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O Banco de Abrolhos é uma extensão da plataforma continental do leste brasileiro 

localizada no sul do estado da Bahia, Brasil, formando os maiores e mais ricos recifes de 

coral do Atlântico Sul. O objetivo deste estudo consistiu em modelar a influência de 

parâmetros ambientais na abundância microbiana dos recifes de coral de Abrolhos usando 

Random Forest e Boost Regression Tree. Nossos resultados mostraram que carbono 

orgânico dissolvido, nitrogênio total e silicato são os fatores mais importantes que 

regulam a abundância microbiana. A hidrodinâmica e a temperatura também influenciam. 

Os arcos internos de Abrolhos, principalmente Pedra de Leste, apresentaram baixa 

hidrodinâmica, maior tempo de residência da água, maior concentração de nutrientes, 

maior proliferação de micróbios e possivelmente mais doenças de coral. Já os arcos 

externos de Abrolhos, principalmente Arquipélago, apresentaram alta hidrodinâmica - 

favorecendo a "lavagem" dos recifes, menor temperatura, menor concentração de 

nutrientes e menor proliferação de micróbios. Esses achados podem fornecer subsídios 

importantes para uma melhor gestão ambiental do Banco de Abrolhos. 
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The Abrolhos Bank is an extension of the eastern Brazilian continental shelf 

located in the south of Bahia State, Brazil, comprising the largest and richest coral reefs 

of the South Atlantic. The aim of this study was to model the influence of environmental 

parameters on the marine microbial abundance of the Abrolhos coral reefs using Random 

Forest and Boost Regression Tree. Our findings showed that dissolved organic carbon, 

total nitrogen and silicate are the most important factors regulating the microbial 

abundance. The hydrodynamics and temperature also have influence. The internal arcs of 

Abrolhos, specially Pedra de Leste, presented low hydrodynamics, longer residence time 

of the water, higher concentration of nutrients, greater proliferation of microbes and 

possibly more coral disease. While the external arcs of Abrolhos, specially Arquipélago, 

presented high hydrodynamics - favoring the "washing" of the reefs, lower temperature, 

lower concentration of nutrients, and minor proliferation of microbes. These findings can 

provide important insights for a better environmental management of the Abrolhos Bank. 
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1. Introduction 

Coral reefs are threatened worldwide, with both global changes and local impacts playing 

important roles in accelerated reef degradation (Bruce et al., 2012). The Abrolhos Bank 

on the eastern Brazilian continental shelf is recognized as the largest and richest coral reef 

system in the South Atlantic (Francini-Filho et al., 2013). Coral disease and massive 

declines in coral cover have recently occurred in the Abrolhos Bank (Francini-Filho et 

al., 2008). The Abrolhos Bank is an extension of the eastern Brazilian continental shelf 

(approximately 46,000 km2) located in the south of Bahia State, Brazil. The Abrolhos 

Bank comprises the largest and richest reefs of the South Atlantic, with at least 20 species 

of coral, including 6 that are endemic to Brazil (Leão et al., 2003). The coral reefs in 

Abrolhos are distributed into two arcs almost parallel to the mainland shore. The Internal 

Arc is located from about 10 to 20 km off the cost, and is formed by a complex of bank 

reefs and isolated coral pinnacles of varied dimensions. The Outer Arc, which borders the 

east side of the Abrolhos Islands, is formed by isolated giant coral pinnacles, located circa 

70 km from the coast (Leão et al., 2003). 

Microbial abundance is potentially important as food for filter-feeding fauna. There is 

evidence that physico-chemical variables influence the abundance of microbial (Goulder, 

1980; Milner & Goulder, 1986; Morikawa, 1984). In response to different environments, 

microbes reflect differently in population size, distribution, and physiological state and 

cultivability. The use of statistical learning methods is necessary to analyze the new data 

collected from Abrolhos environment with physical-chemical parameters that modulate 

the abundance of microbial in the water of Abrolhos coral reefs. Harmful effects of 

eutrophication and fishing are interconnected and cause serious damage to reef biomes 

(Bell 2008). The absorption of organic matter by microbial is a major route of carbon 

flux, and its variability can change the overall patterns of carbon flow (Azam 1998). The 

dissolved organic carbon (DOC) released by algae beside other nutrients may promote 

the microbial growth that promote the death of the coral (Smith et al., 2006). Therefore, 

it is necessary to develop a lighter prediction model, such as an empirical approach, for 

predicting microbial abundances in particular. 

Regression analysis is a statistical technique for estimating the relationship among 

variables which have reason and result relation. Main focus of univariate regression is 

analyze the relationship between a dependent variable and one independent variable and 
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formulates the linear relation equation between dependent and independent variable. 

Regression models with one dependent variable and more than one independent variables 

are called multilinear regression (Uyanık and Güler 2013). 

The Boost Regression Tree (BRT) and Random Forest (RF) models are two relatively 

new tree-based models that have been developed to optimize predictive performance by 

combining a large number of simple trees into a powerful model rather than using a single 

tree model based on traditional regression trees (Breiman, 2001; Skurichina and Duin, 

2002; Friedman, 2001, 2002). In the BRT model, the fitted model is a simple linear 

combination of many trees that are fitted iteratively and boosted to reweight poorly 

modeled observations (Elith et al., 2008). The RF model is constructed in a random vector 

of the data feature space sampled independently (Breiman, 2001). Being data mining 

methods, the BRT and RF models have several common advantages, including a limited 

number of user-defined parameters and the ability to model non-linear relationships, 

manage qualitative and quantitative variables, remain robust despite missing data and 

outliers, reduce overfitting, and evaluate, summarize and interpret final models (Breiman, 

2001; Friedman and Meulman, 2003). Owing to these merits, BRT and RF models have 

been widely applied in various scientific fields, including ecological modeling (Peters et 

al., 2008; T. Froeschke and F. Froeschke, 2011). 

 

1.1 Objective 

The aim of this study was to model the influence of environmental parameters on marine 

microbial abundance using the BRT and RF regression models, in Abrolhos bank, Brazil. 

Six sites were selected for this study. The three outer reefs (External Arc) within the no- 

take area of the National Marine Park of Abrolhos (NMPA) included in this study (Parcel 

dos Abrolhos, Mato Verde and Arquipelago, hereafter, PAB, MV, and AR, respectively) 

are protected. The three inner reefs (Internal Arc) (Timbebas, Pedra de leste, and Sebastião 

Gomes, hereafter, TIM, PL and SG, respectively) are unprotected (Francini- Filho and de 

Moura 2008). Spatial management through implementations of the NMPA can be 

considered a large-scale ecological experiment that can provide important insights into 

ecosystem functioning and management success (Knowlton and Jackson, 2008). 

We evaluated the performance of and differences between the BRT and RF models in 

mapping the variability of environmental parameters on marine microbial abundance of 

the Abrolhos Bank. The specific objectives of this research were to: 
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• Apply Data Exploratory Analysis to the data set. 

• Develop BRT and RF models to predict the microbial abundance content based 

on 544 samples and environmental variables (Biochemical and Biophysical 

parameters). 

• Quantify the effects of various environmental variables on the microbial 

abundance variation. 

• Compare the predictive qualities of the BRT and RF models. 

• Compare the difference of biophysical (Temperature and Hydrodynamic 

velocity), biochemical parameters and microbial abundance in Internal and 

External arc of Abrolhos. 

We evaluated this hypothesis for influence of environmental parameters on marine 

microbial abundance of the Abrolhos Bank: less hydrodynamics in the reefs of the internal 

arc of Abrolhos (TIM, PL and SG) has a longer residence time of the water, a higher 

concentration of nutrients, greater proliferation of microbes and possibly more coral 

disease. On the other side external arc of Abrolhos (MV, PAB and AR) favors "washing" 

of the reefs by the greater hydrodynamics, lower temperature, a lower concentration of 

nutrients, and minor proliferation of microbes. 

 

2. Materials and Methods 

2.1. Study Area 
 

Six sites between 13 and 90 km off the coast were selected for this study (Fig. 1). The 

seawater samples were obtained in the inner reefs of SG (17°54′42.49″ S 39°7′45.94″ W), 

PL (39º2’00”W 17º46’00”S) and TIM (17°27'57.1"S 39°01'00.5"W) and in the outer 

reefs, PAB (18°00'52.4"S 38°40'00.6"W), MV (18°01'59.8"S 38°39'60.0"W) and AR 

(17°57'50.5"S 38°42'03.7"W). PAB, MV and AR are completely within NMPA, and 

enforcement is performed by the Brazilian Environmental Agency (ICMBio). The water 

sample collection were performed in years 2011-2016 (Except 2015). PAB also has 

unique coral reef structures known as Chapeiro˜es (mushroom-like structures). The three 

inner reefs (TIM, PL and SG) are unprotected and heavily fished. Sampling in six years 

and in different locations allowed us to determine the temporal and spatial variations in 

water quality and microbial diversity. The seawater samples were collected close (<1 m) 
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to the reef structures at a depth of between 10 and 15 m at the SG, PL and TIM, and at 20 

m at PAB, MV, and AR Reefs. 

