus 0.80 ± 0.00 35.76 ± 2.60 1.35e+02 ± 31.23
Mix 0.80 ± 0.00 39.44 ± 7.04 1.79e+02 ± 42.21

164

Table B.57: Results for WiSARD Boosting ensembles in Fashion MNIST dataset
with Yen’s Binarization
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.77 ± 0.00 8.21 ± 0.14 42.13 ± 23.07 1.08e+02 ± 39.82

Clus 0.77 ± 0.00 7.45 ± 0.20 6.90 ± 1.97 4.53e+01 ± 7.84
Mix 0.76 ± 0.01 7.71 ± 0.26 24.13 ± 19.98 7.78e+01 ± 32.41

20
WiSARD 0.77 ± 0.00 7.71 ± 0.10 20.22 ± 1.86 1.11e+02 ± 7.79

Clus 0.77 ± 0.00 7.90 ± 0.09 27.82 ± 6.08 1.28e+02 ± 12.30
Mix 0.77 ± 0.00 7.98 ± 0.28 21.47 ± 1.40 1.17e+02 ± 3.65

Table B.58: Results for Borda Count Ensembles in Fashion MNIST Dataset with
Yen’s Binarization

Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.79 ± 0.01 3.23 ± 0.05 2.17e+01 ± 5.70
Start at 1 0.78 ± 0.01 3.19 ± 0.05 2.43e+01 ± 8.48
Dowdall 0.79 ± 0.00 3.19 ± 0.04 2.09e+01 ± 3.31

20
Start at 0 0.80 ± 0.00 6.20 ± 0.04 4.43e+01 ± 9.06
Start at 1 0.80 ± 0.00 6.17 ± 0.08 4.20e+01 ± 5.85
Dowdall 0.80 ± 0.01 6.17 ± 0.03 4.01e+01 ± 7.39

0.8

10
Start at 0 0.79 ± 0.01 4.30 ± 0.05 2.25e+01 ± 2.98
Start at 1 0.79 ± 0.00 4.28 ± 0.05 2.11e+01 ± 5.63
Dowdall 0.79 ± 0.01 4.25 ± 0.05 2.10e+01 ± 5.88

20
Start at 0 0.80 ± 0.00 8.47 ± 0.14 4.51e+01 ± 2.18
Start at 1 0.80 ± 0.00 8.26 ± 0.01 4.58e+01 ± 6.10
Dowdall 0.80 ± 0.00 8.11 ± 0.38 4.87e+01 ± 4.10

Table B.59: Results for Tie-break Ensembles in Fashion MNIST Dataset with Yen’s
Binarization
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.64 ± 0.02 3.29 ± 0.01 1.64e+01 ± 0.76

Only Ties 0.62 ± 0.04 3.34 ± 0.06 1.79e+01 ± 1.83
Threshold 0.61 ± 0.01 3.26 ± 0.04 1.72e+01 ± 1.67

20
All Candidates 0.68 ± 0.02 6.23 ± 0.03 3.65e+01 ± 2.93

Only Ties 0.69 ± 0.00 6.14 ± 0.08 3.23e+01 ± 2.60
Threshold 0.66 ± 0.01 6.24 ± 0.07 3.53e+01 ± 2.09

0.8

10
All Candidates 0.65 ± 0.01 4.44 ± 0.10 1.74e+01 ± 1.69

Only Ties 0.65 ± 0.01 4.39 ± 0.06 1.73e+01 ± 0.74
Threshold 0.62 ± 0.01 4.27 ± 0.09 1.83e+01 ± 0.22

20
All Candidates 0.68 ± 0.01 8.48 ± 0.02 3.63e+01 ± 2.64

Only Ties 0.70 ± 0.01 8.31 ± 0.04 3.32e+01 ± 1.64
Threshold 0.64 ± 0.01 8.27 ± 0.37 3.45e+01 ± 2.80

B.4 IMDb Dataset

The results of IMDb dataset are found in Tables B.61-B.65.

165

Table B.60: Results for Weighted Votes Ensembles in Fashion MNIST Dataset with
Yen’s Binarization

Partition wl Acc Training time Test time

0.6 10 0.67 ± 0.00 3.31 ± 0.01 1.71e+01 ± 1.05
20 0.70 ± 0.01 6.21 ± 0.10 3.36e+01 ± 1.08

0.8 10 0.67 ± 0.00 4.39 ± 0.04 1.83e+01 ± 1.02
20 0.69 ± 0.00 8.44 ± 0.01 3.64e+01 ± 0.98

Table B.61: Results for WiSARD Bagging Ensembles in IMDb Dataset
Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.66 ± 0.00 4.59 ± 0.26 2.26e+01 ± 1.96

Clus 0.66 ± 0.01 30.39 ± 5.48 1.66e+02 ± 61.45
Mix 0.66 ± 0.00 26.30 ± 3.38 1.31e+02 ± 31.58

20
WiSARD 0.70 ± 0.01 8.35 ± 0.40 3.98e+01 ± 3.44

Clus 0.70 ± 0.01 53.97 ± 3.78 2.90e+02 ± 14.90
Mix 0.70 ± 0.01 53.10 ± 4.63 2.70e+02 ± 55.29

0.8

10
WiSARD 0.66 ± 0.01 5.71 ± 0.69 2.08e+01 ± 3.53

Clus 0.67 ± 0.00 34.52 ± 1.09 1.30e+02 ± 19.10
Mix 0.66 ± 0.00 37.67 ± 3.04 1.69e+02 ± 23.19

20
WiSARD 0.70 ± 0.00 11.76 ± 0.45 4.30e+01 ± 2.14

Clus 0.70 ± 0.01 71.19 ± 2.66 2.91e+02 ± 38.87
Mix 0.70 ± 0.01 80.93 ± 6.23 3.18e+02 ± 50.51

Table B.62: Results for WiSARD Boosting Ensembles in IMDb Dataset
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.70 ± 0.01 3.43 ± 0.64 7.45 ± 3.04 6.40e+02 ± 59.47

Clus 0.70 ± 0.01 3.67 ± 0.90 9.26 ± 6.21 6.51e+02 ± 75.67
Mix 0.70 ± 0.00 2.89 ± 0.32 5.92 ± 1.73 6.03e+02 ± 25.83

20
WiSARD 0.78 ± 0.01 3.10 ± 0.13 14.61 ± 1.13 1.28e+03 ± 23.34

Clus 0.78 ± 0.01 3.41 ± 0.29 18.36 ± 3.61 1.32e+03 ± 46.63
Mix 0.78 ± 0.00 3.74 ± 0.37 19.79 ± 5.50 1.36e+03 ± 61.79

B.5 MNIST Dataset

The results of MNIST dataset are found in Tables B.66-B.70.

B.6 MovieLens Dataset

The results of MovieLens dataset are found in Tables B.71-B.75.

166

Table B.63: Results for Borda Count Ensembles in IMDb Dataset
Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.66 ± 0.00 9.02 ± 0.68 9.86e+01 ± 8.25
Start at 1 0.66 ± 0.00 9.73 ± 1.08 9.29e+01 ± 5.04
Dowdall 0.66 ± 0.01 9.44 ± 0.57 9.25e+01 ± 2.43

20
Start at 0 0.70 ± 0.01 18.15 ± 1.24 1.25e+02 ± 7.51
Start at 1 0.70 ± 0.01 17.15 ± 1.41 1.20e+02 ± 8.11
Dowdall 0.70 ± 0.00 17.48 ± 1.36 1.22e+02 ± 5.56

0.8

10
Start at 0 0.66 ± 0.00 11.61 ± 0.26 8.93e+01 ± 0.93
Start at 1 0.66 ± 0.00 11.28 ± 0.52 8.06e+01 ± 2.21
Dowdall 0.66 ± 0.00 11.17 ± 0.57 7.93e+01 ± 1.97

20
Start at 0 0.70 ± 0.00 23.24 ± 1.10 1.21e+02 ± 4.64
Start at 1 0.70 ± 0.01 22.80 ± 1.06 1.19e+02 ± 5.80
Dowdall 0.69 ± 0.01 24.11 ± 1.10 1.26e+02 ± 4.37

Table B.64: Results for Tie-break Ensembles in IMDb Dataset
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.66 ± 0.03 9.23 ± 0.24 1.00e+02 ± 3.34

Only Ties 0.64 ± 0.04 9.38 ± 0.66 9.77e+01 ± 1.70
Threshold 0.66 ± 0.02 9.01 ± 0.12 9.54e+01 ± 1.47

20
All Candidates 0.60 ± 0.05 16.78 ± 0.89 1.25e+02 ± 5.36

Only Ties 0.64 ± 0.07 17.27 ± 0.63 1.27e+02 ± 1.66
Threshold 0.65 ± 0.07 17.87 ± 0.68 1.32e+02 ± 6.38

0.8

10
All Candidates 0.65 ± 0.03 12.77 ± 1.88 8.51e+01 ± 5.72

Only Ties 0.63 ± 0.07 11.77 ± 0.68 8.10e+01 ± 2.51
Threshold 0.62 ± 0.02 11.56 ± 1.27 8.24e+01 ± 2.99

20
All Candidates 0.63 ± 0.07 23.87 ± 1.62 1.32e+02 ± 8.30

Only Ties 0.66 ± 0.03 23.48 ± 0.89 1.29e+02 ± 3.17
Threshold 0.65 ± 0.03 23.43 ± 1.68 1.30e+02 ± 4.36

Table B.65: Results for Weighted Votes Ensembles in IMDb Dataset
Partition wl Acc Training time Test time

0.6 10 0.64 ± 0.05 9.10 ± 0.74 9.62e+01 ± 4.42
20 0.65 ± 0.03 17.10 ± 0.56 1.25e+02 ± 3.99

0.8 10 0.63 ± 0.06 11.98 ± 0.22 8.28e+01 ± 0.34
20 0.66 ± 0.02 23.34 ± 1.14 1.28e+02 ± 4.53

167

Table B.66: Results for WiSARD Bagging Ensembles in MNIST Dataset
Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.92 ± 0.00 1.59 ± 0.05 8.38e+00 ± 1.09

Clus 0.92 ± 0.00 11.09 ± 1.78 8.82e+01 ± 9.85
Mix 0.92 ± 0.01 11.38 ± 0.92 1.08e+02 ± 34.72

20
WiSARD 0.93 ± 0.00 3.20 ± 0.10 1.91e+01 ± 2.41

Clus 0.93 ± 0.00 24.90 ± 2.19 2.31e+02 ± 30.14
Mix 0.93 ± 0.00 20.86 ± 0.87 1.86e+02 ± 63.84

