S
Instituto Alberto Luiz Coimbra de
Pés-Graduagao e Pesquisa de Engenharia

LE-STREAM: A LATENCY AND ENERGY-AWARE FRAMEWORK FOR
DATA STREAM PROCESSING IN THE INTERNET OF THINGS

Egberto Armando Rabello de Oliveira

Dissertacao de Mestrado apresentada ao
Programa de Pos-graduacao em FEngenharia
de Sistemas e Computacao, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessarios a obten¢ao do
titulo de Mestre em Engenharia de Sistemas e

Computacao.

Orientadores: Marta Lima de Queirdés Mattoso

Flavia Coimbra Delicato

Rio de Janeiro
Novembro de 2021

LE-STREAM: A LATENCY AND ENERGY-AWARE FRAMEWORK FOR
DATA STREAM PROCESSING IN THE INTERNET OF THINGS

Egberto Armando Rabello de Oliveira

DISSERTACAO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE POS-GRADUACAO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSARIOS PARA A OBTENCAO DO
GRAU DE MESTRE EM CIENCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTACAO.

Orientadores: Marta Lima de Queirés Mattoso

Flavia Coimbra Delicato

Aprovada por: Prof. Marta Lima de Queirés Mattoso
Prof. Flavia Coimbra Delicato
Prof. Claudio Miceli de Farias
Prof. Paulo de Figueiredo Pires
Prof. Markus Endler

RIO DE JANEIRO, RJ — BRASIL
NOVEMBRO DE 2021

Oliveira, Egberto Armando Rabello de

LE-Stream: a Latency and Energy-Aware Framework
for Data Stream Processing in the Internet of
Things/Egberto Armando Rabello de Oliveira. — Rio
de Janeiro: UFRJ/COPPE, 2021.

XTV] [61] p]: 1] 29, 7em.

Orientadores: Marta Lima de Queirés Mattoso

Flavia Coimbra Delicato

Dissertac¢ao (mestrado) — UFRJ/COPPE/Programa de
Engenharia de Sistemas e Computacao, 2021.

Referéncias Bibliograficas: p. [52] - [61]

1. Internet of things. 2. Data stream processing. 3.
Edge computing. 4. Adaptive sampling. 5. Active
node selection. I. Mattoso, Marta Lima de Queirds
et al. II. Universidade Federal do Rio de Janeiro, COPPE;,
Programa de Engenharia de Sistemas e Computacao. III.
Titulo.

1l

“Rien dans la vie n’est a
craindre, tout doit étre compris.
C’est maintenant le moment de

comprendre davantage, afin de
craindre moins. "
(Marie Courie)

v

I dedicate this work to my
beloved girls Bella and Michelle.
Without their unconditional love

and support I would NEVER

have made it this far!

Acknowledgements

It is really hard to find words to describe how I feel about getting this far. It is
equally impossible to name each person, word or gesture that directly or indirectly
influenced this journey. However, I am trying to do my best to record my sincere
thanks and I hope I am not being unfair to those I did not name explicitly.

I must start with whom inspired me with her legitimate passion for Science and
who made me believe I was capable of persuing a MSc degree. Being my inspiration
(in all senses) would be enough to guarantee the first place in my list, but this is not
everything. “full support" is still to small to describe how much she was dedicated
to my success. She was my eyes when I was not able to see the end of the tunnel
and also the only one who never doubted that I would make it to the end. Nothing
I say or do in this or any other lifetime can fully express my gratitude for my wife,
soul mate and eternal love: Michelle.

I also thank the one who was born along the way and became my inexhaustible
source of joy and willpower to face each setback. I fell so many times but I got up
and moved on, always thinking about being an example to my sweet little Bella, my
reason to exist!

How not to mention the greatest warriors I have ever seen: my beloved parents
Earli and Nadson. I am just a mirror that reflects the greatness of those who created
me without measuring efforts and, above all, with unrestricted love.

My little sister Alessandra, who is small only in height, but one of the most
amazing and strongest women I ever met. Thank you for being my partner, guardian
and number 1 fan since day 1.

To Giovanna, Sophie, Gabriela, Ricardo and Alice: jewels that have been en-
trusted to me and that I will protect and love until my very last breathe. You
inspire me to always be the best version of myself. To my heart brothers Guilherme,
Juliana, Rafael, Marcele and Rodrigo for the immense honor of being chosen as the
godfather of your greatest treasures.

To my blood family whose names it would not be possible to list and also to the
family that welcomed me with all the love and affection, here represented by Téania,
José Carlos and Jennifer.

To my big brother Rui for being not only a friend but a real mentor when needed

vi

and also to all my family from the mountains he represents.

To all my teachers and professors for helping me to acquire the only good that
cannot be taken away: knowledge.

To professors Flavia and Marta, my advisors in the truest sense of the word.
Tireless, dedicated and extremely helpful. I think I have an idea of how difficult it
must be to guide such a stubborn“old donkey" like me... Thank you for not giving
up on me!

To professor Paulo Pires for the valuable teachings in the IoT labs and the very
insightful feedbacks on my MSc seminar together with professor Artur Ziviani, who
left us prematurely and certainly represents a huge loss for Science.

To professor Atslands for the very important contribution to the success of this
work.

To professor Paulo Eustaquio for the recommendation and support and who will
always be one of my greatest academic references.

To my true friends from CPII for understanding my absence and my eventual bad
mood: Bernardo, Mariah, Marcelo, Theo, Marianna, Marilia, Livia, Maira, Diego,
Douglas, Fernando, Julia, Luana, Clarissa, Steffanie, Bruno, Gabriel and so many
others that it’s hard to count...

To my partners from Valia, Marcus, Vanessa, Eduardo, Veloso, Bruno, Ismael,
Gustavo, Martelo, Enrique, Zanchetta, Claudia and Analu for supporting and cov-
ering my absence at the most inappropriate class times.

To my colleagues from Siemens for welcoming me in a new home on the other
side of the Atlantic ocean.

Last but not least, I thank God. Not only for the opportunity of going back
to the University after a decade, at the largest engineering postgraduate institute
in Latin America, but also for filling my path with all these people who gave me

strength and support to overcome so many obstacles along the way.

vil

Resumo da Dissertacdo apresentada & COPPE/UFRJ como parte dos requisitos

necessérios para a obtengao do grau de Mestre em Ciéncias (M.Sc.)

LE-STREAM: UM FRAMEWORK CIENTE DE LATENCIA E ENERGIA PARA
PROCESSAMENTO DE FLUXOS DE DADOS NA INTERNET DAS COISAS

Egberto Armando Rabello de Oliveira

Novembro/2021

Orientadores: Marta Lima de Queirés Mattoso

Flavia Coimbra Delicato

Programa: Engenharia de Sistemas e Computagao

O processamento de dados em IoT é um desafio devido & sua natureza dinamica
e heterogénea e a enorme quantidade de dados envolvidos. Dados gerados por sensor
sofrem de problemas de incerteza e inconsisténcia, que podem afetar sua precisao.
Varios aplicativos IoT sao sensiveis a laténcia, exigindo processamento de dados
rapido. Por fim, como os dispositivos IoT costumam ser alimentados por bateria,
as tarefas de processamento devem ser executadas de maneira eficiente em termos
de energia. Portanto, os desafios no processamento de fluxo de dados englobam
trés dimensoes: precisao, laténcia e energia. Esta dissertagao de mestrado propoe
o LE-Stream, um framework para apoiar o processamento de fluxo de dados para
sistemas IoT que aborda estas trés dimensoes em conjunto. O paradigma de com-
putagao de borda ¢ utilizado para aproximar o processamento de dados das fontes
de dados, minimizando a laténcia. Uma nova amostragem adaptativa colaborativa
combinada com um modelo de previsao de dados em duas etapas reduz o consumo
de energia dos dispositivos sensores sem comprometer a precisao dos dados de saida.
Um esquema de selegao de nos ativos melhora a distribuicao da carga de trabalho
entre os dispositivos, abordando também a dimensao da energia, promovendo uma

degradagao harmoniosa dos seus recursos computacionais.

viil

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

LE-STREAM: A LATENCY AND ENERGY-AWARE FRAMEWORK FOR
DATA STREAM PROCESSING IN THE INTERNET OF THINGS

Egberto Armando Rabello de Oliveira

November/2021

Advisors: Marta Lima de Queirdés Mattoso

Flavia Coimbra Delicato

Department: Systems Engineering and Computer Science

Data processing in IoT is challenging due to its dynamic and heterogeneous
nature, and the massive amount of generated data. Sensor data suffers from uncer-
tainty and inconsistency issues, that can affect its accuracy. Several IoT applications
are time sensitive, requiring fast data processing. Finally, as IoT devices are often
battery powered, processing tasks must be performed in an energy-efficient way.
Therefore, there are challenges in data stream processing concerning three dimen-
sions: accuracy, latency and energy. We propose LE-STREAM, a framework to
support the data stream processing for IoT systems which jointly addresses these
dimensions. It leverages edge computing to bring the data processing closer to the
data sources, thus minimizing latency. A novel collaborative adaptive sampling
combined with a two-step data prediction model reduce the energy consumption of
devices without compromising data accuracy. An active node selection schema im-
proves the workload distribution among devices, also tackling the energy dimension

by promoting a graceful degradation of devices resources.

1X

Contents

[List of Figures| xii
[List of Tables| xiv
1 Introduction| 1
2 Background Concepts | 6
[2.1 Internet of Things (IoT) 6
2.2 IoT System Architectures| 7
2.3 IoT Application Protocols| 9
[2.4 Wireless Sensor Networks (WSN)[. 10
[2.5 Energy Preservationin WSN | 11
[2.6 Cloud, Fog and Edge Computing | 13
[2.7 Data Stream Processingl 14
2.8 Data Outliers and Outlier Detectionl 15
3__Related Workl 18

[4 LE-Stream: a Latency and Energy-Aware Framework for Data |

[Stream Processing in Io'T] 23
4.1 Overview and Architecturel 23
[4.2 Adaptive Sampling Strategylo 26
4.3 Active Node Selection|l 31

[4.3.1 Setting Workload Statistics| 33
[4.3.2 Evaluating Workload Skewness| 33
[4.3.3 Selecting Sensor Nodes To Deactivate 35
[4.4 Two-Step Data Prediction Model| 36
[4.4.1 Identifying and Cleaning Incorrect Samples|. 37
[4.4.2 Aggregating Datalo 38

[> Experimental Evaluation| 40

O.l Use Case and Test Bnvironment! 0. 40

[5.2 Data Accuracy Analysigfo 0. 41

[>.3 Efficiency in Terms of Energy Consumption Reduction| 43
[>.4 Effectiveness of Active Node Selection on Improving the Workload
[Distributionl 46
[>.5 Data Stream Processing Speed|. 47
6 Conclusion and Future Workl 50
[References 52

x1

List of Figures

2.1 An loT overview emphasizing application domains and their integra- |
| tions by AL-FUQAHA et al. [15]] 7
[2.2 A three tiered architecture for an loT system, adapted from LI et al. |

2.3 A wireless sensor network (WSN) by RAWAT et al. [31]]. 10
[2.4 Energy preservation schemes for WSN| 13
[2.5 Overview of an online data processing workflow by DIAS DE As- |
| SUNCAO etal Bl 15
[4.1 Schematic view of the proposed framework for strict response time |
| and energy-aware data stream processing.| 24
[4.2 LE-Stream components, their interfaces and respective operations.| . . 24