Fig. 1 Study area. SG, PL and TIM are located in internal arc of Abrolhos. PAB, MV and AR are located 

in external arc of Abrolhos. The distances from the coast are presented in the in the upper right frame, 

blank on the map (https://maps.co/). 

 

 

2.2. Sampling and Data Collection 
 

The variables studied in this work was presented in Fig. 2. 544 water samples were 

assessed for levels of biophysical and biochemical parameters by using oceanographic 

methods previously described by Grasshoff et al. (2009). There are three generic variables 

year, site, and season with 18 biological variables, Dissolved Organic Carbon (DOC), 

Orthophosphate, Total Phosphate (TP), NH3, Silicate, Nitrit, Nitrate, Total Nitrogen (TN) 

are independent variables and abundance of Chlorophyll a (Cl-a), Pheophytin, Bacterial, 

High nucleotide (HNA), Low nucleotide (LNA), Prochlorococcus, Synerochocos, 

Picoeukaryote, Nanoeukaryote and Virus are dependent variables (Fig. 2). The 

temperature data during years 2011 to 2016 and hydrodynamic velocity data only for 2010 

among Internal and External arcs are available. We measured the water temperature 

(Temp) using a CTD device. Hydrodynamic data was determined with magnitude of 

depth averaged velocity (m/s). Concentrations of Total Phosphorus (TP) were determined 

by acid digestion to phosphate, and concentrations of Total Nitrogen (TN) were 

determined by digestion with potassium per sulfate following nitrate determination. 

Biological parameters were also measured for each sample. Microbial abundance was 

https://maps.co/
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measured using flow cytometry (Flux) as described by Cabral et al. (2017). Chlorophyll- 

a analyses were performed as described by Coutinho et al., 2019. 

Fig. 2 The variables studied in this work. 

 

 

2.3. Data Exploratory Analysis 
 

The number of samples per year and site is presented in Table 1, and Table 2 presents the 

number of observations per year and site. 

Table 1. The number of samples per year and site. 
 

 MV PAB AR PL TIM SG Total 

2011 21 ------ ----- ----- ----- ------ 21 

2012 34 51 ----- 10 27 23 145 

2013 ------ ------ 60 96 96 ----- 250 

2014 19 33 ------ 3 9 17 81 

2016 ------ 12 13 11 ----- 11 47 

Total 74 96 73 120 130 51  
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Table 2. The number of observations per years and site. 
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2011 MV 21 17 16 19 21 18 20 21 15 21 21 21 21 12 21 21 21 21 

2012 TIM 15 13 13 18 25 9 15 27 23 25 27 27 27 27 27 27 27 27 

PAB 30 15 18 41 42 16 26 51 42 42 36 36 36 30 36 36 36 36 

PL 3 4 3 8 8 3 5 4 8 8 9 9 9 9 9 9 9 9 

MV 30 13 13 12 18 12 22 34 31 18 30 30 30 30 30 30 30 30 

SG 14 6 6 6 16 6 7 23 14 16 18 18 18 18 18 18 18 18 

2013 AR 24 24 24 24 0 24 23 60 18 17 54 54 54 54 54 54 54 53 

PL 36 32 32 36 27 36 36 96 23 27 85 85 85 83 83 83 83 83 

TIM 88 88 88 88 23 88 88 94 66 23 57 46 46 57 57 57 57 56 

2014 MV 43 50 23 23 16 23 23 19 22 16 19 19 19 19 19 19 19 19 

PAB 33 23 23 23 5 23 23 33 12 5 33 33 33 30 33 33 33 33 

PL 23 33 23 12 3 23 23 3 22 3 3 3 3 3 3 3 3 3 

SG 33 34 23 22 14 54 54 17 22 14 17 17 17 17 17 17 17 17 

TIM 20 56 65 33 9 44 55 9 22 9 9 9 9 9 9 9 9 9 

2016 PAB 10 10 10 10 23 10 10 12 10 23 11 11 11 11 11 11 11 11 

PL 11 11 11 11 23 11 11 11 11 23 10 10 10 10 10 10 10 10 

SG 10 10 10 10 21 10 10 11 10 23 10 10 10 10 10 10 10 10 

 
Package ‘dlookr’, version 0.4.3, was used for Data Diagnosis, Exploration, and 

Transformation (Ryu 2019). Data diagnostics provides information and visualization of 

missing values and outliers and are necessary to understand the distribution and quality of 

data. Data exploration provides information and visualization of the descriptive statistics of 

univariate variables, normality tests and outliers, correlation of variables, and relationship 

between target variable and predictor. Data transformation supports binning for 

categorizing continuous variables, imputates missing values and outliers, resolving 

skewness. And it creates automated reports that support these three tasks (Ryu 2019). The 

dlookr package was used because it easily performs data diagnosis, automatically generates 

data diagnosis and exploratory data analysis reports, and treats skewed data. 

 
2.3.1. Removing Data Outliers 

 

Cleaning up data outliers is good method to see clear distribution of data. The outlier is a 

current problem faced by many data mining researches. Outliers are the patterns which are 

not in the range of normal behavior. Outliers in the dataset produce more false positive 

alarms. We have used Interquartile Range technique to identify the outliers (Vinutha et al., 

2018). In this, the continuous range of input is divided into quartiles and these quartiles are 

analyzed to target the range of outliers. Then the obtained outliers are removed (Fig. 3). 

In this figure, Median (Q2/50th Percentile) is the middle value of the dataset; First quartile 

(Q1/25th Percentile) is the middle number between the smallest number and the median of 



15  

the dataset. Third quartile (Q3/75th Percentile) is the middle value between the median and 

the highest value of the dataset. Interquartile range (IQR): 25th to the 75th percentile. 

Whiskers (shown in blue). Outliers (shown as green circles). 

 

Fig. 3. Interquartile method to remove outliers. 

 

 

2.3.2. Missing value Imputation by Principal Component Analysis      (PCA) 

 

Missing data are a common problem in most scientific research (Schmitt et al., 2015). In 

statistics, imputation is the process of replacing missing data with substituted values. When 

substituting for a data point, it is known as "unit imputation"; when substituting for a component 

of a data point, it is known as "item imputation". There are three main problems that missing 

data causes: missing data can introduce a substantial amount of bias, make the handling and 

analysis of the data more arduous, and create reductions in efficiency. Because missing data can 

create problems for analyzing data, imputation is seen as a way to avoid pitfalls that have missing 

values.  

We used Principal Component Analysis (PCA) to fill missing values. PCA was choosed because 

it simultaneously reduces the dimensionality of the dataset, increases interpretability and 

minimizes information loss. It does so by creating new uncorrelated variables that successively 

maximize variance. Finding such new variables, the principal components, reduces to solving 

an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not 

a priori, hence making PCA an adaptive data analysis technique. It is adaptive in another sense 

too, since variants of the technique have been developed that are tailored to various different data 

types and structures (Davò et al., 2016).  

Analog Ensemble (AnEn) post-processing was applied on the PCA output to obtain the 

final forecasts (Davò et al., 2016). The data points were scored by how well they fit into a 

principal component (PC) based upon a measure of variance within the dataset. In this 
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way, PCA result can be seen as a kind of clustering analysis (Bailey 2018). Finally, PCA 

is an imputation method of interest which deserves further consideration in practice and 

demonstrated higher capacity to impute three types of missing values: missing at random 

(MAR), missing completely at random  (MCAR) and missing not at random (MNAR) with 

lower Mean Squared Error (MSE) than others (Madley-Dowd et al., 2019; Hegde et al., 

2019; Schmitt et al., 2015) (Fig. 4).  

 

Fig. 4. Mean Squared Error (MSE) of PCA compared to other methods (Mean, Mice, Random Forest  

and Soft impute) in three types of missing values. 

 

Absolute frequency histograms of each variable (Abs. Freq.), Relative frequency 

histograms of each variable (Rel. Freq.), Boxplots of each variable and Boxplots of each 

variable in sites/per years to Data Exploratory analysis were performed. Graphical abstract 

of histograms and boxplots of each variable is presented in Fig. 5. 

 

Fig. 5. Graphical Abstract of Histograms and Boxplots pattern of each variables. 
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2.4. Modelling 

 
The Regression Tree Algorithms can be used to find one model that results in good predictions 

for our dataset, or, saying in other way, to perform causal inference. We can analize the 

statistics and confusion matrices of the current predictors to see if our model is a good fit to 

the data. Among the regression algorithms, Boosted Regression Trees (BRT) and Random 

Forest (RF) have been shown to be the strongest in the literature on Ecology. Ecologists use 

BRT and RF statistical models for both explanation and prediction, and need techniques that 

are flexible enough to express typical features of their data, such as nonlinearities and 

interactions.  

