
MALWARE CLASSIFICATION SYSTEM USING WEIGHTLESS NEURAL
NETWORKS

Luiz Claudio Sampaio Ramos

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientadores: Felipe Maia Galvão França
Priscila Machado Vieira Lima

Rio de Janeiro
Agosto de 2021

MALWARE CLASSIFICATION SYSTEM USING WEIGHTLESS NEURAL
NETWORKS

Luiz Claudio Sampaio Ramos

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientadores: Felipe Maia Galvão França
Priscila Machado Vieira Lima

Aprovada por: Prof. Felipe Maia Galvão França
Profa. Priscila Machado Vieira Lima
Prof. Diego Leonel Cadette Dutra
Prof. Mauricio Breternitz Jr.

RIO DE JANEIRO, RJ – BRASIL
AGOSTO DE 2021

Ramos, Luiz Claudio Sampaio
Malware classification system using weightless neural

networks/Luiz Claudio Sampaio Ramos. – Rio de Janeiro:
UFRJ/COPPE, 2021.

XII, 45 p.: il.; 29, 7cm.
Orientadores: Felipe Maia Galvão França

Priscila Machado Vieira Lima
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2021.
Referências Bibliográficas: p. 39 – 43.
1. Malware Classification. 2. Weightless Neural

Networks. 3. Decision Trees. I. França, Felipe
Maia Galvão et al. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia de Sistemas e
Computação. III. Título.

iii

Ao Nero, meu irmão pequeno que
me ensinou o que os livros não

podem ensinar.

iv

Agradecimentos

Agradeço em primeiro lugar aos meus pais, Sonia e Mauri, que não se contentaram
em me dar toda a estrutura necessária para a vida, mas também o fizeram com
muita dedicação, amor e compreensão.

Aos meus irmãos, Stefano e Patricia, por serem exemplos a serem seguidos e por
sempre estarem ao meu lado.

Aos meus orientadores, Felipe e Priscila, pela paciência e compreensão sempre
que precisei, nunca medindo esforços para me ajudar em qualquer situação.

Ao coordenador Daniel Ratton e ao corpo administrativo do PESC, pela hu-
manidade no tratamento com as pessoas.

À Camila, minha melhor amiga e companheira, que nunca me abandonou nos
momentos mais difíceis da minha vida.

Aos meus amigos mais próximos: Santanelli, Braun e Nicolas, que me ajudaram
a superar as adversidades com muito bom humor.

Aos amigos Bacelar, Caio e Escorcio que, apesar da distância, pude contar nos
momentos complicados.

Aos colegas de pós-graduação Leopoldo e Brunno, pela ajuda e paciência com as
questões de programação desse trabalho.

Ao professor Amarildo, por ter me apresentado a oportunidade de estudar no
PESC.

À empresa LACE Engenharia e ao Luiz Renault, pela compreensão nos momentos
difíceis da pós-graduação no tocante às relações profissionais.

Ao PESC, por ter me proporcionado participar de um congresso durante o
mestrado.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SISTEMA DE CLASSIFICAÇÃO DE MALWARES UTILIZANDO REDES
NEURAIS SEM PESO

Luiz Claudio Sampaio Ramos

Agosto/2021

Orientadores: Felipe Maia Galvão França
Priscila Machado Vieira Lima

Programa: Engenharia de Sistemas e Computação

Apresenta-se, nesta dissertação, o sistema de classificação de programas mali-
ciosos MalWiSARD, um sistema baseado em redes neurais sem peso. Com a cres-
cente preocupação com segurança e integridade dos dados em sistemas de com-
putação, faz-se necessário uma detecção rápida e eficaz para evitar o comprome-
timento de sistemas, o que pode ter consequências drásticas. O trabalho mostra
MalWiSARD e suas variantes aplicadas em um banco de dados de 26 tipos de
programas, incluindo 25 tipos maliciosos. A variante em árvore da MalWiSARD
utilizando a análise de ensemble para classificação de vírus alcançou uma acurácia
de 98,5693%, com tempos de treinamento em torno de 11 minutos para treinar 10582
imagens geradas diretamente a partir de executáveis de programa, obtendo um re-
sultado melhor que o estado-da-arte do banco de dados tanto na acurácia como nos
tempos de classificação.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

MALWARE CLASSIFICATION SYSTEM USING WEIGHTLESS NEURAL
NETWORKS

Luiz Claudio Sampaio Ramos

August/2021

Advisors: Felipe Maia Galvão França
Priscila Machado Vieira Lima

Department: Systems Engineering and Computer Science

This dissertation presents the MalWiSARD classification system for classifica-
tion of malicious computer programs (malware), a system based on weightless neural
networks. With the growing concern about security and data integrity in comput-
ing systems, rapid and effective detection of malware is needed to prevent systems
from being compromised, which can have drastic consequences. The work shows
MalWiSARD and its variants applied to a database of 26 types of programs, in-
cluding 25 malicious types. MalWiSARD tree variant using ensemble analysis for
virus classification achieved an accuracy of 98.5693%, with training time around 11
minutes to train 10582 images generated directly from binary program executables,
obtaining a better result than the state-of-the-art for this database related to both
accuracy and classification times.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contribution . 1
1.3 Dissertation Organization . 2

2 Classification and Detection of Malware 3
2.1 Definition . 3

2.1.1 Types of malware . 3
2.1.2 Background . 4

2.2 Classification and Detection Techniques 5
2.2.1 Signature-Based . 5
2.2.2 Heuristic-Based . 6
2.2.3 Cloud-Based . 6
2.2.4 Data Mining Techniques . 6

2.3 Related Works . 6

3 Classification Techniques 8
3.1 Weightless Neural Networks . 8

3.1.1 RAM Discriminators . 8
3.1.2 WiSARD . 9
3.1.3 Bleaching . 10
3.1.4 Mental Images . 11

3.2 Decision Trees . 12
3.2.1 Decision Tree Model . 12
3.2.2 Classification Tree . 12

4 Proposed Method 14
4.1 General Structure of MalWiSARD . 14

viii

4.2 Preprocessing . 16
4.2.1 Conversion . 16
4.2.2 Binarization . 17

4.3 Simple WiSARD System . 18
4.4 Tree WiSARD System . 19
4.5 Virus Classification Analysis . 19

5 Results and Discussion 21
5.1 Database . 21
5.2 Experimental Setup . 23
5.3 Experiments and Discussion . 24

5.3.1 Preprocessing . 24
5.3.2 MalWiSARD with Simple WiSARD System 26
5.3.3 MalWiSARD with Tree WiSARD System 27
5.3.4 Virus Analysis Techniques . 31

5.4 Discussion . 36

6 Conclusion 38

References 39

A Papers Published 44

ix

List of Figures

2.1 Progress in malware detection techniques. 5

3.1 Discriminator example using 2-tuples. 9
3.2 Example of classification session; the block which corresponds to each

character is added. 9
3.3 Example of WiSARD classification session; the discriminator related

to the letter b has the maximum activation rate. 10
3.4 Training examples for the letter X and its correspondent mental image. 11
3.5 An example of a decision tree to classify amongst the characters A,

B and C. 12

4.1 General structure of MalWiSARD. 14
4.2 Conversion example. Bytes in (a) are converted in sequence to chan-

nels RGB in (b), which are combined for the final pixel in (c). 16
4.3 Structure of MalWiSARD-tree WiSARD system. 19

5.1 Sample images from database. 22
5.2 Binarization time for different techniques. 25
5.3 WiSARD accuracy for different binarization techniques. 25
5.4 Confusion matrix for the Simple WiSARD System. 26
5.5 Confusion matrix for the Tree WiSARD System - Goodness Test. . . 28
5.6 Confusion matrix for the Tree WiSARD System - Type Test. 29
5.7 Confusion matrix for the Tree WiSARD System - Class Test for Adware. 30
5.8 Confusion matrix for the Tree WiSARD System - Class Test for Trojan. 30
5.9 Confusion matrix for the Tree WiSARD System - Class Test for Worm. 31
5.10 Confusion matrix for the Tree WiSARD System - Class Test for Back-

door. 31
5.11 Confusion matrix for the Simple Analysis for Virus. 32
5.12 Confusion matrix for the Ensemble Analysis for Virus. 33
5.13 Mental images for the Virus Type. 34
5.14 Cut mental images for the Virus Type. 34
5.15 Confusion matrix for the Mental Image Analysis for Virus. 35

x

5.16 Confusion matrix for the Decision Tree Analysis for Virus. 36
5.17 Mental images for the Worm Type. 37

xi

List of Tables

4.1 Types and classes of programs analyzed by MalWiSARD. These are
the classes of the MaleVis dataset [1]. 15

5.1 Contents of the MaleVis dataset. 23
5.2 Metrics used to validate the model. 24
5.3 Results for the Simple WiSARD System. 26
5.4 Results for the Tree WiSARD System - Goodness Test. 27
5.5 Results for the Tree WiSARD System - Type Test. 28
5.6 Results for the Tree WiSARD System - Class Test. 29
5.7 Results for the Simple Analysis for Virus. 32
5.8 Results for the Ensemble Analysis for Virus. 33
5.9 Results for the Mental Image Analysis for Virus. 35
5.10 Results for the Decision Tree Analysis for Virus. 36
5.11 Comparison among variants. 37

xii

Chapter 1

Introduction

1.1 Motivation

As computer systems are more integrated into the everyday life of citizens and
companies, including important areas like Internet of Things and Industry 4.0, the
concern with privacy, security, and integrity of data is constantly increasing. Com-
puter systems are used to control, for instance, power plants, nuclear plants and
industries. A malware, or a malicious software, is a program whose main goal is to
access and modify sensible information in an unauthorized way, commonly to achieve
financial profit. This concern has lead to great research in the field of malware de-
tection and classification, not only in the academic field but also inside companies
which are afraid of exposing compromising information which could lead the firm to
bankruptcy, for instance. One example is the use of Ransomware, a type of malware
that steals sensitive information and asks for money in order to not expose it.