[4.3 Nodes and components involved on a hypothetical scenario ot a single |

| entity monitored with three physical sensors and serving different |

[applications.| 25

[4.4 Sequence of events and interactions between software components in |

| the sampling activity.|. 29

[4.5 An example of an adaptive sampling strategy applied to a simple use |

[4.6 Sequence of events and interactions between software components in |

[the active node selection activity.| 32

4.7 How the Sampler sets workload statistics / aggregations by reading |
[the Buffer) 34
[4.8 Outlier detection with density-based clustering/. 39

[4.9 Sequence of events and interactions between software components in |

[the data prediction activity| 39

[>.1 Number of samples at the buffer over time for each sampling strategy.| 42

[5.2 Temperature and humidity readings processed with different sampling |

[strategies.| 43

[>.3 Average energy consumption per sensor node for each round.| 45

X1i

[.4 Total energy consumed by sensor nodes for each round.| 45

[5.5 Progress of the standard deviation metric on LE-Stream with and |

[without the active node selection featurel 47

[5.6 Data prediction processing speed per amount of buffered samples| . . 49

xiil

List of Tables

3.1 Related Work. | 22
[4.1 Simulation of the proposed adaptive sampling on a simple scenario.| . 30
[4.2 Summary of samples taken and average W, per sensor node.| 31
B0 41
(5.2 RMSE and MAE for humidity and temperature per round of simulation.| 42
(5.3 Emergy savings for sensor nodes.|.o 45

46
[5.5 Average data prediction processing speed per simulation round.| . . . 48

Xiv

Chapter 1
Introduction

The Internet of things (IoT) is transforming the internet, enabling the commu-
nication between every kind of object (things) and creating a vision of “anytime,
anywhere, any media, anything” communications [I]. Initially, IoT was mainly ob-
tained by the use of RFIDs, nowadays such a concept has evolved to a broader view
that refers to the interconnection of sensors, actuators, smart objects, and wireless
sensor networks (WSN)[2]. The growing number of sensors and smart devices led
to an explosion of volume, variety and velocity of generated data, empowering a
new way of value creation to people and corporations [3]. The processing of these
“firehoses” of data from existing and emerging applications poses several challenges
and brings novel research opportunities.

The challenges involved in [oT data stream processing may be analyzed at least
from two dimensions: (i) the data itself (generated by heterogeneous, distributed
and often constrained devices), and (ii) the data processing, i.e. the core activities
from the data acquisition to the production of high level knowledge.

Regarding the nature of the data, IoT devices/sensors generate, possibly in a
continuous way, a huge amount of data, typically consisting of time-series values,
which are sampled over a specific time period, thus characterizing a data stream
[4]. Often, there is no control over the order or frequency of streamed data, which
is transient or non-persisted. The input rate of a data stream is unpredictable and
bursty in nature, ranging from a few bytes to several gigabits per second. In ad-
dition, the data is highly heterogeneous, as it is generated by multiple types of
devices, in different formats and to feed a wide range of applications, also heteroge-
neous. Besides the potentially massive volume of data, an IoT environment is also
characterized by high dynamism and volatility. In many IoT applications, such as
traffic accident monitoring or river flooding prediction, the potential value of data
depends on its timely processing, under strict response time requirements. Oth-
erwise, the processing results and actions become less valuable or even worthless.

Finally, quality-related data features also need to be considered. According to QIN

et al. |5, quality awareness in IoT considers the following features: (i) uncertainty,
(ii) ambiguity and inconsistency, (iii) incompleteness, and most of them are a direct
consequence of the data being produced by sensors. Sensors are fail-prone devices.
Information and decisions derived from raw data generated by sensors will also be
subject to failure [6]. Therefore, identifying errors/inconsistencies on a sensor gen-
erated data stream is crucial to improve the accuracy of the data being processed.
These errors/inconsistencies are called outliers, which are readings considered out-
side the regular state of the data being collected. Data points that differ significantly
from others in a data set can represent either errors or events of importance to the
application [4].

Regarding the data processing, the demand for computational resources capable
of processing large volumes of data has historically been an obstacle for creating high
volume and/or high speed data processing solutions [7]. Because of the huge avail-
ability of resources offered by cloud computing platforms, cloud-based approaches
are widely adopted in IoT systems. The data is pushed to the cloud to be processed
and the outcome is delivered back to the local system. However, the internet back-
bone is not always able to meet strict response time requirements to transport a
huge amount of data coming at a high speed. This creates a communication bot-
tleneck that leads to proposing non-cloud based alternatives, to handle and process
[oT generated data streams|§].

A promising approach recently emerged is Edge Computing [7]. It consists of
bringing the data processing activities physically closer to the data sources. Edge
computing is potentially useful and has been adopted in several domains such as
smart buildings, healthcare, autonomous vehicles, and environmental monitoring.
In these applications, data is processed by an edge device such as a smart gateway,
to extract meaningful information from it and take necessary actions immediately
[8], thus preserving the usability of time-sensitive data. Therefore, with the support
of edge computing, some of the activities of a data stream processing workflow can be
performed by devices at the edge of the network. Other activities, more demanding
in terms of processing, may continue to be carried out in the cloud. Still others can
be performed on the sensor device itself, that is, on the data sources since, although
restricted in terms of CPU and memory, such sensors are capable of performing less
complex processing. In this context, another challenge arises related to data stream
processing in [oT, which consists of using the available resources in a rational way. In
addition to the restricted processing and communication capabilities, several sensor
devices are powered by non-rechargeable batteries. Keeping the sensors working as
long as possible is a major challenge in all sensing-based systems, and it has been
extensively investigated in the WSN community.

In general, a basic strategy for preserving energy in WSNs consists of: (i) keep-

ing the nodes in hibernation as long as possible and (ii) reducing the data traffic
in the network as much as possible. One technique called Adaptive Sampling [9]
simultaneously tries to do both by varying the interval between samplings accord-
ing to the behaviour of the sensed data. If, on the one hand, adaptive sampling
techniques are very efficient in reducing power consumption in a WSN, on the other
hand they are usually not suitable to applications requiring sampled data to be pro-
vided continuously (as a stream). However, this problem can be minimized when
Adaptive Sampling is combined with a data prediction model to compute future
sensor readings based on past samples.

In WSNs, data prediction techniques usually maintain two instances of a predic-
tion model, one residing at the sink node and the other at the sensor, in the so-called
Dual Prediction Scheme (DPS)[I0]. Each sensor node runs a model that estimates
the next measurement. The sink (or base station) runs exactly the same models
for each sensor in the network and makes the same predictions, thus reducing the
need of data transmissions from sensors to sink, as long as the difference between
the values predicted by the sink and the actual transmitted (from times to times) is
below a threshold.

By using a data prediction model, queries generated by the application can
obtain data continuously (predicted values), without having to wait for the real
data, which will be transmitted at a reduced rate due to the use of the adaptive
sampling approach. Yet, despite being able to provide data continuously, DPS is
not a good fit to sample physical phenomena exposed to significant sudden and
unpredictable variations. This is the case in event detection systems where, after
a period of stability, sudden and expressive variations of a physical variable may
indicate the occurrence of an important event. In general, DPS methods are more
suited to sample predictable physical phenomena, with more smooth variations in
time [I0]. Since it is very difficult to define a data prediction model capable of
tackling sudden and unpredictable events, in this work we propose a novel adaptive
sampling approach so that it is possible to capture such events.

Usually, adaptive sampling techniques are based on a centralized (also called
synchronized) approach to determine the time intervals between samples taken by a
sensor [11]. On these synchronized approaches, the time intervals are calculated from
time to time and they are used for all sensors involved in the sensing task. Thus, it
is possible that at a given moment of time most or all of these sensors are“sleeping".
If a sudden variation occurs when the sensors are sleeping at the same time, this
event is not captured. This is a problem we can call “blind window". The size of
these blind windows can vary depending on the scenario, adopted technique and its
parameters. In a data stream processing scenario, where sudden variations are very

common and can be highly relevant to the applications, it is necessary to reduce blind

windows as much as possible. To achieve this goal, we propose a collaborative and
non synchronized adaptive sampling strategy, where the time interval is calculated
for each sample received and sent back to the sensor node that sampled it. This
non synchronized (or decentralized) approach reduces blind windows by distributing
different time intervals to each sensor node, preventing many or all of them from
sleeping at the very same time.

Despite addressing the problem of blind windows, desynchronizing activities of
sensor nodes, in turn, can make the workload of sensor nodes in the network to
be uneven, generating what is known in the WSN and IoT fields as a load balanc-
ing problem [I2]. Among the approaches commonly used to tackle this problem,
we highlight the topology control technique known as Active Node Selection [13].
The main goal of an active node selection service is to achieve a more even energy
consumption between sensors over time, thus preventing the premature death of
overloaded nodes [14]. Given the importance of this aspect, in this work it is also
considered as an important power consumption requirement to be met.

The importance of meeting strict response time requirements and of providing
accurate data can be critical to many IoT applications, such as traffic accident
monitoring or fire suppression system. The slight difference of seconds as well as a
tiny margin of error on a sensor reading can be preponderant in the real value of
an [oT application’s outcome. In addition, increasing the overall lifespan of an IoT
system, which is often dependent on devices that are battery powered, is a major
issue. Overloading these devices with processing or communication shortens their
lifespan. Thus, there is a big challenge to overcome: to meet strict response time
requirements and reduce energy consumption of IoT devices (preferably in a balance
way among the nodes) without compromising data accuracy.

Relevant works addressing separately strict response times, power consumption
and data accuracy requirements can be found in the literature, but to the best of
our knowledge, no solution tackling all these three concerns together has been found
so far. This makes it difficult to deploy solutions that can efficiently respond to
strict response time events in power-constrained environments, such as a forest fire
suppression system, a malfunction detection system on small ships, etc. Developing
an [oT data stream processing framework which adapts and combines some of these
isolated techniques to tackle strict response times, energy consumption and data
accuracy together is the main purpose of this work.

In this work we propose LE-Stream, a framework to support activities of a data
stream processing workflow in IoT systems. The framework aims at addressing
the requirements of strict response times, power consumption and data accuracy
together. We adopt the edge computing paradigm to deal with the network band-

width vs. data production bottleneck, allowing for applications with strict response

time requirements. We use adaptive sampling to reduce the network traffic, and, as
a consequence, the power consumption of the sensor nodes. An active node selection
schema is responsible for improving the workload distribution among sensor nodes.
A data prediction model identifies and removes outliers producing an accurate ag-

gregate output. The main contributions of the proposed framework are:

e To provide an energy-aware data gathering component with adaptive sampling
to reduce the network traffic and, as a consequence, the power consumption

of the sensor nodes;

e To present an active node selection service capable of improving the workload
distribution among sensor nodes and mitigating the load balancing problem

generated by the non synchronized adaptive sampling approach.

e To develop a data prediction model which takes readings from multiple sen-
sor nodes over a short predefined window as inputs, applies a density-based
clustering algorithm to identify and remove outliers and produces an accurate

aggregated output.

The major benefit expected by adopting the proposed framework is being able to
deploy long running strict response time processing systems on remote outdoor en-
vironments such as forests, open fields and watercrafts. In such environments, there
is no access to continuous sources of electricity thus requiring the use of batteries,
solar panels or other types of limited power sources.

In addition to this introduction, the remainder of this work is organized as fol-
lows. Chapter 2] presents the fundamental concepts and terminology involving IoT
and data stream processing. Chapter [3| shows a review on relevant work published
tackling strict response time requirements and energy-awareness in data stream pro-
cessing and [oT. Chapter[d]introduces our framework LE-Stream. Chapter [p|presents
an implementation of a workflow using LE-Stream with the purpose of evaluating
the proposed framework in terms of impacts on data accuracy, efficiency on reducing
energy consumption and data stream processing speed. Finally, Chapter [6]concludes

this dissertation by summarizing its findings and sharing proposals for future work.