The RF algorithm operates by constructing several decision trees during training time and 

outputting the mean of the classes as the prediction of all the trees, while the BRT algorithm 

combines the strengths of two algorithms: decision tree algorithms and boosting methods. As 

RF models, BRT repeatedly fits many decision trees to improve the accuracy of the model, but 

while RF models use the bagging method (each occurrence has an equal probability of being 

selected in subsequent samples), BRT uses the boosting method, in which the input data are 

weighted in subsequent trees and the weights are applied in such a way that data that was 

poorly modelled by previous trees has a higher probability of being selected in the new tree. 

BRT and RF trees incorporate important advantages of tree-based methods, handling different 

types of predictor variables and accommodating missing data. Fitting multiple trees in BRT 

and RF overcomes the biggest drawback of single tree models: their relatively poor predictive 

performance.  

2.4.1. Boosted Regression Trees (BRT) 

The BRT method combines regression trees and a boosting technique to improve the predictive 

performance of multiple single models, where Boosting is a forward and stage-wise procedure in which 

a subset of the data is randomly selected to iteratively fit new tree models to minimize the loss function 

(Elith et al., 2008). This process introduces a stochastic gradient boosting procedure that can improve 

model performance and reduce the risk of overfitting (Friedman, 2002).  

The BRT algorithm is an iterative process in which tree-based models were fitted iteratively using 

recursive binary splits to identify poorly modeled observations in existing trees until a minimum model 

deviance was reached. The final fitted model is a linear function of the sum of all trees multiplied by the 

learning rate (LR) based on all data (Elith et al., 2008).  

In BRT modeling, four parameters are user defined: the learning rate (LR), tree complexity (TC), number 

of trees (NT) and bag fraction (BF). LR represents the contribution of each tree to the final fitted model, 
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and TC controls the size of trees and whether inter-actions between variables should be considered. When 

TC = 1, each tree contains a single decision stump and models the effect of one variable; and when TC > 1, 

each tree fits a model that predicts the interactions of variables. NT is determined from the combination 

of LR and TC.  

In practice, the BRT model needs to be regularized by setting up the parameters prior to making a 

prediction (Elith et al., 2008). To perform this regularization, a few combinations of parameter values (LR, 

TC and BF) were tested. The optimal parameter combination was that which provided the minimum 

predictive deviance. The final optimal values of LR, TC and BF were set to  0.0025, 9, and 0.75, 

respectively. This combination can generate an optimal NT of at least  1000 trees using a 10-foldcross-

validation method. Elith et al. (2008) recommended the use of no fewer than 1000 trees when fitting such 

models. The relative importance of variables can be measured based on the number of times a variable is 

selected for modeling and weighted by the square improvement to each split and averaged across all trees 

(Friedman, 2001). 

 

 

2.4.2. Random Forest (RF) 

 

The RF algorithm generates multiple trees without pruning. In the training procedure, each 

tree is built based on a random subset of the original data (with replacement). In addition, 

a randomly selected subset of predictors is chosen for each built tree (Breiman, 2001).  

The use of bootstrap sampling in RF modeling allows the remaining un-used subset (i.e., 

the out-of-bag data (OOB)) to be used for the estimation of general errors. RF predictions 

are the averaged output of all aggregations.  

RF modeling requires three user-defined parameters: the number of variables used to grow 

each tree (mtry), the number of trees in the forest (ntree) and the minimum number of 

terminal nodes (node size). The mtry parameter determines the strength of each individual 

tree and correlations between trees, and increasing mtry also increases the strength of each 

individual tree and correlations between trees (Peters et al., 2008). However, the predictive 

performance of the RF model is improved by increasing the tree strength and decreasing 

the correlations among trees (Ließ et al., 2012).  

To fit an RF model, default values of mtry (one third of the total number of predictors) and 

node size (5) were used. The default value of ntree (500) has been proven to be insufficient 

to yield stable results (Grimm et al., 2008). Thus, we applied the RF model with ntree = 

1000. The relative importance of variables can be estimated from the mean decrease in 

predictive accuracy when the variable is permuted (Prasad et al., 2006). 
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2.4.3. Statistical Analyses and Model Validation 
 

The Pearson correlation was used to relate the dependent variable of microbial abundance 

to independent quantitative variables. Statistical analysis and modeling in this  study were 

performed using the R software (R Development Core Team, 2009). The BRT and RF 

models were developed using a BRT script provided by Elith et al. (2008) and the R 

Random Forest package (Liaw and Wiener, 2002). 

The performance of the BRT and RF models was evaluated using a 10-fold cross- 

validation procedure that involved comparisons between the predicted and observed 

microbial abundance values. Three validation measurements were calculated: mean 

absolute prediction error (MAE), root mean square error (RMSE) and coefficient of 

determination (R2) (Lin, 1989). MAE measures the average prediction bias, and RMSE 

represents the overall quality of the prediction. Predictions become increasingly optimal 

as MAE and RMSE approach zero. 

 

3. Results 

In this Section we present the results of the Data Exploratory Analysis, the results of the 

application of RF and BRT to perform causal inference over the dataset, the difference of 

biophysical and biochemical parameters and microbial abundance in the internal and 

external arcs of Abrolhos, and, finally, a comprehensive discussion over the achieved 

results. 

3.1. Data Exploratory Analysis 
The percent of missing for each variable was verified by ‘dlookr’ package (Fig. 6). Total 

missing values in data set verified as 37% (Fig. 6a) and then this missing value was 

imputed by PCA (Fig. 6b). The frequency of data per study sites and season are presented in 

Fig. 7a and b respectively. The season parameter has high variety between Summer (523 

samples) and Winter (21 samples) and has been neglected here (Fig. 7b). We verified  the 

amount of missing data totally, per year, and site (Table 3), and we also analyzed the data 

per year, site and year/site separately. The missing number of observations in years/sites 

that were filled by PCA is presented in Table 3. A part of data set in Excel that shows the 

format of missing number of observations in years/sites, which were filled by PCA is 

showed in Fig. 8. Finally, the Pearson correlation plot of imputed data by PCA was showed 

in Fig. 9. Correlation among variables with R > 0.75 were showed in Table 4. 
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Fig. 6 a) Visualizing of missing data. Total missing in data set 37%. b) Missing Imputed by PCA. 

 

 

 
 

Fig. 7. Data frequency for study sites and seasons. 
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Table 3. The missing number of observations in years/sites. 
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Fig. 8. A part of data set that shows the missing number of observations in years/sites. 
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Fig. 9. Correlation among variables imputed by PCA. 

 

 
Table 4. Correlation among variables with R > 0.75 in Imputed by PCA. 

 

Variable 1 Variable 2 Correlation 

DOC Nanoeuk 0.75 

 
Ortoph. 

TP 0.93 

TN 0.81 

Feof 0.76 

HNA 0.84 

 

 

TP 

TN 0.92 

Feof 0.86 

Bacterial 0.82 

HNA 0.93 

Nitrate Synech 0.78 

 
TN 

Bacterial 0.87 

HNA 0.94 

Feof 0.9 

 
Feof 

Bacterial 0.83 

HNA 0.89 

 
Bacterial 

HNA 0.95 

Nanoeuk 0.76 
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3.2. Histograms and Box-Plots of Numerical Variables 
 

For each variable, we produced graphs to help the data visualization. Collecting and 

summarizing data (numerically and graphically) help us understanding what is going on in 

the sample. The goal is to understand what is happening in the population from that sample. 

If there are many data points and we would like to see the distribution of the data, we can 

represent the data by a frequency histogram or a relative frequency histogram.  

Looking at the histograms diagram, we can quickly understand the 4 factors: Pick (most 

frequency), Gap (no information), Concentration (Two or three bars of similar size) and 

Outlier. The only difference between a frequency histogram and a relative frequency 

histogram is that the vertical axis uses relative or proportional frequency instead of simple 

frequency (counts of data in percentage form).  

In the present study, the data range and form vary a lot. For example, the range for bacteria 

is between 0 and 1.651.018, and for the DOC is between 1 and 6.310. In a normal 

distribution like Bacterial, Virus, LNA and TN points on one side of the average are as 

likely to occur as on the other side of the average. In a right-skewed distribution (also called 

a positively skewed distribution), a large number of data values occur on the left side with 

a fewer number of data values on the right side. A right-skewed distribution occurs in 

Nanoeuk, Picoeuk, Synech, HNA, Prochlor, Silicate, Ortop., Nitrite, NH3, Nitrate, TP, 

Feof, Cl-a and DOC. 

To better understand the behavior of the data we used the histograms and boxplot graphs. 

The Absolute Histogram presents the number of times the event occurred in the data set, 

while the Relative Frequency Histogram shows the fraction or proportion of times that a 

value occurs. The Box plot is a convenient way of graphically depicting groups of 

numerical data through their five-number summaries: the smallest observation, lower 

quartile (Q1), median (Q2), upper quartile (Q3), and the largest observation. A boxplot may 

also indicate which observations, if any, might be considered outliers. 

Five data sets were designed to perform the Exploratory Data Analysis of each outcome 

variable: 1. Raw data (Original data), 2. Data with outlier, normalized by square root and 

with missing  values, 3. Data with outlier, normalized by square root and without missing 

values (Imputed by PCA), 4. Data without outlier, normalized by square root and with 

missing values, 5. Data without outlier, normalized by square root and without missing 

values (Imputed by PCA).  

