
Noname manuscript No.
(will be inserted by the editor)

A Multi-Objective Metaheuristic with learning
capabilities for a Green UAV Grid Routing Problem

Elias L. Marques Jr. ⋅ Vitor N. Coelho ⋅
Igor M. Coelho ⋅ Bruno N. Coelho ⋅
Luiz S. Ochi ⋅ Nelson Maculan

Received: date / Accepted: date

Abstract This paper deals with Unmanned Aerial Vehicle (UAV) routing in
dynamic grid scenarios with limited battery autonomy and multiple charging
stations. Inspired by a multi-criteria view of real systems, we consider different
objective functions introduced in the literature, while respecting the navigation
over forbidden areas and also a real-time flight autonomy. A multi-objective
variant of Variable Neighborhood Search is considered for finding sets of non-
dominated solutions. Twelve neighborhood structures were developed in order
to explore the solution space, including learning techniques. The latter stores
known routes in order to speed up the search. A case of study was developed
where UAVs have to serve clients spread throughout a grid, representing a
map. Each UAV starts in a given grid point with a given battery charge,
where the grid is composed by four different kinds of points: a regular one and
three special (prohibited, recharge and client). Any update can happen on the
routes on real-time, so the metaheuristic should handle real-time information
and update the plan and GUI (Graphics User Interface) accordingly. Any
sequence of valid adjacent points forms a route, but since this yields a huge
number of combinations, a preprocessing technique is proposed to pre-compute

Elias L. Marques Jr. ⋅ Igor M. Coelho ⋅ Luiz S. Ochi
Institute of Computer Science, Universidade Federal Fluminense, Niterói, Brazil
E-mail: eliaslawrence.jr@gmail.com, imcoelho@ic.uff.br, satoru@ic.uff.br

Vitor N. Coelho
OptBlocks, Av. João Pinheiro, 274 Room 201, 30130-186, Belo Horizonte - MG, Brazil
E-mail: vncoelho@gmail.com

Bruno N. Coelho
REDEMAT, Universidade Federal de São João del Rey, Brazil
E-mail: brunonazario@gmail.com

Nelson Maculan
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
E-mail: maculan@cos.ufrj.br



2 Elias L. Marques Jr. et al.

distances in a given dynamic scenario. Computational results demonstrate the
performance of different variants of the proposed algorithms.

Keywords Unmanned Aerial Vehicle ⋅ Microgrids ⋅ Multi-objective Problem ⋅
Variable Neighborhood Search ⋅ Biased Random Key Genetic Algorithm

1 Introduction

Recent technological advances have pushed towards the development and prac-
tical adoption of novel aerial transportation methods, under the topic of Un-
manned Aerial Vehicles (UAV). In this sense, the work of Coelho et al. [4]
proposes a mathematical programming model for the multi-objective UAV
routing problem, seeking to minimize travelled distance while respecting UAV
battery constraints.

The problem stems from the Traveling Salesman Problem with Drones
(TSPD) [2] and the Vehicle Routing Problem with Drones (VRPD) [23]. Al-
though both problems address the visit of clients by drones used as comple-
mentary vehicles to a main one (such as a truck). In addition, these problems
are represented by graphs, which differs from the grid representation addressed
in this work.

Since the VRPD is an extension of the VRP when working with drones con-
currently with ground vehicles on routes; it is also a NP-hard problem. Con-
sequently, the exclusive use of a MILP formulation to obtain optimum results
in a reasonable period of time is only possible in small instances. Therefore, to
address large-scale instances of VRPD, some studies propose a metaheuristic
based on Variable Neighborhood Search (VNS), as in Schermer et al. [21].

The main contribution of this current work is to complement the lin-
ear mathematical model of Coelho et al. [4] by developing a metaheuristic
algorithm for a time-dependent UAV routing problem. In particular, it re-
spects UAVs operational requirements; tackling the micro-airspace considering
a scenario of points inspection, and avoiding prohibited points (docking con-
straints) [5]. It also integrates UAVs into the new concepts of mini/microgrid
systems, in which vehicles can be charged at different points of smart cities; dy-
namic routes considering in-route drones: initial battery different than 100%,
random origin point and a number of clients already visited.

Specially, this work can be seen as an extension of [4], taking into account
the many applications of drones, not limited to deliver activities, as infrastruc-
ture inspection ([16], [15], [13], [1], [6]), surveillance ([18], [12]), area mapping
([11]) and others. Focusing, then, on realistic assumptions required for fast
re-optimization (via heuristics) and taking into account many requirements
like restricted area. We delve further into the striking differences between this
work and [4] in Section 2.

This paper is organized as follows. Section 2 describes the proposed model
of the Multi-Objective Green Routing Drone Grid Problem (MOGRDGP),
while Section 3 contains the methodology employed to solve the problem. In
Section 4, one can find the computational experiments comparing the different



Title Suppressed Due to Excessive Length 3

implementations, instances, variables and results. Finally, Section 5 concludes
the work and presents future research directions.

2 Problem Description

The proposed MOGRDGP consists of an airspace divided into horizontal and
vertical bands, organized as a grid of points in two-dimensional space. Each
UAV can move following the Chebyshev distance, where the distances between
any adjacent points are the same. This distance metric was chosen to simplify
the calculations, without loss of generality, and without prejudice to the con-
struction of the routes.