0.8

10
WiSARD 0.92 ± 0.01 2.13 ± 0.03 1.03e+01 ± 2.37

Clus 0.92 ± 0.01 14.92 ± 2.56 1.21e+02 ± 29.78
Mix 0.93 ± 0.00 16.07 ± 1.39 1.32e+02 ± 51.28

20
WiSARD 0.93 ± 0.00 4.28 ± 0.07 1.94e+01 ± 2.79

Clus 0.93 ± 0.00 32.69 ± 3.50 2.30e+02 ± 63.53
Mix 0.93 ± 0.00 24.28 ± 1.94 1.92e+02 ± 51.40

Table B.67: Results for WiSARD Boosting Ensembles in MNIST Dataset
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.91 ± 0.00 8.14 ± 0.20 34.19 ± 23.38 9.95e+01 ± 40.95

Clus 0.91 ± 0.01 7.58 ± 0.41 22.73 ± 24.69 7.14e+01 ± 47.09
Mix 0.91 ± 0.01 7.78 ± 0.09 17.02 ± 1.81 6.88e+01 ± 5.50

20
WiSARD 0.92 ± 0.00 7.73 ± 0.05 29.30 ± 5.61 1.24e+02 ± 11.66

Clus 0.91 ± 0.00 7.89 ± 0.19 34.53 ± 16.59 1.33e+02 ± 35.15
Mix 0.91 ± 0.00 7.90 ± 0.22 23.24 ± 6.31 1.14e+02 ± 13.66

Table B.68: Results for Borda Count Ensembles in MNIST Dataset
Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.92 ± 0.01 2.36 ± 0.11 2.02e+01 ± 4.48
Start at 1 0.92 ± 0.00 2.56 ± 0.02 1.95e+01 ± 1.12
Dowdall 0.92 ± 0.01 2.34 ± 0.09 1.63e+01 ± 1.47

20
Start at 0 0.92 ± 0.01 4.91 ± 0.16 4.48e+01 ± 3.77
Start at 1 0.93 ± 0.00 4.82 ± 0.02 3.87e+01 ± 2.32
Dowdall 0.92 ± 0.01 4.97 ± 0.13 4.51e+01 ± 9.09

0.8

10
Start at 0 0.92 ± 0.01 3.22 ± 0.09 1.87e+01 ± 2.77
Start at 1 0.92 ± 0.01 3.14 ± 0.04 1.68e+01 ± 4.27
Dowdall 0.92 ± 0.01 3.28 ± 0.08 2.25e+01 ± 4.91

20
Start at 0 0.93 ± 0.00 6.45 ± 0.16 3.75e+01 ± 9.39
Start at 1 0.93 ± 0.00 6.50 ± 0.17 4.11e+01 ± 5.86
Dowdall 0.93 ± 0.00 6.59 ± 0.10 4.20e+01 ± 2.21

168

Table B.69: Results for Tie-break Ensembles in MNIST Dataset
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.60 ± 0.05 2.38 ± 0.08 1.30e+01 ± 0.50

Only Ties 0.65 ± 0.03 2.50 ± 0.05 1.39e+01 ± 0.39
Threshold 0.55 ± 0.04 2.49 ± 0.07 1.41e+01 ± 0.38

20
All Candidates 0.64 ± 0.07 5.11 ± 0.11 3.04e+01 ± 1.22

Only Ties 0.73 ± 0.01 4.83 ± 0.04 2.97e+01 ± 0.76
Threshold 0.57 ± 0.04 5.00 ± 0.17 3.08e+01 ± 0.84

0.8

10
All Candidates 0.65 ± 0.04 3.31 ± 0.03 1.42e+01 ± 0.33

Only Ties 0.66 ± 0.01 3.31 ± 0.01 1.38e+01 ± 0.36
Threshold 0.57 ± 0.02 3.26 ± 0.07 1.44e+01 ± 0.23

20
All Candidates 0.70 ± 0.07 6.70 ± 0.18 3.17e+01 ± 1.03

Only Ties 0.70 ± 0.07 6.67 ± 0.14 3.02e+01 ± 0.93
Threshold 0.58 ± 0.03 6.67 ± 0.14 3.05e+01 ± 0.64

Table B.70: Results for Weighted Votes Ensembles in MNIST Dataset
Partition wl Acc Training time Test time

0.6 10 0.75 ± 0.02 2.60 ± 0.09 1.41e+01 ± 0.19
20 0.80 ± 0.01 5.16 ± 0.04 3.08e+01 ± 0.45

0.8 10 0.74 ± 0.03 3.24 ± 0.02 1.43e+01 ± 0.58
20 0.82 ± 0.01 6.64 ± 0.13 3.02e+01 ± 0.61

Table B.71: Results for WiSARD Bagging Ensembles in MovieLens Dataset
Partition wl Models Acc Training time Test time

0.6

10
WiSARD 0.70 ± 0.01 0.17 ± 0.00 1.55e-01 ± 0.01

Clus 0.71 ± 0.00 0.96 ± 0.06 9.63e-01 ± 0.13
Mix 0.70 ± 0.00 0.94 ± 0.10 9.32e-01 ± 0.17

20
WiSARD 0.70 ± 0.00 0.34 ± 0.01 3.19e-01 ± 0.01

Clus 0.70 ± 0.01 1.83 ± 0.21 1.79e+00 ± 0.34
Mix 0.70 ± 0.00 1.95 ± 0.01 2.12e+00 ± 0.12

0.8

10
WiSARD 0.69 ± 0.00 0.24 ± 0.01 1.77e-01 ± 0.01

Clus 0.70 ± 0.00 1.24 ± 0.14 9.83e-01 ± 0.32
Mix 0.70 ± 0.00 1.24 ± 0.00 8.93e-01 ± 0.07

20
WiSARD 0.69 ± 0.01 0.47 ± 0.01 3.50e-01 ± 0.01

Clus 0.70 ± 0.00 2.58 ± 0.33 1.90e+00 ± 0.31
Mix 0.70 ± 0.00 2.67 ± 0.39 2.24e+00 ± 0.51

Table B.72: Results for WiSARD Boosting Ensembles in MovieLens Dataset
wl Models Acc Training time Validation time Test Time

10
WiSARD 0.70 ± 0.00 0.07 ± 0.01 0.11 ± 0.01 4.70e+00 ± 0.06

Clus 0.70 ± 0.00 0.08 ± 0.01 0.13 ± 0.01 4.78e+00 ± 0.05
Mix 0.70 ± 0.00 0.08 ± 0.01 0.12 ± 0.03 4.79e+00 ± 0.11

20
WiSARD 0.70 ± 0.00 0.08 ± 0.01 0.20 ± 0.01 8.96e+00 ± 0.06

Clus 0.70 ± 0.00 0.07 ± 0.01 0.16 ± 0.02 8.74e+00 ± 0.08
Mix 0.70 ± 0.00 0.08 ± 0.00 0.19 ± 0.00 8.86e+00 ± 0.02

169

Table B.73: Results for Borda Count Ensembles in MovieLens Dataset
Partition wl Policy Acc Training time Test time

0.6

10
Start at 0 0.69 ± 0.00 0.31 ± 0.02 8.35e-01 ± 0.04
Start at 1 0.70 ± 0.01 0.32 ± 0.04 8.59e-01 ± 0.05
Dowdall 0.70 ± 0.01 0.33 ± 0.01 8.47e-01 ± 0.02

20
Start at 0 0.69 ± 0.01 0.66 ± 0.01 1.30e+00 ± 0.01
Start at 1 0.70 ± 0.00 0.64 ± 0.04 1.25e+00 ± 0.05
Dowdall 0.70 ± 0.00 0.64 ± 0.05 1.29e+00 ± 0.08

0.8

10
Start at 0 0.69 ± 0.01 0.42 ± 0.02 8.71e-01 ± 0.02
Start at 1 0.69 ± 0.01 0.45 ± 0.03 9.07e-01 ± 0.04
Dowdall 0.70 ± 0.00 0.40 ± 0.01 8.46e-01 ± 0.01

20
Start at 0 0.70 ± 0.01 0.84 ± 0.04 1.29e+00 ± 0.06
Start at 1 0.70 ± 0.00 0.83 ± 0.03 1.28e+00 ± 0.03
Dowdall 0.70 ± 0.00 0.84 ± 0.04 1.29e+00 ± 0.08

Table B.74: Results for Tie-break Ensembles in MovieLens Dataset
Partition wl Policy Acc Training time Test time

0.6

10
All Candidates 0.46 ± 0.03 0.30 ± 0.03 6.99e-01 ± 0.03

Only Ties 0.45 ± 0.04 0.31 ± 0.01 7.15e-01 ± 0.03
Threshold 0.42 ± 0.02 0.30 ± 0.02 6.97e-01 ± 0.01

20
All Candidates 0.45 ± 0.03 0.60 ± 0.02 1.07e+00 ± 0.03

Only Ties 0.43 ± 0.03 0.62 ± 0.02 1.10e+00 ± 0.02
Threshold 0.39 ± 0.03 0.63 ± 0.02 1.10e+00 ± 0.02

0.8

10
All Candidates 0.44 ± 0.01 0.41 ± 0.01 7.18e-01 ± 0.01

Only Ties 0.40 ± 0.03 0.41 ± 0.04 7.25e-01 ± 0.02
Threshold 0.47 ± 0.04 0.40 ± 0.02 7.40e-01 ± 0.06

20
All Candidates 0.42 ± 0.02 0.81 ± 0.02 1.10e+00 ± 0.01

Only Ties 0.43 ± 0.04 0.81 ± 0.04 1.10e+00 ± 0.03
Threshold 0.44 ± 0.03 0.82 ± 0.02 1.11e+00 ± 0.03

Table B.75: Results for Weighted Votes Ensembles in MovieLens Dataset
Partition wl Acc Training time Test time

0.6 10 0.42 ± 0.02 0.30 ± 0.01 6.96e-01 ± 0.01
20 0.44 ± 0.05 0.62 ± 0.03 1.08e+00 ± 0.03

0.8 10 0.42 ± 0.01 0.39 ± 0.02 7.08e-01 ± 0.02
20 0.41 ± 0.05 0.78 ± 0.02 1.08e+00 ± 0.03

170

Appendix C

Comparison between WiSARD and
ClusWiSARD in Ensemble
Experiments

Here are displayed the comparison between WiSARD and ClusWiSARD in the
datasets presented in Chapter 4:

171

Figure C.1: Comparison of accuracy between WiSARD and ClusWiSARD in Cifar10
dataset with local threshold.

Figure C.2: Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with local threshold.

172

Figure C.3: Comparison of test time between WiSARD and ClusWiSARD in Cifar10
dataset with local threshold.

Figure C.4: Comparison of accuracy between WiSARD and ClusWiSARD in Cifar10
dataset with mean threshold.

173

Figure C.5: Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with mean threshold.