Outliers can be important in biological data and they can indicate something scientifically 

interesting and increase the variability in data. On the other hand, we can see in data with 
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outliers the clear normality shape both in Absolute/Relative frequency histograms of 

variables. We followed the pattern of Histograms and Boxplots that is presented in Fig. 5. 

Absolute/Relative frequency histograms and Boxplots of each variable were presented in 

Figs. 10-27. Data set with outliers, normalized by square root and imputed by PCA (with 

clear normality) was used for the rest of analysis. 

Fig. 10 shows the analysis of bacterial abundance. We can see the highest frequency of 

bacterial abundance is between the ranges 600 and 800 of observations (Fig 10. a and b). 

Boxplot of raw data shows outliers at the upper range of the data (above the box), the mean 

value (477712) is above the median (465039), the median line does not evenly divide the 

box, and the upper tail of the boxplot is longer than the lower tail, then the distribution of 

which the data were sampled may be skewed to the right (Fig. 1c). 
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Fig. 10. a) Absolute count, b) Relative frequency histograms and c) boxplot of the bacterial abundance 

with 15% missing data that is shown for five data sets. 

 

Fig. 11 shows the analysis of Nanoeuk abundance.  We can see the highest frequency of 

Nanoeuk abundance is between the ranges 0 and 257.536 of observations (Fig. 11 a and 

b). Boxplot of raw data shows outliers at the upper range of the data (above the box), the 

mean value (27.423) is above the median (22.551), the median line does not evenly divide 
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the box, and the upper tail of the boxplot is longer than the lower tail, then the distribution 

of which the data were sampled may be skewed to the right (Fig. 11 c). 
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Fig. 11. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Nanoeuk abundance 

with 15% missing data that is shown for five data sets. 

 

Fig. 12 shows the analysis of Picoeuk abundance.  We can see the highest frequency of 

Picoeuk abundance is between the ranges 0 and 116.05 of observations (Fig 12. a and b). 

Boxplot of raw data shows outliers at the upper range of the data (above the box), the 

mean value (46.44) is above the median (42.47), the median line does not evenly divide 

the box, and the upper tail of the boxplot is longer than the lower tail, then the distribution 

of which the data were sampled may be skewed to the right (Fig. 12 c). 
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Fig. 12. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Picoeuk abundance with 

15% missing data that is shown for five data sets. 

 

Fig. 13 shows the analysis of Synech abundance. We can see the highest frequency of 

Synech abundance is between the ranges 0 and 514.87 of observations (Fig 13. a and b). 

Boxplot of raw data shows outliers at the upper range of the data (above the box), the 

mean value (214.67) is above the median (209.61), the median line does not evenly divide 

the box, and the upper tail of the boxplot is longer than the lower tail, then the distribution 

of which the data were sampled may be skewed to the right (Fig. 13 c). 
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Fig. 13. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Synech abundance 

with 15% missing data that is shown for five data sets. 
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Fig. 14 shows the analysis of Virus abundance. We can see the highest frequency of 

Virus abundance is between the ranges 0 and 4015 of observations (Fig 14a and b). 

Boxplot of raw data shows outliers at the upper range of the data (above the box), the 

mean value (2351) and the median (2420), they are almost equal, the median line does 

evenly divide the box (normal distributions), (Fig. 14 c). 

a 
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c 

Fig. 14. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Virus abundance 

with 15% missing data that is shown for five data sets. 

 

Fig. 15 shows the analysis of LNA abundance. We can see the highest frequency of 

LNA abundance is between the ranges 0 and 732.5 of observations (Fig. 15a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value (473.6) 

and the median (481.1), they are almost equal, the median line does evenly divide the 

box (normal distributions) (Fig. 15 c). 
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Fig. 15. a) Absolute count, b) Relative frequency histograms and c) boxplot of the LNA abundance with 

15% missing data that is shown for five data sets. 

 

 

 

Fig. 16 shows the analysis of HNA abundance.  We can see the highest frequency of 

HNA abundance is between the ranges 0 and 732.5 of observations (Fig. 16a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value 

(473.6) and the median (481.1), they are almost equal, the median line does evenly 

divide the box (normal distributions), (Fig. 16 c). 
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Fig. 16. a) Absolute count, b) Relative frequency histograms and c) boxplot of the HNA abundance with 

15% missing data that is shown for five data sets. 
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Fig. 17 shows the analysis of Prochlor abundance. We can see the highest frequency of 

Prochlor abundance is between the ranges 0 and 316.02 of observations (Fig. 17a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value 

(123.07) is above the median (113.57), the median line does not evenly divide the box, 

and the upper tail of the boxplot is longer than the lower tail, then the distribution of 

which the data were sampled may be skewed to the right (Fig. 17 c). 
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c 

 

Fig. 17. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Prochlor abundance 

with 15% missing data that is shown for five data sets. 

 

Fig. 18 shows the analysis of Silicate abundance. We can see the highest frequency of 

Silicate abundance is between the ranges 0.7817 and 2.7744 of observations (Fig. 18a and 

b). Boxplot of raw data shows outliers at the upper range of the data, the mean value 

(1.2745) is above the median (1.2717), the median almost does not line evenly divide the 

box, and the upper tail of the boxplot is longer than the lower tail, then the distribution of 

which the data were sampled may be skewed to the right (Fig. 18 c). 
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Fig. 18. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Silicate abundance 

with 15% missing data that is shown for five data sets. 

 

 

 

Fig. 19 shows the analysis of Orthop abundance. We can see the highest frequency of 

Orthop abundance is between the ranges 0.1204 and 1.5897 of observations (Fig. 19a 

and b). Boxplot of raw data shows outliers at the upper range of the data, the mean value 

(0.5130) is above the median (0.4240), the median line does not evenly divide the box 

(almost), and the upper tail of the boxplot is longer than the lower tail, then the 

distribution of which the data were sampled may be skewed to the right (Fig. 19 c). 
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Fig. 19. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Orthop abundance with 

15% missing data that is shown for five data sets. 

 

Fig. 20 shows the analysis of Nitrit abundance. We can see the highest frequency of Nitrit 

abundance is between the ranges 0.03162 and 0.53852 of observations (Fig. 20a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value (0.22121) 

is above the median (0.21762), the median line does not evenly divide the box (almost), 

and the upper tail of the boxplot is longer than the lower tail, then the distribution of which 

the data were sampled may be skewed to the right (Fig. 20 c). 
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Fig. 20. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Nitrit abundance with 

15% missing data that is shown for five data sets. 

 

Fig. 21 shows the analysis of NH3 abundance. We can see the highest frequency of NH3 

abundance is between the ranges 0 and 1.0344 of observations (Fig. 21a and b). Boxplot 

of raw data shows outliers at the upper range of the data, the mean value (0.2497) is 

above the median (0.2236), the median line does not evenly divide the box (almost), and 

the upper tail of the boxplot is longer than the lower tail, then the distribution of which 

the data were sampled may be skewed to the right (Fig. 21 c). 
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Fig. 21. a) Absolute count, b) Relative frequency histograms and c) boxplot of the NH3 abundance 

with 15% missing data that is shown for five data sets. 
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Fig. 22 shows the analysis of TN abundance. We can see the highest frequency of TN 

abundance is between the ranges 0 and 1.0344 of observations (Fig. 22a and b). Boxplot 

of raw data shows outliers at the upper range of the data, the mean value (0.2497) is 

above the median (0.2236), the median line does not evenly divide the box, and the upper 

tail of the boxplot is longer than the lower tail, then the distribution of which the data 

were sampled may be skewed to the right (Fig. 22 c). 

 

a 
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Fig. 22. a) Absolute count, b) Relative frequency histograms and c) boxplot of the TN abundance with 

15% missing data that is shown for five data sets. 

 

 

Fig. 23 shows the analysis of Nitrate abundance. We can see the highest frequency of 

Nitrate abundance is between the ranges 0.1581 and 3.3274 of observations (Fig.23a and 

b). Boxplot of raw data shows outliers at the upper range of the data (above the box), the 

mean value (0.8351) and the median (0.8370), they are almost equal, the median line does 

evenly divide the box (normal distributions), (Fig. 23 c). 
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Fig. 23. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Nitrate abundance 

with 15% missing data that is shown for five data sets. 

 

 

Fig. 24 shows the analysis of TP abundance. We can see the highest frequency of TP 

abundance is between the ranges 0.3134 and 2.8073of observations (Fig. 24a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value (0.7640) 

is above the median (0.7051), the median line does not evenly divide the box, and the 

upper tail of the boxplot is longer than the lower tail, then the distribution of which the 

data were sampled may be skewed to the right (Fig. 24 c). 
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Fig. 24. a) Absolute count, b) Relative frequency histograms and c) boxplot of the TP abundance with 15% 

missing data that is shown for five data sets. 