Chapter 2
Background Concepts

This chapter presents key concepts for understanding the solution proposed as LE-
Stream in Chapter [4] First, Internet of Things (IoT) is described along with its sys-
tem architectures and application protocols. Next, wireless sensor networks (WSN)
and their strong relationship with IoT are presented together with the challenges
related to energy conservation in these types of networks. Also, cloud, fog and edge
computing paradigms are presented, as well as their role and importance in IoT
system architectures. Finally, Data Stream Processing (DSP) and its challenges

regarding data outliers and outlier detection are discussed in the context of IoT.

2.1 Internet of Things (IoT)

The IoT is a paradigm that leverages the next wave of internet evolution, extending
communication between computers to every kind of object (things) and enabling the
integration of heterogeneous technologies [I]. The increasing availability of sensors,
mobile phones and other devices led to an explosion in the volume, variety and
speed of the data generated, requiring analyzes of some kind to add value to such
data. This phenomenon is often referred to as Big Data because of the challenges it
imposes on existing infrastructure with regard to, for example, data storage, transfer
and processing [3].

In this context, new generations of applications are emerging in various do-
mains. In the field of supply chain and urban transportation, smart vehicles and
autonomous cars have been dictating new modes of operation. In healthcare, active
patient monitoring through wearable devices encourages the adoption of healthy
habits and enhances preventive medicine. In addition, when continuous monitor-
ing data is associated with historical patient data, more accurate diagnostics and
risk situations can be detected in advance. Under the domain of smart buildings,
smart homes, even entire cities are already a reality and transform communities

and society, contributing to more comfortable, safe and sustainable environments.

Y

e @
/™
®o
Transportation ’ ._‘
g2 =
i i,
Hcalthcnrc\ / Industry
Application
Domain

Independent
Services
(Horzontal

;‘\Lmullurg / Vlarkn.l
Ly b
- ‘murl home ‘il:h(s
' =1 i
o) i . °a o Raw data to the cloud
[)l.l!mI:l\zrr:t_::llt..\;?fl‘::;ut"mh Vehicles 4mmm Action based on analytics

Intra-domain sensor/actuator
communication

Figure 2.1: An IoT overview emphasizing application domains and their integrations
by AL-FUQAHA et al. [15]

Social networks have completely changed the relationships between individuals and
communication in general. Industry is experiencing increased operating efficiency
in a variety of applications, such as preventive machinery maintenance and active
environment monitoring, and is often referred to as industry 4.0. As new application
domains are explored in the context of [oT, numerous challenges are emerging and

many of them are not yet fully addressed [15].

2.2 IoT System Architectures

[oT must be able to interconnect a large number of heterogeneous objects (in the
order of billions or trillions) across the Internet, so there is a critical need for a flexible
layered architecture [I5]. Although the growing number of proposed architectures
has not yet converged to a single reference model [16] it can be said that many
published works considers at least three distinct physical tiers: things, fog / edge
and cloud [15], [17].

tierThe first (lower) tier is called things tier, which aims to connect the physical
and digital worlds. This tier encompasses multiple types of physical entities (objects)
such as buildings, electrical appliances, clothes, animals or vehicles, equipped with

sensing or actuating components that are responsible for collecting and sending data

M
o E
5 E Cloud
- E
M ==
A -
(4]
2 . a Fog / Edge
v
Yo e R
3 ()
[- .
Things
[I %: %
v

Figure 2.2: A three tiered architecture for an IoT system, adapted from LI et al.
7]

to the upper tiers for further processing or acting over the physical entities to change
their state [I7]. An important aspect in IoT systems is the presence of a WSN in this
tier [I]. Commonly a WSN is comprised of resource-limited, often battery-powered,
low-computing devices (memory, CPU, disk, etc.) which poses inherent challenges
to [oT as already mentioned in Chapter [T}

The middle tier is the fog or edge tier depending on the terminology adopted.
Fog / edge nodes are devices which can provide processing and storage resources for
running services at the edge of the network [I7]. This computing paradigm is a key
aspect of the framework proposed in this work and it is further discussed in Chapter
2.0l

The third and upper tier is the cloud tier, comprised by the data centers that
can provide data-intensive computation and permanent storage of huge, valuable
data chunks for users and applications on a pay-as-you-go or utility-like pricing
model. The presence of the intermediate fog tier with its edge nodes to handle
some processing tasks avoids offloading massive raw data through the network and
enables a more efficient usage of cloud resources [17] in addition to a more moderate

consumption of network bandwidth [I§].

2.3 IoT Application Protocols

Several IoT standards have been proposed to facilitate and simplify the develop-
ment of IoT systems. These standards range from technologies and protocols to
infrastructure, service discovery and application, among others [15]. In the group of
protocols for infrastructure are, for example, Z-Wave [19, 20], Bluetooth Low Energy
(BLE) [21], 22] and IPv6 over Low-Power Wireless Personal Area Networks (6LoW-
PANSs) [23]. In the group of service discovery protocols we can highlight Multicast
DNS (mDNS) [24] and DNS Service Discovery (DNS-SD) [25]. However, the most
relevant group of protocols for the context of this work is of applications, where it
stands out Constrained Application Protocol (CoAP) [26], Message Queue Teleme-
try Transport (MQTT) [27] and Advanced Message Queuing Protocol (AMQP) [28].

Created by The Internet Engineering Task Force (IETF) Constrained RESTful
Environments (CoRE) working group, CoAP defines a web transfer protocol based
on Representational State Transfer (REST) [29, B0] on top of HTTP functionalities.
It uses Uniform Resource Identifiers (URIs) as nouns and HTTP get, post, put, and
delete methods as verbs. Unlike REST, CoAP is bound to UDP (not TCP) which
makes it more suitable for IoT applications. Furthermore, CoAP modifies some
HTTP functionalities to meet the IoT requirements such as low power consump-
tion and operation in the presence of lossy and noisy links. CoAP aims to enable
tiny devices with low power, computation and communication capabilities to utilize
RESTful interactions [15].

MQTT is a messaging protocol introduced by IBM in 1999 and standardized
by OASIS in 2013 [27]. It aims at connecting embedded devices and networks
with applications and middleware. MQTT utilizes the publish/subscribe pattern
to provide transition flexibility and simplicity of implementation and it is suitable
for resource constrained devices that use unreliable or low bandwidth links. It is
originally built on top of TCP protocol but one of its specifications, MQTT-SN
[27], defines a UDP mapping of MQTT and adds broker support for indexing topic
names. MQTT consists of three components: subscriber, publisher and broker. A
device subscribes for specific topics in order to be informed by the broker when a
publisher posts on topics of interest. In addition, the brokers achieve security by
checking authorization of publishers and subscribers [15].

AMQP is an open standard focused on message-oriented environments. It sup-
ports reliable communication via message delivery guarantee primitives, including
at-most-once, at-least-once and exactly once delivery. AMQP requires a reliable
transport protocol such as TCP for message exchanging. Two main components
handle communications: exchanges and message queues. Exchanges route the mes-

sages to appropriate queues. Routing between exchanges and message queues is

based on predefined rules and conditions. Messages are stored in queues and sent to

receivers. Besides this model, AMQP also supports the publish/subscribe pattern.

2.4 Wireless Sensor Networks (WSN)

Advances in micro-electro-mechanical systems (MEMS) technology, wireless com-
munications, and digital electronics have enabled the development of low-cost, low-
power, multifunctional sensor devices that are small in size and communicate unteth-
ered in short distances [2]. A wireless sensor network can be defined as a network of
these tiny sensor devices, which are spatially distributed and work cooperatively to
communicate information gathered from a monitored entity through wireless links.
The data gathered by different nodes is sent to a sink which either uses the data
locally or is connected to other networks or the internet through a gateway [31].
Figure depicts a typical representation of a WSN.

WSNs are closely related with and are also considered an enabler of IoT [15].
It often comprises the things tier of our three-tiered reference model [17]. Not sur-
prisingly, many of the problems and challenges faced in IoT are also encountered
in WSNs. The processing, storage and energy resources available in the sensors
are quite limited. In general, sensors are powered by non-rechargeable batteries.
Due to their enormous quantity and their installation in hard to reach places, these
sensors must operate without human assistance for long periods of time. The con-
stant replacement of sensors that have exhausted their batteries is undesirable and
diminishes part of the benefits of using WSNs. Therefore, the operational life span
of WSNs is severely limited by the battery capacity of its nodes. Energy saving
then becomes a crucial issue in these networks. Therefore, all stages of design and
operation of WSNs must take energy consumption into account and seek to optimize
it [14].

Nowadays, Internet and its traditional communication protocols such as Hyper-

text Transfer Protocol (HTTP) [32] are mainly used to transmit information among

Sensor Field

Remote Local
User User

Figure 2.3: A wireless sensor network (WSN) by RAWAT et al. [31]

10

people, while the WSN can realize the short distance communication among the
objects by constructing wireless networks in ad-hoc manners. Nevertheless, it is dif-
ficult to connect Internet and WSNs due to the lack of uniform standardization in
communication protocols and sensing technologies. Also, data from WSNs cannot
be transmitted in long distance with the limitation of WSN’s transmission protocols.
Therefore, with the development of IoT, new components called Gateways have been
developed and/or adopted to act as bridges to settle with the heterogeneity between
WSNs and the Internet [33].

2.5 Energy Preservation in WSN

Any sensor network must have a lifetime long enough to fulfill the application re-
quirements, which can be of the order of several months, or even years. It is worth
reinforcing that the power source for devices on a WSN often consists of a battery.
Batteries have a limited energy budget and recharging could be impossible or in-
convenient since the nodes may be deployed in a hostile or unpractical environment
[9]. Tt is possible to scavenge energy from the external environment as of using so-
lar cells, for example. However, such external power supply sources often exhibit a
non-continuous behavior so that a battery is needed as an energy buffer as well [34].
It leads to a conclusion that energy is a critical resource which must be used very
sparingly. Therefore, energy conservation must be seriously taken into consideration
when designing systems based on WSN [9].

Experimental measurements have shown that usually data transmission is sig-
nificantly more expensive in terms of energy consumption than data processing [35].
The energy cost of transmitting a single bit of information is approximately the same
as the cost of processing a thousand operations in a typical sensor node [36]. There-
fore, exchanging communication operations for computing operations is an effective
strategy to reduce energy consumption in a WSN. Moreover, a large amount of en-
ergy is consumed by node components (device itself - CPU, radio, etc.) even if they
are idle. Power management schemes are used for switching off device components
that are not temporarily needed.

Several techniques have been developed to reduce energy consumption on WSNs.
According to ANASTASI et al. [9], those techniques can be classified, at a very
general level, into three main groups: duty cycling, data-driven, and mobility.

Duty cycling techniques focus on two different and complementary ap-
proaches:Topology control and power management. The general idea consists of
exploiting node redundancy, which is typical in sensor networks, by selecting only a
minimum subset of nodes to remain active for perform its tasks. Nodes that are not

selected can go to sleep and save energy [9]. There are numerous topology control

11

techniques available [37, [38]. LE-Stream proposes in Chapter a novel approach
which can be classified according to RAHMAN et al. [13] as an Active Node Se-
lection technique. Sleep/wakeup protocols [39] and MAC protocols with low duty
cycle [40], 4I] are prominent power management techniques found for WSN.

Data-driven approaches can be divided, according to the problem they address, in
data acquisition and data reduction techniques. Data acquisition is mainly focused
at reducing the energy spent by the sensing subsystem while data reduction aims at
unneeded samples.