Figure C.6: Comparison of test time between WiSARD and ClusWiSARD in Cifar10
dataset with mean threshold.

174

Figure C.7: Comparison of accuracy between WiSARD and ClusWiSARD in Cifar10
dataset with Otsu’s Binarization

Figure C.8: Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with Otsu’s Binarization.

175

Figure C.9: Comparison of test time between WiSARD and ClusWiSARD in Cifar10
dataset with Otsu’s Binarization.

Figure C.10: Comparison of accuracy between WiSARD and ClusWiSARD in Ci-
far10 dataset with Yen’s Binarization.

176

Figure C.11: Comparison of training time between WiSARD and ClusWiSARD in
Cifar10 dataset with Yen’s Binarization.

Figure C.12: Comparison of test time between WiSARD and ClusWiSARD in Ci-
far10 dataset with Yen’s Binarization.

177

Figure C.13: Comparison of accuracy between WiSARD and ClusWiSARD in CKP
dataset with local threshold.

Figure C.14: Comparison of training time between WiSARD and ClusWiSARD in
CKP with local threshold.

178

Figure C.15: Comparison of test time between WiSARD and ClusWiSARD in CKP
dataset with local threshold.

Figure C.16: Comparison of accuracy between WiSARD and ClusWiSARD in CKP
dataset with mean threshold.

179

Figure C.17: Comparison of training time between WiSARD and ClusWiSARD in
CKP with mean threshold.

Figure C.18: Comparison of test time between WiSARD and ClusWiSARD in CKP
dataset with mean threshold.

180

Figure C.19: Comparison of accuracy between WiSARD and ClusWiSARD in CKP
dataset with Otsu’s Binarization.

Figure C.20: Comparison of training time between WiSARD and ClusWiSARD in
CKP with Otsu’s Binarization.

181

Figure C.21: Comparison of test time between WiSARD and ClusWiSARD in CKP
dataset with Otsu’s Binarization.

Figure C.22: Comparison of accuracy between WiSARD and ClusWiSARD in CKP
dataset with Yen’s Binarization.

182

Figure C.23: Comparison of training time between WiSARD and ClusWiSARD in
CKP with Yen’s Binarization.

Figure C.24: Comparison of test time between WiSARD and ClusWiSARD in CKP
dataset with Yen’s Binarization.

183

Figure C.25: Comparison of accuracy between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with local threshold.

Figure C.26: Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST dataset with local threshold.

184

Figure C.27: Comparison of test time between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with local threshold.

Figure C.28: Comparison of accuracy between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with mean threshold.

185

Figure C.29: Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with mean threshold.

Figure C.30: Comparison of test time between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with mean threshold.

186

Figure C.31: Comparison of accuracy between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with Otsu’s Binarization.

Figure C.32: Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with Otsu’s Binarization.

187

Figure C.33: Comparison of test time between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with Otsu’s Binarization.

Figure C.34: Comparison of accuracy between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with Yen’s Binarization.

188

Figure C.35: Comparison of training time between WiSARD and ClusWiSARD in
Fashion MNIST with Yen’s Binarization.

Figure C.36: Comparison of test time between WiSARD and ClusWiSARD in Fash-
ion MNIST dataset with Yen’s Binarization.

189

Figure C.37: Comparison of accuracy between WiSARD and ClusWiSARD in
MNIST dataset.

Figure C.38: Comparison of training time between WiSARD and ClusWiSARD in
MNIST dataset.

190

Figure C.39: Comparison of test time between WiSARD and ClusWiSARD in
MNIST dataset.

Figure C.40: Comparison of accuracy between WiSARD and ClusWiSARD in IMDB
dataset.

191

Figure C.41: Comparison of training time between WiSARD and ClusWiSARD in
IMDB dataset.

Figure C.42: Comparison of test time between WiSARD and ClusWiSARD in IMDB
dataset.

192

Figure C.43: Comparison of accuracy between WiSARD and ClusWiSARD in
MovieLens dataset.

Figure C.44: Comparison of training time between WiSARD and ClusWiSARD in
MovieLens dataset.

193

Figure C.45: Comparison of test time between WiSARD and ClusWiSARD in
MovieLens dataset.

194

Appendix D

Supplementary Regression
Experiments

In addition to the graphs shown in Chapter 5, others were made to better illustrate
the benchmark of the performance of the regression weightless models and those that
served as a basis of comparison for them, as they were state-of-the-art in the KDD18
dataset. Here, the metric used was the mean squared error (MSE) to accentuate the
difference between the results.

195

Figure D.1: Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in House Prices.

Figure D.2: Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in House Prices.

Figure D.3: Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in Parkinson.

196

Figure D.4: Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in Parkinson.

Figure D.5: Thermometer size X MSE (test set) for ReW, CReW, n-Tuple Regres-
sion Network, GradientBoost and XGBoost in Parkinson.

Figure D.6: Thermometer size X MAE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in CalCOFI.

197

Figure D.7: Thermometer size X MSE (training set) for ReW, CReW, n-Tuple
Regression Network, GradientBoost and XGBoost in CalCOFI.

Figure D.8: Thermometer size X MSE (test set) for ReW, CReW, n-Tuple Regres-
sion Network, GradientBoost and XGBoost in CalCOFI.

198

Appendix E

WiSEMAN: A Weightless
Emotion-driven Neural Architecture
for Planning-related Tasks

From the WiSARD’s extensions achieved in this thesis, it was possible to envision a
WiSARD-based cognitive architecture. Their motivations and structure are detailed
below.

E.1 Motivations

The increasing number of devices collecting data and connecting, exchanging infor-
mation, makes concepts like IoT and BigData tangible. The emergence of efficient
ways to deal with such a huge heterogeneous mass of data in real-time has become
extremely necessary. In this scenario, distributed solutions, such as multi-agent plan-
ning, have been more and more highlighted. The ability of agents to be adaptive,
agile in their negotiations and, able to handle multiple types of tasks simultane-
ously is of fundamental importance in this type of system. Because of this, different
types of cognitive architecture have been designed to structure the learning and
action-taking capabilities of such agents[262].

Another area of computing that has gradually developed is Machine Conscious-
ness (MC)[263], which attempts to build systems that have subjectivity. One of
MC’s partial goals is to construct agents who behave indistinguishably from that
of a truly conscious agent, even if unintentionally. In all of these systems, emotion
modeling plays a vital role as a tool for improving agent training. This is to so
expected because all major theories of consciousness place great emphasis on the
role of emotions.

Substantial, though gradual, advances have been made in this type of system,

199

and some prototypes have already been embodied in robots, with motion and vi-
sual control systems, sound, touch, and pain receptors[264]. A naval dispatching
system[265] was also designed. Based on correlates to consciousness principles it
incorporated natural language processing, database interaction, and resource man-
agement.

A common limitation of different architectures for conscious agents is a large
number of partially independent modules for performing complex tasks involving
multi-modal learning. Therefore, we propose a multi-agent task planning system
whose architecture is inspired by a cognitive system with conscious-like emotion-
driven behavior using only weightless artificial neural networks (WANN): WiSE-
MAN (WiSARD Emotional Multi-Agent Network). WANNs are especially compu-
tationally inexpensive. While the WiSEMAN itself is still theoretical and not yet
tested, its different modules have been developed separately and tested in different
domains.

E.2 WiSEMAN Architecture

The cognitive architecture of the WiSEMAN is based on Aleksander’s Kernel
Architecture[12], which aims to create an agent with behavior similar to that of
a conscious being, incorporating in all modules the consciousness requirements of
the Fundamental Postulate of Consciousness[8]. The schema of this architecture is
displayed in E.1. Each WiSEMAN agent has four operational modules:

• Depiction: Analogous to the process of empirical recognition of the environ-
ment, this module is responsible for interpreting the environment where the
agent is. It captures as much information as possible from all sources, and
applies some treatment to them, allowing any noise to be minimized. Recent
explorations on a video empathy prediction task[5] have shown how effective
WiSARD can be in cross-modal learning. This module should contain a col-
lection of binarization operations to be used for the specific domain task. To
achieve that, a WiSARD classifier can be used to choose which binarization will
be applied to each piece of data. The binarization domains that are already
consolidated in WiSARD are image, audio, PoS tagging, tracker, quantitative,
and qualitative variables, time-series, unsupervised and clustering tasks.

• Imagination: This module proposes possible actions to be taken by the agent,
considering its current state and the environment. The module’s operation is
based onWiSARD’s generative potential. Such a capability can easily generate
mental images[109] of the learned subject simply by reverse-engineering the
training mechanism and mapping the contents of memory locations into new

200

input. Since WiSARD’s input is binary, different thresholds can be applied to
this new input, thus generating a collection of possible future state possibilities.

The internal operation of this module can be better understood through the
equations C.1, C.2, and C.3, where S ′ is obtained through transformations of
mental images of a trained discriminator with known situations.

A = agents; s = states; a = actions (E.1)

sAi
+ aAi

xx 7→ S ′ (E.2)

S ′ 7→ s′a0 + ...+ s′an (E.3)

• Emotion: A quantitative evaluation of the action possibilities generated by
the Imagination Module is made here, using a Regression WiSARD-based
multidimensional RAM. Thus, for each action performed, a feedback value is
assigned to it depending on its outcome for the agent. Different emotions could
be modeled here, but for simplicity, the emotional state here is represented by
a continuous value on an emotional positive-negative scale. Some polarized
emotions that can be used here include joy-distress, hope-fear, and satisfaction-
frustration.

• Attentioon: In this module, each feature that forms the representation of the
actions that can be performed from the states contemplated by the Imagination
Module is evaluated separately. In WiSARD model, each of a discriminator’s
RAMs represents all the possible combinations of values of a certain subset of
features. The bits that integrate the tuple that will address a specific memory
piece could be chosen a priori according to the available knowledge of the
domain. This module ultimately penalizes features that do not contribute to
efficient decision-making, causing the system to diminish or nullify its con-
tribution to the planning process. The attention reinforcement feedback is
displayed in Equation C.4.

y =

∑n
i=0Ei ∗ ai∑n

i=0 ci
(E.4)

WiSEMAN is designed to solve typical multi-agent planning problems, such as
listing process priority in a system, processing data from multiple sensors stored
in a BigData repository, decentralized and distributed computing for IoT devices,
coordinating a team of robots serving disaster areas, etc. The differential of this
architecture is the use of the generative capacity of the network and the emotional
reward signals as a way to improve the generation of action proposals to be performed

201

Figure E.1: Architecture of WiSEMAN.

and their consequent evaluation.
Ongoing work includes adding in WiSARD attention mechanisms, multi-

dimensional architecture for reinforcement learning, and mapping self-modification
system.