Power stations are scattered around the routing area and accessed by the
drone to recharge its batteries. To represent prohibited areas, the grid is also
composed of prohibited points that the UAV cannot access, otherwise, this
invalidates the route. Figure 4 illustrates a solution for a PMORVD instance.

Client Prohibited Point Recharge Point route 1 route 2

Fig. 1: Instance and solution example to MOGRDGP

As a routing problem, the vehicle must serve/visit clients that are spread
across the grid. For this, the point corresponding to the client must be part of
the final route. This means that the clients’ x and y coordinates must be part
of the matrix that represents the solution.

In Section 3, we discuss an alternative to preprocess shorter distances and
store them in an auxiliary data structure, so that only the points of origin and
destination need to be considered between client and recharge points.

In order to model the problem computationally, we mapped three main
objectives that satisfactorily summarize how the real system should behave.
It is desirable to end the route with the maximum possible charge rate (final
charge - O1), ensuring that the drone is prepared for a future route, since
the current work has a dynamic nature where the instances already consider
the initial location and battery charge. This means that a drone can start a
new route at the end of an old one. The total route must be completed in the



4 Elias L. Marques Jr. et al.

shortest possible time (O2). Also, it is desirable that during the route, the
vehicle consumes (consumption - O3) as little battery / fuel as possible.

If we compare the objective functions of this work with the ones explored
in [4], it can be related O1 with toFull, O2 with time and O3 is combination
of time, distance and maxvel in a certain way. The number of drones was not
seen as an objective function that should be minimized but as a parameter of
the instances to test the methods developed.

Since our focus was to elaborate a model so it could fit to different ap-
plications involving drones, constraints and objectives exclusively related to
delivery problems - such as makespanC, makespanD, weight of the products,
capacity of the UAVs - were not taken into consideration in this work.

The algorithm proposed in this article focuses on finding a balance between
solutions, since one element can affect another. The shorter the time, the
greater the speed, the greater the consumption. Higher final charge means
more time spent on recharging/refueling, which results in longer times.

Fig. 2: Developed Graphic Interface

A graphical interface, shown in Fig. 2, was implemented in order to facil-
itate the visualization of the solutions found. On the right side, we have two
panels, the upper one presents a list of solutions, representing the pool gen-
erated by the current execution. The solution selected in this panel is demon-
strated on the main canvas. The bottom panel presents the main information
of the selected solution, such as the value of the objective functions, the speed
of the drones in each stretch and the rate of recharge of the drone in each
recharge station.

Every valid route must respect some requirements:
Consumption: the fuel/battery level of the vehicle should not reach below

zero in any part of the path, that would mean that the UAV would be out
of fuel/energy in the middle of the route. However, if it reaches zero and the
route is over or the drone reached one energy point, this does not affect the
validity of the solution.

Prohibited area: in real life, there are areas where drones are not allowed
to access or cross. This situation was represented by special points scattered
across the grid. If the route contains these points, the solution is invalid.



Title Suppressed Due to Excessive Length 5

This forbidden-point strategy is proposed as a docking constraint mechanism
[5], typically used in vehicle routing problems, that disallows certain UAV
to visit points in grid. Note that, in this work, we have dealt with this in a
homogeneous way (all drones have the same limitations / capabilities).

There are two variables that affect the final result of the objective functions:
velocity and charging time.

Velocity: the vehicle speed through the whole route impacts not just the
total time of the route, but also the consumption, once higher the velocity
(v), greater the consumption. The final fuel/battery level (f) is a result of the
initial fuel/battery level (f0) decreased by the fixed consumption (cf ) and the
velocity multiplied by the coefficient of variable consumption (cv), as shown
at Eq. (1).

f = f0 − v × cv − cf (1)

Time at energy station: the time spent at the energy station (r) is
added to the total time spent at the route. However, if the vehicle spends
more time at it, it can accumulate more fuel/energy to its battery. The end
fuel/battery level is a result of the fuel/battery level at the beginning of the
stretch increased by the quantity of fuel/energy recharged (fr) as shown at
Eq. (2).

f = f0 + fr (2)

The time at the end of the stretch (t) is the result of the begin time (t0)
increased by the quantity of fuel/energy recharged multiplied by the coefficient
of time per fuel/energy (tf ), as shown in Eq. (3).

t = t0 + fr × tf (3)

3 Methodology

In this work, three metaheuristics were proposed. A Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic with a multi-objective
local Variable Neighborhood Descent (VND) search (MOVND), called G-
MOVND, a mono-objective variant (G-VND)1 and a Biased Random Key
Genetic Algorithm (BRKGA)2.

3.1 A∗ Algorithm

When working with grid routing problems, instead of graph based ones, we
must generate the path between each two nodes in order to have a complete
solution. For our metaheuristic, we use the A∗ algorithm.

1 The G-MOVND and G-VND code can be currently accessed at
https://github.com/eliaslawrence/uvrp-vnd.

2 BRKGA implementation is available at https://github.com/eliaslawrence/uvrp-vnd.



6 Elias L. Marques Jr. et al.

In MOGRDGP, as in other problems where you want to search for minimal
routes on a map, h(n) must represent the straight line distance (Euclidean
distance) from n to the objective, since this is the shortest possible distance
between any two points.