1.2 Goals and Contribution

This work aims to present a malware classification system based on weightless neural
networks, the MalWiSARD. As detailed in this work, weightless neural networks
present relatively low training and classification times and are based in random
access memories; therefore, the simplicity of these systems can be employed to scale
to big computer systems and cyber-physical systems.

The main contribution is the MalWiSARD, a malware classification system which
achieves more than 98% accuracy classifying among 26 classes of software, including
25 malware. This was done in more than 10 times faster than the last work in the
same dataset [1], and with higher accuracy. Therefore, this work shows the feasibility
of employing weightless neural networks in malware classification, which can lead
to fast response times in real time systems and also protect large computer systems

1

with small memory footprint components, such as for applications in Internet of
Things.

1.3 Dissertation Organization

This work is organized as follows. Initially, Chapter 2 presents the definition of
malware and the most common types of malware, and also further explores the
importance of detecting and classifying malware. Furthermore, it presents the main
classification and detection techniques and their categories, showing related works
which employed these techniques.

Subsequentialy, Chapter 3 presents MalWiSARD theoretical background, ex-
plaining the main techniques employed in the method; it discusses the weightless
neural network model and its training and testing phase and also variations which
can be used to increase accuracy. Finally, it discusses decision trees, which were also
employed in the MalWiSARD.

Afterwards, Chapter 4 illustrates the MalWiSARD method, presenting all the
phases involved from the program executable binary to the classification, clarifying
all the possible variants of the method. Then, Chapter 5 presents the experiments
done in order to validate the method and discusses the results.

Finally, Chapter 6 concludes the work summarizing the results obtained and
proposing future work in the malware classification field using weightless neural
networks. In Appendix A, it is presented the papers published relating to this
work.

2

Chapter 2

Classification and Detection of
Malware

2.1 Definition

The term malware, short for malicious software, is a generic term which can be
describe a program whose objetive is malevolent [2], that is, code added, changed
or removed from a software system in order to intentionally cause harm or subvert
the intended function of the system [3].

2.1.1 Types of malware

Based on the different purposes and proliferation ways, malware can be broadly
classified into the following categories.

Adware

Adware or advertising-supported software automatically plays, displays, or down-
loads advertisements to a computer after malicious software is installed or applica-
tion is used. This piece of code is generally embedded into free software [4]. The
objective of adware is to gain financial profit for their author. Adware are not harm-
ful by nature, but they can be in the form of a pop-up window which can interrupt
users thinking. Some adware may come with integrated spyware such as key loggers
and other privacy-invasive software [5] [6].

Trojan

Trojan horses emulate behavior of an authentic program such as login shell and
hijacks user password to gain control of system remotely. Other malicious activities
may include monitoring of system, damages system resources such as files or disk

3

data, denies specific services [4]. The embedded malware could also be a time bomb
[7].

Virus

A computer virus is code that replicates by inserting itself into other programs. A
program that a virus has inserted itself into is infected, and is referred to as the
virus’s host. An important caveat is that viruses, in order to function, require their
hosts, that is, a virus needs an existing host program in order to cause harm. For
example, in order to get into a computer system, a virus may attach itself to some
software utility (e.g. a word processing application). Launching the word processing
application could then activate the virus that may, for example, duplicate itself and
disable malware detectors enabled on the computer system [6].

Worm

Worms are self replicating programs. It uses network to send copies of itself to other
systems invisibly without user authorization. Worms may cause harm to network
by consuming the bandwidth. Unlike virus the worms do not need the support of
any file. It might delete files, encrypt files in as crypto viral extortion attack or send
junk email [4].

Backdoor

Backdoors, also called trap doors, are malcode written into an applications or op-
erating systems with the intention of granting programmers access to the system
without requiring them to go through ordinary methods of authentications. They’re
written by experts or specialized developers for friendly usage. The security problem
with trapdoors is the full access, getting in without authentication, because these
programs can be used remotely by enemies to make attacks [5].

2.1.2 Background

As presented in a survey conducted by the FBI (Federal Bureau of Investigation)
[8], this section discusses some major issues which can be caused by malware, al-
lowing analysis of important computer security trends. The key findings from the
survey participants are presented. In a shift from previous years, both virus at-
tacks and denial of service outpaced the former top cost, the theft of proprietary
information. Virus costs jumped to $55 million [8]. Thus, companies began to in-
vest in cybersecurity adopting actions such as increasing the financial investiment
in security and promoting security awareness training for the colaborators. In this

4

manner, over 80 percent of the organizations conduct security audits and do not
outsource computer security activies, such that the company has full control of the
integrity and security of data [8]. Furthermore, it can be seen that the percentage
of organizations reporting computer intrusions to law enforcement is on the decline
and most organizations conduct some form of economic evaluation of their security
expenditures, which shows that with more than 55 percent returning on investment.
Thereby, unauthorized use of computer systems is on the decline, as is the reported
dollar amount of annual financial losses resulting from security breaches [8].

Given the dimension of the damage malware can cause, several works have been
conducted in the last years in order to detect and classify malware in computer
systems. Besides, thousands of new malware appear very quickly, as the creation of
new malware can be done from existing malware with little modifications [9].

2.2 Classification and Detection Techniques

As the number of new malware samples has been increasing, anti-malware vendors
are confronted with millions of potential malware samples per year. In this manner,
there is an urgent need to develop intelligent methods for effective and efficient
malware detection from the daily sample collection. A general structure of the
progress in malware detection in the last years is depicted in Figure 2.1 [10].

Malware

Detection

Signature-based

Heuristic-based

Cloud-based

Data mining

Techniques

Figure 2.1: Progress in malware detection techniques.

2.2.1 Signature-Based

A signature-based method uses what is called a signature, which is a short sequence
of bytes unique to each known malware. The goal is that this signature can help
identifying newly encountered files with a small error rate [11]. As new malware
can be created from existing ones, they will have a known signature, and can be de-
tected, but there are several techniques to bypass these methods, such as encryption,
obfuscation and polymorphism. The signature bases are manually generated, up-
date and disseminated, such that the process is very time consuming. Furthermore,
anti-malware tools will be less responsive to new threats [12].

5

2.2.2 Heuristic-Based

An heuristic-based method is based on rules determined by experts to discriminate
malware samples and benign files. These rules should be generic enough to be con-
sistent with variants of the same malware threat, but not falsely matched on bening
files [13]. As the analysis done by experts can be erroneous is very consuming, this
makes the speed of malware creation faster than the manual pattern development
and the necessity of an automated process of analysis [10].

2.2.3 Cloud-Based

In order to produce a quicker response and development of rules to identify mal-
ware, anti-malware vendors have used cloud-based detection, which consists of having
a client-server architecture such that files that cannot be classified offline (it is un-
known by the offline system) will have its features sent to a server in which they can
be classified. The veredict will spread to all client users in the system, such that all
users will have up-to-date security solutions [11].

2.2.4 Data Mining Techniques

With great interest and research in machine learning, the last techniques became to
rely on data mining techniques. The idea consists of classifying previously unseen
malware samples, identifying malware type and family. In general, these techniques
consist of two steps: feature extraction and classification/clustering [10]. In the first
step, there are several techniques that try to extract features that can be used to
predict the software behavior, such that API calls, opcodes and binary sequences.
This can be done statically, which extracts patterns from the code executable; or
dinamicaly, which extracts patterns from the program in runtime. In the second
step, in the case of labelled data, supervised learning can be employed, using neural
networks, decision trees or support vector machines, for instance; if there is no label
or previous information about the software, clustering techniques are used, in order
to group malware samples that share similar features.

2.3 Related Works

This section explores previous research employing the discussed techniques.
ELLIS et al. [14] used characteristic patterns of worm behavior in network traffic

and studied how the network application architecture can influence how a work can
impact a network. ILGUN et al. [15] created a technique called state transition
analysis which models penetrations as a series of state changes that lead from an

6

secure state to a target compromised state. Both are examples of dynamic signature-
based methods.

Several examples of static signature-based methods have been developed. In
CHRISTODORESCU e JHA [16], it is shown a tool called SAFE, which is resilient
to common obfuscation transformations. In order to create platform-independent
tools, KUMAR e SPAFFORD [17] implemented a virus detection tool in the C++
language, which extract features in viruses and use them to detect malware. Finally,
SULAIMAN et al. [18] presents a robust assembly language detection technique for
obfuscation detection.