202

Appendix F

Weightless Artificial Neural
Networks and Artificial
Consciousness

WANN models have been consistently used in experiments related to Artificial Con-
sciousness: brain-inspired architecture for cognitive robotics[16], demonstration of
quasi-phenomenal behavior of intelligent agents[13], iconic learning [14, 15], brain
structures modeler MAGNUS[167] and validation of global workspace theory using
information integration[9–11].

The concept of a theory for artificial consciousness-based only on neural machines
was first presented by Professor Igor Aleksander in a paper in 1994[8]. Soon after he
formulates the first theory of artificial consciousness based on the personal construct
theory[30] of the psychologist George Kelly, formulated in the 1950s, and part of the
premise that anticipation and prediction capabilities are the main drivers of mind.
Aleksander then formulates his Fundamental Postulate of Consciousness. In the
next section, we will replicate the explanation in the entirety of the Fundamental
Postulate, as Aleksander originally presented it in [8].

F.1 The Fundamental Postulate: Consciousness

and Neural Activity

The personal sensations that lead to the consciousness of an organism are due to the
firing patterns of some neurons, such neurons being part of a larger number which
form the state variables of a neural state machine, the firing patterns having been
learned through a transfer of activity between sensory input neurons and the state
neurons.

The words of this postulate are intended to have specific meanings which need

203

to be stressed so that the corollaries which follow should make sense.

• Personal sensation: Much of the controversy surrounding consciousness
comes from the problem of infinite regress. Here it is implied that neural
activity leads directly to personal sensation so dismissing the problem of infi-
nite regress;

• Firing patterns: Neurological terminology has been adopted to refer to the
output activity of a group of neural elements. In an artificial system ’firing
patterns’ could refer to any measurement of the output quantity of the elements
which constitute that system;

• Neurons: This adoption of this neurological term is used to indicate that the
theory is that of a cellular system where "neuron" is the name given to a basic
cell;

• Neural state machine: A state machine is the most general model of a finite
computing process - it calls on the concept of an inner state which is a function
of input sequences. Neural versions assume that neurons generate the variable
values which, when taken together, form a state. (Corollary 1 formalizes this
notion and the generality of neural state machines has been argued elsewhere);

• Learned: Neurons are assumed to be plastic and it is this plasticity that
allows them to learn meaningful, representational, firing patterns;

• Iconic Transfer: This key property relates to the source of information that
controls the learning of the neurons. It will be seen that distal, sensory infor-
mation is postulated to impose output patterns on neurons so that these may
be learned and recalled in the absence of input. It is this transfer that creates
an inner perception in the conscious organism;

• Sensory Neurons: These are transducer neurons that transform energy from
environmental input into the distal, sensory signals which control iconic trans-
fer.

F.2 Advances in WiSARD and the Investigation in

Artificial Consciousness

Aleksander also derives twelve corollaries from the Fundamental Postulate:

• Brain as a state machine;

• Inner Neuron Partitioning;

204

• Conscious and unconscious states;

• Perceptual learning and memory;

• Prediction;

• Awareness of self;

• Representation of meaning;

• Learning utterances;

• Learning language;

• Will;

• Instinct;

• Emotion.

Considering the use of WiSARD in an architecture that tries to satisfy the Fun-
damental Postulate and its corollaries, Regression WiSARD directly implies the
possibility of satisfying the predictive capacity of the model. The multi-dimensional
RAM neuron can also have learning fields and use a feedback function to meet
the Will, Instinct, and Emotion corollaries, although such a solution is neurosym-
bolic and not strictly connectionist, as intended by Aleksander. In addition, ReW’s
multi-dimensional RAM can be used in a model analogous to MAGNUS[167].

205

Appendix G

WiSARD Libraries

All experiments in this thesis used the same implementation of WiSARD. In ad-
dition to the library containing the models, a library was also used for multi-label
classification systems and ensembles.

G.1 wisardpkg

To facilitate the production of codes using WiSARD-based models, LabZero devel-
oped an ML library C++/Python called wisardpkg. This library is an MIT-licensed
open-source package hosted on GitHub under the license.

G.1.1 Implementation

wisardpkg is hosted on GitHub at https://iazero.github.io/wisardpkg/, where users
can find the latest version of the library and user documentation. Model details and
features described in this publication pertain to the latest version of the model as
of the date of this publication. The lib was implemented in C/C++ with a Python
wrapper.

G.1.2 Availability

• Operating systems: Linux, Mac OSX, Windows

• Programming languages: C++ 11 and up, Python version 3.7.0 and up

• Additional system requirements: NA

• Dependency: pybind11 (≥ 2.5.0)

• List of contributors: All contributors were listed as authors with corre-
sponding affiliations

206

• Language: C++, with wrapper to Python 3

• Current version: 2.0.0a7

G.1.3 Installation

• C++:

– Clone https://github.com/IAZero/wisardpkg

– Copy the wisardpkg.hpp file to the desired project

– Include the library in the C++ code

• Python:

– Install Python PIP, if necessary

– pip install wisardpkg

To install wisardpkg in a Windows environment it is necessary to install Visual
C++ additionally. To do this just download it from here and then run the installer.

G.1.4 Architecture

The library is divided into two main modules: models and binarization because since
these neural networks only receive binary inputs, it is necessary to treat the input
to make it suitable for models. Although this is usually done through some kind of
preprocessing external to wisardpkg, the library has some classes to provide support
for this pipeline.

G.1.4.1 Binarization

All binarization classes are extensions of the BinBase class. All of them receive an
array as input to their unique public method, transform, which will return a binary
array. Only the public methods of each class will be described here.

Thresholding: applies a simple threshold to a double value to generate a binary
input.

• Thresholding: its only parameter is the threshold.

• transform

MeanThresholding: similar to the previous one, but this time the threshold
is calculated as the mean of the input data.

207

• MeanThresholding

• transform

Thermometer: is a technique for preprocessing quantitative variables. Given
a variable d, a maximum value of traing test m and a number of ranges s, the new
binary variable will have s bits, with each ith bit being determined by a threshold
t = i ∗ m

s
. If d > t, the ith position is worth 1, otherwise 0.

• SimpleThermometer: its parameters are the thermometer size, the minimum,
and the maximum value in its range.

• transform

KernelCanvas: since each WiSARD-based model can handle only one input
size, this preprocessing[130] is capable of resizing inputs, being especially useful
when dealing with time series. This uses different kernels, or divisions in the sample
space of the input, replacing each value of it with the central value of the kernel
where it is located.

• KernelCanvas: it is possible to instantiate it from a JSON file. Its parameters
are the desired dimensionality and the number of kernels to be used.

• transform

G.1.4.2 Models

This module contains all the models and also the base classes from which they
extend. A brief description of each sub-module and its classes follows.

1. Base:

• Model: a simple trainable module

– train

– getsizeof

• ClassificationModel: a Model object that can calculate the similarity
score in access, as well as perform classifications

– classify

– rank

– score

208

• RegressionModel: a Model object that performs predictions. Here the
training is overwritten because of the partial prediction used in learning
in this type of model.

– train

– predict

2. Wisard:

• RAM: the minimal information unit in a weightless neural network; con-
tains 2n memory positions.

– RAM: instantiates RAM. It is possible to use a JSON file with RAM
previously saved for this. Two additional parameters here are ig-
noreZero (which allows not considering the initial position of each
RAM in the classification phase) and base (its default value is 2,
forming the classic WiSARD for binary patterns, but when modify-
ing it is possible to work with patterns that use more bits and the
RAM will have basen memory locations).

– getVote

– train

– untrain: it is possible to reverse the training process of an example,
once the positions accessed are known, just subtracting their access
counters.

– getMentalImage: using the retina and the content of the RAM, it
generates a representation of the learning.

– setMapping: it is possible to choose a mapping for the RAM.

• Discriminator:

– Discriminator: its main parameter is the size of the tuple. It is also
possible to define its mapping and instantiate it from a JSON file.
Its main methods are: train, untrain and classify.

• Wisard: a ClassificationModel that has a set of discriminators. Its main
methods are: train, untrain and classify. An optional parameter "bal-
anced" when set to True causes the score of each discriminator during
the classification to be normalized using the number of trained examples.

3. Cluswisard: has only one homonymous class, which will be described below:

• Cluswisard: its main parameters are the size of the tuple and the variables
used in the verification to create new discriminators: minScore, threshold,
and discriminatorsLimit.

209

• The main methods here include train, untrain, classify, trainUnsuper-
vised, and classifyUnsupervised, the latter is applied only when it is de-
sired to know which is the discriminator with which the example is most
similar, despite classes.

4. RegressionWisard:

• MeanFunctions: this module has a Mean class, which serves as the ba-
sis for several other classes that contain the methods of the means used
in the prediction of Regression WiSARD (SimpleMean, PowerMean, Me-
dian, HarmonicMean, HarmonicPowerMean, GeometricMean, Exponen-
tialMean, and LogisticMean).

• RegressionRAM: analogous to the classification RAM, it has an extra
content in its memory positions, which is the partial prediction. Ad-
ditional parameters here include minZero and minOne, which are the
minimum amount of these bits that a memory location needs to have to
be considered in the prediction phase.

• RegressionWisard: the network itself, a set of RegressionRAMs. Its
main parameters are the size of the tuple and the average to be used, with
minZero, minOne, completeAdressSize, and mapping being additional
parameters. Like other Models, it can be instantiated from a JSON file.
Its main methods are train and predict.

5. ClusRegressionWisard: This module has only one homonymous class,
which is a RegressionModel, whose main instantiation parameters are address-
Size, minScore, threshold, and limit. Its main methods are train and predict.

Additionally, the library has a commons module, with exceptions and utils, and
a wrapper module for Python.

G.2 Multi-label Classification Systems

A library that uses wisardpkg was made in Python for multi-label classification
tasks. Here is a description of its classes:

• class CrossValidation:

– init (parameteres: images, labels, k)

– validation (parameters: method, metrics)

• class Method():

210

– run (parameters: X-train, X-test, y-train, classes)

• class LabelPowerset(Method):

– run (parameters: X-train, X-test, y-train, classes)

• class BinaryRelevance(Method):

– run (parameters: X-train, X-test, y-train, classes)

• class ClusLabelPowerset(Method)

– init (parameters: addr-size, minScore, threshold, discriminatorLimit)

– run (parameters:X-train, X-test, y-train, classes):

• class ClusBinaryRelevance(Method)

– init (parameters: addr-size, minScore, threshold, discriminatorLimit)

– run (parameters: X-train, X-test, y-train, classes)

The classes in this script allow you to use each of the multi-label ar-
chitectures with WiSARD or ClusWiSARD, in addition to performing k-fold
cross-validation with both architectures. The script is hosted on GitHub at
https://github.com/thesis-wisard/thesislibs.git.