3.2 G-VND

The G-VND metaheuristic can be seen as a multi-start metaheuristic for com-
binatorial optimization problems, in which each iteration basically consists of
two phases: construction and local search.

3.2.1 Construction

The GRASP, proposed by [20], was used to find an initial solution to the
problem addressed in this work. In a greedy construction of this problem, we
iteratively choose the client closest to the current position.

The construction phase is a greedy procedure with random and adaptive
components, which means that instead of always choosing the closest one, we
select from a set of k clients closest to the current position. After, we choose
a client randomly from this set (restricted candidate list) to be inserted in the
initial solution. Speed and recharge rate on all routes are set to maximum.

3.2.2 Local Search

The inter-routes neighborhoods used are swap (1,1) and shift (1,0). The set
of the intra-route ones is composed of 10 NS (neighborhoods search), which
are exchange, remove recharge, closest recharge, remove repeated, speed section
increase, speed section decrease, speed random increase, speed random decrease,
recharge random increase and recharge random decrease.

As exchange is the most costly intra-route neighborhood, other versions
were implemented, so that it was possible to compare the one that provides
better results during computational experiments. The difference between the
versions was that, instead of exchanging a client on the route with each other
(E1), the exchange only occurs with the k nearest clients (E2), more distant
(E3) or random (E4).

Remove Recharge neighborhood is responsible for remove possible recharge
points in each subpath (path between clients) and verify if it improves the
current solution. After we remove unnecessary recharge points, we try to add
other ones that could improve the current solution with the closest recharge
neighborhood.

The idea of the remove repeated neighborhood is to remove repeated clients
on the route, trying to reduce the size of the route and, in consequence, reduce
the consumption and/or time.

Velocity Increase/Decrease increases/decreases velocity by 1 unit in each
entire section of the route that links two points (clients and/or recharge point).



Title Suppressed Due to Excessive Length 7

The velocity/recharge random increase/decrease increases/decreases speed/
recharge rate by 1 unit in each segment of a subpath chosen randomly.

3.2.3 Acceptance Criterion

After generating a neighbor of the current solution, the current route is eval-
uated and compared to the routes in the pool of solutions. It will be inserted
if it is not dominated by any other one present in the pool. If the new route
dominates any other, the latter is removed from the set of solutions.

In this case study, we limit the number of non-dominated solutions, thereby,
limiting the number of operations (local search). If the set is full, the new route
will only be inserted if at least one solution from the current pool is strongly
dominated. All strongly dominated solutions are removed from the pool.

A mono-objective variant has also been implemented. The difference con-
sists of the fixed size of the pool in a solution and the comparison criteria, where
the dominance criteria is not applied, but an objective function, explained in
Eq. (4), in which t(x) represents the longest time among the vehicles that
constitute the solution; c(x), the consumption of all vehicles and cf(x), the
lowest charge among the vehicles at the end of the route.

f(x) = α ∗ t(x) + β ∗ c(x) + γ ∗ cf(x) (4)

Since we want to minimize time and consumption and, on the other hand,
maximize the value of the final charge, α and β must have a sign opposite to γ.
In addition, since the values of cf(x) vary between 0 (minimum charge) and
100 (maximum charge), while t(x) and c(x) reach much higher values (there
are no superior constraints to time and consumption), the γ module must be
greater than the other coefficients. Empirically, we arrive at the values of 1,
1 and -5 respectively for α, β and γ. The fitness function is then shown in
Eq. (5).

f(x) = t(x) + c(x) − 5 ∗ cf(x) (5)

3.2.4 MOVND

MOVND [7], a multi-purpose variant of VND, with a pool of solutions, per-
forms a loop for each solution and within a loop for each neighborhood. The
Algorithm 1 demonstrates how this local search is implemented.

The algorithm receives as input a pool (localPool) with the initial solution
generated by the constructor, in addition to a array with the neighborhood
structures. LocalPool is used as a temporary pool and when it is empty, the
execution is interrupted and globalPool is returned. The insertion method is
implemented as described in the previous section which discusses the accep-
tance criteria for the solutions.

The activity of calculating routes can be really costly when performed many
times through the algorithm. Therefore, a pre-processing was implemented to



8 Elias L. Marques Jr. et al.

Algorithm 1: MOVND
Input: localPool, Neighborhood

1 while localPool ≠ Ø do
2 S ← pop(localPool);
3 insert(globalPool, S);
4 forall k ∈ Neighborhood do
5 S′ ← neighbor(S, k);
6 if dominates(S, S′) then
7 insert(localPool, S′);
8 k ← 0;

9 end

10 end

11 end
12 return globalPool;

make comparisons if it brings gains to the results. The method consists of
pre-calculating the best routes between important points on the map (clients,
prohibited area and recharge points). The routes are saved and then read as
part of the problem input.

3.3 BRKGA

To solve the MOGRDGP, another heuristic algorithm proposed to solve the
problem in this work, was the BRKGA [10], metaheuristic based on genetic
algorithms as can be inferred from its name. The concept of genetic algorithms
and random keys was introduced by Bean [3] for sequential problems.