As obfuscation became a popular technique to create new malware, TREAD-
WELL e ZHOU [19] presents a heuristic detection approach performing a series
of static checks on binary files portable executable structure for common traces of
obfuscation. As of using data mining and machine learning techniques, ELOVICI
et al. [20] presents the ensemble of neural networks, decision trees and bayesian net-
works based on byte sequences and portable executable headers to outperform each
individual classifier. WANG et al. [21] uses a hybrid approach to feature extrac-
tion (that is, both static and dynamic features) to classify spyware using a support
vector machine. Finally, ANDERSON et al. [22] presents multiple kernel learning
employing Markov chains from dynamically collected instruction traces.

NATARAJ [23] shows that the program’s binary files can be treated as im-
ages by direct conversion and analyzed. In this manner, NATARAJ et al. [24]
presented SARVAM, a search system for malware based on the converted image and
on the Nearest-Neighbors technique. BOZKIR et al. [1] employed various contem-
porary convolutional neural networks, such as Resnet, Inception, DenseNet, VCG
and AlexNet, that have proven success in image classification, to show that classifi-
cation via the use of computer vision and machine learning methods over byte-level
images extracted from malware is an effective static solution. Moreover, GARCIA
e MUGA II [25] employed a Random Forest to classify the images. Finally, besides
image processing techniques, FARROKHMANESH e HAMZEH [26] uses audio pro-
cessing techniques and pattern findind methods in music to classify malware.

Besides, techniques which follow different terminology have been focus of re-
search, such as: anomaly-based in GARCÍA-TEODORO et al. [27], which uses sta-
tistical analysis in order to detect unknown malware; specification-based in CHAU-
GULE et al. [28], which utilizes keypad or touch screen information to differentiate
between malware and human activity; rule-based in BLOUNT et al. [29], which
employs a combination of a rule system and a evolutionary algorithm-based rein-
forcement learning; and network-bases in AHMED et al. [30], which uses a sniffer
in each network segment to prevent external attack to a network via a malware.

7

Chapter 3

Classification Techniques

This chapter explores the classification techniques employed in this work. The main
topics are Weightless Neural Networks, which is the core technique used in the
proposed method, and Decision Trees, which is compared with the last in some
cases.

3.1 Weightless Neural Networks

Originally known as n-tuple classifier and developed by BLEDSOE e BROWNING
[31], weightless neural networks are also inspired by the human nervous system, but
provides a different approach when compared to traditional neural networks. In this
type of network, the emulation of the topology of the connections between dendrites
and axons is prioritized, that is, the dendritic tree [32]. The information learned is
stored in RAM memories, which work like artificial neurons.

3.1.1 RAM Discriminators

The n-tuple classificators consist of n-tuples used to address initially flushed RAM
memories, that is, memories filled with zeroes. These classificatiors were first used
for manuscript character classification, as shown in Figure 3.1. The classificator
randomly chooses groups of n binary positions in the image and use them to address
what is called Address Groups, each tuple addressing one group. The value of the
binary positions of the tuple determines the bit which to address in the memory,
and this position is set to the value 1. It is important to note that each possible
label of incoming data has memory zones which represents them in each address
groups; in other words, in the example, every character has a memory zone which
corresponds to it and, therefore, the system can remember which character activated
each positions in the address groups.

8

Address

Group

1

Address

Group

2

Address

Group

3

1

1
1

2

2

2

Figure 3.1: Discriminator example using 2-tuples.

After training with some labeled examples, in order to classify a new input, the
same mapping used in the training session is used, again, to address the memories.
Using an adder, the system can determine the number of memory cells which re-
turned the value 1 for each label, and the sum is used as a measurement of sensibility
against data used to train. The memory zone corresponding to a certain charac-
ter which has the larger sum is considered as the classified label for that input, as
depicted in Figure 3.2.

Address

Group

1

Address

Group

2

Address

Group

3

Largest Sum

A B C D ... R TS ... Y Z

Figure 3.2: Example of classification session; the block which corresponds to each
character is added.

As each tuple represents a limited part of the input data, it is not capable of
generalizing the information trained. For instance, if a 2-tuple is used, there are
four possible addressable positions for each character, so that there are 16 possible
outcomes for each block in each address group. In this manner, it is possible that
the memory (and the whole system in general) will saturate quickly and will not be
able to recognize similar patterns in the input data.

3.1.2 WiSARD

In order to surpass the saturation problem, the Wilkie, Stoneham and Aleksander’s
Recognition Device, also known as WiSARD [33], expands the concept explored in

9

Section 3.1.1. The system consists of one discriminator for each data label and,
therefore, it is able to capture the patterns of each class in a separate discriminator.
In the example of character recognition, there would be 26 discriminators, one for
each letter of the latin alphabet. In this case, during the training session, only
the specific discriminator which represents the class will be trained, whereas in the
classification session each discriminator will output a different value for the input
data. In order to classify, the system gives the highest sum among the discriminators,
as shown in Figure 3.3; besides, the confidence of the result can be defined as
the relative difference between the response of the predicted discriminator and the
second highest valued discriminator.

Discriminator 1 - A

Discriminator 2 - B

Discriminator 26 - Z

...

...

...

...

Figure 3.3: Example of WiSARD classification session; the discriminator related to
the letter b has the maximum activation rate.

Besides, a system can be built to have more discriminators than classes, in order
to capture different patterns of the same class. As described, as the WiSARD has at
least one discriminator for each class, it has higher tolerance to noise in the data and
can achieve generalization, because the system no longer has the saturation problem
as the n-tuple classificator. One problem that can still arise is the possibility of a tie;
in other words, the confidence of the result can be zero, meaning that two classes
have the same output response. In this case, the WiSARD chooses randomly a class
between the two, and a criteria is needed to overcome this issue.

3.1.3 Bleaching

A technique named bleaching was elaborated in such a manner to mitigate the tie
problem of WiSARDs, and consists of adding an access counter to each position in
memory. This way, throughout the classification, the response of each discriminator
will add up only the positions in memory which has a value in the counter bigger
than a threshold, whose initial value is zero. As long as there are ties between
two discriminators, the threshold keeps increasing and new responses are calculated
based on the new threshold value, until there is a winner. In the training session,
each time a pattern is presented to the network, the position accessed in memory will

10

have its counter incremented. However, in the classification session, this value, called
bleaching value, can delay the classification compared to the traditional WiSARD,
as the threshold may need to be increased. If the threshold becomes large as to give
zero response to both discriminators, only in this case the network will choose one
randomly [34].

3.1.4 Mental Images

In order to understand what has been learnt by a WiSARD, a DRASiW model can
be employed to recall learnt patterns, which are called mental images [35]. In order
to implement a DRASiW model, during training, it is necessary to store, for each
memory location addressed, how many times it was accessed. This can be done
using a counter, which increments every time a memory location is accessed during
training. In this manner, the mental image produced by a discriminator represents
how many times each input bit was presented to the network. Therefore, an image
in which the channel levels are proportional to the counter values can be produced,
which can be used to represent the class the discriminant learned [32].

Consider the example presented in Figure 3.4. Figures 3.4a, 3.4b and 3.4c repre-
sent training data for the character X, which is fed to a discriminator. The DRASiW
will increment each bit counter and recall the image presented in Figure 3.4d, which
has gray tones proportional to the number of accesses during the training phase.

(a) (b) (c)

(d)

Figure 3.4: Training examples for the letter X and its correspondent mental image.

11

As can be seen, the DRASiW model can be used to extract the learned rules
from the training set, which is not a straightforward procedure in the study of
neural networks [36]. With this, it is possible to identify and understand the learned
patterns and study how the WiSARD was able to learn the patterns presented in
the training data.

3.2 Decision Trees

3.2.1 Decision Tree Model

A decision tree can be represented as a direct graph G = (V,E), E ⊂ V 2, with set
of nodes V split into three disjoint sets of decision and terminal nodes. In a decision
node, the decision maker selects an action; that is, one of the nodes stemming from
this node. Terminal nodes represent the end of a sequence of actions of a decision
problem [37]. For example, the decision three in Figure 3.5 can be used to classify
characters amongst A, B and C based on the number of loops in the drawing.

Has

no loops?

LOOP

LOOP

Has

one loop?

C

B

A

Figure 3.5: An example of a decision tree to classify amongst the characters A, B
and C.

This decision model is a simple yet widely-used classification technique, as they
provide high accuracy even when the size of the dataset increases [38]. Besides the
applications, which ranges from detection spam e-mails to classifying galaxies based
on their shapes, it can also be implemented in hardware, leading to a speedup of
more than 5 when compared to software implementations [39].

3.2.2 Classification Tree

The first step in order to use a decision tree as a classifier is to train the model using
data which the class is known, as in supervised learning. Later, the decision tree
can be used to predict the classes of other data. In order to achieve this, there has
to be an algorithm, based on a metric, for construction the decision tree, i.e, choose
how the tree will branch at each decision node.

12

One of the first and most famous algorithms introduced was used by the CART
(classification and regression tree) algorithm [40], which used the Gini impurity as
a metric. This approach is based on evaluating the ability of each attribute to
generate pure partitions, that is, partitions in which each branch is homogeneous
with respect to the class distribution of its example. That is why the metric is called
an impurity, as it measures how impure each branch is [41]. If u = (u1, · · · , un) is
a vector counting how many examples of each class there are in a node, the Gini
impurity is defined as

i(u) =
n∑
i=1

ui
||u||

(
1− ui
||u|| .