G.3 Classification Ensembles

All classes in this library have the classify method that has as a parameter a wis-
ardpkg.DataSet object.

The Bagging class is instantiated as the method init(train-dataset, learners, par-
titions, models), where train-dataset is a wisardpkg.Dataset object, learners is a
number of weak learners in the ensemble, partitions is a percentage of examples
in training set that will be used in composition of each training subset already
considering the resampling, models can assume the values ["wisard", "cluswisard",
"heterogeneous"].

The Boost class is instantiated as the method init(train-dataset, validation-
dataset, learners, models = "heterogeneous"), where train-dataset and validation-
dataset are wisardpkg.Dataset objects, learners is a number of weak learners in the
ensemble, models can assume the values ["wisard", "cluswisard", "heterogeneous"].

The Borda class is instantiated as the method init(train-dataset, learners, par-
titions, voting), where train-dataset is a wisardpkg.Dataset object, learners is a
number of weak learners in the ensemble, partitions is a percentage of examples in

211

training set that will be used in composition of each training subset already con-
sidering the resampling, voting is a classification policy and can assume the values
["borda0", "borda1", "dowdall"].

The VotingBagging class encapsules Tie-break and Weighted Votes ensembles.
This is instantiated as the method init(train-dataset, learners, partitions, voting),
where train-dataset is a wisardpkg.Dataset object, learners is a number of weak
learners in the ensemble, partitions is a percentage of examples in training set that
will be used in composition of each training subset already considering the resam-
pling, voting is a classification policy and can assume the values ["plurality1", "plu-
rality2", "plurality3", "plurality4"], "plurality1" employs Tie-break ensemble with
"All candidates" policy, "plurality2" employs Tie-break ensemble with "Only tiers",
"plurality3" employs Weighted Votes ensemble and "plurality4" employs Tie-break
ensemble with "Threshold" policy.

This code is hosted on GitHub at https://github.com/thesis-
wisard/thesislibs.git.

212

Appendix H

List of Publications

List of publications produced during the making of this thesis. All of them are
directly or indirectly linked to the theme of this thesis.

H.1 Journal Articles

1. L. A. D. Lusquino Filho, L. F. R. Oliveira, A. S. Lima Filho, G. P. Guarisa,
L. M. Felix, P. M. V. Lima and F. M. G. França, Extending the Weightless
WiSARD Classifier for Regression, Neurocomputing, Special Issue: ESANN
2019, 2020.

H.2 Book Chapters

1. L. A. D. Lusquino Filho, L. F. R. Oliveira, H. C. C. Carneiro, G. P. Guarisa,
A. S. Lima Filho, P. M. V. Lima and F. M. G. França, A Weightless Neural
System for Empathy Prediction, OMG Challenge Book, Springer, Edited by
Pablo Barros and Prof. Stefan Wermter, Submitted.

H.3 Complete Works Published in Proceedings of

Conferences

1. L. A. D. Lusquino Filho, L. F. R. Oliveira; A. S. Lima Filho, G. P. Guarisa,
P. M. V. Lima and F. M. G. França, Prediction of palm oil production with
an enhanced n-Tuple Regression Network, Proceedings of the 27nd European
Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 301–306,
2019.

2. L. A. D. Lusquino Filho, G. P. Guarisa, L. F. R. Oliveira, A. S. Lima Filho, F.

213

M. G. França and P. M. V. Lima, Action Units Classification Using ClusWiS-
ARD, Proceedings of the International Conference on Artificial Neural Net-
works, 2019, ICANN 2019: Image Processing, Munich, Germany, pp. 409–420,
2019.

3. A. S. Lima Filho, G. P. Guarisa, L. A. D. Lusquino Filho, L. F. R. Oliveira,
C. Cosenza, F. M. G. França and P. M. V. Lima, Interpretation of Model Ag-
nostic Classifiers via Local Mental Images, Proceedings of the 28nd European
Symposium on Artificial Neural Networks, Bruges, Belgium, 2020.

4. Luiz C. S. Ramos, L. A. D. Lusquino Filho, F. M. G. França and P. M. V.
Lima, Static and dynamic malware detection using weightless neural networks,
20th Brazilian Symposium on Information Security and Computational Sys-
tems, Rio de Janeiro, Brazil, 2020.

5. M. A. Spalenza, E. S. Oliveira, L. A. D. Lusquino Filho, F. M. G. França
and P. M. V. Lima, Using NER + ML to Automatically Detect Fake News,
Proceedings of the International Conference on Intelligent Systems Design and
Applications, online, 2020.

H.4 Extended Abstracts Published in Proceedings

of Conferences

1. L. A. D. Lusquino Filho, A. S. Lima Filho, F. M. G. França and P. M. V. Lima,
WiSEMAN: A weightless emotion-driven neural architecture for planning-
related tasks, Workshop CogArch, Proceedings of the 26th IEEE International
Symposium on High-Performance Computer Architecture, San Diego, USA,
2020.

2. L. A. D. Lusquino Filho, L. F. R. Oliveira, H. C. C. Carneiro, G. P. Guarisa,
A. S. Lima Filho, F. M. G. França and P. M. V. Lima, A weightless regres-
sion system for predicting multi-modal empathy, Workshop Affective Behavior
Analysis in-the-wild, Proceedings of the 15th IEEE International Conference
on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Ar-
gentina, 2020.

3. L. A. D. Lusquino Filho, F. M. G. França and P. M. V. Lima, Exploring
WiSARD-based Models in the Building of Cognitive Systems for Emotive Per-
ception, Workshop on Consciousness, Models and the Artificial, Proceedings
of Creativity 2019, Rio de Janeiro, Brazil, pp. 141, 2019.

214

4. R. N. C. B. Rocha, L. A. D. Lusquino Filho, M. Aredes, F. M. G. França and
P. M. V. Lima, Regression WiSARD application of controller on DC STAT-
COM converter under fault conditions, 9th Workshop on Parallel Program-
ming Models, Proceedings of the 34th IEEE Parallel and Distributed Process-
ing (IDPDS 2020), New Orleans, USA, 2020.

5. A. S. Lima Filho, L. A. D. Lusquino Filho, F. M. G. França and P. M. V. Lima,
"What are you Thinking?": Explanation and Interpretation by an Artificial
Consciousness System, Workshop on Consciousness, Models and the Artificial,
Proceedings of Creativity 2019, Rio de Janeiro, Brazil, pp. 139–140, 2019.

215

Graphical Abstract

Extending the Weightless WiSARD Classifier for Regression

Leopoldo A. D. Lusquino Filho1∗, Luiz F. R. Oliveira1∗, Aluizio Lima Filho1,
Gabriel P. Guarisa1, Lucca M. Felix2, Priscila M. V. Lima1,3, Felipe M. G.
França1

1 - PESC/COPPE; 2 - DCC; 3 - NCE
Universidade Federal do Rio de Janeiro, RJ, Brazil

∗Both authors had equal participation and are first author.

Extending the Weightless WiSARD Classifier for

Regression

Leopoldo A. D. Lusquino Filho1∗, Luiz F. R. Oliveira1∗, Aluizio Lima
Filho1, Gabriel P. Guarisa1, Lucca M. Felix2, Priscila M. V. Lima1,3, Felipe

M. G. França1

1 - PESC/COPPE; 2 - DCC; 3 - NCE
Universidade Federal do Rio de Janeiro, RJ, Brazil

Abstract

This paper explores two new weightless neural network models, Regression
WiSARD and ClusRegression WiSARD, in the challenging task of predicting
the total palm oil production of a set of 28 (twenty eight) differently located
sites under different climate and soil profiles. Both models were derived
from Kolcz and Allinson’s n-Tuple Regression weightless neural model and
obtained mean absolute error (MAE) rates of 0.09097 and 0.09173, respec-
tively. Such results are very competitive with the state-of-the-art (0.07983),
whilst being four orders of magnitude faster during the training phase. Ad-
ditionally the models have been tested on three classic regression datasets,
also presenting competitive performance with respect to other models often
used in this type of task.

Keywords: Regression WiSARD WiSARD ClusWiSARD n-Tuple
classifier n-Tuple Regression Network Ensemble Online learning

1. Introduction

Regression is a traditional and important machine learning task, since
there is a wide range of practical situations in the real world where it is
necessary to predict values in a continuous space. In a precision agriculture
scenario, it would be desirable that simple devices, such as small sensors,

∗Both authors had equal participation and are first author.

Preprint submitted to Neurocomputing December 5, 2020

A Weightless Neural System for Empathy
Prediction

Leopoldo A. D. Lusquino Filho?, Luiz F. R. Oliveira, Hugo C. C. Carneiro,
Gabriel P. Guarisa, Aluzio Lima Filho, Priscila M. V. Lima, and

Felipe M. G. França

PESC/COPPE/Universidade Federal do Rio de Janeiro, RJ, Brazil
leopoldolusquino@gmail.com,lfdeoliveira@cos.ufrj.br,

hcesar@cos.ufrj.br,gabrielguarisa@gmail.com,lima.filho.a.s@gmail.com,

priscilamvl@gmail.com,felipe@cos.ufrj.br

Abstract. Affective computing encompasses far more than just the
evaluation of emotions of individuals. One challenge faced in this field
is the estimation of attributes derived from interactions among different
agents, such as the empathy experienced in interpersonal relationships.
This work takes into account the benefits of machine learning in order
to estimate the valence of emotions on the OMG Empathy dataset, con-
sidering the information obtained from face expressions and dialogue of
interlocutors. RegressionWiSARD and ClusRegressionWiSARD n-tuple
regressors were employed to this end. A vital part of the experiments
reported here involved a discussion on efficient ways to preprocess het-
erogeneous data and how to convert them into relevant binary input
to RAM-based networks. The best performance achieved among all the
combinations of weightless neural models considered (evaluated using the
CCC metric) was 0.25 and 0.015 on the Personalized Track in validation
and test set, respectively.

Keywords: weightless neural network; n-tuple regression; WiSARD; af-
fective computing; empathy prediction

1 Introduction

The ability to experience and evaluate the degree of empathy is a vital skill for
human survival and the construction of its social interactions. Empathy predic-
tion is, consequently, an area of great interest within Affective Computing, since
many other computational tools can take great profit from it, for instance virtual
tutors, security systems, and dynamic customization of applications oriented to
the detection of instant emotions.