 

Fig. 25 shows the analysis of Feof abundance. We can see the highest frequency of Feof 

abundance is between the ranges 0 and 2.0543 of observations (Fig. 25a and b). Boxplot 

of raw data shows outliers at the upper range of the data, the mean value (0.4243) is above 

the median (0.4123), the median line almost does evenly divide the box, and the upper tail 

of the boxplot is longer than the lower tail, then the distribution of which the data were 

sampled may be skewed to the right (Fig. 25 c). 
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Fig. 25. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Feof abundance with 

15% missing data that is shown for five data sets. 

 

 

Fig. 26 shows the analysis of Cl-a abundance. We can see the highest frequency of Cl- 

a abundance is between the ranges 0 and 2.3452 of observations (Fig. 26a and b). Boxplot 

of raw data shows outliers at the upper range of the data, the mean value (0.5361) is 

above the median (0.5208), the median line almost does evenly divide the box, and the 

upper tail of the boxplot is longer than the lower tail, then the distribution of which the 

data were sampled may be skewed to the right (Fig. 26 c). 
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Fig. 26. a) Absolute count, b) Relative frequency histograms and c) boxplot of the Feof abundance with 

15% missing data that is shown for five data sets. 
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Fig. 27 shows the analysis of DOC abundance. We can see the highest frequency of DOC 

abundance is between the ranges 0.5326 and 2.5120 of observations (Fig. 27a and b). 

Boxplot of raw data shows outliers at the upper range of the data, the mean value (1.2487) 

is above the median (1.2429), the median line almost does evenly divide the box, and the 

upper tail of the boxplot is longer than the lower tail, then the distribution of which the 

data were sampled may be skewed to the right (Fig. 27 c). 
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Fig. 27. a) Absolute count, b) Relative frequency histograms and c) boxplot of the DOC abundance 

with 15% missing data that is shown for five data sets. 

 

Boxplots of each variable in sites and in each sites per years were presented in Figs. 28- 

45. The difference of graphs scale between “with outlier” and “without outlier” defined 

to better show the shape of the distribution. 

Fig. 28 shows the distribution of Nanoeuk. in different years and sites. The abundance of 

Nanoeuk in AR and 2013 is higher than 2016 (Fig. 28a). The abundance of Nanoeuk in 

MV and 2012 is higher than 2011 and 2014 (Fig. 28b). The abundance of Nanoeuk in 

PAB and 2014 is higher than 2012 and 2016 (Fig. 28c). The abundance of Nanoeuk in PL 

and 2013 is higher than 2012 and 2014 and 2016 (Fig. 28d). The abundance of Nanoeuk 

in SG and 2014 is higher than 2012 and 2016 (Fig. 28e). The abundance of Nanoeuk in 

TIM and 2013 is higher than 2012 and 2014 (Fig. 28f). 
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Fig. 28. Distribution of Nanoeuk. (15.81% missing) in different years and in a) AR (56km), b) MV 

(90km), c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 

 

 

Fig. 29 shows the distribution of Silicate. in different years and sites. The abundance of 

Silicate in AR and 2016 is higher than 2013 (Fig. 29a). The abundance of Silicate in MV 

and 2012 is higher than 2011 (Fig. 29b). The abundance of Silicate in PAB and 2016 is 

higher than 2012 (Fig. 29c). The abundance of Silicate in PL and 2016 is higher than 2013 

and 2012 (Fig. 29d). The abundance of Silicate in SG and 2012 is higher than 2016 (Fig. 

29e). The abundance of Silicate in TIM and 2013 is higher than 2012 (Fig. 29f). 
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Fig. 29. Distribution of Silicate (44.3 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 30 shows the distribution of TN. in different years and sites. The abundance of TN 

in AR and 2016 is higher than 2013 (Fig. 30a). The abundance of TN in MV and 2012 is 

higher than 2011 (Fig. 30b). The abundance of TN in PAB and 2016 is higher than 2012 

(Fig. 30c). The abundance of TN in PL and 2016 is higher than 2013 and 2012 (Fig. 30d). 

The abundance of TN in SG and 2016 is higher than 2012 (Fig. 30e). The abundance of 

TN in TIM and 2013 is higher than 2012 (Fig. 30f). 
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Fig. 30. Distribution of TN. (53.12 % missing) in different years and in a) AR (56km), b) MV (90km), c) 

PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 

Fig. 31 shows the distribution of DOC. in different years and sites. The abundance of 

DOC in AR and 2016 (Fig. 31a). The abundance of DOC in MV and 2011 is higher than 

2012 (Fig. 31b). The abundance of DOC in PAB and 2016 is higher than 2012 (Fig. 31c). 
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The abundance of DOC in PL and 2016 is higher than 2012 (Fig. 31d). The abundance of 

DOC in SG and 2016 is higher than 2012 (Fig. 31e). The abundance of DOC in TIM and 

2012 (Fig. 31f). 
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Fig. 31. Distribution of DOC. (75.18 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 

 

Fig. 32 shows the distribution of Virus in different years and sites. The abundance of 

Virus in AR and 2013 is higher than 2016 (Fig. 32a). The abundance of Virus in MV and 
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2012 is higher than 2011 and 2014 (Fig. 32b). The abundance of Virus in PAB and 2012 

is higher than 2014 and 2016 (Fig. 32c). The abundance of Virus in PL and 2013 is higher 

than 2012 and 2014 and 2016 (Fig. 32d). The abundance of Virus in SG and 2012 is 

higher than 2014 and 2016 (Fig. 32e). The abundance of Virus in TIM and 2012 is higher 

than 2013 and 2014 (Fig. 32f). 
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Fig. 32 Distribution of Virus. (16.18 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 33 shows the distribution of Orthop in different years and sites. The abundance of 

Orthop in AR and 2013 is higher than 2016 (Fig. 33a). The abundance of Orthop in MV 

and 2012 is higher than 2011 and 2014 (Fig. 33b). The abundance of Orthop in PAB and 

2016 is higher than 2012 (Fig. 33c). The abundance of Orthop in PL and 2013 is higher 

than 2016 and 2012 (Fig. 33d). The abundance of Orthop in SG and 2012 is higher than 

2016 (Fig. 33e). The abundance of Orthop in TIM and 2013 is higher than 2012 (Fig. 

33f). 
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Fig. 33 Distribution of Orthop. (45.96 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 34 shows the distribution of TP in different years and sites. The abundance of TP in 

AR and 2013 is higher than 2016 (Fig. 34a). The abundance of TP in MV and 2012 is 

higher than 2011 (Fig. 34b). The abundance of TP in PAB and 2016 is higher than 2012 

(Fig. 34c). The abundance of TP in PL and 2013 is higher than 2016 and 2012 (Fig. 34d). 

The abundance of TP in SG and 2012 is higher than 2016 (Fig. 34e). The abundance of 

TP in TIM and 2013 is higher than 2012 (Fig. 34f). 
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Fig. 34 Distribution of Orthop. (51.33 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 

 

Fig. 35 shows the distribution of Bacterial in different years and sites. The abundance of 

Bacterial in AR and 2013 is higher than 2016 (Fig. 35a). The abundance of Bacterial in 
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MV and 2012 is higher than 2011 and 2014 (Fig. 35b). The abundance of Bacterial in 

PAB and 2014 is higher than 2012 and 2016 (Fig. 35c). The abundance of Bacterial in PL 

and 2013 is higher than 2012 and 2014 and 2016 (Fig. 35d). The abundance of Bacterial 

in SG and 2014 is higher than 2012 and 2016 (Fig. 35e). The abundance of Bacterial in 

TIM and 2013 is higher than 2012 and 2014 (Fig. 35f). 
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Fig. 35 Distribution of Bacterial (15.44 % missing) in different years and in a) AR (56km), b) MV 

(90km), c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 36 shows the distribution of NH3 in different years and sites. The abundance of NH3 

in AR and 2016 is higher than 2013 (Fig. 36a). The abundance of NH3 in MV and 2011 is 

higher than 2012 (Fig. 36b). The abundance of NH3 in PAB and 2016 is higher than 2012 

(Fig. 36c). The abundance of NH3 in PL and 2016 is higher than 2012 and 2013 (Fig. 36d). 

The abundance of NH3 in SG and 2016 is higher than 2012 (Fig. 36e). The abundance of 

NH3 in TIM and 2013 is higher than 2012 (Fig. 36f). 
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Fig. 36 Distribution of NH3 (48.16 % missing) in different years and in a) AR (56km), b) MV (90km), c) 

PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 37 shows the distribution of Cl-a in different years and sites. The abundance of Cl-a 

in MV and 2012 is higher than 2011 and 2014 (Fig. 37a). The abundance of Cl-a in PAB 

and 2012 is higher than 2014 (Fig. 37b). The abundance of Cl-a in PL and 2012 is higher 

than 2013 and 2014 (Fig. 37c). The abundance of Cl-a in SG and 2012 is higher than 2014 

(Fig. 37d). The abundance of Cl-a in TIM and 2012 is higher than 2014 (Fig. 37e). 
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Fig. 37 Distribution of Cla (62.5 % missing) in different years and in a) MV (90km), b) PAB (89km), c) 

PL (13km), d) SG (22km) and e) TIM (19km). 