)
In this manner, the algorithm aims to find the values for each attribute in each

decision node that induces a partition of the set of examples with minimum weighted
impurity, i.e, in which the weights are given by the number of examples in each of
the branches [41].

13

Chapter 4

Proposed Method

In this chapter, the proposed method for malware classification will be discussed.
Section 4.1 will scrutinize the general structure of MalWiSARD, a malware classifi-
cation system based on weightless neural networks. After that, Section 4.2 illustrates
the preprocessing techniques used before a program can be used as input to a WiS-
ARD. Furthermore, Sections 4.3 and 4.4 provide WiSARD systems that can be used
within MalWiSARD. Finally, Section 4.5 give further details on virus classification.

4.1 General Structure of MalWiSARD

The general structure of MalWiSARD is depicted in Figure 4.1, which provides a
high level overview of the steps involved in the system. The method can be used to
classify among 25 malware plus 1 bening software classes. These classes permeate
different types of malware, including adware, trojan, virus, worm and backdoor.
The system input is a binary executable program and the output is the predicted
class for the program. Table 4.1 shows the types and classes of programs that can
be analyzed by means of MalWiSARD. The classes were chosen based on the open
dataset MaleVis [1], which was used in this work to compare the MalWiSARD with
the previous technique.

Conversion Binarization Training

Testing

...

...

...

...

WiSARD

System

Image

Representation

of Software

Binary

Executable

Program

Binary

Array

0 1 1 1 0 0 0 1 1 0 1 0 1 0

Figure 4.1: General structure of MalWiSARD.

14

Table 4.1: Types and classes of programs analyzed by MalWiSARD. These are the
classes of the MaleVis dataset [1].

Goodness Type Class
Goodware — —

Malware

Adware

Adphoshel
Amonetize
BrowseFox
InstallCore
MultiPlug
Neoreklami

Trojan

Agent-fyi
Dinwod
Elex

HackKMS
Injector
Regrun
Snarasite
VBKrypt
Vilsel

Virus

Neshta
Sality
Expiro
VBA

Worm

Allaple
Autorun
Fasong
Hlux

Backdoor
Androm
Stantinko

The first step of MalWiSARD is a preprocessing phase, which consists of prepar-
ing a binary executable program to be able to serve as input to a WiSARD, whose
input can only be a binary array. After preprocessing into a binary array, data can
be classified by a WiSARD system, which consists of one or more weightless neu-
ral networks. In this method, there are two kinds of WiSARD system: the Simple
WiSARD system and the Tree WiSARD System.

15

4.2 Preprocessing

The first step consists of preprocessing the input program file, which includes conver-
sion and binarization. As previously has been shown, program’s binary files can be
treated as images by direct conversion [23], and this Section describes this conversion
steps.

4.2.1 Conversion

Although is phase is not done in this work, the method used by the MaleVis dataset
is presented. The software data available in the MaleVis dataset is already con-
verted to RGB images. The conversion phase accepts a binary executable program
and converts it directly to an 3-channel image. Each byte of the original program
represents one channel, such that each pixel has three values each between 0 and
255 for the red, green and blue channels. This process is depicted in Figure 4.2. If
the program has a non-multiple of 3 size, the final channels are padded with zeroes.

... 65 01 4F E5 A9 BF 7E ...

(a) (b) (c)

Figure 4.2: Conversion example. Bytes in (a) are converted in sequence to channels
RGB in (b), which are combined for the final pixel in (c).

To finish the conversion, the image is resampled to a fixed square sized resolution
using Lanczos resampling [42]. The effect that each input sample casts on the
interpolated values is defined by the reconstruction Kernel L(x) given by Equation
4.1 [43]:

L(x) =

sinc(x) · sinc
(
x
a

)
, −a < x < a

0 otherwise,
(4.1)

where sinc(x) = sinπx
πx

. The value of a determines the size of the kernel. In two
dimensions, the kernel is defined by the product of two one-dimensional kernels, as
in Equation 4.2:

L(x, y) = L(x) · L(y). (4.2)

Considering a two dimensional signal sij, such as an image, the resampled version
Sx,y is given by Equation 4.3:

16

S(x, y) =

bxc+1∑
bxc−a+1

byc+1∑
byc−a+1

sij · L(x− i) · L(y − j). (4.3)

The idea of using a Lanczos resampling is to minimize the pixel loss in the
resample phase [1].

4.2.2 Binarization

The binarization phase consists of transforming each channel into a sequence of
zeroes and ones in order to use it as an input to a WiSARD, which can only accept
binary values. Several techniques can be using within the MalWiSARD, which are
described as follows.

Binary Threshold

In the Binary Threshold method, each channel value gets converted to 0 or 1 based
on a fixed threshold value. The binarization function is given by Equation 4.4:

bBT (x, y) =

1, if S(x, y) ≥ T

0 otherwise,
(4.4)

where the fixed value T is chosen prior to the process.

Dynamic Binary Threshold

In the Dynamic Binary Threshold method, the process is still based on the Equation
4.4 but the threshold value is not fixed for every image. The threshold value is chosen
as the median of all the channel values in the image, such as shown in Equation 4.5:

bDBT (x, y) =

1, if S(x, y) ≥ T (S)

0 otherwise,
(4.5)

where T (S) = median(S(x, y)).

One-hot encoding

In the One-hot encoding method, N intervals of values between 0 and 255 are
evenly chosen to construct vectors in a one-hot enconding way. This means that
each channel is analyzed and the output is a N -dimensional vector which contains
one value of 1 representing the interval in which the channel is contained and 0 on
the other entries. The binarization is represented by Equation 4.6:

17

bT (x, y) = (0, 0, · · · , 0,
(k+1)th position︷︸︸︷

1 , 0, · · · , 0, 0),

forS(x, y) ∈
[
k
256

N
, (k + 1)

256

N

)
, k ∈ Z+.

(4.6)

For instance, if N = 4 is chosen, and the image has a channel with value 3F ,
which corresponds to 63 in decimal representation, this value would fall in the in-
terval

[
0, 256

4

)
. Hence, its representation would be the vector [1, 0, 0, 0].

Circular Representation

The circular representation works in a similar manner of the one-hot encoding, in
which a channel value is represented by a vector of N bits and the positions of
value 1 represent intervals of values between 0 and 255 that are evenly chosen. The
difference lies in the number of value 1 bits to represent each interval. In the circular
representation, half the bits always have value 1, and the binarization is represented
by Equation 4.7.

bCR(x, y) = (0, 0, · · · , 0,
(k+1)th position to (k+N

2
)th position︷ ︸︸ ︷

1, 1, · · · , 1, 1 , 0, · · · , 0, 0),

forS(x, y) ∈
[
k
256

N
, (k + 1)

256

N

)
, k ∈ Z+.

(4.7)

The positions which have value 1 are chosen modulo N . For instance, if N = 4

is chosen and the image has a channel with value 3F , which corresponds to 63 in
decimal representation, this value would fall in the interval

[
0, 256

4

)
, and its represen-

tation would be the vector [1, 1, 0, 0]. However, if the value is CF , which corresponds
to 207 in decimal representation, this value would fall in the interval

[
3 · 256

4
, 4 · 256

4

)
;

in this case, the representation would be the vector [1, 0, 0, 1], because the positions
4 and 5 modulo N = 4 would be positions 4 and 1.

4.3 Simple WiSARD System

In the scope of the MalWiSARD, the Simple WiSARD System consists of a WiSARD
which can classify programs among the 26 possible classes exposed by Table 4.1. In
this manner, this system does not take into account the different types do malware.

18

4.4 Tree WiSARD System

In order to take into account the different types of malware, another system proposed
is the Tree WiSARD System, which takes decisions based on the results of various
neural networks. The general structure of the Tree WiSARD System is shown in
Figure 4.3.

...

...

...

...

Good

Bad

Goodware

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

A
d
w

ar
e

Tro
ja

n

Viru
s

B
ackdoor

Worm

Adposhel

Amonetize

BrowseFox

InstallCore

MultiPlug

Neoreklami

Agent-fyi

Dinwod

Elex

HackKMS

Injector

Regrun

Snarasite

VBKrypt

Vilsel

Allaple

AutoRun

Fasong

Hlux

Androm

Stantinko

Figure 4.3: Structure of MalWiSARD-tree WiSARD system.

First, the system differentiates between goodware and malware, that is, between
unharmful software and malware, through a first WiSARD. If the program is classi-
fied as a goodware, there is nothing left to do. Afterwards, if the program is classified
as a malware, it goes through another WiSARD which classifies it in one of the five
types of malware analyzed: adware, trojan, virus, worm or backdoor. Subsequently,
each type has a WiSARD which can distinguish among the classes of malware.

As some virus can make use of software in the host computer in order to spread
itself, there are several signatures which can describe virus. In this manner, within
this type of malware, it can be difficult for a classification system to differentiate
between two classes of virus. Taking this into account, the MalWiSARD can make
use of different techniques when analyzing virus, as described in Section 4.5.