Energy efficient data acquisition techniques emerged from the need to tackle the
issue of excessive energy consumption in the sensing activity itself. In such cases
reducing communications may be not enough. Thus, reducing the number of acqui-
sitions (data samples) is necessary [9]. Adaptive sampling, Hierarchical sampling
and Model-based active sampling stand out among the known techniques for En-
ergy efficient data acquisition in WSN literature [42]. Adaptive sampling strategies
are very effective on reducing the number of samples by exploiting spatio-temporal
correlations between data. However, they are usually not suitable to applications
that required sampled data to be provided continuously [42].

Data reduction techniques can be further subdivided into three groups: data
compression [43], in-network processing [44] and data prediction. Data prediction
strategies are widely discussed by LE BORGNE et al. [10] and RISTESKA STO-
JKOSKA e MAHOSKI [45] with a special attention to time series forecasting tech-
niques. DPS, briefly described in Chapter [I], is the most popular paradigm for time
series forecasting in WSN, but it is not very accurate when predicting physical phe-
nomena subject to sudden variations [45]. Data prediction strategies also encompass
stochastic and algorithmic approaches [9].

For scenarios where not all nodes of the network are static [46], mobility can
also be used as a data-driven approach for reducing energy consumption. In a static
sensor network packets follow a multi-hop path towards the sink. Thus, a few paths
can be more loaded than others, leading to a situation where nodes closer to the
sink relay more packets, being more prone to premature energy depletion. If some
nodes are mobile devices, the traffic low can be altered when those devices are
responsible for data collection directly from static nodes. Static nodes wait for the
passage of the mobile device and route messages towards it, creating proximity based
communication [9]. However, it is important to mention that LE-Stream does not
consider the mobility factor on its energy preservation strategy.

To be able to provide data to consumers continuously and achieve accurate data
prediction while monitoring a phenomena subject to sudden variations, LE-Stream
introduces a data-driven energy conservation scheme combining a novel collaborative

adaptive sampling strategy with a two-step data prediction model in Chapter [4]

12

Topology Control
= Duty-cycling ~|: | Sleep/Wakeup

Protocols

Power Management —

MAC Protocols with
Low Duty-cycle

] In-network Time Series
Processing Forecasting
Energy Preservation | |
Schemes — Data Reduction — Data Prediction stochastic
Approaches
'— Data Compression Algorithmic
Approaches

— Data-driven —

— Adaptive Sampling

[

Mobility-based

— Data Acquisition ~ —— Hierarchical Sampling

Model-driven
Active Sampling

Figure 2.4: Energy preservation schemes for WSN

2.6 Cloud, Fog and Edge Computing

A breakthrough has been made in the area of IoT with the integration with cloud
computing, so called Cloud of Sensors [I7]. The virtually infinite capacity of comput-
ing resources offered on a pay-as-you-go basis by service providers such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform extends to mi-
cro enterprises and self-employed developers all the computing power which was
previously only accessible by large companies due to the high investment required
[15].

There are several published works where the solution relies on a complete data
offloading to the cloud, such as TAHERKORDI et al. [I§]. However, while efficient
for many scenarios, it cannot be said that this is the standard infrastructure solution
to all problems (one size does not fit all). There are extremely latency sensitive IoT
applications where real time response is a strong requirement. For example, in a
surveillance system that acts immediately upon image recognition on a TV circuit, a
response time in the order of minutes can lead to delayed actions and compromise the
overall solution. This need is also very present in fire-fighting applications where the
environment is actively monitored and millisecond processing is critical for triggering
safety mechanisms to be able to extinguish fire or prevent it from spreading.

The challenge of minimizing network latency and increasing processing speed
in the context of IoT has been recognized as major research challenges in the area
[8]. As a consequence, the concept of fog computing has been suggested and it is
being developed by industry experts and the academic community. Conceptually,

fog brings “the cloud” closer to data sources (things), such as sensors and actuators,

13

with data processing tasks running on a local area network infrastructure [7].

With similar purposes, and in some cases treated only as a matter of terminology,
the concept of edge computing also proposes to bring data processing closer to data
sources. The soft difference, also highlighted by DAUTOV et al. [7] lies in the
fact that edge understands the processing of data directly on things (sensors, smart
devices, etc.) or even on network edge devices such as routers or switches while fog
computing concept can be less restrictive in terms of devices, extending to embedded
servers or even small local data centers.

Architectures that comprise fog and / or edge computing layers for data stream
processing are becoming frequent and emerging as an interesting research path.
For example, MORABITO et al. [47] study and compare lightweight virtualization
techniques applicable at the edge layer in different IoT application scenarios. FEI
et al. [48] discuss Machine Learning (ML) techniques as promising to achieve time
and mission criticality and also provides guidance on how to deploy ML on cloud

and fog scenarios.

2.7 Data Stream Processing

Technological advances have significantly enhanced the data collection capabilities of
embedded sensor devices, resulting in more data generation and real-world stream-
ing data. [4]. Data stream processing is a wide area of study that has a strong
relationship with the concepts of big data and IoT.

Many definitions for Data Stream can be found in the literature, but two spe-
cific ones are worth mentioning: while BABCOCK et al. [49] define such concept
as “Multiple, continuous, fast and time-varying streams of data”, DIAS DE AS-
SUNCAO et al. [3] state that data streams are “Incoming data that reaches a high
rate, often being considered big data, thus stressing the communication and comput-
ing infrastructure”. It is noteworthy that speed and variability aspects stand out
in the definitions and may drive the architectures and processing solutions in this
field.

Data streams have the following characteristics: (i) the fact that they are tran-
sient, i.e. not persisted; (ii) there is no control over the order or frequency of the
data; (iii) they are potentially unbounded in size and (iv) they often have high
volume and (near) real-time processing requirements [49]. These characteristics dif-
ferentiate this data type significantly from traditional (persistent) data models and
require specific processing / management techniques and tools.

Frameworks can be considered as pillars for building data stream processing
systems (DSPS) [50]. They usually involve multilayered architectures with loosely

coupled components to facilitate maintenance and provide scalability and availability

14

Data Sources

Often deployed close to
where data is produced.

Data is pushed to a
clustericloud by client
applications

Data Collection

Often deployed on a cluster of physical/virtual

machines or on the cloud

Stream Processing

Delivery

| [] | [() |
| ¥ . N :
i i] ' i i
! Iy Lo i ' | Network Clients v Queueing ' Data Stream ' Web Interfaces !
| Mobile Data and IoT | | JSON, i 1| Systems |!1!| Processing | ! || Dashboards, |1
s sl s Protocol Buffers, . - Engines » RESTful APls, |
EOPJfTI“o":L M°tf;";’""9 11| Apache Thrif, = P | i | Webrendering, |}
| "s’t‘::ial m’d; NG 11| Apache Awro,etc | I ! [publish-Subscribe | | ! Complex » Tools]
| Sensor Networks | ' | Messaging ! 1 | Event-Pr g | E :
1 1} 1

! i 1| Data Aggregation E i i ' Frameworks E | Analytics Tools | i
I L] 1

: i P IoT Hubs o o i
! (N] [} (| !]
| 1y) I (| ! 1

cross-analysis of streaming/data at rest,

Storage for long-term batch analysis,
and visualisation

Data Storage

i Relational NoSQL In-Memory . i
s Databases Databases Storage 4
Figure 2.5: Overview of an online data processing workflow by DIAS DE AS-

SUNCAO et al. [3]

[3]. In this work we consider the general model proposed by [50]. It includes (i) a
data stream ingestion layer, responsible for accepting data into the DSPS; (ii) a data
stream processing layer, which preprocesses and analyses data in one or more steps;
(iii) a persistence layer that stores, indexes and manages the data and its generated
knowledge; (iv) a resource management layer, which coordinates the functions of
distributed compute and storage resources; and (v) an output layer that directs the

output data to services and applications.

2.8 Data Outliers and Outlier Detection

Another relevant feature present in sensor-generated data, specially in time series,
is the presence of outliers, which are anomalies belonging to the class of unreliable
readings. These are readings that are outside of what is considered a ‘normal state”
of the data being collected. It can be represented by a model, for example. These
“abnormal” readings are considered “events with extremely low probability of occur-
rence”. Outliers are elements that differ significantly from others in a dataset, which
does not necessarily mean that they represent errors. In fact, outliers can represent
important information for the application [4]. Also, in dynamically changing envi-
ronments, the data distribution can change over time. This is a phenomenon known
as concept drift [51]. An example of concept drift is a change in users interests when
following an online news stream. While the distribution of the incoming news docu-

ments often remains the same, the distribution of the interesting and not interesting

15

news documents for that user changes.

Outlier detection can play a key role on an IoT data stream processing work-
flow [48], either to identify and eliminate inconsistent values that compromise data
accuracy transmitted to the next task (data cleaning) or to identify events that are
important to the use case, such as a peak of hypertension on an IoT-assisted patient
or fire on a monitored environment [52], or still identify concept drifts.

Different outlier detection techniques are applied in the context of IoT [53].
Among the applied techniques, we highlight those based on statistical models and,
more recently, on data mining techniques mainly based on Artificial Intelligence (AI),
more specifically machine learning and deep learning. Some of these techniques are
compiled and briefly described by KARKOUCH et al. [4], such as anomaly detection
with Hierarchical Time Memory (HTM); an estimation-based approach to finding
reliable sensors in environmental sensing and an outlier detection algorithm using
big data processing and IoT architecture using K-Means clustering.

From an infrastructure perspective, cloud computing and distributed technolo-
gies, such as the use of computer clusters or grids, are possible solutions to solve
big data problems in general. On the other hand, from a software perspective, most
techniques and / or algorithms were not designed under paradigms for parallel and
/ or distributed computing (as MapReduce, for example). In this context, it can
be said that many of the more traditional solutions cannot be directly applied to
process the huge volume of IoT data without being redesigned [53].

Clustering is a widely studied problem in the data mining and Al literature
[54]. However, it is more difficult to adapt arbitrary clustering algorithms to the
context of DSP [52]. Its potentially unbounded in size feature makes this adaptation
especially complex. The clustering problem is generally understood as: having as
input a set of unlabeled patterns, the output of optimal clustering is a partitioning
of this set into a given number of clusters, based on a predefined similarity metric
[53].

K-means is certainly one of the best-known clustering and also the starting point
for a number of variations tailored for stream processing [53]. However, the number
of clusters is an input parameter, making such an algorithm unsuitable for some
situations. AGGARWAL [52] highlights the micro-clustering technique as more
effective and versatile than K-means for the context of data streams, and cites
density-based techniques such as Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) as promissing solutions to the problem of clustering in an
[oT scenario. Techniques like this, in turn, are able to determine the number of
clusters as an output.

The classification problem is perhaps one of the most widely studied in the

context of data mining on streams (stream mining) [54], and it is hampered by the

16

variability / evolutionary characteristic of data streams, sometimes referred to in the
literature as concept drifts [55]. Therefore, effective algorithms need to be designed
to take into account the principle of temporary locality, i.e. access to the same
resource two or more times over a short period of time [52]. Unlike clustering, which
does not presuppose prior knowledge to guide the partitioning process, classification
presupposes some prior knowledge of the monitored problem or phenomenon to guide
the partitioning process and build a set of classifiers to represent the possible pattern
distribution. Formally, a classification algorithm can be defined as follows: Given a
labeled dataset and an unlabeled dataset, the labeled dataset is used to train the
classifier (or prediction function) which categorizes (or classifies) the unlabeled one.

Artificial neural networks (ANN), Decision Trees, K-nearest Neighbor, naive
Bayesian classification, Adaboost and Support Vector Machines (SVM) are some of
the widely adopted classification algorithms [53]. Very Fast Decision Trees (VFDT),
On Demand classification, Ensemble-Based classification, and Compression-Based
methods are some variants and adaptations studied for the context of data streams
[52].