A usual way of categorizing emotions is through valence and arousal at-
tributes, both assuming continuous values. Valence refers to how pleasant a par-
ticular feeling was (a negative valence refers to an unpleasant event) and arousal
to how intense it was. A slightly happy situation would have a positive and high

? Corresponding author

Prediction of Palm Oil Production with an
Enhanced n-Tuple Regression Network

Leopoldo A. D. Lusquino Filho1, Luiz F. R. Oliveira1, Aluizio L. Filho1,
Gabriel P. Guarisa1, Priscila M. V. Lima2, Felipe M. G. França1 ∗

1- PESC/COPPE 2- NCE
Universidade Federal do Rio de Janeiro, RJ, Brazil

Abstract. This paper introduces Regression WiSARD and ClusRe-
gression WiSARD, two new weightless neural network models that were
applied in the challenging task of predicting the total palm oil produc-
tion of a set of 28 differently located sites under different climate and soil
profiles. Both models were derived from the n-tuple regression weightless
neural model and obtained error (MAE) rates of 0.08737% and 0.08938%,
respectively, which are very competitive with the state-of-art (0.07569),
whilst being four (4) orders of magnitude faster during the training phase.

1 Introduction

Regression is one of the most important machine learning tasks, given the wide
range of practical situations in the real world where it is necessary to predict
values in a given continuum space. Due to its great utility, it is desirable that
simple devices, such as small sensors, could perform regression with online train-
ing. Weightless artificial neural networks (WANNs), due to its lean, RAM-based
architecture, seems to be ideal for this type of task.

This paper presents and explores the use of WANNs in the KDD18 compe-
tition [5], a challenge which goal is to predict the palm oil harvest productivity
of a set of 28 different production fields using data provided by an agribusiness
company. The dataset contains information about palm trees varieties, harvest
dates, atmospheric data during the development of the trees, and soil charac-
teristics of the fields where the trees are located in. The novel WANN models
are based on the n-tuple Regression Network [3], which has been proved success-
ful when compared to other classical regression approaches in non-linear plant
approximation, and Mackey-Glass chaotic time series prediction tasks.

The remainder of this text is organized as follows: Section 2 presents the
two weightless models proposed for regression, as well as the basic concepts be-
hind the models that inspired it: WiSARD [1] and n-tuple Regression Network.
Section 3 discusses the various approaches used in the KDD18 competition, as
well as a comparison with state-of-the-art methods and other relevant results.
Conclusion and future work are presented in Section 4.

∗This work was partially supported by CAPES, CNPq, FAPERJ and FINEP, Brazilian
research agencies.

Action Units Classification using ClusWiSARD

Leopoldo A. D. Lusquino Filho[0000-0002-8283-3764]1?, Gabriel P. Guarisa1,
Luiz F. R. Oliveira1, Aluizio Lima Filho1, Felipe M. G. França1, and Priscila

M. V. Lima12

1- PESC/COPPE 2- NCE
Universidade Federal do Rio de Janeiro, RJ, Brazil ??

lusquino@cos.ufrj.br,gabrielguarisa@gmail.com,aluizio@cos.ufrj.br,

lfdeoliveira@cos.ufrj.br,felipe@cos.ufrj.br,priscilamvl@gmail.com

Abstract. This paper presents the use of WiSARD and ClusWiSARD
weightless neural networks models for the classification of the contraction
and extension of Action Units, the facial muscles involved in emotive
expressions. This is a complex problem due to the large number of very
similar classes, and because it is a multi-label classification task, where
the positive expression of one class can modify the response of the others.
WiSARD and ClusWiSARD solutions are proposed and validated using
the CK+ dataset, producing responses with accuracy of 89.66%. Some of
the major works in the field are cited here, but a proper comparison is not
possible due to a lack of appropriate information about such solutions,
such as the subset of classes used and the time of training/testing. The
contribution of this paper is in the pioneering use of weightless neural
networks in an AUs classification task, in the unpublished application of
the WiSARD and ClusWiSARD models in multi-label tasks and in the
new unsupervised expansion of ClusWiSARD proposed here.

Keywords: Action Units, WiSARD, ClusWISARD, weightless neural
network

1 Introduction

Ekman and Friesen [10] cataloged a set of muscles known as Action Units (AUs)
– which would be responsible for all facial expressiveness – while attempting to
obtain a set of universal emotions present in any human. The automatic iden-
tification of these AUs has been developed since the mid-1990s and has several
applications: forensics, psychological treatment, physical therapy support and
advertising feedback, among others. AUs have also been used in the develop-
ment of adaptive digital avatars [4].

Some of the great difficulties in automatic detection of AUs are the large
number of classes and the wide variety of forms how AUs express themselves,

? Corresponding author
?? This work was partially supported by CAPES, CNPq, FAPERJ and FINEP, Brazil-

ian research agencies.

Interpretation of Model Agnostic Classifiers via
Local Mental Images

Aluizio Lima Filho1, Gabriel P. Guarisa1, Leopoldo A.D. Lusquino Filho1,
Luiz F. R. Oliveira1, Carlos A. N. Cosenza3,

Felipe M. G. França1 and Priscila M. V. Lima1,2 ∗

1–PESC/COPPE, 2–NCE, 3–PEP/COPPE
Universidade Federal do Rio de Janeiro, RJ, Brazil

Abstract. Although successful black-box learning models have been
created, understanding what happens when a machine produces a classi-
fication response is still a challenge. This work introduces FRWI – Fuzzy
Regression WiSARD Interpreter, a novel fuzzy rules-based algorithm that
is capable of interpreting the responses of black-box classifiers via the pro-
duction of local mental images from a WiSARD n-tuple classifier. FRWI is
compared with LIME – Local Interpretable Model-Agnostic Explanations,
a pioneering agnostic classification interpreter model. To make a quan-
titative evaluation of interpretable models, a new metric – Interpretation
Capacity Score – is proposed. Using this metric, it is shown that FRWI
surpasses LIME in producing coherent interpretations.

1 Introduction

The need to interpret responses from learning models gets higher in different
situations [1]. Questions arise such as: how the models make the decision in the
classification, or when to trust its process, and when not to do so. One way to
answer the first question is to show what is relevant to the model. LIME [2]
– Local Interpretable Model-Agnostic Explanations – was developed with the
motivation to clarify such relevance. There are other interpreter models focused
on DNNs, like Gran-Cam [3], that were later introduced in the literature. How
ever, LIME does not have feasible interpretation capacity for all learning models,
due to interpretable models have scenarios where they work better as learning
models. Experimental tests were performed utilizing LIME to explain decisions
made by following classifiers: WiSARD [4], Linear model [5] and Random Forest
model [6] trained with images data sets. It will be shown that results will select
too much in the image as relevant, and it will not let it clear what is happening
inside the classifier.For that reason, the idea of creating a degree of relevance
for each pixel in the image came as an alternative to interpret the responses
of black-box classifiers more feasible. This work introduces FRWI – Fuzzy Re-
gression WiSARD Interpreter, a WiSARD n-tuple classifier that produces local
mental images, via a fuzzy rules-based algorithm, as an interpretation of the re-
sponses of black-box classifiers. To compare the interpretation capacity of both
LIME and FRWI models, the Interpretation Capacity Score metric is defined.

∗This work was partially supported by NGD Systems, Inc./COPPETEC grant PESC21713;
CAPES, CNPq and FAPERJ, Brazilian research agencies.

Detecção estática e dinâmica de malwares usando redes
neurais sem peso

Luiz C. S. Ramos1, Leopoldo A. D. Lusquino Filho1, Felipe M. G. França1,
Priscila M. V. Lima1

1Programa de Engenharia de Sistemas e Computação (PESC/COPPE)
Universidade Federal do Rio de Janeiro (UFRJ)

Rio de Janeiro – RJ – Brasil

{sampaio,lusquino,felipe,priscilamvl}@cos.ufrj.br

Resumo. A preocupação com a segurança e a integridade dos dados em sis-
temas de computação, incluindo áreas importantes como Internet das Coisas
e Indústria 4.0, estão crescendo dramaticamente. Dessa forma, a existência
de um malware pode ameaçar o bom funcionamento de sistemas inteiros, tra-
zendo consequências irreversı́veis. Este trabalho visa utilizar redes neurais
sem peso para detecção estática e dinâmica de malwares. Na utilização de
técnicas estáticas baseadas na imagem 2D do arquivo binário e de técnicas
dinâmicas baseadas em API Calls, a rede WiSARD mostrou resultados próximos
de técnicas do estado da arte utilizando redes neurais com peso, porém com
tempos de treinamento e classificação uma ordem de grandeza menor.

Abstract. Concerns with security and integrity of data in computer systems, in-
cluding important areas such as Internet of Things and Industry 4.0, are drama-
tically increasing. Therefore, the existence of malware can threaten the smooth
functioning of whole systems, bringing irreversible consequences. This work
aims to use weightless neural networks for static and dynamic detection of
malwares. Using static techniques based on the 2D image of binary files and dy-
namic techniques based on API Calls, the WiSARD network showed results close
to state-of-the-art techniques using convolutional neural networks, but shorter
training and classification times one lower order of magnitude. The method
presented shows the WiSARD as a faster alternative in detecting malware.

1. Introdução
Malwares, ou softwares maliciosos, são programas que buscam perturbar as operações
de um sistema computadorizado por meio de acesso não autorizado para conseguir
informações sensı́veis, ameaçando usuários [Aycock 2006]. Esses programas podem
comprometer a integridade das informações nesse sistema, de forma que a detecção de
malwares, ou seja, técnicas para identificar se um programa é malicioso ou não, é alvo de
pesquisadores, já que novos malwares constantemente são lançados e as técnicas devem
acompanhar tais mudanças [Bazrafshan et al. 2013].

Com a criação constante de novos programas maliciosos, além dos métodos
tradicionais de detecção de malwares, como signature-based methods e behavior-
based methods, métodos baseados em heurı́stica, utilizando técnicas de aprendizado
de máquinas, como Naı̈ve Bayes [Schultz et al. 2001] começaram a ser explorados

Using NER + ML to Automatically Detect Fake News

Marcos A. Spalenza1, Elias de Oliveira1, Leopoldo Lusquino-Filho3, Pricila M. V.
Lima2, Felipe M. G. França3

1 Postgraduate Program in Informatics – Federal University of Espírito Santo (UFES)
2 NCE, Tércio Pacitti Institute – Federal University of Rio de Janeiro (UFRJ)

3 PESC/COPPE – Federal University of Rio de Janeiro (UFRJ)
marcos.spalenza@gmail.com, elias@lcad.inf.ufes.br

Abstract.

In the overload information era, we need to be conscious of the dissemination of in-
coherent and misleading content both in the traditional and social media. It is a problem
that has worsened recently and called the attention of some governments worldwide.
The so-called Fake News has got notoriety due to the popularization and rapid consump-
tion of online news. The democratization of the internet access carried out an increase
in independent production and consumption of a variety of unverified information con-
tents, which are also spread around on a large scale. Because the production capacity is
much higher than that of the fact-checking agencies, it becomes necessary the support
of systems for automatic detection of this type of content. Therefore, in this article, we
propose a linguistic-structure analysis approach with named-entity recognition to iden-
tify fake news. By applying our approach, we can identify linguistic-structures that must
unveil an article produced and verified by professional news agencies from that false in-
formation and sensationalist. In this regard, we present a linguistic analysis system with
90% on average accuracy of identification surpassing the state-of-the-art of this type of
content in the literature datasets.