4.5 Virus Classification Analysis

Regarding to virus classification, the MalWiSARD can make use of the following
techniques: the Simple Analysis, which consists of a WiSARD to differentiate be-
tween the classes; the Ensemble Analysis, which employs several WiSARD with
different number of addressing bits and use a voting system; the Mental Image
Analysis, which analyses the mental images for each discriminator in order to find
where are the differences between the classes; and the Decision Tree Analysis, which
use a decision tree classifier.

19

The Simple Analysis employs a WiSARD to differentiate between the four classes
of virus. It works similarly to the other classes, but this work shows that this tech-
nique by itself has lower accuracy when compared to the other classes. Because of
this, another techniques were used in order to increase the accuracy. As different
addressing can lead to different results, the idea of the Ensemble Analysis is to ex-
plore a range of different number of addressing bits. In this manner, the final class
is the most chosen class in the output list of the several WiSARD. As the malware
classification field presents fast development of new software every day, the Mental
Image Analysis and the Decision Tree Analysis aim to provide a different approach
to the system, as the input data can be quite volatile. As the mental images can
show what patterns the WiSARD extracted from the presented data, the idea of the
Mental Image Analysis is to extract features from the mental images generated by
each discriminator and find the regions in the input data which represents the dif-
ference among the classes. Finally, the Decision Tree Analysis builds a classification
tree in order to differentiate between the classes. The decision tree is built after a
training session using the CART algorithm with the Gini impurity as a metric.

20

Chapter 5

Results and Discussion

This chapter discusses all the experimental infrastructure to validate MalWiSARD.
Section 5.1 explicits the database used in the experiments. Subsequently, Section
5.2 details the experimental setup of the experiments and Section 5.3 explores the
experiments done and the results obtained. Finally, Section 5.4 discusses the results.

5.1 Database

MalWiSARD was validated the MaleVis database was used [44]. This is an open-
set image dataset generated from the 25 malware classes that MalWiSARD aims
to classify plus one legitimate software class. Figure 5.1 shows samples from the
database. It contains 224×224 px2 images with red, green and blue components
(channels) for each pixel.

This database contains image representations of software, which already went
through the conversion phase described in Section 4.2.1. Therefore, MalWiSARD
will only apply the binarization, training and testing steps for this dataset.

21

(a) Goodware sample. (b) Trojan sample.

(c) Virus sample. (d) Worm sample.

Figure 5.1: Sample images from database.

This dataset was originally used in [1], which employed a DenseNet based convo-
lutional neural network to classify the images, achieving 97.48% accuracy. Table 5.1
presents the content for each class in the dataset.

22

Table 5.1: Contents of the MaleVis dataset.

Goodness Type Class Train/Validation Samples
Goodware — — 1832/1482

Malware

Adware

Adposhel 350/144
Amonetize 350/147
BrowseFox 350/143
InstallCore 350/150
MultiPlug 350/149
Neoreklami 350/150

Trojan

Agent-fyi 350/120
Dinwod 350/149
Elex 350/150

HackKMS 350/149
Injector 350/145
Regrun 350/135
Snarasite 350/150
VBKrypt 350/146
Vilsel 350/146

Virus

Neshta 350/147
Sality 350/149
Expiro 350/150
VBA 350/150

Worm

Allaple 350/128
Autorun 350/146
Fasong 350/150
Hlux 350/150

Backdoor
Androm 350/150
Stantinko 350/150

As can be seen in Figure 5.1, sample images for 4 classes, there are notable differ-
ences among the program image representation, which presents the core opportunity
for classification through machine learning techniques.

5.2 Experimental Setup

This section presents the experimental setup used for the experiments. All exper-
iments were conducted using a server equipped with a Intel(R) Core(TM) i7-6700
CPU @ 3.40 GHz and 4 cores with hyperthreading disabled, provided by the Com-

23

puter Architecture and Microelectronics Laboratory at the Federal University of Rio
de Janeiro.

The experiments were conducted using the Python 3.9.6 programming language
exploying the wisardpkg module, a library developed in order to facilitate the pro-
duction of codes using WiSARD-based models [45].

Each experiment was repeated ten times and the metrics used to validate the
model are shown in Table 5.2, where TP is the number of true positives; TN is
the number of true negatives; FP is the number of false positives; and FN is the
number of false negatives. Besides, a confusion matrix was constructed for each test.

Table 5.2: Metrics used to validate the model.

Metric Formula
Precision TP

TP+FP

Recall TP
TP+FN

F1-score Harmonic mean between Precision and Recall
Accuracy TP+TN

TP+TN+FP+FN

Training time Time to train a set of samples
Classification time Time to classify a set of samples

5.3 Experiments and Discussion

This section explores and discusses the experiments done in order to validate Mal-
WiSARD. Every experiment was repeated 10 times and, when the WiSARD is
employed, the bleaching technique was activated.

5.3.1 Preprocessing

In order to compare the preprocessing techniques, a WiSARD to differentiate be-
tween goodware and malware was employed [46], which can be called a detection
method. In this experiment, all classes of malware present in Table 5.1 were la-
belled as ’malware’. The number of addressing bits chosen was n = 20bits after a
grid search from n = 1 to n = 64; the criteria was the highest accuracy. Figure
5.2 shows the time spent to binarize every image in the database using different
methods, and Figure 5.3 illustrates the accuracy obtained by a binary classification
WiSARD after every binarization method.

24

4-OHE 8-OHE

Figure 5.2: Binarization time for different techniques.

4-OHE 8-OHE

Figure 5.3: WiSARD accuracy for different binarization techniques.

The circular representation and the one-hot encoding binarization had similar
results. Based on the result, the binarization preprocessing technique chosen for
the next experiments is the 8-bit one-hot-encoding, because of the higher accuracy
among the preprocessing techniques. It is important to note that the binariza-
tion time for the 8-bit one-hot encoding was also higher in more than an order of
magnitude. Nevertheless, this process can be easily parallelized or computed via
hardware.

25

5.3.2 MalWiSARD with Simple WiSARD System

Using an 8-bit one-hot encoding as the binarization technique, all 26 classes were
submitted to the Simple WiSARD System. The results are shown in Table 5.3 and
the confusion matrix is presented in Figure 5.4.

Table 5.3: Results for the Simple WiSARD System.

Simple WiSARD System
Metric Mean Std. Deviation
F1-Score 0.6938 0.0000
Precision 0.6483 0.0000
Recall 0.7748 1.1102× 10−16

Accuracy 0.7748 1.1102× 10−16

Training time (s) 159.441 4.457
Classification time (s) 1926.608 47.302

A
dp
os
he
l

A
ge
nt

A
lla
pl
e

A
m
on
et
iz
e

A
nd
ro
m

A
ut
or
un

B
ro
w
se
Fo
x

D
in
w
od

E
le
x

E
xp
ir
o

Fa
so
ng

H
ac
kK

M
S

H
lu
x

In
je
ct
or

In
st
al
lC
or
e

M
ul
ti
P
lu
g

N
eo
re
kl
am

i
N
es
ht
a

G
oo
dw

ar
e

R
eg
ru
n

Sa
lit
y

Sn
ar
as
it
e

St
an
ti
nk
o

V
B
A

V
B
K
ry
pt

V
ils
el

Output Class

Adposhel

Agent

Allaple

Amonetize

Androm

Autorun

BrowseFox

Dinwod

Elex

Expiro

Fasong

HackKMS

Hlux

Injector

InstallCore

MultiPlug

Neoreklami

Neshta

Goodware

Regrun

Sality

Snarasite

Stantinko

VBA

VBKrypt

Vilsel

T
ar
ge
t
C
la
ss

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Confusion matrix for the Simple WiSARD System.

26

It can be seen that the WiSARD is not able to distinguish among some classes of
programs, classifying them as Goodware. All experiments presented the same result,
but the classes varied. Besides, these other classes are classified 100% erroneously
and confused with other classes.

5.3.3 MalWiSARD with Tree WiSARD System

The Tree WiSARD System makes use of a flow of decisions based on the output
of the networks. The experiment can be divided in three steps: the goodness test,
which determines if the program is a goodware or a malware; the type test, which
classifies the malware within its type; and the class test, which further classifies the
class of malware within each type.

Goodness test

The results for the goodness test are shown in Table 5.4 and the confusion matrix
is presented in Figure 5.5.

Table 5.4: Results for the Tree WiSARD System - Goodness Test.

Tree WiSARD System - Goodness
Metric Mean Std. Deviation
F1-Score 1.00 0.00
Precision 1.00 0.00
Recall 1.00 0.00

Accuracy 1.00 0.00
Training time (s) 212.1903 0.5173

Classification time (s) 230.6231 0.1149

27

Goodware Malware

Output Class

Goodware

Malware

T
ar
ge
t
C
la
ss

1,482
100.0%

0
0.0%

0
0.0%

3,644
100.0%

Figure 5.5: Confusion matrix for the Tree WiSARD System - Goodness Test.

This experiment shows that the WiSARD is able to distinguish between a good-
ware and a malware with 100% accuracy, which can be used as a detection system
already.

Type test

The results for the type test are shown in Table 5.5 and the confusion matrix is
presented in Figure 5.6.

Table 5.5: Results for the Tree WiSARD System - Type Test.