 

 

 

Fig. 38 shows the distribution of Nitrate in different years and sites. The abundance of 

Nitrate in AR and 2013 is higher than 2016 (Fig. 38a). .The abundance of Nitrate in MV 

and 2011 is higher than 2012 (Fig. 38b). The abundance of Nitrate in PAB and 2012 is 

higher than 2016 (Fig. 38c). The abundance of Nitrate in PL and 2013 is higher than 2016 

and 2012 (Fig. 38d). The abundance of Nitrate in SG and 2016 is higher than 2012 (Fig. 

38e). The abundance of Nitrate in TIM and 2013 is higher than 2012 (Fig. 38f). 
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Fig. 38 Distribution of Nitrate (53.31 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 39 shows the distribution of Nitrit in different years and sites. The abundance of Nitrit 

in AR and 2013 is higher than 2016 (Fig. 39a). The abundance of Nitrit in MV and 2012 

is higher than 2011 (Fig. 39b). The abundance of Nitrit in PAB and 2016 is higher than 

2012 (Fig. 39c). The abundance of Nitrit in PL and 2013 is higher than 2016 and 2012 

(Fig. 39d). The abundance of Nitrit in SG and 2016 is higher than 2012 (Fig. 39e). The 

abundance of Nitrit in TIM and 2013 is higher than 2012 (Fig. 39f). 
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Fig. 39 Distribution of Nitrate (47.79 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 40 shows the distribution of Feof in different years and sites. The abundance of Feof 

in MV and 2012 is higher than 2011 and 2014 (Fig. 40a). The abundance of Feof in PAB 

and 2012 is higher than 2014 (Fig. 40b). The abundance of Feof in PL and 2013 is higher 

than 2012 and 2014 (Fig. 40c). The abundance of Feof in SG and 2012 is higher than 

2014 (Fig. 40d). The abundance of Feof in TIM and 2012 is higher than 2014 (Fig. 40e). 
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Fig. 40 Distribution of Feof (62.5 % missing) in different years and in a) MV (90km),b) PAB (89km), c) 

PL (13km), d) SG (22km) and e) TIM (19km). 

 

 

 

Fig. 41 shows the distribution of HNA in different years and sites. The abundance of HNA 

in AR and 2013 is higher than 2016 (Fig. 41a).The abundance of HNA in MV and 2012 

is higher than 2014 and 2011 (Fig. 41b). The abundance of HNA in PAB and 2012 is 

higher than 2014 and 2016 (Fig. 41c). The abundance of HNA in PL and 2013 is higher 

than 2012 and 2014 and 2016 (Fig. 41d). The abundance of HNA in SG and 2012 is higher 

than 2014 and 2016 (Fig. 41e). The abundance of HNA in TIM and 2013 is higher than 

2012 and 2014 (Fig. 41f). 
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Fig. 41 Distribution of HNA (17.46 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 42 shows the distribution of LNA in different years and sites. The abundance of LNA 

in AR and 2013 is higher than 2016 (Fig. 42a).The abundance of LNA in MV and 2012 

is higher than 2012 and 2011 and 2014 (Fig. 42b). The abundance of LNA in PAB and 

2016 is higher than 2012 and 2014 (Fig. 42c). The abundance of LNA in PL and 2013 is 

higher than 2012 and 2014 and 2016 (Fig. 42d). The abundance of LNA in SG and 2014 

is higher than 2012 and 2016 (Fig. 42e). The abundance of LNA in TIM and 2013 is 

higher than 2012 and 2014 (Fig. 42f). 
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Fig. 42 Distribution of LNA (17.46 % missing) in different years and in a) AR (56km), b) MV (90km), c) 

PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 

 

Fig. 43 shows the distribution of Picoeuk in different years and sites. The abundance of 

Picoeuk in AR and 2013 is higher than 2016 (Fig. 43a).The abundance of Picoeuk in MV 

and 2011 is higher than 2012 and 2014 (Fig. 43b). The abundance of Picoeuk in PAB and 

2016 is higher than 2012 and 2014 and 2016 (Fig. 43c). The abundance of Picoeuk in PL 

and 2013 is higher than 2012 and 2014 and 2016 (Fig. 43d). The abundance of Picoeuk 

in SG and 2016 is higher than 2012 and 2014 (Fig. 43e). The abundance of Picoeuk in 

TIM and 2013 is higher than 2012 and 2014 (Fig. 43f). 
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Fig. 43 Distribution of Picoeuk (15.81 % missing) in different years and in a) AR (56km), b) MV 

(90km), c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Fig. 44 shows the distribution of Prochlor in different years and sites. The abundance of 

Prochlor in AR and 2013 is higher than 2016 (Fig. 44a).The abundance of Prochlor in 

MV and 2011 is higher than 2012 and 2014 (Fig. 44b). The abundance of Prochlor in 

PAB and 2014 is higher than 2012 and 2016 (Fig. 44c). The abundance of Prochlor in PL 

and 2013 is higher than 2012 and 2014 and 2016 (Fig. 44d). The abundance of Prochlor 

in SG and 2014 is higher than 2012 and 2016 (Fig. 44e). The abundance of Prochlor in 

TIM and 2013 is higher than 2012 and 2014 (Fig. 44f). 
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Fig. 44 Distribution of Prochlor (19.21 % missing) in different years and in a) AR (56km), b) MV 

(90km), c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km). 
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Finally, Fig. 45 shows the distribution of Synech in different years and sites. The 

abundance of Synech in AR and 2013 is higher than 2016 (Fig. 45a).The abundance of 

Synech in MV and 2012 is higher than 2011 and 2014 (Fig. 45b). The abundance of 

Synech in PAB and 2016 is higher than 2012 and 2014 (Fig. 45c). The abundance of 

Synech in PL and 2013 is higher than 2012 and 2014 and 2016 (Fig. 45d). The abundance 

of Synech in SG and 2012 is higher than 2014 and 2016 (Fig. 45e). The abundance of 

Synech in TIM and 2013 is higher than 2012 and 2014 (Fig. 45f). 
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Fig. 45 Distribution of Synech (15.81 % missing) in different years and in a) AR (56km), b) MV (90km), 

c) PAB (89km), d) PL (13km), e) SG (22km) and f) TIM (19km).
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3.3. Modelling results 

In this Section we discuss the modelling performance, the relative importance of 

environmental variables and the difference of biophysical and biochemical parametrs and 

microbial abundance in the internal and external arcs of Abrolhos. 

3.3.1. Model performance 
 

Table 5 shows the predictive performance of the BRT and RF models based on the 10- 

fold cross-validation, including the MAE, RMSE and R2 values. The results suggest that 

model RF was highly predictive based on the range of R2 values from 0.66 to 0.84 in 

compare to BRT with R2 values from 0.55 to 0.78 (Table 5). In general, the descriptive 

statistics indicate approximately similar levels of prediction accuracy of the BRT and RF 

models, based on the R2 (0.65 vs. 0.75, respectively). 

The coefficient of determination (R2) is a statistical measure of how close the data are to 

the fitted regression line. It is also known as the R-squared. RMSE and MAE have the 

same unit as the dependent variables (DV). It means that there is no absolute good or bad 

threshold and can be defined based on DV. The R2 values suggest that both models can 

explain approximately 70% of the total microbial abundance variability and both 

approaches accurately predicted the microbial abundance, based on R2 values of 

approximately 0.7. 

Table 5. Summary statistics of the predictive quality of boosted regression trees (BRT) and random forest 

(RF) models for microbial abundance with 100 runs; the mean absolute error (MAE), root mean squared 

error (RMSE), and coefficient of determination (R2) are used to evaluate accuracy. 

 
Model Index Bacterial Cl-a Feof HNA LNA Nanouk. Picoeuk. Prochlor. Synech. Virus 

 

RF 

RMSE 73 0.13 0.10 56 47 14 12 37 46 305 

MAE 48 0.07 0.06 41 35 7.5 8.6 24.6 32 230 

R2 0.80 0.78 0.75 0.81 0.84 0.73 0.73 0.66 0.70 0.78 

 

BRT 

RMSE 71 0.13 0.12 66 51 16 14 37 54 345 

MAE 51 0.08 0.07 46 37 9.33 10 26 38 262 

R2 0.77 0.67 0.63 0.65 0.78 0.55 0.57 0.58 0.60 0.63 

 

 

 
3.3.2. Relative importance of environmental variables 

 

The relative importance of each predictor, which has been determined from 100 runs of 

the BRT and RF models, shown in Figs. 46-55. We normalized the importance of 

variables in the RF model to 100% to provide a simple basis for comparison with the BRT 

model. The relative importance of predictors almost differed between the two models, but 
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DOC was the most influential factor in the BRT and RF models (Figs. 46-55). In both, 

the three most important predictors, based on their mean values, were DOC, TN, and 

silicate (Figs. 46-55). The Heatmap of the relative importance of each predictor, in both 

BRT and RF models, is presented in Fig. 56. 