Keywords: Fake News, Named-Entity Recognition, WiSARD, Machine Learning, Ar-
tificial Intelligence

1 Introduction

Content’s revision and verification processes have long been used for the control, or-
ganization, and search of documents organization even before their publication. This
documentary analysis consists of textual reviews, format and stylistic validation, cohe-
sion, and contextualization guarantees. Among these methods, the automatically textual
review has been continuously improving, and thus, computer systems became an impor-
tant tool to aid in pointing out inconsistencies in the textual sequence. Thereby the area
of Natural Language Processing (NLP) turns itself fundamental for content checking
and ensuring consistency.

Among other challenges in the analysis of written language, the detection of false
news has recently taken on great social appeal. Such an appeal occurs due to the social-
political impact in several countries worldwide and, consequently, gains legislative no-
toriety within these countries [25]. In Brazil, a recent Fake News Inquiry by Federal
Supreme Court (STF) demonstrates the relevance of this debate, both at popular and

HPCA 2020 Submission #XXX – Confidential Draft – Do NOT Distribute!!

WiSEMAN: A weightless emotion-driven neural
architecture for planning-related tasks

Leopoldo A.D. Lusquino Filho, Aluizio Lima Filho,
Felipe Maia Galvão França, Priscila Machado Vieira Lima

PESC/COPPE
Universidade Federal do Rio de Janeiro – Brazil

ABSTRACT
Planning and management systems via multi-agent have
become an increasingly demanding solution for many
tasks involving heterogeneous data. Research into con-
scious agents has also shown solid progress. Here we
propose an agent-based cognitive system with conscious-
like behavior using Weightless Artificial Neural Net-
works. WiSEMAN is easy to embed on a wide range
of devices due to low computational cost.

1. INTRODUCTION
The increasing number of devices collecting data and

connecting to each other, exchanging information, makes
concepts like IoT and BigData tangible. The emergence
of efficient ways to deal with such huge heterogeneous
mass of data in real time has become extremely nec-
essary.In this scenario, distributed solutions, such as
multi-agent planning, have been more and more high-
lighted. The ability of agents to be adaptive, agile in
their negotiations and able to handle multiple types of
tasks simultaneously is of fundamental importance in
this type of system. Because of this, different types
of cognitive architecture have been designed to struc-
ture the learning and action taking capabilities of such
agents[1].

Another area of computing that has gradually de-
veloped is Machine Consciousness (MC)[2], which at-
tempts to build systems that have subjectivity. One of
MC’s partial goals is to construct agents who behave
indistinguishably from that of a truly conscious agent,
even if unintentionally. In all of these systems, emotion
modeling plays a vital role as a tool for improving agent
training. This is to so expected, because all major the-
ories of consciousness place great emphasis on the role
of emotions.

Substantial, though gradual, advances have been made
in this type of system, and some prototypes have al-
ready been embodied in robots, with motion and visual
control systems, sound, touch and pain receptors[3]. A
naval dispatching system[4] was also designed. Based
on correlates to consciousness principles it incorporated
natural language processing, database interaction, and

resource management.
A common limitation of different architectures for

conscious agents is the large number of partially in-
dependent modules for performing complex tasks in-
volving multi-modal learning. Therefore, we propose
a multi-agent task planning system whose architecture
is inspired by a cognitive system with conscious-like
emotion-driven behavior using only weightless artificial
neural networks (WANN): WiSEMAN (WiSARD Emo-
tional Multi-Agent Network). WANNs are especially
computationally inexpensive. While the WiSEMAN it-
self is still theoretical and not yet tested, its different
modules have been developed separately and tested in
different domains.

Section 02 describes the WiSARD, WANN model used
here, and Section 03 details the WiSEMAN architecture
and refers to the basis on the technology needed to build
its modules.

2. WISARD
WANNs are RAM-based neural networks where each

neuron is a simple memory table. Learning on these
models consists on memory writes, and classification
on memory reads. A traditional and simple model of
WANN is WiSARD[5], a class discriminator-oriented
architecture that has an input retina, responsible for
performing a pseudo-random mapping of n-tuples of a
binary input into specific RAM locations. Since N neu-
rons compose each WiSARD discriminator, the length
of a binary input is roughly N ∗ n bits. Each memory
location stores an integer that represents the number of
hits in the memory position addressed by the n bits in
question.

The WiSARD training phase consists of feeding an
input data to the model and increment the counter in-
side each accessed RAM location of a class discrimina-
tor. To classify a sample, all discriminators access their
RAM locations and return the counters that represent
the scores of each class. The discriminator with the
highest score is the predicted class of the model. If a
score tie occurs, a threshold technique called bleaching
is applied. The bleaching value is initialized to zero and

A weightless regression system for predicting multi-modal empathy

Leopoldo A. D. Lusquino Filho1, Luiz F. R. Oliveira1, Hugo C. C. Carneiro1, Gabriel P.
Guarisa1, Aluı́zio Lima Filho1, Felipe M. G. França1 and Priscila M. V. Lima1 2

1 PESC/COPPE, 2 NCE - Universidade Federal do Rio de Janeiro, RJ, Brazil

Abstract— This work takes into account the benefits of
machine learning in order to estimate the valence of emotions
on the OMG Empathy dataset, considering the information
obtained from face expressions and dialogue of interlocutors.
RegressionWiSARD and ClusRegressionWiSARD n-tuple re-
gressors and its ensembles were employed to this end. The best
performance achieved among all the combinations of weightless
neural models considered (evaluated using the CCC metric) was
0.25 in validation set of the Personalized Track .

I. INTRODUCTION

Since emotional states are a fundamental part of the
core of human psychology, often exceeding the intellect
itself in psychological hierarchy, it is natural that Affective
Computing[11] occupies a prominent place in the study
of the human-machine interface. Along with the apogee
of machine learning, Affective Computing has experienced
great growth in recent years, but it still has many open
questions. Some of the main ones involve the prediction of
emotions based on information from many different sources
and the identification of subtle emotional states in real time.
Specifically, many advances have been made recently in the
area of affective prediction[25][26][27][28][29][30][31][32].

In order to offer a significant contribution in the area,
this paper discusses the use of weightless neural network
ensembles in predicting the affective valence of individuals
in conversation videos, since this type of model has com-
putational simplicity, great computational agility and ease of
being parallelized.

The structure of this work is as follows: in Section 2
the WiSARD weightless model, some of its extensions and
ensembles will be described, Section 3 deals with the prepro-
cessing of data from different sources, Section 4 describes
the experiments carried out with different types of ensembles
using uni and multimodal data and discusses their results, and
Section 5 is the conclusion of this work, summarizing all
the previous discussion and also offering the main ongoing
works.

II. n-TUPLE MODELS

The n-Tuple classifier is a boolean node pattern classifier
[3], which distances itself from models derived from per-
ceptron because it do not use synaptic weights between their
neurons, thus avoiding all training time required for their
convergence. n-Tuple classifier does not need any parameter
fine tuning, nor does it use any error minimization technique
to obtain generalization in pattern learning [17]. The family

This work was not supported by any organization

Fig. 1. The WiSARD model multidiscriminator structure. For digits
recognition task there are ten discriminators. In the training phase, only
the corresponding discriminator is accessed.

of models derived from the n-Tuple classifier is known as
Weightless Artificial Neural Network (WANN).

A. WiSARD

WiSARD is a neural model based on the n-tuple classifier,
where each neuron is equivalent to a piece of memory [1].
This model is class discriminator-oriented, where all dis-
criminators are formed by N RAM-neurons, whose memory
addresses are addressed by n-bit tuples. Each neuron has 2n

memory locations.
WiSARD works with binary standards, requiring the use

of some preprocessing technique to form data suitable to
the model before the training and classification process. The
training process consists of using the binary input to access
specific memory positions of the corresponding discriminator
and increment the counter that constitutes its content. During
the classification, all discriminators are accessed and they
are assigned a score formed by the number of non-null
positions accessed. The discriminator with the highest score
will determine the class of the entry and in case of a tie,
a threshold called bleaching, which is initialized to zero, is
increased and the classification is repeated, considering for
the score only memory locations whose counter has higher
value than bleaching. This procedure is repeated until there is
a winning discriminator or until the bleaching value exceeds
the highest counter among the memory locations accessed,
in which case a default class is chosen for the entry. The
structure and the training process in WiSARD are illustrated
in Figs. 1 and 2. WiSARD can be used to accelerate the
training of deep models, and can be used as a starting layer
for such neural networks in a hybrid hierarchy[33].

Exploring WiSARD-based models in the
building of cognitive systems for emotive

perception

Leopoldo A.D. Lusquino Filho, Priscila Machado Vieira Lima, Felipe Maia Galvão França

PESC/COPPE
Universidade Federal do Rio de Janeiro – Brazil

Abstract. Recently, the weightless neural network model WiSARD has
been used in different tasks in the emotional domain, such as the clas-
sification of facial emotions (Lusquino Filho et al., 2018), Action Units
detection and multi-modal prediction of empathy in dialogues (Lusquino
Filho et al., 2019), thus demonstrating its ability to recognize continuous
and discrete emotional states. Since emotion plays a vital role in the cog-
nitive process (Megill, 2003; Denton et al., 2009; Damasio and Carvalho,
2013), this was a significant contribution to extend WiSARD to make it
suitable for Artificial Consciousness (AC) frameworks.

Weightless artificial neural networks (WANN) are neural models that do
not use weighted synapses to store the information it learns from presented
patterns. On the other hand, it possesses RAM(random-access-memory)-
based neurons in which this storage takes place. In a WANN the learning
of a pattern simply corresponds to writing in memory, whereas classifica-
tion essentially corresponds to the reading of certain memory positions.
WiSARD is the pioneering model of WANNs and since its creator, Igor
Aleksander, is also one of the pioneers of the study of AC, WiSARD and
other WANN models have been consistently used in experiments related
to AC: brain-inspired architecture for cognitive robotics (Shanahan, 2005),
demonstration of quasi-phenomenal behavior of intelligent agents (Alek-
sander and Morton, 2009) and validation of global workspace theory using
information integration (Aleksander and Gamez, 2009; Aleksander and
Gamez, 2011).

Nevertheless, limitations in WiSARD’s architecture prevent it from satis-
fying the 12 corollaries of the Fundamental Postulate of Artificial Neuro-
consciousness, derived from Kelly’s ”artificial constructs” theory (brain as
a state machine; conscious and unconscious states; perceptual learning and
memory; prediction; awareness of self; representation of meaning; learning
utterances; learning language; will; instinct; and emotion).