Tree WiSARD System - Type
Metric Mean Std. Deviation
F1-Score 0.9678 1.1102× 10−16

Precision 0.9727 2.2204× 10−16

Recall 0.9670 1.1102× 10−16

Accuracy 0.9670 1.1102× 10−16

Training time (s) 166.0064 3.8004
Classification time (s) 365.0621 3.7838

28

Adw
are

Back
doorTroja

n Virus Worm

Output Class

Adware

Backdoor

Trojan

Virus

Worm

T
ar
ge
t
C
la
ss

883
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

300
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1,170
90.7%

0
0.0%

120
9.3%

0
0.0%

0
0.0%

0
0.0%

597
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

574
100.0%

Figure 5.6: Confusion matrix for the Tree WiSARD System - Type Test.

It can be concluded, by the type test, that some Worms are confused with
Trojans. As Worms and Trojan can be used to access file systems and can use
the network, it is possible that some code reuse between these two types of malware
were capture by the WiSARD, leading to confusion.

Class test

The results for each class test can be seen in Table 5.6. Furthermore, Fig-
ures 5.7, 5.8, 5.9 and 5.10 show the confusion matrices for each type of malware.

Table 5.6: Results for the Tree WiSARD System - Class Test.

Adware Trojan Worm Backdoor
Metric Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
F1-Score 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Precision 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Recall 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Accuracy 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Training time (s) 37.7001 1.0146 40.8444 1.8907 21.0938 0.4681 11.0040 0.0552

Classification time (s) 116.6996 3.1755 162.5134 3.9988 35.5540 0.3304 9.6630 0.0145

29

Ad
po
sh
el

Am
on
et
ize

Br
ow
se
Fo
x

Di
nw
od

In
st
al
lC
or
e

M
ul
tiP

lu
g

Ne
or
ek
la
m
i

Output Class

Adposhel

Amonetize

BrowseFox

Dinwod

InstallCore

MultiPlug

Neoreklami

T
ar
ge
t
C
la
ss

144
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

147
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

143
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

Figure 5.7: Confusion matrix for the Tree WiSARD System - Class Test for Adware.

Ag
en
t

Di
nw
od

El
ex

Ha
ck
K
M
S

In
jec
to
r

Re
gr
un

Sn
ar
as
ite

VB
K
ry
pt

Vi
lse
l

Output Class

Agent

Dinwod

Elex

HackKMS

Injector

Regrun

Snarasite

VBKrypt

Vilsel

T
ar
ge
t
C
la
ss

120
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

145
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

135
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

146
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

146
100.0%

Figure 5.8: Confusion matrix for the Tree WiSARD System - Class Test for Trojan.

30

Allaple Autorun Fasong Hlux

Output Class

Allaple

Autorun

Fasong

Hlux

T
ar
ge
t
C
la
ss

128
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

146
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

Figure 5.9: Confusion matrix for the Tree WiSARD System - Class Test for Worm.

Androm Stantinko

Output Class

Androm

Stantinko

T
ar
ge
t
C
la
ss

150
100.0%

0
0.0%

0
0.0%

150
100.0%

Figure 5.10: Confusion matrix for the Tree WiSARD System - Class Test for Back-
door.

For the types adware, trojan, worm and backdoor, the WiSARD is able to fully
distinguish among them. The virus type is analyzed separately in Section 5.3.4.

5.3.4 Virus Analysis Techniques

As explained in Section 4.4, the virus classification will be presented separately in
order to further explore the difficulties in classifying this type of malware.

Simple

Table 5.7 shows the results for the classification among virus using the WiSARD,
and the corresponding confusion matrix is presented in Figure 5.11.

31

Table 5.7: Results for the Simple Analysis for Virus.

Simple Analysis
Metric Mean Std. Deviation
F1-Score 0.4213 5.5511× 10−17

Precision 0.3794 5.5511× 10−17

Recall 0.5041 0.000
Accuracy 0.5041 0.000

Training time (s) 24.3200 0.1851
Classification time (s) 34.8086 0.1787

Expiro Neshta Sality VBA

Output Class

Expiro

Neshta

Sality

VBA

T
ar
ge
t
C
la
ss

151
100.0%

0
0.0%

0
0.0%

0
0.0%

147
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

Figure 5.11: Confusion matrix for the Simple Analysis for Virus.

It can be seen that there is one class, VBA, which was fully distinguish. There-
fore, the WiSARD in the simple analysis is able to classify VBA correctly. However,
the system presented worst results in the other three classes, and two of them were
100% confused with another. This is due to the high code reuse and obfuscating
effort employed in the creation of new virus, which is one of the most popular types
of malware.

Ensemble

In order to surpass the problem of virus classification, and ensemble system was
employed. The ensemble consists of six different WiSARDs, each one with different
number of addressing bits, varying in the set {2, 4, 8, 16, 32, 64}. The idea is to use
a voting classifier consisting of WiSARDs, that is, among the six output presented,
the most chosen is elected as the classified class. If there is a tie, a random one
is chosen. This method was applied to the three classes which were confused in
the simple analysis, as the VBA class was perfectly classified. Table 5.8 shows the

32

results for the classification among virus using the WiSARD, and the corresponding
confusion matrix is presented in Figure 5.12.

Table 5.8: Results for the Ensemble Analysis for Virus.

Ensemble Analysis
Metric Mean Std. Deviation
F1-Score 1.00 0.00
Precision 1.00 0.00
Recall 1.00 0.00

Accuracy 1.00 0.00
Training time (s) 136.5568 3.0898

Classification time (s) 185.1278 2.3675

Expiro Neshta Sality

Output Class

Expiro

Neshta

Sality

T
ar
ge
t
C
la
ss

151
100.0%

0
0.0%

0
0.0%

0
0.0%

147
100.0%

0
0.0%

0
0.0%

0
0.0%

149
100.0%

Figure 5.12: Confusion matrix for the Ensemble Analysis for Virus.

With different numbers of addressing bits, the ensemble analysis was able to
capture a wider range of features hidden in the training data, leading to 100%
accuracy.

Mental Image

As can be seen in the Simple Analysis, the WiSARD was not able to differentiate
between three classes. In order to understand what patterns were learned by the
system, Figure 5.13 shows the mental images produced the the Simple Analysis.

33

(a) Expiro mental image. (b) Neshta mental image.

(c) Sality mental image. (d) VBA mental image.

Figure 5.13: Mental images for the Virus Type.

It can be seen that Figure 5.13d, representing the VBA class, is quite different
from the other three. This can explain why the WiSARD was able to completely
classify this class.

The mental image analysis presented here tries to find patterns in the mental
images and, instead of using the whole image, using only the regions in which a
difference can be seen. In this analysis, the horizontal middle third, presented in
Figure 5.14, was chosen in order to represent the images.

(a) Expiro cut mental image. (b) Neshta cut mental image. (c) Sality cut mental image.

Figure 5.14: Cut mental images for the Virus Type.

In this manner, Table 5.9 shows the results for the classification among virus

34

using the WiSARD trained with the cut images, and the corresponding confusion
matrix is presented in Figure 5.15.

Table 5.9: Results for the Mental Image Analysis for Virus.

Mental Image Analysis
Metric Mean Std. Deviation
F1-Score 0.5516 1.1102× 10−16

Precision 0.4966 1.1102× 10−16

Recall 0.6629 0.000
Accuracy 0.6629 0.000

Training time (s) 7.9621 0.0376
Classification time (s) 8.2631 0.0292

Expiro Neshta Sality

Output Class

Expiro

Neshta

Sality

T
ar
ge
t
C
la
ss

0
0.0%

151
100.0%

0
0.0%

0
0.0%

147
100.0%

0
0.0%

0
0.0%

0
0.0%

150
100.0%

Figure 5.15: Confusion matrix for the Mental Image Analysis for Virus.

It can be seen that the accuracy, for instance, from the Simple Analysis, rose
from 50.41% to 66.29%, testifying that the DRASiW can provide insight for the
different patterns which represent each class.

Decision Tree

As the domain of malware classification can be deeply volatile, in order to be resilient
to trend changes, a decision tree classifier was also employed to be compared with the
WiSARD. Thus, Table 5.10 shows the results for the classification using the decision
tree analysis, and the corresponding confusion matrix is presented in Figure 5.16.

35

Table 5.10: Results for the Decision Tree Analysis for Virus.

Decision Tree Analysis
Metric Mean Std. Deviation
F1-Score 0.8327 0.0124
Precision 0.8338 0.0125
Recall 0.8326 0.0123

Accuracy 0.8326 0.0123
Training time (s) 12.1495 0.4715

Classification time (s) 0.0564 0.0002

Expiro Neshta Sality

Output Class

Expiro

Neshta

Sality

T
ar
ge
t
C
la
ss

115
76.2%

3
2.0%

33
21.9%

4
2.7%

138
93.9%

5
3.4%

28
18.8%

7
4.7%

114
76.5%

Figure 5.16: Confusion matrix for the Decision Tree Analysis for Virus.

The decision tree analysis gives higher accuracy when compared to the simple
analysis and the mental image analysis. Moreover, the training time is comparable
to the other methods, however the classification time can be almost 150 times faster.
Besides the lowest accuracy when compared to the ensemble analysis, depending on
the application, the decision tree can be used to provide faster response times.