In the field of computational intelligence, classification is an example of a su-
pervised learning algorithm, while clustering is an unsupervised learning one. The
combination of different approaches, designing hybrid models, is also a practice that

can lead to applicable and possibly promising solutions [53].

17

Chapter 3

Related Work

Assuring low response times is an important requirement in IoT and DSP applica-
tions [56]. A recent survey on solutions for latency-aware processing in data streams
[57] identifies in-memory computing, support to non-structured or semi-structured
data, low latency, and the usage of machine learning algorithms as key challenges
in this field. The authors conclude that there is a lack of flexibility in the available
solutions since they are too specific for the use cases they were designed to tackle.
In addition, the survey states that cloud-based approaches still represent the ma-
jority of current solutions analyzed. The accuracy of the output data is always a
major concern while the energy consumption does not appear among the challenges
or objectives of the evaluated solutions for latency-aware DSP.

Another recent survey on IoT architecture challenges [58| highlights energy effi-
ciency and latency-awareness (real-time or near real-time responses) as one of the
major concerns when designing IoT systems. Quality awareness can also be in-
ferred as a critical aspect for IoT architectures since concerns on data integrity and
accuracy are present in most described approaches. The study, in turn, does not
explicitly correlate energy and time efficiency on the analyzed solutions. In order
to find this correlation, we cross checked the publications addressing energy and
time efficiency. From the 29 works listed on [58], only three proposals aim to tackle
both energy and time efficiency simultaneously, but they are not suitable for edge
based processing running on constrained devices. The solutions proposed in [59] and
[60] are cloud-based DSP solutions that rely on fully offloading the collected data
to the cloud. This kind of approach leads to a communication bottleneck, making
it hard or even impossible to meet strict low latency requirements. The architec-
ture described in [61] is an effective latency-aware stream processing solution but it
relies on a robust infrastructure of servers at the edge. It is not designed for con-
strained gateway devices, and it does not address the energy efficiency of gateways
or sensor nodes. OSCAR [62] is not related to data stream processing. It is an

energy-efficient architecture for real-time communication (machine-to-machine and

18

multicast) focusing on security.

Despite relevant proposals addressing separately the issues of low latency, data
accuracy or power consumption can be found in the field of data stream processing
for IoT, to the best of our knowledge, no solution tackling these three concerns
simultaneous has been found so far. This makes it difficult to deploy solutions that
can efficiently respond to real-time events in power-constrained environments, such
as a forest fire suppression system, a malfunction detection system on small ships,
etc.

IRESE [8] is an outlier (so called “rare-event") detection system that applies
machine learning directly on gateways to identify events on audio data streams. The
authors claimed contributions are (i) a sharp technological focus on edge computing,
(ii) to strictly consider limitations of data stream analytics, and (iii) detecting rare-
events without prior knowledge. Although processing efficiency is proved by using
devices constrained on computing power (CPU, memory), no concern regarding
energy consumption is mentioned. Therefore, this solution might not be feasible in
environments with limited power sources, which is a major concern in our work. In
addition, IRESE was designed to handle a particular type of data: audio streams.
Our proposal is more agnostic and not restricted to a single data type or use case.

In [63], the authors introduce a high-dimensional data cleaning method for mobile
edge nodes in the context of WSN. It is an adaptive mechanism that combines
machine learning techniques with the edge computing paradigm to optimize the
cleaning model in near real-time. The authors highlight the importance of the data
cleaning task on the Industrial IoT scenario and how the edge computing approach
can significantly reduce the energy consumption of sensor nodes and accelerate the
cleaning speed of abnormal data. The authors propose a new algorithm to clean
data using the mobile edge nodes called Angle-based Outlier Detection (ABOD).
It is important to underline that the authors in [63] introduce the edge computing
paradigm in their solution with an energy consumption concern, unlike what happens
in 8] where the authors concern latency-aware processing. This aspect reinforces
how representative edge computing can be on the DSP for the 10T field.

Dual prediction techniques are presented in [64], [65] and [66]. The proposals
in those papers are combinations of adaptive sampling with data prediction models
based on exponential time series. The core idea builds on a set of lightweight calcu-
lations performed at the WSN nodes. These computations allow the sensor nodes to
deliver a function that allows predicting sensor readings in the time interval between
the current and the next reading. Data prediction models are inserted in this con-
text to avoid jeopardizing the accuracy of the data generated by the decrease in the
sampling frequency. The main goal of such a combined approach is to find a good

balance between energy consumption and the accuracy of the data produced by a

19

WSN. A common feature observed in works that present dual prediction schema is
that their prediction models are applied individually by each sensor. The framework
proposed in this paper differs from these works since it considers the readings of a
group of sensors. It not only uses an aggregate function to predict data, but it also
identifies and eliminates incorrect readings from its computations.

In [67] the authors introduce an efficient data collection framework for WSN.
The framework reduces the activities of the nodes to decrease the overall energy
consumption of the network nodes, but it keeps the desired redundancy for the
sensing requirements. For example: if an asset needs to be monitored by 25 sensors
each second to ensure measurement accuracy, their proposal guarantees the num-
ber of sensor readings required even by systematically disabling sensors over time.
Their contributions are (i) reduce energy consumption by keeping as many nodes
as possible on sleep mode and also avoiding data transmission for the active nodes
whenever possible, (ii) provide a dynamic way to define the dependency correlation
between nodes, and (iii) propose a heuristic algorithm for the selection of active
nodes. DSP capability is not mentioned. Time intervals in the order of hours are
assumed to “virtualize” the data using several statistical methods to perform compu-
tations. Bringing this approach “as is” to a DSP scenario would not be reasonable.
With data coming at a high rate, these significant time intervals for computations
would not identify sudden variations in the monitored phenomena. Our proposal
similarly takes the idea of creating logical representations of physical sensors but
relying on smaller adaptive time intervals and quick computations, more suited to
use cases of DSP.

In [68], the authors proposed a four-layer infrastructure with distributed stream
processing systems (DSPS) for IoT applications. Their evaluation results recom-
mend using the Apache Nifi as the stream processing system in their infrastructure.
Thus, according to the authors, the infrastructure performs with minimum latency
and high throughput for IoT applications. For this, the authors evaluated the per-
formance of well-known stream engines, namely Apache Nifi, Storm, Apex, Spark
Streaming and Flink. They adopted five metrics in their evaluations: startup time,
response time, throughput, jitter and scalability. Energy and data accuracy were
not evaluated.

In work [69], a four-layer system architecture is proposed to process data in the
edge. The layers are: (i) IoT data sensing, (ii) edge processing, (iii) data analysis and
reasoning, and (iv) user application. The authors propose semantic data enrichment
as a key enabler to further analysis and reasoning over IoT data streams. Thus,
the edge layer has two hierarchical processing sub-layers: pre-processing and data
enrichment. Data is pre-processed, and then the semantic enrichment is performed

over the qualified selected data. Based on their results, the proposal is proved to be

20

efficient in latency and response time. Their evaluation results show the challenges
of processing an IoT data stream in an edge computing layer related to efficiency,
memory usage, and RTT (Round Trip Time).

In [70], the authors proposed an architecture conceptually based on latency-
aware processing powered by machine learning and storm technology to process large
amounts of data. Storm allows quickly processing a massive volume of data with low
latency. The architecture consists of layers for data streams integrating, filtering,
latency-aware processing, storage, and visualization with low latency. Ideally, their
architecture must provide a limitless number of users to set up new features while
handling traffic changes without interruption.

A distributed stream data processing architecture is proposed in [71] for edge en-
vironments. The architecture is based on Apache NiFi stream processing framework
with support for clustering edge nodes in run-time. The devices are clustered and a
shared pool of contributed resources is used to process computational tasks offloaded
by peers. The architecture enables data-intensive applications to be deployed and
performed at the edge with low latency.

Related work presented in this chapter propose effective solutions to address
low latency, energy, or accuracy awareness, but none of them tackle all these three
concerns simultaneously. Combining these three requirements in the same solution
is complex because the approach used to solve one problem can negatively impact
the solution of another problem. For example, statistical methods based on inten-
sive computing can efficiently solve the lack of data accuracy, but they demand a
high energy consumption from the devices. Our contribution consists of combining
approaches such as those described, promoting the necessary adaptations to meet
the three requirements jointly. Table summarizes the papers and the respective
requirements addressed by them, and also lists the proposals implemented in real
devices or not.

The analysis of the related work presented so far aimed on proposals that ad-
dress the requirements of low latency, energy efficiency and high data accuracy,
focus of our paper. However, there are frameworks for analytics of sensing-based
data aimed at other requirements. Among them, data security and privacy are
relevant concerns, mainly in application domains such as healthcare. As the au-
thors of the survey [72] point out, edge computing brings new security and privacy
challenges when applied to data analytics. Besides inheriting some security issues
from cloud computing, some distinctive features of edge computing, such as geo-
graphic distribution, heterogeneity and resource constrained devices, add further
challenges. In this context, the authors in [73] proposed a smart security framework
for VANETs equipped with edge computing nodes and 5G technology to enhance

the capabilities of communication and computation in the modern smart city envi-

21

Table 3.1: Related Work.

Proposal Energy Latency Data accuracy Implemented in real devices

[59] Yes No No N/A
[60] Yes No No N/A
[61] No Yes No Yes
[62] Yes Yes No Yes
8] No Yes Yes Yes
[63] Yes Yes Yes No
[64] Yes No Yes No
[65] Yes No Yes Yes
[66] Yes No Yes No
[67] Yes No Yes No
[68] No Yes No Yes
[69] No Yes No Yes
[70] No Yes No No
[71] No Yes No Yes
LE-Stream Yes Yes Yes Yes

ronment. The focus of their work was on communication issues, but they provided
an energy-efficient secure system with minimum delay for processing data for Intelli-
gent Transportation Systems. The authors in [74] claim that preserving the privacy
of sensitive data for data aggregation applications in fog-based IoT systems is a
major concern. To address this challenge, they propose APPA: a device-oriented
Anonymous Privacy-Preserving scheme with Authentication for data aggregation
applications in fog-enhanced IoT, which also supports multi-authority to manage
smart devices and fog nodes locally. A comprehensive security analysis showed that
the proposed scheme can achieve security and privacy-preservation properties in the
fog-enhanced IoT systems, with low computational complexity and communication
overhead. Finally, in a recent work [75], the authors tried to address the big data
analytics approach while maintain privacy of healthcare databases for future knowl-
edge discovery. Their proposal targets healthcare applications, a domain in which

data privacy is of major relevance.

22

Chapter 4

LE-Stream: a Latency and
Energy-Aware Framework for Data

Stream Processing in IoT

The purpose of this work is to develop a time and energy-aware data stream pro-
cessing framework for IoT. This chapter introduces the proposed framework, from a

top level overview of its architecture to the detailed specification of its components.

4.1 Overview and Architecture

There are many tools and platforms for ingesting, processing, storing, and man-
aging data streams, making it a difficult task for domain specialists to select the
right combination to perform their analysis. The authors in [50] identified the main
components of a modern data stream processing system (DSPS), which can be inte-
grated into a framework. A data stream processing framework can be considered as
a cornerstone for guiding the building of DSPS, addressing all the activities involved
in the stream processing workflow [50]. This work is inspired on the general model
for a DSPS framework proposed by [50] and described in Chapter [2.7 It also con-
siders the three tiered ToT architecture proposed by [17] and presented in Chapter
2.2l We propose a DSP framework (depicted in Fig. to be deployed at the
things and edge tiers. Its goal is to provide strict response time and energy-aware
data processing for IoT streamed data.

In the Fig. at the things tier (bottom), each rectangle represents a phys-
ical entity (PE) which denotes a physical quantity to be monitored. Each circle
represents a physical sensor (S). We assume that a group of sensors will always be
present to sense the same PE and provide the necessary tolerance in case of failures.