A random key is a random real number in the continuous range [0.1).
Solutions to optimization problems can be encoded by random keys. An array
of size equal to the size of the individuals is generated and at each position, a
random key is generated.

A decoder is a deterministic algorithm that receives an array of random
keys as input and returns a solution to the optimization problem. Bean [3]
proposed decoders that sort the array of random keys to produce a sequence.

The metaheuristic takes as input population size (n), chromosome (c), elite
population (e), mutant population (m), maximum number of generations (G)
and ρ, which refers to the factor of choice of the elite individual.

The initial population consists of n vectors with c random keys each. The
rank method uses the fitness value of each individual to do the sorting. A loop
is performed until the maximum number of generations is reached. With each
iteration, the first e individuals are kept in the population, as well as other
random m individuals (mutation).

The crossover is the cross between a solution of the elite population (factor
ρ) with another solution of the population to generate a child. Parents are
chosen at random. (N−e−m) crosses are performed and the children generated
are inserted in the remaining positions of the population.



Title Suppressed Due to Excessive Length 9

At the end of each iteration, the population is ranked. The first compar-
ison criterion is the number of times the vehicle has a battery charge less
than or equal to zero. The second comparison criterion is a fitness function
itself, explained in the Eq. 4. Same function used in G-VND, facilitating later
comparison of the methods.

3.3.1 Implementation

The algorithm was divided into two stages. In the first one, the metaheuristic
observed the problem as a problem of routing in simple graphs (where only
the order of visitation matters), so it was not necessary to calculate the path
between each node, using only the Euclidean distance for this. The idea of this
initial stage is to accelerate the convergence of metaheuristics, since working
with grid routing is more costly.

Client Prohibited Point Recharge Point route 1 route 2

Fig. 3: Example of first stage of BRKGA

In the second stage, we begin to observe the original problem (in a grid).
This phase is responsible for refining the solution generated in the previous
stage. What changes, in the metaheuristic, in practice, is only the decoding,
that is integrated into the A* method to generate a valid solution.

Each individual is represented by three arrays of random keys: visitation
order, speed and vehicle recharge rate. The arrays have a dimension equal to
the number of clients plus number of recharge stations in the instance. The end
of the route is determined by the position of the last client represented in the
first array. The speed between two special points (client/client, client/recharge
point) A and B is constant and equal to the value represented in the second
array, in the same position as point A, in the visitation order. The recharge rate
at point C of the route follows the same pattern, where it will be determined
by the third array at the same position as point C, in the order of visitation.



10 Elias L. Marques Jr. et al.

Client Prohibited Point Recharge Point route 1 route 2

Fig. 4: Example of second stage of BRKGA

The random keys representing the visitation order follow the basic principle
of RKGA applied to routing. In this way, encoding and decoding is performed
by sorting the keys. After decoding, we get the visited client order.

1 2 3 4 5

0.099 0.216 0.802 0.368 0.658

Random Keys Genes

Fig. 5: Coding with random keys

The speed and recharge rate arrays follow the same idea. Decoding works by
multiplying the value of the random key by the maximum value of the variable.
Thus, at the end of decoding, we have an array of speeds and recharge rates
for each segment of the route.

0.099 0.216 0.368 0.658 0.802

0.99 2.16 3.68 6.58 8.02

maxValue = 10.0

Random keys Genes

Fig. 6: Decoding of random keys representing speed and recharge rate



Title Suppressed Due to Excessive Length 11

4 Computational experiments

Our experiments were performed with a virtual machine with 2 GB of virtual
RAM running a 64-bit version of Ubuntu 18.04 on the VirtualBox 5.0.10 hy-
pervisor with Windows 10 as the host operating system. The host hardware
configuration consists of an Intel Core i5-6400 CPU with 16 GB of RAM.

To the best of our knowledge, as there is no well-established library of in-
stances for the problem addressed in this work, three well-known TSP instances
in 2D Euclidean format were used as the basis for the tests: Christofides/Eilon
eil51, eil101 and rat195. These instances have 51, 101 and 195 clients, respec-
tively. From these, arrays were generated representing the area that comprises
all clients. After the array is generated, points in it are chosen at random and
defined as recharge points and prohibited points.

For both the G-MOVND and the G-VND methods, the different imple-
mentations of the intra-route exchange method were taken into account for
comparative criteria as described in the section 3.2.2. In the case of experi-
ments, we use the value of k = 3. The E2-E3 method means that both the E2
and E3 methods were used as neighborhood structures. The same applies to
E2-E4.

Each sample was run 3 times, each one for a standard time according to
the size of the instance. The set of non-dominated solutions of all executions
was considered for results. To summarize the different implementations, a set
of 92 instances were generated, considering different parameters.