5.4 Discussion

The overall accuracy of the MalWiSARD using the Tree WiSARD System and
the Ensemble Analysis for the virus type was 98.5692%, which is higher than the
state-of-the-art method for the MaleVis dataset presented in [1], which achieved an
accuracy of 97.48%. Besides, the overall average time to train was 10.90 minutes,
which is almost 13 times faster than the fastest model presented in [1]. Table 5.11
summarizes the results obtained by each variation of MalWiSARD in comparison
with the state-of-the-art DenseNet.

36

Table 5.11: Comparison among variants.

Method Accuracy
MalWiSARD: simple 77.48%
MalWiSARD: tree 91.89%

MalWiSARD: tree - mental images 93.73%
MalWiSARD: tree - decision tree 95.71%
DenseNet (Bozkir et. al. 2019) 97.48%

MalWiSARD: tree - ensemble 98.56%

Besides, Figure 5.17 presents, as an example, the mental images learned for
the Worm Type. As can be seen, the four classes of Worm present quite different
learning patterns. The mental images can be used to explain how the WiSARDs
presented in the system were able to learn the differences between the training data.

(a) Allaple mental image. (b) Autorun mental image.

(c) Fasong mental image. (d) Hlux mental image.

Figure 5.17: Mental images for the Worm Type.

37

Chapter 6

Conclusion

This work presented MalWiSARD, a weightless neural network system used to clas-
sify among 26 classes of software, which includes malware. The highest accuracy
among all variants of MalWiSARD was achieved by the Tree WiSARD System and
the Ensemble Analysis for the virus type, with 98.5692% accuracy, which is higher
than the state-of-the-art method for the MaleVis dataset presented in [1], which
achieved an accuracy of 97.48%. Besides, the overall average time to train was 10.90
minutes, which is almost 13 times faster than the fastest model presented in [1].

The WiSARD implementation, besides being faster to train and having higher
accuracy rates, is simpler, as the system is tuned by the number of addressing
bits of each WiSARD, the bleaching option and the preprocessing technique, in
constrast with a Densely Connected Convolutional Networks, which need millions
of parameters to be tuned.

As future work, the challenges of hardware implementation of WiSARD will be
studied. With this, systems like MalWiSARD will be able to be employed in real
time systems for rapid software analysis in big data flows in a network, for instance.

Another path of research is to extract patterns from the mental images obtained
by the system, which definitely can be analyzed to bring explanation of what was
learned by the neural network. The difference between the mental images clearly
shows the WiSARD ability to learn and differentiate between patterns, but an al-
gorithm to extract and identify these patterns would present a great advance in the
explainable machine learning field.

38

References

[1] BOZKIR, A. S., CANKAYA, A. O., AYDOS, M. “Utilization and Comparision of
Convolutional Neural Networks in Malware Recognition”. In: 27th Signal
Processing and Communications Applications Conference (SIU), p. 1–4,
Apr 2019. doi: 10.1109/SIU.2019.8806511.

[2] CHRISTODORESCU, M., JHA, S., SESHIA, S., et al. “Semantics-aware mal-
ware detection”. In: 2005 IEEE Symposium on Security and Privacy (S
P’05), pp. 32–46, 2005. doi: 10.1109/SP.2005.20.

[3] MCGRAW, G., MORRISETT, G. “Attacking Malicious Code: A Report to the
Infosec Research Council”, IEEE Software, v. 17, n. 5, pp. 33–41, 2000.
doi: 10.1109/52.877857.

[4] VINOD P., V. LAXMI, M. G. “Survey on Malware Detection Methods”. In: 3rd
Hackers’ Workshop on Computer and Internet Security, pp. 74–79, India,
mar. 2009.

[5] SAEED, I., SELAMAT, A., ABUAGOUB, A. “A Survey on Malware and
Malware Detection Systems”, International Journal of Computer Appli-
cations, v. 67, pp. 25–31, 04 2013. doi: 10.5120/11480-7108.

[6] IDIKA, N., MATHUR, A. “A survey of malware detection techniques”, Purdue
University, 03 2007.

[7] LANDWEHR, C. E., BULL, A. R., MCDERMOTT, J. P., et al. “A Taxonomy
of Computer Program Security Flaws”, ACM Comput. Surv., v. 26, n. 3,
pp. 211–254, set. 1994. ISSN: 0360-0300. doi: 10.1145/185403.185412.
Disponível em: <https://doi.org/10.1145/185403.185412>.

[8] GORDON, L., LOEB, M., LUCYSHYN, W., et al. “CSI/FBI Computer Crime
and Security Survey”, Computer Security Institute, v. 22, 01 2000.

[9] YE, Y., LI, T., JIANG, Q., et al. “Intelligent File Scoring System for Malware
Detection from the Gray List”. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD

39

https://doi.org/10.1145/185403.185412

’09, p. 1385–1394, New York, NY, USA, 2009. Association for Comput-
ing Machinery. ISBN: 9781605584959. doi: 10.1145/1557019.1557167.
Disponível em: <https://doi.org/10.1145/1557019.1557167>.

[10] YE, Y., LI, T., ADJEROH, D., et al. “A Survey on Malware Detection Using
Data Mining Techniques”, ACM Comput. Surv., v. 50, n. 3, jun. 2017.
ISSN: 0360-0300. doi: 10.1145/3073559. Disponível em: <https://doi.
org/10.1145/3073559>.

[11] YE, Y., LI, T., ZHU, S., et al. “Combining file content and file relations for cloud
based malware detection”. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
222–230, 2011.

[12] MOSKOVITCH, R., FEHER, C., ELOVICI, Y. “A Chronological Evaluation
of Unknown Malcode Detection”. pp. 112–117, 04 2009. ISBN: 978-3-642-
01392-8. doi: 10.1007/978-3-642-01393-5_12.

[13] EGELE, M., SCHOLTE, T., KIRDA, E., et al. “A Survey on Automated
Dynamic Malware-Analysis Techniques and Tools”, ACM Comput. Surv.,
v. 44, n. 2, mar. 2008. ISSN: 0360-0300. doi: 10.1145/2089125.2089126.
Disponível em: <https://doi.org/10.1145/2089125.2089126>.

[14] ELLIS, D., AIKEN, J., ATTWOOD, K., et al. “A behavioral approach to worm
detection”. pp. 43–53, 01 2004. doi: 10.1145/1029618.1029625.

[15] ILGUN, K., KEMMERER, R., PORRAS, P. “State transition analysis: a
rule-based intrusion detection approach”, IEEE Transactions on Software
Engineering, v. 21, n. 3, pp. 181–199, 1995. doi: 10.1109/32.372146.

[16] CHRISTODORESCU, M., JHA, S. “Static Analysis of Executables to Detect
Malicious Patterns”. In: Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, SSYM’03, p. 12, USA, 2003. USENIX
Association.

[17] KUMAR, S., SPAFFORD, E. “A generic virus scanner for C++”. In: [1992]
Proceedings Eighth Annual Computer Security Application Conference,
pp. 210–219, 1992. doi: 10.1109/CSAC.1992.228218.

[18] SULAIMAN, A., RAMAMOORTHY, K., MUKKAMALA, S., et al. “Malware
examiner using disassembled code (MEDiC)”. In: Proceedings from the
Sixth Annual IEEE SMC Information Assurance Workshop, pp. 428–429,
2005. doi: 10.1109/IAW.2005.1495985.

40

https://doi.org/10.1145/1557019.1557167
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1145/2089125.2089126

[19] TREADWELL, S., ZHOU, M. “A heuristic approach for detection of obfuscated
malware”. In: 2009 IEEE International Conference on Intelligence and
Security Informatics, pp. 291–299, 2009. doi: 10.1109/ISI.2009.5137328.

[20] ELOVICI, Y., SHABTAI, A., MOSKOVITCH, R., et al. “Applying Machine
Learning Techniques for Detection of Malicious Code in Network Traffic”.
v. 4667, pp. 44–50, 09 2007. ISBN: 978-3-540-74564-8. doi: 10.1007/
978-3-540-74565-5_5.

[21] WANG, T.-Y., HORNG, S.-J., SU, M.-Y., et al. “A Surveillance Spyware De-
tection System Based on Data Mining Methods”. In: 2006 IEEE Inter-
national Conference on Evolutionary Computation, pp. 3236–3241, 2006.
doi: 10.1109/CEC.2006.1688720.

[22] ANDERSON, B., QUIST, D., NEIL, J., et al. “Graph-based malware detection
using dynamic analysis”, Journal in Computer Virology, v. 7, pp. 247–258,
11 2011. doi: 10.1007/s11416-011-0152-x.

[23] NATARAJ, L. A signal processing approach to malware analysis. University of
California, Santa Barbara, 2015.

[24] NATARAJ, L., KIRAT, D., MANJUNATH, B., et al. “Sarvam: Search and
retrieval of malware”. In: Proceedings of the Annual Computer Security
Conference (ACSAC) Worshop on Next Generation Malware Attacks and
Defense (NGMAD), 2013.

[25] GARCIA, F. C. C., MUGA II, F. P. “Random Forest for Malware Clas-
sification”, arXiv:1609.07770 [cs], Sep 2016. Disponível em: <http:
//arxiv.org/abs/1609.07770>. arXiv: 1609.07770.