At the edge tier (middle), each ellipse represents a logical entity (LE), which con-

23

Cloud Tier
>
-]
-
H
>
°
°
H
>
T
-
H

RN [U U U U U TSR SRR
| A Ad-hoc queries and
- I == Gateway Publish-subscribe
o
e
E’ol Orchestrator 4 L 4
o
w 1 » LE-A LE-B LE-N Pool of logical entities (LE)
I J
e —_——) e ——— -] T e e
g |
P
" | s 8 g g g g g g g Pool of physical entities (PE)
a0 PE-A ‘S Al’ S-A2) ... (S-AN PE-B (S-B1) (5-B2)... (S-BN PE-N (S-N1) (S-N2) ... (S-NN, and its physical sensors (S)
£ |
I

Figure 4.1: Schematic view of the proposed framework for strict response time and
energy-aware data stream processing.

sists of a logical abstraction of a PE. The rounded-edged rectangle represents the
Gateway which provides a Representational State Transfer Application Program
Interface (REST API) [30] to allow communication between LEs and consumers.
The Orchestrator is represented by a rounded-edged square and it consists of a soft-
ware component which instantiates each LE and the Gateway. The sensor nodes at
the things tier push readings to LEs via Constrained Application Protocol (CoAP)
[26]. At the cloud tier (top), rounded-edged gray rectangles represent applications
that consume data from LEs using the REST API provided by the Gateway. The
proposed framework supports both synchronous queries and asynchronous patterns
such as publish/subscribe [70].

Figure represents the components of LE-Stream and their interactions
through the operations provided by their respective interfaces. The adoption of
decoupled components and the possibility of hosting them using lightweight virtu-
alization techniques (such as containers) make the proposed framework potentially

scalable in terms of physical entities, sensors and applications. Figure illustrates

Logical Entity E
FOST)—% Selector
POST
zample

Application E

Gatherer —(oE Buffer =2

Eample sampies
window T
G:f;'w)—% Predictor

GET I: Gateway GET
prediction E CD

Sampler E :CC

¥ ¥
Orchestrator E

Figure 4.2: LE-Stream components, their interfaces and respective operations.

24

Edge node

Sensor node 1 Orchestrator E

Cloud node 1
Sampler E /T\ f.'\ _——
H H Application AE

Logicall Entity E E

Sensor node 2
Gatherer G
Sampler E o a
t O
Buffer
/ g —COH = Cloud node 2
w
Sensor node 3 % Selector a Application CE
Sampler E ¥y
% Predictor

Application BE

Figure 4.3: Nodes and components involved on a hypothetical scenario of a single
entity monitored with three physical sensors and serving different applications.

a use case of a single entity monitored by three physical sensors and serving three dif-
ferent applications. We use a simplified scenario to allow the graphic representation
of the components. It is important to mention that the same edge node can have
several instances of LEs, each one associated with a set of physical sensors. The
description of system operation will always consider the point of view of a single
edge node with its associated physical nodes. In the current version of the proposal,
collaboration between edge nodes is not considered, but this can be done in the
future to obtain a broader view of the phenomena monitored in the environment.
The software components that encompass the proposed framework are described
as follows, along with their correspondence to the layers for data stream processing

systems proposed by [50]:

e Sampler - it is a CoAP client that runs on the sensor nodes and it represents
the data ingestion layer. Its function is to sample the physical entity, send
the data to the correspondent LE and receive a time interval as a response
from the LE. This time interval is used to put the sensor node in a sleep state.

When the sensor node goes back to the active state, this process is repeated.

e Orchestrator - it is a service that runs on the edge node to manage the lifecycle

of resources by coordinating the provisioning of the LEs and the Gateway.

e Logical Entity (LE) - it consists of a set of decoupled modules (described
below) that run on the edge node and work together to provide an abstract

view of a monitored entity or phenomena:

25

— Gatherer - a CoAP server that listens to requests on a specific UDP port.
Its function is to receive data sampled from sensor nodes and respond back
with a value of time interval (elapsed time until the next data sampling).

Section [4.2] describes how these time intervals are calculated.

— Buffer - an in-memory data store that keeps the data in the random access
memory (RAM) is important [77] to contribute on comply with strict
response time requirements for processing requests within milliseconds.

This is used to persist sensor readings for a short predefined time.

— Selector - Since the time interval between samplings is variable, the work-
load distribution between the sensor nodes tends to be uneven. A local
coordination mechanism is necessary to better distribute this workload
[78]. This is a background service that keeps statistics about sensor nodes
activity by reading the buffer on a predefined schedule. These statistics
are used to identify overloaded sensor nodes which are pushed as a list
to the Gatherer which will define longer time intervals for those sensor
nodes identified as overloaded. Section describes how these statistics
are obtained and processed and how they contribute to improving the

workload distribution between sensor nodes.

— Predictor - this is another background service responsible to periodically
retrieve data from the buffer, identify and discharge incorrect readings
and output a calculated value based on a predefined aggregation func-
tion. The latest prediction computed is pushed to the Gatherer compo-
nent, to be used on the time interval calculations, and also served via
CoAP requests to the Gateway component. This is the only framework
component where the choice of algorithms is open to the developer ac-

cording to the use case of his/her application as of described in Section

44

e Gateway - it is an HTTP server [30] responsible for mediating the communi-
cation between LEs and applications. It consumes the predictions from the

Predictor via CoAP and translates them to HT'TP to serve web applications.

4.2 Adaptive Sampling Strategy

An adaptive sampling strategy consists on dynamically varying the time interval
between samplings to somehow follow the variability of the sampled physical entity.
Whenever there is little or no variation, the sample interval can be increased. When-
ever there is a great variation, the sample interval must be reduced. The purpose of

an adaptive sampling method is to reduce the number of samples per unit of time

26

to the maximum, aiming at reducing the energy consumption of the sensor node
as much as possible. However, this strategy needs to be applied carefully so as not
compromising the accuracy of the sample series [9].

When combined with a data prediction model, it is possible to calculate the
difference between the sampled and predicted values. Thus, it is possible for a
domain specialist to configure a tolerance threshold which shall be used to drive the
adaptive sampling strategy. A so called greedy adaptive sampling strategy increases
the sampling interval at each sampling until the computed prediction exceeds a
predefined threshold, denoting a tolerance in terms of difference between the real
and predicted values. Such tolerance can be an absolute value or a percentage
corresponding to an acceptable margin of error between the predicted and sampled
values for the physical quantity being sensed. When the threshold value is exceeded,
the sampling interval is reduced so that the predicted and sampled values become
closer again. Also, a minimum and a maximum threshold values can be defined to
the value of the time interval itself. For example, it may be required that these time
intervals are never less than 1s or greater than 30s [64].

The adaptive sampling strategy adopted on the proposed framework is similar to
the one described in DPCAS [64], also proposed by our research group. It uses the
concepts of the TCP congestion control algorithm to adjust the sampling interval.
The strategy is based on the TCP CUBIC protocol [79], where the size of the
windows vary according to a cubic function. The equations of the adaptive sampling
method are as follows:

W; = C(t — K)* + Whnae (4.1)

K = (BWpae/C)30 < < 1 (4.2)

Where W; represents the sample interval calculated at the i-th sampling, which
will be used as the sensor hibernation time until the next sampling, C' is a scale
factor known as a CUBIC parameter (typically 0.4), t is the elapsed time since
the last reduction of the sample interval, W,,,, is the sample interval immediately
before the last reduction of the sample interval and S a multiplicative reduction
factor (typically 0.2). The factor K, described in Equation , is updated only
when an event of reduction of the sample interval occurs. An event of reduction of
the sampling interval occurs whenever the difference (0) between the sampled value
(Y;) and its respective prediction (F;) exceeds the tolerance limit of the application
(¢), that is, whenever:

Yi—Fi|=0>¢ (4.3)

In addition, the application can also impose a minimum (.S,,;,,) and maximum (S,,4)

27

limit for sampling interval variation, that is:
Smin S VVZ S szzm (44)

In our proposal, we assume the presence of multiple sensors sampling the same
physical entity, in a so called multi-sensed entity scenario. This is a strategy that
aims to provide redundancy between the sensors involved in the sensing task so that
a failure in the sampling of one sensor can be covered by the samplings of other
sensors. In the adaptive sampling model proposed by DPCAS, each sensor node
acts in a completely autonomous way. It samples the physical entity and calculates
the time window until the next sampling based on its own samples. However, as the
cubic function used to compute the time intervals is the same for all sensor nodes,
the sensing rate is very close or the same for all nodes. Therefore, there is some
synchronization between the sensor node activities since the time windows increase
and decrease almost simultaneously. All the sensors would always be sampling at
the very same time. Similarly, all the sensors would also be in a sleep state at the
same time. This aspect creates a gap that we call a “blind window": if a sudden
variation occurs when all sensors are sleeping, this variation will only be identified
when the sensors wake up.

In such a multi-sensed entity scenario, all the sensors monitoring the same entity
must not be in a sleep state simultaneously. This opens up an opportunity that
we explore by proposing a collaborative strategy: to distribute different sampling
intervals between multiple sensor nodes which are monitoring the same area or
phenomenon. It aims at desynchronizing sensor nodes activities to reduce these
blind windows and make the adaptive sampling model more responsive to sudden
changes in the data stream.

To enable this collaborative and unsynchronized approach, the calculations of
time intervals between samplings must be carried out at the edge node and not at
the sensor nodes. The edge is the only node that communicates with all sensor
nodes and it is also responsible for computing data predictions. Only the edge node
has all the information required to calculate sampling intervals. In this way, the
gatherer component is responsible for these computations by performing the steps
represented on Figure 4.4

To better understand how the proposed adaptive sampling works, let’s consider
a basic use case where a group of five sensor nodes sense the temperature of a room.
There is no tolerance limit for the temperature sampled (¢), which means that the
reduction of the sample interval must occur every time the sampled temperature
differs from the previous one. In addition, the minimum (S,,;,) and maximum

(Simaz) limits for the time interval between samples are 0s and 30s respectively. It

28

Sensor Node Edge Node

e) o

PUT fsample

-

\Write {sample} o

GET fime_window?sensor_id=<id=

Compute
time window

ACK 2.05
Content {time_window}

B e L

D Sleep

Figure 4.4: Sequence of events and interactions between software components in the
sampling activity.

i
i
i

is also important to state how the real temperature behaves on this simulation. For

sake of simplicity, let’s consider the three stages described below:
1. Cool stage: during the first 30 seconds, the temperature stays steady in 25 °C.
2. Warming stage: from the second 31 to 90 it increases by 1 °C each 2 seconds.
3. Hot stage: from the second 31 on wards it stabilizes again in 55 °C.

Table represents all the sampling events that occur on the first 2 minutes of
the simulation in a chronological order. The first column indicates the time where
the sampling happens since the beginning of the simulation. The second column
identifies the sensor responsible for sampling the temperature which is registered
on the third column. The fourth column indicates the calculated sampling interval
(W;) and the last column indicates the time when this sensor must take the next
sample. The idea of how an adaptive sampling strategy works can be obtained in
Figure The orange line indicates how W; varies according to the behaviour of
the samples temperature (blue line). When the temperature is stable, W; tends to
increase until it reaches S,,.,. When the temperature changes, W; decreases until
the temperature gets stable again (or until it reaches S,,;,, which is not represented
on this graph since it does not occur on the respective simulation). This dynamic
behaviour of W, can be understood as the general idea of an adaptive sampling
strategy and it is applied to all the related works we found around this subject ([64],
[65] and [66]). What makes our proposal different from the others can be understood
by analyzing the values in the second column of Table While the temperature is

stable, the order of sensors sampling the temperature follows an expected sequence

29

Table 4.1: Simulation of the proposed adaptive sampling on a simple scenario.