Three sizes of instances were generated (51, 101 and 195). For each size, two
different formations obeying the percentages of 5% of prohibited points and 1%
of recharge points (ex: eil51a and eil51b). For each formation, two different and
random drone origin points were chosen (ex: eil51a1 and eil51a2). The number
of drones (1 or 2, ex: eil51a1 1d or eil51a1 2d), pre-processing (with or without,
ex: eil51a1 pp or eil51a1) were other parameters taken into consideration. As
well as, the variable consumption (cv) where higher the speed, greater the
consumption, but shorter the duration of the route. Two values were used in
the experiments (0.05 and 0.1, ex: eil51a1 pp 2d 005 or eil51a1 pp 2d 010).
The last parameter was the metaheuristic execution timeout:

– Instances of 51 clients: 5s, 10s, 30s, 60s, 120s and 300s (default)
– 101 clients: 10s, 30s, 60s, 120s, 300s and 600s (default)
– 195 clients: 900s (default) and 1800s

4.1 Heuristics Comparisons

In order to compare the results obtained during the experiments, two solution
quality indicators were used: hypervolume and coverage.

According to [22], hypervolume is an indicator associated with an approxi-
mation given by the volume of the portion of the objective space that is weakly
dominated by a set. This indicator needs the specification of a Z reference point
that denotes an upper limit on all objectives.



12 Elias L. Marques Jr. et al.

In this problem, the normalized objective function was used in Eq. (6). The
hypervolume calculation code is provided by [8] and as default it deals with
minimization models, then minPoints is represented by the vector [−100, 0,
0], the best values possible for final charge (multiplied by −1), time and con-
sumption respectively. The vector refPoints is composed by the worst values
in the current pool of solutions.

z[o] = z[o] +minPoints[o]
refPoints[o] +minPoints[o] (6)

The other measure refers to the number of solutions in the Pareto reference
(PRef) generated by a specific method. Coverage, represents the number of
solutions in the weakly dominated set of pareto divided by the total number
of solutions in the set of pareto. The Pareto reference is generated from the
solutions of all executions of all methods for each instance. Non-dominated
solutions, then, integrate this set.

On Figure 7, it is easy to notice that although G-VND generates the best
solutions, it takes time to generate valid solutions. The opposite happens with
BRKGA, which can generate valid solutions much faster than other methods,
but it takes time to arrive at solutions as good as other methods.

30 60 120 300
0

20

40

60

80

100

Metaheuristic time limit (s)

F
in

a
l

C
h

a
rg

e

30 60 120 300

0

2,000

4,000

6,000

Metaheuristic time limit (s)

T
im

e

30 60 120 300
0

200

400

600

800

1,000

1,200

Metaheuristic time limit (s)

C
o
n

su
m

p
ti

o
n

Fig. 7: Variation of objective values for eil51b2 instance due to the duration
of the metaheuristic: BRKGA (blue), GMOVND (black) and GVND (red)

With the basic instances, the multiobjective method, as it contains a pool
of solutions, manages to generate good solutions that attend each objective



Title Suppressed Due to Excessive Length 13

separately, which can be seen in the table, because when it finds valid so-
lutions, it manages to win over the other methods in O1 (final charge), O3
(consumption) and get closer to the results of G-VND in O2 (time).

This mono-objective version, on the other hand, works on just one solution
and therefore finds a little more difficulty in the variability of its solution, losing
in O1 and O3 in most of the instances and in O2 in the most difficult instances
like Table 1. However, precisely because it works with only one solution, it
manages to be better (in terms of dominance) than each one, individually,
generated by the multiobjective method.

BRKGA, although not outstanding for the quality of its solutions, has
merits for generating valid solutions much faster than the other two methods.
This statement is validated by the most complex instances, such as those based
on rat195 and in instances with cv equal to 0.1.

In order to compare the efficiency of the different implementations of the
swap method, the tables 2 and 3 summarize the hypervolume values in all
instances for both the G-VND and the multiobjective version.

It is interesting to note that for the simplest instances, the less costly
method S4 (random) generates the best solutions, while for the more complex
instances the method that generates the best solutions is E1 (full exchange),
which is more costly.

4.2 Two-phase procedure

According to Michie et al. [17], it would be useful if computers could learn
from past experiences and thus automatically improve the efficiency of their
own programs during execution. Inspired by this concept of machine learning
and regarding the results of the computational experiments, we developed
techniques where the program could benefit from each method.

The core mechanism of our technique is to first run the BRKGA, then save
the routes generated and use them as initial solutions (construction phase) for
the other methods (VND and MOVND) to speed-up their optimization. This
way, the program would take advantage of the speed in finding valid solutions
of the BRKGA and use the other methods to improve the solutions generated.
We called these new methods B-VND and B-MOVND. As shown by [19] and
[14], this 2-stage approach can be very efficient if the methods start from a
population of good quality, in the place of using only one random solution as
starting solution. Similar hybrid approaches have been recently explored on
machine learning field as ablation studies, specially for neural networks [9].

In terms of experiments, instances considered difficult were used to verify
if the hybrid technique would provide better results. The Table 4 refer to the
instances with 101 clients, 2 drones and cv equals to 0.1, with guiding function
according to Eq. (5). Without this, G-VND and G-MOVND can’t find valid
solutions on less or equals to 60 seconds.



14 Elias L. Marques Jr. et al.

Table 1: Comparison of the values of the objective functions in the eil51 in-
stances with 2 drones and cv equals to 0,1 (60s, 30s, 10s and 5s). Lower the
time and consumption and higher the final charge, the better. Wins/draws
represent the number of best results of each method.