[26] FARROKHMANESH, M., HAMZEH, A. “A novel method for malware detec-
tion using audio signal processing techniques”. In: 2016 Artificial Intel-
ligence and Robotics (IRANOPEN), p. 85–91, Apr 2016. doi: 10.1109/
RIOS.2016.7529495.

[27] GARCÍA-TEODORO, P., DÍAZ-VERDEJO, J., MACIÁ-FERNÁNDEZ, G.,
et al. “Anomaly-based network intrusion detection: Techniques, sys-
tems and challenges”, Computers & Security, v. 28, n. 1, pp. 18–28,
2009. ISSN: 0167-4048. doi: https://doi.org/10.1016/j.cose.2008.08.003.
Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0167404808000692>.

41

http://arxiv.org/abs/1609.07770
http://arxiv.org/abs/1609.07770
https://www.sciencedirect.com/science/article/pii/S0167404808000692
https://www.sciencedirect.com/science/article/pii/S0167404808000692

[28] CHAUGULE, A., XU, Z., ZHU, S. “A Specification Based Intrusion Detection
Framework for Mobile Phones”. In: Lopez, J., Tsudik, G. (Eds.), Applied
Cryptography and Network Security, pp. 19–37, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[29] BLOUNT, J. J., TAURITZ, D. R., MULDER, S. A. “Adaptive Rule-Based Mal-
ware Detection Employing Learning Classifier Systems: A Proof of Con-
cept”. In: 2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops, pp. 110–115, 2011. doi: 10.1109/COMPSACW.
2011.28.

[30] AHMED, M., PAL, R., HOSSAIN, M. M., et al. “NIDS: A Network Based
Approach to Intrusion Detection and Prevention”. In: 2009 International
Association of Computer Science and Information Technology - Spring
Conference, pp. 141–144, 2009. doi: 10.1109/IACSIT-SC.2009.96.

[31] BLEDSOE, W. W., BROWNING, I. “Pattern recognition and reading by ma-
chine”. In: IRE-AIEE-ACM Computer Conference, pp. 225–232, Boston,
Massachusetts, dec 1959.

[32] GRIECO, B. P., LIMA, P. M., DE GREGORIO, M., et al. “Extracting fuzzy
rules from “mental” images generated by modified WiSARD perceptrons”.
In: 17th European Symposium on Artificial Neural Networks, pp. 313–318,
Belgium, apr 2009.

[33] ALEKSANDER, I., THOMAS, W., BOWDEN, P. “WISARD· a radical step
forward in image recognition”, Sensor review, v. 4, n. 3, pp. 120–124, mar
1984.

[34] DE SOUZA, C. R. Redes Neurais sem-peso aplicadas na categorização de subti-
pos do HIV-1. M.Sc. dissertation, PESC/COPPE - Universidade Federal
do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 2011.

[35] DE GREGORIO, M., C.M, S., C.L, F., et al. “Uma Implementação em Software
do Classificador WISARD”. 12 1998.

[36] BURATTINI, E., CORAGGIO, P., DE GREGORIO, M., et al. “Agent WiS-
ARD in a 3D World.” pp. 272–280, 01 2005.

[37] KAMINSKI, B., JAKUBCZYK, M., SZUFEL, P. “A framework for sensitiv-
ity analysis of decision trees”, Central European Journal of Operations
Research, v. 26, 03 2018. doi: 10.1007/s10100-017-0479-6.

42

[38] CATLETT, J. Megainduction: Machine Learning on Very Large Databases.
Tese de D.Sc., Basser Department of Computer Science, University of
Sydney, Sydney, Australia, 1991.

[39] NARAYANAN, R., HONBO, D., MEMIK, G., et al. “An FPGA Implementa-
tion of Decision Tree Classification”. In: 2007 Design, Automation Test in
Europe Conference Exhibition, pp. 1–6, 2007. doi: 10.1109/DATE.2007.
364589.

[40] LEO BREIMAN, JEROME H. FRIEDMAN, R. A. O. C. J. S. “Classification
and regression trees”. 1 ed., Monterey, Brooks/Cole Publishing, 1984.

[41] LABER, E., MURTINHO, L. “Minimization of Gini Impurity: NP-
completeness and Approximation Algorithm via Connections with the
k-means Problem”, Electronic Notes in Theoretical Computer Science,
v. 346, pp. 567–576, 2019.

[42] MADHUKAR, B., NARENDRA, R. “Lanczos resampling for the digital pro-
cessing of remotely sensed images”. In: Proceedings of International Con-
ference on VLSI, Communication, Advanced Devices, Signals & Systems
and Networking (VCASAN-2013), pp. 403–411. Springer, 2013.

[43] JAIN, A. K. Fundamentals of digital image processing. Prentice-Hall, Inc.,
1989.

[44] “MaleVis: A Dataset for Vision Based Malware Recognition”. Disponível em:
<https://web.cs.hacettepe.edu.tr/~selman/malevis/>.

[45] FILHO, A. S. L., GUARISA, G. P., FILHO, L. A. D. L., et al. “wisardpkg – A
library for WiSARD-based models”. 2020.

[46] L. C. S. RAMOS, L. A. D. LUSQUINO FILHO, F. M. G. F. P. M. V. L. “De-
tecção estática e dinâmica de malwares usando redes neurais sem peso”.
In: Brazilian Symposium on Information and Computational Systems Se-
curity (SBSeg-2020). SBC, 2020.

43

https://web.cs.hacettepe.edu.tr/~selman/malevis/

Appendix A

Papers Published

Conference Papers

L. C. S. RAMOS, L. A. D. LUSQUINO FILHO, F. M. G. FRANÇA, P. M. V.
LIMA; Detecção estática e dinâmica de malwares usando redes neurais sem peso,
Brazilian Symposium on Information and Computational Systems Security, 2020.

44

Detecção estática e dinâmica de malwares usando redes
neurais sem peso

Luiz C. S. Ramos1, Leopoldo A. D. Lusquino Filho1, Felipe M. G. França1,
Priscila M. V. Lima1

1Programa de Engenharia de Sistemas e Computação (PESC/COPPE)
Universidade Federal do Rio de Janeiro (UFRJ)

Rio de Janeiro – RJ – Brasil

{sampaio,lusquino,felipe,priscilamvl}@cos.ufrj.br

Resumo. A preocupação com a segurança e a integridade dos dados em sis-
temas de computação, incluindo áreas importantes como Internet das Coisas
e Indústria 4.0, estão crescendo dramaticamente. Dessa forma, a existência
de um malware pode ameaçar o bom funcionamento de sistemas inteiros, tra-
zendo consequências irreversı́veis. Este trabalho visa utilizar redes neurais
sem peso para detecção estática e dinâmica de malwares. Na utilização de
técnicas estáticas baseadas na imagem 2D do arquivo binário e de técnicas
dinâmicas baseadas em API Calls, a rede WiSARD mostrou resultados próximos
de técnicas do estado da arte utilizando redes neurais com peso, porém com
tempos de treinamento e classificação uma ordem de grandeza menor.

Abstract. Concerns with security and integrity of data in computer systems, in-
cluding important areas such as Internet of Things and Industry 4.0, are drama-
tically increasing. Therefore, the existence of malware can threaten the smooth
functioning of whole systems, bringing irreversible consequences. This work
aims to use weightless neural networks for static and dynamic detection of
malwares. Using static techniques based on the 2D image of binary files and dy-
namic techniques based on API Calls, the WiSARD network showed results close
to state-of-the-art techniques using convolutional neural networks, but shorter
training and classification times one lower order of magnitude. The method
presented shows the WiSARD as a faster alternative in detecting malware.

1. Introdução
Malwares, ou softwares maliciosos, são programas que buscam perturbar as operações
de um sistema computadorizado por meio de acesso não autorizado para conseguir
informações sensı́veis, ameaçando usuários [Aycock 2006]. Esses programas podem
comprometer a integridade das informações nesse sistema, de forma que a detecção de
malwares, ou seja, técnicas para identificar se um programa é malicioso ou não, é alvo de
pesquisadores, já que novos malwares constantemente são lançados e as técnicas devem
acompanhar tais mudanças [Bazrafshan et al. 2013].

Com a criação constante de novos programas maliciosos, além dos métodos
tradicionais de detecção de malwares, como signature-based methods e behavior-
based methods, métodos baseados em heurı́stica, utilizando técnicas de aprendizado
de máquinas, como Naı̈ve Bayes [Schultz et al. 2001] começaram a ser explorados

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals and Contribution
	Dissertation Organization

	Classification and Detection of Malware
	Definition
	Types of malware
	Background

	Classification and Detection Techniques
	Signature-Based
	Heuristic-Based
	Cloud-Based
	Data Mining Techniques

	Related Works

	Classification Techniques
	Weightless Neural Networks
	RAM Discriminators
	WiSARD
	Bleaching
	Mental Images

	Decision Trees
	Decision Tree Model
	Classification Tree

	Proposed Method
	General Structure of MalWiSARD
	Preprocessing
	Conversion
	Binarization

	Simple WiSARD System
	Tree WiSARD System
	Virus Classification Analysis

	Results and Discussion
	Database
	Experimental Setup
	Experiments and Discussion
	Preprocessing
	MalWiSARD with Simple WiSARD System
	MalWiSARD with Tree WiSARD System
	Virus Analysis Techniques

	Discussion

	Conclusion
	References
	Papers Published