Time (s) Sensor Temperature (°C) W, (s) Next Sampling (s)

0,00 1 25 0,40 0,40
0,01 2 25 3,20 3,21
0,02 3 25 10,80 10,82
0,03 4 25 25,60 25,63
0,04 5 25 30,00 30,04
0,40 1 25 30,00 30,40
3,21 2 25 30,00 33,21
10,82 3 25 30,00 40,82
25,63 4 25 30,00 55,63
30,04 5 26 24,00 54,04
30,40 1 26 28,74 59,14
33,21 2 27 22,99 56,20
40,82 3 30 18,39 59,21
54,04 5 37 14,71 68,75
55,63 4 37 17,87 73,50
56,20 2 38 14,29 70,49
59,14 1 39 11,44 70,58
59,21 3 39 13,98 73,19
68,75 5 44 11,18 79,93
70,49 2 45 8,94 79,43
70,58 1 45 11,00 81,58
73,19 3 46 8,30 81,99
73,50 4 46 10,82 84,32
79,43 2 49 8,65 88,08
79,93 5 49 10,64 90,57
81,58 1 50 8,51 90,09
81,99 3 50 10,48 92,47
84,32 4 52 8,38 92,70
88,08 2 54 6,71 94,79
90,09 1 55 5,36 95,45
90,57 5 55 6,66 97,23
92,47 3 55 6,76 99,23
92,70 4 55 8,06 100,76
94,79 2 55 12,98 107,77
95,45 1 55 23,90 119,35
97,23 5 55 30,00 127,23
99,23 3 55 30,00 129,23
100,76 4 55 30,00 130,76
107,77 2 55 30,00 137,77
119,35 1 55 30,00 149,35

30

(check the first 10 and last 10 entries of the table). As the temperature, and W; as
a consequence, varies, the order of sensors taking samples becomes random. This
random behaviour is intentional. The goal is to avoid making all sensors inactive at
the same time. It aims at increasing the ability to identify sudden variations of the
measured physical quantity (temperature in the given example) while keeping the

reduced energy consumption of the sensor nodes.

e Temperature (°C) e Wi (s)

o)}
o

35,00

(%3]
vl

30,00

%)
o

25,00

I
G

20,00

15,00

Temperature (°C)
w b
(0] o
Wi (s)

10,00

w
o

5,00

N
%]

A\

0,00

Figure 4.5: An example of an adaptive sampling strategy applied to a simple use
case.

4.3 Active Node Selection

Although the proposed collaborative and unsynchronized adaptive sampling ap-
proach has a good potential to solve the “blind window" problem described in the
previous chapter, on the other hand, it brings a potential issue of producing a poor
distribution of the workload among the sensor nodes. Let’s aggregate the data from
Table into Table to check how many samples were taken and the average W;

per sensor node:

Table 4.2: Summary of samples taken and average W, per sensor node.

Sensor Samples Taken Average W; (s)

1 9 16.59
2 9 15.31
3 8 16.15
4 7 18.68
) 7 18.17

Even for a very simple and short simulation it is possible to see the difference

on the workload distribution between the sensor nodes. It can be said that sensors

31

1 and 2 sampled 28.57% more (9 samples / 7 samples) and slept (Average W;) from
8.67% (16.59 / 18.17) to 18.03% (15.31 / 18.68) less than sensors 4 and 5. This
difference is even greater for cases involving more sensors and longer sensing periods
as described in Chapter [f]

The poor load balancing between sensors in a network is a problem widely studied
in the WSN field. In several deployments of such networks, especially in scenarios
covering small to medium-sized geographical areas, there is only one sink node,
responsible for concentrating the data from all sensors. Considering the use of
multi-hop transmissions, the closer to the sink node, the greater the workload of
the nodes, which, in addition to their own data, will be responsible for transmitting
those of the other nodes in the network. This produces fast depletion of energy
from these nodes near the sink. The consequence of poor balancing is the early
exhaustion of some nodes, which can bring two main issues: (i) in case such nodes
serve as traffic forwarders for others, the network may be partitioned, and (ii) part
of the monitored region will lose sensing coverage, compromising the accuracy of the
event detection process and the monitoring of the phenomenon of interest.

To alleviate this unbalanced workload distribution, the Selector component is a
service running on an edge node which acts as a local workload coordinator. Its
role is to measure the workload distribution among all sensor nodes involved in the
sensing activity by checking the Buffer from time to time and inform the Gatherer
component which nodes are the most overloaded. These steps are illustrated as a

sequence diagram on Figure [4.6| and described in detail in the next subsections.

Edge Node

Read [all {sample}] !
{ __________________)

Refresh i

stats

PUT /selected_nodes []

Figure 4.6: Sequence of events and interactions between software components in the
active node selection activity.

32

4.3.1 Setting Workload Statistics

To be able to identify a situation of uneven workload distribution, the Selector com-
ponent must calculate and store statistics (aggregations) on the number of samples
taken per sensor node. The Selector component itself is capable of performing this
calculation by reading the buffer periodically. It is essential that this consumption
of the information in the buffer happens with a frequency lower than the lifetime
(TTL) of the readings in the buffer. For instance, if each sample stays in the buffer
for 45 seconds, it is recommended that the active nodes selector queries the buffer
at least every 40 seconds to ensure that no samples will be lost. The Selector’s
sleep time is an adjustable parameter on LE-Stream. In the same way that there
is a concern with the loss of samples, there must be a concern with not counting
the same sample more than once. This problem can be solved by always keeping a
copy of the keys present in the buffer on the previous reading. Thus, readings that
have already been counted in the aggregations can be disregarded. Algorithm [1|and
Figure show how the workload statistics are maintained by checking the Buffer

from time to time.

Algorithm 1: UpdateStatistics() Function
Result: Updates statistics (global) and returns a list of new keys read
Input: buf fer: Data available at the Buffer
Input: lastKeys: list of last keys read
Output: newKeys: updated list of last keys read

/* Define scope and initialize variables */
global statistics||
newKeys|| < 0

/* Scan Buffer data */
foreach sample € buf fer do
/* Mark key as read */

newKeys.append(sample.key)
/* Increment sensorId count for new keys */
if sample.key ¢ lastKeys then
| statistics[sample.sensorld] « statistics[sample.sensorld) + 1
end

end

4.3.2 Evaluating Workload Skewness

The experiments carried out and described on Chapter [5| allowed stating that some
level of unbalance will always exist. However, it can be large or small. The tolerable
threshold on the workload difference between the sensor nodes may vary depending

on the use case. From the aggregated data, so called statistics, the Selector com-

33

Buffer Aggregation

Key Value
3ba3f47c-5fb7-41c2-a6af-e25b4di172b1 {"sensor’=1", “temperature”=25.0, "humidity”=62.0}
-
B894f8ff5-42a0-4c8b-b7f5-404131c03a9f {"sensor’=2", “temperature”=25.0, "humidity”=63.0}
cal4555f-8bc3-40a8-8f9%e-c57e2121b4%h {“sensor"=1", “temperature”=26.0, "humidity”=64.0} | ! ’

t 1 90321d03-87c2-4%e-a7cd-c114a9b3ed 56 {“sensor"=2", “temperature”=25.0, "humidity”=63.0} 2 :
9e5bef02-120f-42ea-8db9-cd1800dcf209 {“sensor”=3", “temperature”=26.0, "humidity”=64.0} > !
d2675df5-ae2e-4a5f-bb4c-08438b022104 {“sensor’=4", “temperature”=26.0, "humidity"=62.0} : !
1lab2d8e6-d602-466¢-b34f-fede65892908 {"sensor"=1", “temperature”=25.0, "humidity”=65.0}

Key Value
d2675df5-ae2e-4a5f-bbdc-08438b022104 {"sensor”=4", “temperature”=26.0, "humidity”=62.0}
1ab2d8e6-d602-466¢c-b34f-fede65892908 {“sensor"=1", “temperature”=25.0, "humidity”=65.0} 1 4
2 44e131de-7189-4a5a-8003-5ece8bd13d8b {“sensor”=5", “temperature”=27.0, "humidity”=68.0} 2 4

t f33fbc55-d209-4078-a585-a3716330cb56 {“sensor”=2", “temperature”=27.0, "humidity"=60.0} i 3 2
3d1aa820-4c50-4ec5-8cde-dac328199723 {“sensor’=1", “temperature”=26.0, "humidity”=61.0} 4 1
e2eaabc5-76d6-44e3-9f93-34a8e172e1c9 {"sensor"=2", “temperature”=27.0, "humidity”=61.0} 5 1
2c¢7fb78c-db1b-4633-b08a-b1b320766fa5 {“sensor"=3", “temperature”=26.0, "humidity”=60.0}

Key Value
3d1aa820-4c50-4ec5-8cde-dac328199723 {"sensor”=1", “temperature”=26.0, "humidity”=61.0}
e2eaabc5-76d6-44e3-9f9a-34a8e172e1c9 {"sensor”=2", “temperature”=27.0, "humidity”=61.0} 1 5

t 3 2c7fb78c-db1b-4633-b08a-b1b320766fa5 {“sensor”"=3", “temperature”=26.0, “humidity”=60.0} 2 4
2c381378-592b-4ff6-9719-dfc9082fcddf {"sensor”=5", “temperature”=27.0, "humidity"=59.0} | 3 3
7a52909b-7705-4767-a79b-562ac31022a1 {“sensor"=4", “temperature”=26.0, “humidity"=58.0} 4 2
30d9f636-b140-4bba-b230-8bdc67b25d6e {"sensor”=1", “temperature”=27.0, "humidity"=59.0} 5 2
c56edcB0-0bb7-4e76-88a1-e20d23echc9e {"sensor”=3", “temperature”=26.0, "humidity"=60.0}

Figure 4.7: How the Sampler sets workload statistics / aggregations by reading the
Buffer.

ponent is able to know how many samples were taken by each sensor node. Thus,
it is possible to use the statistical metric of the standard deviation to evaluate the
workload distribution between the sensor nodes (skewness) by applying the following

equation:

N

1 =)2
S=AlN 1 Z(wl —7) (4.5)

i=1

Every time the statistics are updated, the standard deviation over the count of
samples per sensor node is computed. The calculated standard deviation will always
be a positive real value. If equals to zero, it means that the distribution is precisely
balanced. The larger the calculated standard deviation value, the more unbalanced
the distribution [80]. By computing the standard deviation the Selector can identify
whether the distribution is skewed or not. To make this decision, a parameter of LE-
Stream so called skewness rate must be set. This parameter allows the definition of
the acceptable level of workload imbalance between sensor nodes. If set to 0 (zero),

it means that if all sensor nodes do not have the same number of samples sent, the

34

distribution is considered skewed. It is important to emphasize that some imbalance
always exists and, when small, it will not cause the premature death of overloaded
sensor nodes. Assuming that in a normal distribution the standard deviation is
equal to 1 [80], the default value for the skewness rate in LE-Stream is set to 1.
Nevertheless it can be adjusted if an application requirement demands it. When
the standard deviation is less than or equal to the skewness rate, the distribution
is considered even. As a consequence, no sensor node is selected to be deactivated.
When the standard deviation is greater than the skewness rate, the distribution is
considered uneven and the Selector component proceeds with selecting sensor nodes

to deactivate.