Final Charge Time Consumption
Instance BRKGA G-VND G-MOVND BRKGA G-VND G-MOVND BRKGA G-VND G-MOVND
eil51a1 pp 2d 010 60 74 99 95 2466 339 338 526 366 288
eil51a2 pp 2d 010 60 73 92 92 3703 375 313 639 590 201
eil51b1 pp 2d 010 60 48 97 99 3071 344 319 549 556 263
eil51b2 pp 2d 010 60 66 95 98 1087 349 370 835 558 214
eil51a1 pp 2d 010 30 70 - 96 171691 - 344 574 - 245
eil51a2 pp 2d 010 30 82 - 76 3254 - 312 869 - 525
eil51b1 pp 2d 010 30 67 - 97 1925 - 359 841 - 385
eil51b2 pp 2d 010 30 50 - 97 1788 - 347 1111 - 282
eil51a1 pp 2d 010 10 83 - - 3694 - - 960 - -
eil51a2 pp 2d 010 10 61 - - 46142 - - 889 - -
eil51b1 pp 2d 010 10 42 - - 3104 - - 1145 - -
eil51b2 pp 2d 010 10 44 - - 3249 - - 1077 - -
eil51a1 pp 2d 010 5 86 - - 5612 - - 1055 - -
eil51a2 pp 2d 010 5 72 - - 12997 - - 1178 - -
eil51b1 pp 2d 010 5 18 - - 6813 - - 1110 - -
eil51b2 pp 2d 010 5 10 - - 6642 - - 1142 - -
eil101a1 pp 2d 010 600 75 - - 4275 - - 1279 - -
eil101a2 pp 2d 010 600 77 - - 3327 - - 13882 - -
eil101b1 pp 2d 010 600 94 - - 2844 - - 1298 - -
eil101b2 pp 2d 010 600 88 - - 3382 - - 1485 - -
eil101a1 pp 2d 010 300 70 - - 3415 - - 1538 - -
eil101a2 pp 2d 010 300 70 - - 5681 - - 1591 - -
eil101b1 pp 2d 010 300 80 - - 2602 - - 1826 - -
eil101b2 pp 2d 010 300 83 - - 5456 - - 1599 - -
eil101a1 pp 2d 010 120 94 - - 5734 - - 1751 - -
eil101a2 pp 2d 010 120 59 - - 9791 - - 1928 - -
eil101b1 pp 2d 010 120 63 - - 5469 - - 2894 - -
eil101b2 pp 2d 010 120 76 - - 3663 - - 2480 - -
eil101a1 pp 2d 010 60 95 - - 6853 - - 1973 - -
eil101a2 pp 2d 010 60 40 - - 16252 - - 1859 - -
eil101b1 pp 2d 010 60 97 - - 11621 - - 2070 - -
eil101b2 pp 2d 010 60 58 - - 6563 - - 2245 - -
eil101a1 pp 2d 010 30 29 - - 12176 - - 2336 - -
eil101a2 pp 2d 010 30 7 - - 19280 - - 2166 - -
eil101b1 pp 2d 010 30 63 - - 9231 - - 2543 - -
eil101b2 pp 2d 010 30 46 - - 7188 - - 2699 - -
eil101a1 pp 2d 010 10 46 - - 23792 - - 2945 - -
eil101a2 pp 2d 010 10 2 - - 76780 - - 2855 - -
eil101b1 pp 2d 010 10 70 - - 231696 - - 2961 - -
eil101b2 pp 2d 010 10 56 - - 11341 - - 3398 - -
rat195a1 pp 2d 005 900 44 - - 73438 - - 11938 - -
rat195a2 pp 2d 005 900 - - - - - - - - -
rat195b1 pp 2d 005 900 63 - - 134721 - - 13887 - -
rat195b2 pp 2d 005 900 34 108718 14632
Wins/Draws 36 2 6 35 1 7 35 0 8

Table 2: Comparison of the hypervolume values in the standard instances.

G-VND G-MOVND
Instância S1 S2 S2-S3 S2-S4 S4 S1 S2 S2-S3 S2-S4 S4
eil51a1 pp 1d 005 300 0.020795 2e-06 0.030861 0.023091 0.016475 0.134317 0.061298 0.091998 0.15867 0.211702
eil51a2 pp 1d 005 300 0.010786 0.000325 0.005431 0.057932 0.013954 0.149194 0.020133 0.101524 0.077179 0.18835
eil51b1 pp 1d 005 300 0.025811 0.004155 0.019824 0.010168 0.06474 0.108522 0.049915 0.107278 0.167067 0.220386
eil51b2 pp 1d 005 300 0.025261 0.001832 0.007746 0.078744 0.058592 0.239336 0.133163 0.115436 0.169022 0.29454
eil101a1 pp 1d 005 600 0 0.154562 0.128263 0.174743 0.159414 0.079605 0.441809 0.172888 0.255015 0.2897
eil101a2 pp 1d 005 600 1e-06 0.057373 0.009536 0.081314 0.105031 0.03035 0.20937 0.136948 0.332207 0.372734
eil101b1 pp 1d 005 600 0.004005 0.059317 0.025549 0.175163 0.196375 0.002264 0.190141 0.209588 0.388912 0.380655
eil101b2 pp 1d 005 600 8e-06 0.132503 0.20232 0.190885 0.239937 0.002315 0.350836 0.298897 0.403424 0.40505
Wins/Draws 0 0 0 4 4 0 1 0 1 6



Title Suppressed Due to Excessive Length 15

Table 3: Comparison of the hypervolume values in the instances eil51 with 2
drones and cv equals to 0,1 (300s, 120s, 60s, 30s, 10s and 5s).