 

 

 

Fig. 46. a) Relative importance of each variable on bacterial abundance as determined from 100 runs of 

the boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in 

decreasing order and normalized to 100%. b) Relationships between predicted and real value s of 

bacterial abundance and all predictors. 
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Fig. 47. a) Relative importance of each variable on Cl-a abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Cl-a abundance and 

all predictors. 
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Fig. 48. a) Relative importance of each variable on Feof abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Feof abundance and 

all predictors. 
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Fig. 49. a) Relative importance of each variable on HNA as determined from 100 runs of the boosted 

regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing order 

and normalized to 100%. b) Relationships between predicted and real value s of HNA and all predictors. 
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Fig. 50. a) Relative importance of each variable on LNA as determined from 100 runs of the boosted 

regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing order and 

normalized to 100%. b) Relationships between predicted and real value s of LNA and all predictors. 
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Fig. 51. a) Relative importance of each variable on Nanoeuk abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Nanoeuk abundance 

and all predictors. 
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Fig. 52. a) Relative importance of each variable on Picoeuk abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Picoeuk abundance 

and all predictors. 
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Fig. 53. a) Relative importance of each variable on Prochlor abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Prochlor abundance 

and all predictors. 
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Fig. 54. a) Relative importance of each variable on Synech abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Synech abundance 

and all predictors. 
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Fig. 55. a) Relative importance of each variable on Virus abundance as determined from 100 runs of the 

boosted regression trees (BRT, left) and random forest (RF, right) models, which are shown in decreasing 

order and normalized to 100%. b) Relationships between predicted and real value s of Virus abundance and 

all predictors. 
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Fig. 56. The Heatmap of the relative importance of each predictor, in both BRT and RF models. The green and 

red colors represent the highest and lowest importance of each independent variable, respectively. The white 

color represent the midpoint of values. 

 

 

3.3.3. The Difference of Biophysical and Biochemical Parameters and Microbial 

Abundance in Internal and External ArcS of Abrolhos 
 

The water temperature showed an annual profile of variation. The difference of temperature 

values between Internal and External arcs and in years 2011 to 2016 is presented in Fig. 57. 

We can see that the external arc of Abrolhos (MV and PAB) presented the lowest 

temperature values along the years. 

 

Fig. 57. Temperature variation years 2011 to 2016 – Internal and External arcs of Abrolhos.
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The difference of hydrodynamic velocity between Internal and External arcs in 2010 is 

presented in Fig. 58. We can see that the AR external arc presents the highest hydrodynamic 

velocity, and the internal arc PL presents the lowest hydrodynamic velocity in the first, 

medium, and third quartile of data. There is no significant differences among other sites of 

inner and outer reefs. 

 

 
 

Fig. 58. The hydrodynamic velocity among Internal and External arcs in 2010. 

 

The microbial abundance and biochemical parameters are presented in Figs. 59-76 for the 

six studied areas and grouped in the Internal and External arcs. In the Internal arcs (TIM, PL 

and SG), the total amount of microbial abundance and biochemical variables, such as 

nutrients, are higher than in the External arcs (AR, PAB and MV). The average value of each 

variable per site is also presented in Figs. 59-76. 
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Fig. 59. Bacterial abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 60. Cl-a abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 61. Feof abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 62. HNA abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 63. LNA abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 64. Nanoeuk abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 65. Picoeuk abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 66. Prochlor abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 67. Synech abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 68. Virus abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 69. DOC abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 70. NH3 abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 71. Nitrate abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 72. Nitrit abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 73. TN abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 74. Ortop abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 75. TP abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 
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Fig. 76. Silicate abundance: a) for the six studied areas and b) grouped in Internal and External arcs. 

 

 

3.4. Results’ Discussion 
 

The aim of this study was to model the influence of environmental parameters on the 

marine microbial abundance of the Abrolhos coral reefs using Random Forest and Boost 

Regression Tree.  

The predictive performance of the BRT and RF models based on the 10- fold cross-

validation, including the MAE, RMSE and R2 values suggest that model RF was highly 

predictive based on the range of R2 values (from 0.66 to 0.84) in compare to BRT with R2 
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values from 0.55 to 0.78. In general, the descriptive statistics indicate approximately 

similar levels of prediction accuracy of the BRT and RF models, based on the R2 (0.65 

vs. 0.75, respectively). The R2 values suggest that both models can explain approximately 

70% of the total microbial abundance variability and both approaches accurately predicted 

the microbial abundance, based on R2 values of approximately 0.7. 

The relative importance of each predictor was determined by performing 100 runs of the 

BRT and RF models. The relative importance of the predictors differed a little between 

the two models, but DOC (dissolved organic carbon) was the most influential factor in the 

BRT and RF models. In both, the three most important predictors, based on their mean 

values, were DOC, TN (total nitrogen) and Silicate. 

The difference of biophysical and biochemical parameters and microbial abundance in 

Internal and External arc of Abrolhos has been also analysed. The water temperature 

showed an annual profile of variation. The difference of temperature values between 

Internal and External arcs and in years 2011 to 2016 showed that the external arc of 

Abrolhos (MV and PAB) presented the lowest temperature values along the years. On the 

other side, the difference of hydrodynamic velocity between Internal and External arcs in 

2010 showed that the AR external arc presents the highest hydrodynamic    velocity, and 

the internal arc PL presents the lowest hydrodynamic velocity. Furthermore, the 

microbial abundance and biochemical parameters showed that in the Internal arcs (TIM, 

PL and SG), the total amount of microbial abundance and biochemical variables, such as 

nutrients, are higher than in the External arcs (AR, PAB and MV).  

The findings of this Section 3 corroborate our initial hypothesis that the environmental 

variables are the primary environmental indicators representing the spatial variability of 

microbial                               abundance in the internal and external arcs of Abrolhos, Brazil. The BRT and 

RF models showed that the variability in microbial                     abundance can be primarily explained 

by DOC, followed by TN (total nitrogen) and Silicate (Fig. 56). The absorption of organic 

matter by microbial is a major route of carbon flux, and its variability can change the overall 

patterns of carbon                                       flow (Azam 1998). 

Bacteria are key players in organic matter recycling in the aquatic ecosystems, mediating 

the flux of nutrients and energy to higher trophic levels (Azam, 1988), and the results of 

the present study are in agree with Smith et al. (2006), which verified that the DOC 

released by algae may promote the microbial growth that leads to coral death. 

Based on the BRT and RF results, NH3 (ammonia), Orthophosphate and TP (total 

phosphate) ranked among the least important predictors for all response variables (Fig. 
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56). Nevertheless, the importance values obtained for these predictors suggested that each 

of the response variables depends differently on the concentrations of these nutrients to r 

grow. Based on these observations, we postulate that microbial abundance has been much 

more dependent on DOC, TN and silicate concentrations than the other independent 

variables. 

Numerous studies show that hydrodynamics is an important factor acting on ecosystems 

and affecting microbial distribution (Frontalini et al., 2009; Martins et al., 2013; Damasio 

et al., 2020). Our findings revealed that the internal arcs of Abrolhos, specially Pedra de 

Leste, have low hydrodynamics, longer residence time of the water, higher concentration 

of nutrients, greater proliferation of microbes and possibly more coral disease; while the 

external arcs of Abrolhos, specially Arquipélago, have high hydrodynamics - favoring the 

"washing" of the reefs, lower temperature, lower concentration of nutrients, and minor 

proliferation of microbes. The result of the present study is in agree with Santos et al. 

(2011), which verified that the strong currents with low temperature in the marine zone 

of the estuary of Ria de Aveiro (Portugal) promote vertical mixing, inhibiting the 

establishment of bacterial community (Santos et al., 2011). 

Furthermore, the abiotic variables are faced by the Abrolhos photosynthetic microbiome. 

Importantly, other forms of chlorophyll besides the one that was measured in this study 

(chlorophyll a) could have had associations with predictor variables that were different 

from those presented here. TP, Orthophosphate and NH3 ranked among the least 

important predictors for all response variables (Fig. 56). Nevertheless, the importance 

values obtained for these predictors suggested that each of the three response variables 

has depended differently on phosphorus concentrations for growth. NH3 had almost no 

importance to microbial abundance, while the opposite pattern was observed for DOC, 

which was more important to microbial abundance than it. Based on these observations, 

we postulated that microbial abundance has been much more dependent on DOC 

concentrations than the other response variables. 

Hydrodynamic velocities and temperature influence the ecological processes in the 

Abrolhos environment. In the low temperature External arcs (AR, PAB and MV), intense 

water currents (specifically in AR) promote a strong mixing of water, circumventing the 

establishment of microbial communities. In contrast, in the high temperature of internal 

arcs, local hydrodynamic characteristics provide the necessary conditions for the 

proliferation of biochemical parameters such as nutrients and active microbial abundance. 