However, new extensions to WiSARD, such as DRASiW (Grieco et al.,
2010), ClusWiSARD (Cardoso et al., 2016) and Regression WiSARD (Lusquino
Filho et al., 2019) have added capabilities in the model to represent its own
learning, cluster data and perform linear and logistic regression, allowing
it to more fully satisfy the 12 corollaries. These are the works we intend
to present here.

Regression WiSARD application of controller on
DC STATCOM converter under fault conditions

Raphael N. C. B. Rocha †, Leopoldo L. Filho‡, Mauricio Aredes†, Felipe M. G. França‡, Priscila M. V. Lima‡§
†Programa de Engenharia Elétrica – COPPE

‡Programa de Engenharia de Sistemas e Computação – COPPE
§Tercio Pacitti Institute – CCMN

Universidade Federal do Rio de Janeiro – UFRJ
Rio de Janeiro, Brazil

raphael.dkreng@poli.ufrj.br, lusquino@cos.ufrj.br, aredes@lemt.ufrj.br, felipe@cos.ufrj.br, priscilamvl@cos.ufrj.br

Abstract—Capable of supplying local loads, DC microgrids
have received much attention in the last decade for alleviating
power flow through the main power grid. This has been achieved
through the use of edge devices on the control of the converters,
but, among other problems, microgrids have stability issues when
Constant Power Loads (CPL) are present. This problem was
already solved in the literature with the DC STATCOM power
converter, in normal operation mode, it can deal with the grid
operation. However, in fault cases, the solutions available still
fail to ignore faults or even contribute to them. The present
work aims to explore the potential of a light machine learning
algorithm of the type Weightless Artificial Neural Network
(WANN) for predicting the output of the original controller used
in the DC STATCOM on an edge device connected to a converter,
and investigate its generalization capability under microgrid fault
situations. The WANN used is based on the regression variant
of the Wilkes, Stonham, and Aleksander Recognition Device
(WiSARD), coined as Regression WiSARD (ReW). The evaluation
criteria employed measured the capability of the controller to
reject the fault condition. Initial results showed surprisingly good
results in comparison to the original DC STATCOM controller,
indicating that a ReW-based controller plays well the role of the
DC STATCOM and was able to cope with fault situations.

Index Terms—weightless artificial neural networks, Regression
WiSARD, smart grids, DC microgrids, edge computing.

I. INTRODUCTION

Distributed Generation (DG) is a topic of increasing interest
to the global energy sector. DC microgrid [1] constitutes a
way to interconnect several DG’s, as well as Energy Storage
Systems (ESS), where dc loads can be also connected to. Each
power converter heavily depend on edge devices since all data
processing related to the converters must be performed locally.
To further explore the fault handling capabilities of a machine
learning-based converter, one must also comply with these
requirements.

An example of dc microgrid is shown in Fig. 1, which
comprise some DG, ESS, and local loads. Usually, a dc
microgrids is connected to an ac power grid through a dc/ac
converter know as Grid-Connected Converters (GCC) that can
act as a grid former (if it provides voltage and frequency
control), or as grid follower, depending on the power rating of

that converter with respect to the installed power generation
in the ac grid.

DC Microgrid
Network

Solar
Power

Wind
Power

Grid
Power

Energy
Storage
System

DC
STATCOM

Consumers

DC-DC
Converter

AC-DC
Converter

Residential

Industry

Fig. 1: DC microgrid connected to a conventional grid and to
micro generators

A critical problem associated with dc microgrid control
is the difficulty of controlling the dc bus voltage in the
presence of dc loads that behave as Constant Power Loads
(CPL) [2] [3], because the non linearity of these loads may
render the system unstable. There are different ways of treating
this problem, one of them is to employ a DC compensator
associated with an energy storage system connected at the
Point of Common Coupling (PCC). The use of such DC/DC
compensator can bring benefits tho the DC microgrid, in
analogy to the STATCOM and active filters that are capable
of enhancing the quality of power, or improving the stability
margin in AC grid/microgrids [4]. It is intuitive to assume that
the same concept can be applied to DC microgrids. The Direct
Current Static Compensator (DC STATCOM) was proposed by
Chen [5] aiming at compensating theses instabilities on the DC
microgrids, as depicted in Fig. 2.

However, DC STATCOMs can cause problems in case of
fault in one of the loads, generators or transmission lines

“What are you thinking?” - Explanation and Interpretation by a
consciousness system

Aluizio Lima Filho, Leopoldo A.D. Lusquino Filho
Priscila Machado Vieira Lima, Felipe Maia Galvão França

PESC/COPPE
Universidade Federal do Rio de Janeiro – Brazil

In the XAI(eXplainable Artificial Intelligence) area the focus is on the
explanation of what is happening inside the AI(Gunning, 2017). For make
that possible is needed generate some interpretation of the AI
behaviour(Ribeiro et al., 2016).
The explanation is a process that involve the argumentation and emotion
response. The target is to persuade the person who receive the
arguments(Molnar, 2019).
In the that process there are two ways of interpretations: the first one is
the interpretation made by the explainer to create the arguments; the
second one is the interpretation made by who receive the argumentation
to comprehend what has been said.
In a consciousness system, it can have your consciousness of its existence
and consciousness of its perceptions and so on(Alexander, 1995), and the
explanation helps in the consciousness of itself.
The ability to create explanations is needed to make the system aware of
itself and helps the system to create logical “thoughts”.
The consciousness of itself could be made possible when the system
generates interpretations of what it percepts and with that create its
argumentation to start the process of explanation, and therefore it
creates a line of reasoning that make it to start to “think” or just to
ratiocinate.
The first steps is to create tools capable of generate interpretation as
resource to the consciousness system. In the on going research of
interpretations of the model WiSARD(Aleksander et al., 1984) a tool
capable of generate images as interpretation resources could be used to
the consciousness system.

Bibliography
Gunning, David. "Explainable artificial intelligence (xai)." Defense

Advanced Research Projects Agency (DARPA), nd Web 2 (2017).
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should

i trust you?: Explaining the predictions of any classifier." Proceedings of

1

	List of Figures
	List of Tables
	Introduction
	Motivation
	Positioning WiSARD in Relation to Other ML Models
	Some Thoughts on Historical Development of ML Models
	Contributions
	Thesis Outline

	Weightless Artificial Neural Networks
	n-Tuple Classifier
	WiSARD
	Training and Classification
	Mapping
	DRASiW and Mental Images
	minZero and minOne
	VC-dimension
	Scalability

	ClusWiSARD
	KernelCanvas
	n-tuple Regression Network
	General Regression Neural Network
	The Approximation-Type n-tuple Neural Network

	Other Weightless Artificial Neural Networks
	WAAN's Recent Advances
	Preprocessing Techniques
	Image
	Deskewing
	Yen's Binarization
	Adaptive Gaussian
	Sauvola's Binarization
	Canny Border Detector
	Otsu's Binarization

	Audio
	Thermometer
	One-hot-encoding
	tf-idf
	Discussion about the Preprocessing Techniques

	WiSARD in Action Units Multi-label Classification
	WiSARD-based Multi-label Classification Systems
	Label Powerset
	Binary Relevance

	Action Units
	Related Work
	Experimental Results
	Experimental Setup
	Cross-validation with Full Dataset
	Cross-validation with Subsets
	Leave-one-out Validation
	ClusWiSARD in Unsupervised Tasks
	Discussion

	Chapter Conclusion

	Ensemble Learning with WiSARD
	Related Work
	Bagging
	Arcing and AdaBoost

	WiSARD Ensembles
	WiSARD Bagging
	WiSARD Boosting
	WiSARD Borda Count
	Starting at 1
	Starting at 0
	Dowdall

	WiSARD Tie-break Ensembles
	All candidates
	Only Ties
	Tie-break with Threshold

	Weighted Votes Ensembles
	Discussing the Tiebreaker Criteria for WiSARD Ensembles
	All candidates
	Only-ties
	Tie-break with Threshold
	Weighted Votes Ensembles

	Experimental Results
	Datasets
	Cifar 10
	CKP
	MNIST
	Fashion MNIST
	IMDB
	MovieLens
	State-of-the-art Models

	Experimental Setup
	Experimental Results
	Discussion
	Additional Results in Cifar 10

	Chapter Conclusion

	Extending WiSARD for Regression
	Related Work
	The New Weightless Regression Models
	Regression WiSARD
	Training
	Prediction

	ClusRegression WiSARD
	Training
	Prediction

	Regression WiSARD Ensembles

	Experimental Results
	KDD18 Experimental Setup
	Analysis of the KDD18 Experiments
	Analysis of Experiments in Other Datasets
	Regression WiSARD's Learning Curves
	Analysis of Ensemble Composition
	Logistic Regression
	The Model
	Validation
	Discussion

	Chapter Conclusion

	A Weightless Multi-modal Empathy Predictor
	Related Work
	Empathy Prediction
	Experimental Results
	Experimental Setup
	Results in Validation Set
	Results in Test Set
	Preprocessing Analysis
	Discussion

	Chapter Conclusion

	Conclusion
	Summary of the Thesis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	WiSEMAN: Towards a WiSARD-based Cognitive Architecture
	Final Remarks

	References
	Appendices
	Supplementary Action Units Experiments
	Supplementary Ensemble Experiments
	Cifar10 Dataset
	Local Threshold
	Mean Threshold
	Otsu's Binarization
	Yen's Binarization

	CKP Dataset
	Local Threshold
	Mean Threshold
	Otsu's Binarization
	Yen's Binarization

	Fashion MNIST Dataset
	Local Threshold
	Mean Threshold
	Otsu's Binarization
	Yen's Binarization

	IMDb Dataset
	MNIST Dataset
	MovieLens Dataset

	Comparison between WiSARD and ClusWiSARD in Ensemble Experiments
	Supplementary Regression Experiments
	WiSEMAN: A Weightless Emotion-driven Neural Architecture for Planning-related Tasks
	Motivations
	WiSEMAN Architecture

	Weightless Artificial Neural Networks and Artificial Consciousness
	The Fundamental Postulate: Consciousness and Neural Activity
	Advances in WiSARD and the Investigation in Artificial Consciousness

	WiSARD Libraries
	wisardpkg
	Implementation
	Availability
	Installation
	Architecture
	Binarization
	Models

	Multi-label Classification Systems
	Classification Ensembles

	List of Publications
	Journal Articles
	Book Chapters
	Complete Works Published in Proceedings of Conferences
	Extended Abstracts Published in Proceedings of Conferences

	Introduction
	WiSARD
	Introduction