G-VND G-MOVND
Instância S1 S2 S2-S3 S2-S4 S4 S1 S2 S2-S3 S2-S4 S4
eil51a1 pp 2d 010 300 0.069485 0.021716 0.015454 0.062854 0.000548 0.131346 0.281926 0.149923 0.199639 0.110301
eil51a2 pp 2d 010 300 0.099269 0.06019 0.079028 0.030441 0.000709 0.025053 0.124247 0.132469 0.245771 0.213089
eil51b1 pp 2d 010 300 0.065252 0.081112 0.039958 0.020731 0.044003 0.268067 0.290394 0.223338 0.284001 0.299283
eil51b2 pp 2d 010 300 0.06844 0.065438 0.06374 0.054796 0.026421 0.253256 0.095927 0.158712 0.154838 0.230625
eil51a1 pp 2d 010 120 0.057691 0.039874 0.028219 0.004429 0.011841 0.249306 0.097837 0.387598 0.304051 0.257775
eil51a2 pp 2d 010 120 0 0.003552 0.000195 0.014564 0.020997 0.502308 0.330587 0.161815 0.50082 0.400457
eil51b1 pp 2d 010 120 0.022257 0.007968 0.010326 0.038498 1e-06 0.255684 0.24811 0.18098 0.184642 0.241851
eil51b2 pp 2d 010 120 0.069421 0.015079 0.020671 0.004019 1e-06 0.488216 0.231857 0.137772 0.37673 0.244011
eil51a1 pp 2d 010 60 0.200294 0.24779 0.122142 0.150754 0.136076 0.141028 0.213526 0.162016 0.15151 0.167547
eil51a2 pp 2d 010 60 0.234699 0.170401 0.105089 0.003862 0 0.44086 0.431543 0.37044 0.128351 0.355009
eil51b1 pp 2d 010 60 0.005943 0.052966 0.051464 0.059508 0.001448 0.313255 0.111483 0.17727 0.038938 0.15267
eil51b2 pp 2d 010 60 0.083241 0.122473 2e-06 0.118052 0.000142 0.020816 0.054042 0.144838 0.159713 0.311948
eil51a1 pp 2d 010 30 - - - - - 0 0.092966 0.028953 0 0.073083
eil51a2 pp 2d 010 30 - - - - - 0.049724 0.027657 0.023998 0.018424 0.0079
eil51b1 pp 2d 010 30 - - - - - 0 0.03002 0.061249 0.036549 0.000435
eil51b2 pp 2d 010 30 - - - - - 0.37616 0.365801 0.369478 0.398487 0.159026
Vitórias/Empates 6 3 0 3 0 7 3 2 2 2

The values of the objective functions (O1,O2,O3) generated by the BRKGA
at the first stage were, respectively, (74,13474,2765) for a1 and (15,14838,29118)
for b1. It couldn’t find valid solutions for the instances a2 and b2.

Table 4: Comparing the simple metaheuristics (BRKGA, G-VND and G-
MOVND) with the 2-stage ones (B-VND and B-MOVND). Number indicates
the objective values achieved by the best solution according to guiding function

Instances (eil101 − ... − pp 2d 010 − ...)
Objectives Methods a1 60 b1 60 a1 30 b1 30 a1 10 b1 10

Final
Charge

BRKGA
VND

MOVND
B-VND

B-MOVND

95
-
-

92
79

97
-
-

89
62

29
-
-

92
75

63
-
-

96
53

46
-
-

74
74

70
-
-

94
53

Time

BRKGA
VND

MOVND
B-VND

B-MOVND

6853
-
-

11463
11463

11621
-
-

13877
13384

12176
-
-

11463
11463

9231
-
-

14801
14801

23792
-
-

11463
11463

231696
-
-

14801
14801

Consump.

BRKGA
VND

MOVND
B-VND

B-MOVND

1973
-
-

2873
2613

2070
-
-

2960
2669

2336
-
-

2981
2677

2543
-
-

2928
2719

2945
-
-

2948
2682

2961
-
-

2956
2755

We could verify that even with smaller timeouts, VND and MOVND were
able to improve the solutions generated by the BRKGA. On the other hand,
when the solutions generated at the first stage are not valid (due to timeout



16 Elias L. Marques Jr. et al.

constraints), they also can’t generate valid solutions from invalid ones. For
this reason, B-VND and B-MOVND couldn’t find solutions for both instance
packs a2 and b2.