Temperature was ranked among the most important factors regulating the levels of the 
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response variables, and strong positive associations between temperature and response 

variables were observed (Coutinho et al., 2019). Analyses of microbial communities 

spanning multiple ecosystems have suggested that temperature is major factors shaping 

microbial community composition across aquatic habitats (Lozupone and Knight, 2007; 

Sunagawa et al., 2015; Thompson et al., 2017). The positive associations with 

temperature were likely a reflection of the increase in microbial metabolism brought by 

higher temperatures. Several physical and biological processes, including simple 

diffusion, turbulent mixing, in situ primary production, convection and upwelling of 

underlying waters (UW) (Liss & Duce, 1997), contribute to the enrichment of organic and 

inorganic nutrients as well as microorganisms at the water column. 

Coutinho et al., (2019) showed that physical parameters (i.e., temperature, salinity and 

transparency) were more relevant for determining the abundance of bacteria, chlorophyll 

and Vibrio than nutrients (i.e., TP and TN). Maybe temperature and hydrodynamic have 

acted together in determining the abundance of microbial and photosynthesizes through 

three major mechanisms: altering the taxonomic composition of the community, affecting 

their growth rates, and regulating the rates of photosynthesis and consequently primary 

productivity as reported in Coutinho et al. (2019). 

Based on this evidence, we postulated that, due to the intense eutrophication at the internal 

arcs of Abrolhos, the microbial community had reached its maximum capacity for taking 

up and utilizing nutrients. Thus, the Abrolhos microbiome growth might have no longer 

been limited by nutrient availability. Instead, temperature, and hydrodinamic effect have 

acted together in determining the abundance of microbiomes and photosynthesizers 

through three major mechanisms: altering the taxonomic composition of the community, 

affecting their growth rates, and regulating the rates of photosynthesis and consequently 

primary productivity. In the original pristine conditions, the growth of the microbial 

community was likely limited by the availability of TP and NH3. 

Our findings demonstrate that hydrodynamic and temperature can possibly regulate 

microbial abundance, providing important insights for a better environmental 

management of the Abrolhos Bank. These results are in accordance with previous findings 

that explored the associations between microbial abundance and these parameters 

(Constantin de Magny et al., 2008; Haley et al., 2014; Höfle et al., 2015; Vezzulli et al., 

2016). Our results corroborated these findings while also elucidating the associations 

between microbial abundance with DOC, NT, and silicate. Therefore, the results suggest 

that microbe growth has been fed by DOC-rich sewage dumped into the Abrolhos reefs. 
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Understanding the associations between microbes and environmental conditions has been 

a fundamental step in predicting, preventing and mitigating the impacts of disease 

outbreaks associated with aquatic habitats (Lobitz et al., 2000; Russek-cohen et al., 2003). 

Together, the warmer and lower hydrodynamics waters of the innermost sections of 

Abrolhos have posed a higher risk for the local population than the colder and higher 

hydrodynamics waters present in the regions that receive higher inputs of oceanic waters. 

Thus, the innermost regions of the Abrolhos likely have been the most threatening because 

the high sewage input and low influence of oceanic waters in these regions has created an 

ideal environment for the proliferation of microbes and other potential pathogens. 

Therefore, developing strategies for minimizing pollution into these regions of Abrolhos 

that represent the biggest threat to public health should be a priority. Our findings provide 

insights for developing strategies for reversing the impacts to inner arc of Abrolhos. This 

could be achieved by a combination of proper sewage treatment, reduction of nutrient 

loads, minimizing deforestation and recovery of the surrounding and aquatic vegetation. 

Additionally, bioremediation strategies capable of reducing nutrient availability could be 

applied as well (Boesch et al., 2001; Greening and Janicki, 2006; Little et al., 2000; 

McGann et al., 2003; Paerl, 2009; Walker et al., 2013; Coutinho et al., 2019). 

Furthermore, our results demonstrate that BRT and RF models could serve as tools to 

assess the threat level to public health posed by the aquatic ecosystem throughout 

changing environmental conditions, which could be used to predict and mitigate coral 

disease outbreaks (Yang et al., 2016). 

Our results are in agree with Coutinho et al. (2019), which concluded that microbiomes 

levels were primarily regulated by temperature. Also, these results were in accordance 

with previous findings that explored the associations between microbes and abiotic 

parameters (Paerl, 2009; Walker et al., 2013; Coutinho et al., 2019). Our results 

corroborated these findings while also elucidating the associations between microbial 

abundance, DOC, TN and silicate. Therefore, the results suggest that the growth of 

microbes and of other potentially pathogenic bacteria has been fuelled by nutrient 

concenterations that releases carbone, Nitrogen and silicate sources into the Abrolhos 

bank. This explanation concurs with previous analyses that have indicated that Vibrio and 

other copiotrophic and potentially pathogenic bacteria depend on DOC (Coutinho et al., 

2015). 

Together, these findings indicated that warmer and less hydrodinamic velocity waters of 

the innermost sections of Abrolhos have posed a higher risk for the local population than 
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the colder and more hydrodinamic velocity waters typical of the regions that receive 

higher inputs of oceanic waters. Thus, the innermost regions of the Abrolhos likely have 

been the most threatening because the high nutrients and low influence of oceanic waters 

in these regions has created an ideal environment for the proliferation of microbes and 

other potential pathogens. Therefore, developing strategies for minimizing pollution into 

these regions of Abrolhos that represent the biggest threat to public health should be a 

priority. 

Despite decades of investments, the water pollution at Abrolhos is increasing. The 

continuous of temperature of this area lead to increased nutrient concentrations. 

Furthermore, climate change is expected to increase water temperatures in Abrolhos. 

Assuming that the observed associations between predictors and response variables 

remain stable through time, our results suggest that the aforementioned changes expected 

to affect this ecosystem in the future would lead to higher densities of microbes, potential 

pathogens and coral disease. 

The models were used to verify the associations between biological variables and abiotic 

parameters regardless of how these associations change through time. More complex 

models that incorporate the aforementioned variables would require a much larger number 

of samples but could provide a more comprehensive understanding of the dynamics taking 

place within the microbial community that resides in Abrolhos. Likewise, the 

advancement of models approaches and perhaps the use of algorithms designed 

specifically to incorporate temporal trends (e.g., recurrent neural networks) could improve 

the precision of these models. Nevertheless, our work provides a stepping stone for future 

studies that aim to understand the dynamics of the Abrolhos microbiome through 

ecological modelling approaches. 

 

4. Conclusions and Suggestions for Future Research 
 

We concluded that hydrodynamic velocities and temperature influences the ecological 

processes in the Abrolhos environment. In the low temperature External arcs (AR, PAB 

and MV), intense water currents (specifically in AR) promote a strong mixing of water, 

circumventing the establishment of microbial communities. In contrast, in the high 

temperature of internal arcs, local hydrodynamic characteristics provide the necessary 

conditions for the proliferation of biochemical parameters such as nutrients and active 

microbial abundance. 
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This work contributes toward a better understanding of the ecology of microbial 

communities at Abrolhos ecosystems. Boosted Regression Trees (BRT) and Random Forest 

(RF) models were very important to attest causal inference, providing supporting evidence              

of how the microbial abundance has been regulated by the environmental parameters. 

We have ranked the relative importance of these parameters over the response variables, 

and characterized the  synergistic effects between variables. Furthermore, BRT and RF 

allowed us to infer the response of the microbial communities to changes in water quality 

conditions. Our findings provide insightful information on the dynamics of microbial 

communities for tropical ecosystems, for which little information is currently available. 

This approach could be easily applied to other similar datasets from other ecosystems and 

has served as a proof-of-principle of the usefulness of these models in the field of 

microbial ecology. This outcome is especially relevant considering the current scenarios 

of global climate changes and increasing environmental impacts. 

In fact, understanding the associations between microbes and environmental conditions is 

a fundamental step in predicting, preventing and mitigating the impacts of disease 

outbreaks associated with aquatic habitats. We showed that the warmer and lower 

hydrodynamics waters of the innermost sections of Abrolhos have posed a higher risk for 

the local population than the colder and higher hydrodynamics waters present in the 

regions that receive higher inputs of oceanic waters: the innermost regions of Abrolhos 

present an ideal environment for the proliferation of microbes and other potential 

pathogens.  

Therefore, developing strategies for minimizing pollution into these regions that represent 

the biggest threat to public health should be a priority, and this could be achieved by a 

combination of proper sewage treatment, reduction of nutrient loads, deforestation 

minimization, and recovery of the surrounding and aquatic vegetation.  

Furthermore, our results demonstrate that BRT and RF models could serve as good tools 

to assess the threat level to public health posed by the aquatic ecosystem throughout 

changing environmental conditions, which could be used to predict and mitigate coral 

disease outbreaks. 

Our findings can be very useful for the development of strategies to reduce the burden of 

waterborne diseases and for the remediation of Abrolhos and other aquatic ecosystems, 

aiming to preserve their biodiversity as well as their economic, historical and aesthetic 

values. 

As future research, we can suggest the use of a larger sample set, having more predictor 
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variables, and incorporating associations between biotic variables to provide an even 

better description of the ecological associations taking place within the Abrolhos 

microbiome.  
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