5 Conclusions

In this work, we approach the MOGRDGP, considering a novel and rich range
of constraints, in addition to using a model with several objective functions.
The multi-objective, grid, restrictions of prohibited areas (docking constraint),
the concern with consumption (Green Computing) and the dynamism of this
problem shows a practical approach for real applications. The instances con-
sidered arbitrary drone initial positions and also variable initial battery charge,
so it is possible to integrate this tool in an online solver that solves a series
of instances considering changes in the dynamic characteristics of the scenario
(due to wind conditions, logistics and other operational restrictions).

To solve the problem addressed, we propose three algorithms (BRKGA,
G-VND and G-MOVND) and through the computational experiments carried
out, we can conclude that for PMORVDG, BRKGA, despite generating vi-
able solutions very quickly, their generated solutions lose in quality compared
to the other methods. In the comparison between G-VND (mono-objective)
and G-MOVND (multi-objective), we can see that G-VND generates the best
solutions but it takes time to find valid solutions. In this way, G-MOVND,
transits between the other two methods in terms of advantages and disadvan-
tages, being faster than the mono-objective method to find valid solutions and
generating better solutions than BRKGA.

We visualize future work taking into account more vertical layers in the
grid, heterogeneous drones and prohibited temporary points. Next steps for
this work could also require a study of exact methods for this problem , con-
sisting of mathematical formulations and hybrid methods combining meta-
heuristics with exact methods (such as columns generation) for the case of
multiple drones. Problem solving methods based on neural networks are also
in our plans with sensors and IoT equipment for guiding them on real-time
operation.

References

1. Adabo, G.J.: Long range unmanned aircraft system for power line inspection of brazilian
electrical system. Journal of Energy and Power Engineering 8(2) (2014)

2. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling sales-
man problem with drone. Transportation Science 52(4), 965–981 (2018)

3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing 6(2), 154–160 (1994)

4. Coelho, B.N., Coelho, V.N., Coelho, I.M., Ochi, L.S., Zuidema, D., Lima, M.S., da Costa,
A.R., et al.: A multi-objective green uav routing problem. Computers & Operations
Research 88, 306–315 (2017)



Title Suppressed Due to Excessive Length 17

5. Coelho, V.N., Grasas, A., Ramalhinho, H., Coelho, I.M., Souza, M.J., Cruz, R.C.: An
ils-based algorithm to solve a large-scale real heterogeneous fleet vrp with multi-trips
and docking constraints. European Journal of Operational Research 250(2), 367–376
(2016)

6. Deng, C., Wang, S., Huang, Z., Tan, Z., Liu, J.: Unmanned aerial vehicles for power
line inspection: A cooperative way in platforms and communications. J. Commun 9(9),
687–692 (2014)

7. Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenovic, N.: Multi-objective variable neigh-
borhood search: an application to combinatorial optimization problems. Journal of
Global Optimization 63(3), 515–536 (2015). DOI 10.1007/s10898-014-0213-z

8. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm
for the hypervolume indicator. In: 2006 IEEE international conference on evolutionary
computation, pp. 1157–1163. IEEE (2006)

9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 580–587 (2014)

10. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinato-
rial optimization. Journal of Heuristics 17(5), 487–525 (2011)

11. Haala, N., Cramer, M., Weimer, F., Trittler, M.: Performance test on uav-based pho-
togrammetric data collection. Proceedings of the International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 38(1/C22), 7–12 (2011)

12. Harris, A., Sluss, J.J., Refai, H.H., LoPresti, P.G.: Alignment and tracking of a free-
space optical communications link to a uav. In: Digital Avionics Systems Conference,
2005. DASC 2005. The 24th, vol. 1, pp. 1–C. IEEE (2005)

13. Irizarry, J., Gheisari, M., Walker, B.N.: Usability assessment of drone technology as
safety inspection tools. Journal of Information Technology in Construction (ITcon)
17(12), 194–212 (2012)

14. Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling sales-
man problem. Journal of Heuristics 16(3), 475–510 (2010)

15. Máthé, K., Buşoniu, L.: Vision and control for uavs: A survey of general methods and of
inexpensive platforms for infrastructure inspection. Sensors 15(7), 14887–14916 (2015)

16. Metni, N., Hamel, T.: A uav for bridge inspection: Visual servoing control law with
orientation limits. Automation in construction 17(1), 3–10 (2007)

17. Michie, D., Spiegelhalter, D.J., Taylor, C., et al.: Machine learning. Neural and Statis-
tical Classification 13(1994), 1–298 (1994)

18. Nigam, N., Kroo, I.: Persistent surveillance using multiple unmanned air vehicles. In:
Aerospace Conference, 2008 IEEE, pp. 1–14. IEEE (2008)

19. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective
traveling salesman problem: An experimental study. In: Metaheuristics for multiobjec-
tive optimisation, pp. 177–199. Springer (2004)

20. Resende, M.G., Ribeiro, C.C.: Grasp: Greedy randomized adaptive search procedures.
In: Search methodologies, pp. 287–312. Springer (2014)

21. Schermer, D., Moeini, M., Wendt, O.: A variable neighborhood search algorithm for
solving the vehicle routing problem with drones. Tech. rep., Technical Report Technische
Universität Kaiserslautern (2018)

22. Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74. John Wiley & Sons
(2009)

23. Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several
worst-case results. Optimization Letters 11(4), 679–697 (2017)