4.3.3 Selecting Sensor Nodes To Deactivate

Once the statistics are updated and the distribution is defined as uneven or skewed,
it is time to select which sensor nodes must be deactivated. The first step of this task
is simply sorting the statistics entries in descending order by the count of samples.
Another important parameter of LE-Stream is the sleep rate, which stands for the
size of the subset of sensor nodes to be selected for deactivation. For example, if
the sleep rate is set to 0.3 in a group of 100 sensor nodes, it means that the top 30
sensor nodes in the ordered statistics list will be selected for deactivation. Algorithm
describes how the selection step works. Once the list of most overloaded sensor
nodes is set, the Selector component sends it to the Gatherer component over a CoAP
PUT request. Algorithm [3| summarizes the operation of the Selector component.
The Gatherer, in turn, replaces its local list of overloaded sensor nodes with this
new list. This list will be checked before any W; computations. Each sensor on this
list will arbitrarily receive a predefined longer time window, which can be adjusted

on LE-Stream according to the application requirements.

Algorithm 2: SelectNodes() Function
Input: statistics: Statistics list
Input: sleepRate: Sleep rate parameter
Output: selectedNodes: list of sensor nodes to be deactivated

/* Sort statistics by value to a new list */
sortedStats[] <— SortByValue(statistics, DESC)
/* Compute the size of the selection */

selectionSize <— Round(Length(statistics) x sleepRate)
/* Set a new list with the top overloaded sensor nodes */
selectedNodes|] + ()
for i = 0; i < selectionSize; i =i+ 1 do
| selectedNodes.append (sortedStats|i].sensorld)
end

35

Algorithm 3: Selector component algorithm
Input: buf fer: Data available at the Buffer
Input: sleepTime: Sleep time parameter
Input: skewnessRate: Skewness rate parameter
Input: sleepRate: Sleep rate parameter
/* Initialize variables */
statistics|| < ()
lastKeys[] < 0
selectedNodes < ()

/* Runs continuously while buf fer is not empty */
while buf fer # () do
/* Refresh statistics */
UpdateStatistics (Buf fer, lastKeys)
/* Check skewness and update selectedNodes */

if StandardDeviation (statistics) > skewnessRate then
| selectedNodes < SelectNodes(statistics, sleepRate)
else
| selectedNodes < ()
end
/* Send selectedNodes to the Gatherer via CoAP PUT request */
PutToGatherer (selectedNodes)
end

4.4 Two-Step Data Prediction Model

A prediction model aims at computing future sensor readings. Simple Exponen-
tial Smoothing (SES) [79] and Double Exponential Smoothing (DES), also known
as Holt Method [81, 82] are good examples of data prediction models. They are
computationally economical and thus interesting choices for WSNs and IoT [64].
However, both were designed to predict readings of an individual sensor based on
its own past readings.

As already mentioned in section [4.2] LE-Stream assumes a multi-sensed entity
scenario. Thus, our data prediction model must consider readings from different
sensors, physically closer to each other and under the control of the same edge node,
to calculate its output value. IRESE [§] and VSF [67], presented in Chapter 3], also
assume a similar multi-sensed scenario and inspired the approach we adopted in our
proposed framework. From a high level perspective, our two-step data prediction
model consists of (i) cleaning noisy / incorrect readings and (ii) computing an output

value based on an aggregation function.

36

4.4.1 Identifying and Cleaning Incorrect Samples

Sensor generated data need to be accurate. Physical sensors fail. Incorrect readings
need to be identified and discarded as best as possible to improve the quality of the
information and decisions based on the acquired data. A common practice in sensed
environments is to use a group of sensors to monitor the same entity, providing the
necessary redundancy that makes it easier to identify incorrect or noisy readings
[3]. Data streams are continuous flows of isolated data points. In an IoT use case
with sensor generated data, these data points are represented by sensor readings.
No data point can be considered an outlier on an individual basis analysis. Thus,
defining a way to group and analyze these data points is a major concern when
designing an outlier detection task. Buffering incoming data on a predefined length
or time interval to create frames is a common approach to perform operations on
data streams [53].

Clustering is a problem widely studied in the data mining and Al literature.
However, it is more difficult to adapt arbitrary clustering algorithms to the context
of data stream processing. Its potentially unbounded in size feature makes this
adaptation especially complex [52]. K-means is certainly one of the best-known
clustering and also the starting point for a number of variations tailored for stream
processing [53]. However, since each outlier can represent a different cluster and
the number of cluster is an expected input for K-means and its variations, such
algorithms are not suitable for the purpose of outlier detection.

Density-based techniques are more effective and versatile than K-means for the
purpose outlier detection data streams and IoT [52]. Such techniques, in turn,
are able to determine the number of clusters as an output. Moreover, to ensure
that outliers are not confused with concept drifts, LE-Stream uses short processing
windows (on the order of seconds or, at most, one minute). In this way, whatever the
algorithm adopted in the implementation of step 1 (clustering), the outlier detection
will always be limited to the data points contained in this short window. If a longer
window is defined, there is a risk of a concept drift to be confused with an outlier
and data accuracy is compromised.

Therefore, even not being tied to a specific algorithm, LE-Stream requires that a
density-based approach with short processing windows to be chosen. The Figure
provides a graphical representation which helps to understand why density-based
clustering are a reasonable choice to tackle an outlier detection task. A pool of
good candidate techniques is presented in [83]. For the sake of simplicity, we chose
Density-based spatial clustering of applications with noise (DBSCAN) from scikit-
learn [84] in our implementation of the predictor component on LE-Stream (Chapter
. DBSCAN has a specific parameter where a radius (eps) is defined to be consid-

37

ered when evaluating the data set. Only points that are too far apart are considered
outliers. Assuming the sensors redundancy and short processing windows, when
there is a concept drift, most active sensors follow the variation, while outliers stand
out. Algorithm 4| describes the original sequential DBSCAN algorithm. It assumes
that any distance function can be used and also that RangeQuery() can be imple-

mented using a database index for better performance or a slow linear scan [85].

Algorithm 4: Density-based Spatial Clustering of Applications With Noise
Input: db: Database
Input: eps: Radius
Input: minPts: Density threshold
Input: dist: Distance function
Output: db labeled with clusters or noisy points
cluster < 0 // Cluster counter
foreach point € db do
if point.label # null then continue
neighbors < RangeQuery(db, dist, point,eps) // Find initial neighbors
if minPts > |neighbors| then

point.label +— —1 // Non-core points are noise
continue
end
cluster < cluster + 1 // Next cluster label
point.label < cluster // Label initial point
seedSet < neighbors\{point} // Expand neighborhood

foreach q € seedSet do

if q.label = —1 then q.label + cluster
if g.label # null then continue
neighbors < RangeQuery(db, dist, q, eps)
q.label < cluster

if minPts > |neighbors| then continue
seedSet < seedSet U neighbors

end

end

4.4.2 Aggregating Data

Choosing an aggregation function can become a complex task depending on the
application’s use case. Similar to the clustering algorithm for the outlier detection
task, this is a feature where the proposed framework gives some autonomy to whom
implement it. In a context of strict response time data stream processing for [oT, it
can be assumed that the input data are readings sampled by sensors in a short time
window. We must also take into account that these data points have already gone
trough a data cleaning task and are trustworthy. Thus, central tendency statistical

measures, such as mean and median, are reasonable choices to represent the value

38

A
outliers

o <.—>
z @ *
T OO@'%‘J © N
| g8
= ° &O

0°° g ©
Oo
temperature g

Figure 4.8: Outlier detection with density-based clustering

measured in that time interval. Also for the sake of simplicity, we chose to use the

statistical metric of arithmetic mean in our implementation:

1
T= Z T (4.6)

Regardless of the choices made when implementing the tasks of clustering (outlier
removal) and aggregation, the Predictor component must interact with Buffer and

Gatherer components as illustrated in Figure [4.9

Edge Node

Read [all {sample})] |

Remove
outliers

Dﬂ;gregate

T{ """""""""" PoeeeSReReReREREReR H

Figure 4.9: Sequence of events and interactions between software components in the
data prediction activity.

39

Chapter 5
Experimental Evaluation

In this Chapter, we describe the experiments performed to evaluate the proposed
framework in terms of (i) accuracy of the output data when reducing the number
of sensor samples; (ii) how efficient is the proposed adaptive sampling strategy in
terms of energy consumption; (iii) how effective is the active node selection feature
on improving the workload distribution between sensor nodes and (iv) how fast is
the proposed data prediction model to process buffered data (thus contributing to

decrease the total response time for applications).

5.1 Use Case and Test Environment

A preliminary data set of real sensor readings was generated from six DHT11 sensors
continuously collecting temperature and humidity data during a period of one hour.
Then we used this data set to generate a synthetic data set of 480 sensors by adding
to these measured quantities a random value ranging from -1 to 1. Finally the
synthetic data set was used as an input to simulate two different but comparable

scenarios:

1. Fixed Sampling: All the collected data is sent to the edge node according to
its timestamp and used to predict the output. This scenario simulates a use

case where all the sensors are active all the time.

2. LE-Stream: A number of independent processes runs an instance of the
sampler component on a sensor node. Each process communicates with the
edge node to send data when in the active mode, and sleeps according to the
time windows received from the edge. Data points from the generated data set

in which the timestamp corresponds to the sensor’s sleep time are discarded.

All components were developed in Python programming language version 3.0.
The CoAP features were implemented with CoAPthon [86]. Redis [87] is an in-

memory data structure store which was used to implement the Buffer component.

40

The Gateway’s REST API was implemented with Flask [88], which is a software
framework designed to support the development of web applications including web
APIs. In terms of infrastructure, we created an isolated virtual network on a public
cloud environment to make it possible to simulate the scenarios on 5 different scales.
Table describes the number of sampler components and sensor nodes ingesting
data into a single edge node. Also, the amount of computing resources (vCPUs and
RAM) of the edge node for each round of simulation is indicated. Both the sensor
nodes and the edge node are powered by 64-bit Arm-based processors, with 10 Gbps
network bandwidth and Ubuntu linux 20.04 operating system.

Table 5.1
Edge Node
Round Samplers Sensor Nodes VvCPUs RAM
1 30 1 1 4 GiB
2 60 2 2 8 GiB
3 120 4 4 16 GiB
4 240 8 8 32 GiB
5 480 16 16 64 GiB

5.2 Data Accuracy Analysis

The reduced number of samples sent to the edge node when using an adaptive
sampling strategy implies that less data is available for the data prediction model.
Thus, there is a concern that the data accuracy might be affected in LE-Stream. In
fact, as it is shown in Fig. [5.1] while the fixed sampling mode keeps a high number
of samples at the buffer all the time, in LE-Stream this number varies according to
the entity being measured. When the temperature and humidity values are stable,
the number of buffered samples is low. When the temperature and humidity values
start to change, quickly the number of buffered samples increases. This behavior
is also observed in all simulation rounds with different scales. As the number of
sensors and thus the amount of data being ingested increase, the difference in the
number of buffered samples over time is even greater. Fig. also presents this
difference between rounds of simulation 1 to 5.

To evaluate how this reduced amount of data available affects the data prediction
output, we use Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
metrics [63], [89]. We assume the outputs from the executions using fixed sampling
as the real / observed values to calculate the differences from the outputs obtained
with adaptive sampling mode on each simulation round. Table presents the
calculated RMSE and MAE and data range per round of simulation for humidity and

41

@ Fixed Sampling LE-Stream

O g N n A\ AN WMWW

MNVW‘\MW\WW

Buffered Samples

Time

Figure 5.1: Number of samples at the buffer over time for each sampling strategy.

temperature. It is possible to say that scaling up sensors and computing resources
does not affect RMSE and MAE.

Despite the considerable difference in the number of samples available in the
buffer, both fixed and adaptive sampling modes have a very similar data prediction
output. Fig. makes it possible to visualize how approximate are the outputs for
both sampling modes. The red lines represent temperature readings while the blue
lines represent humidity readings. The darker lines correspond to the fixed sampling
mode while the lighter ones correspond to LE-Stream with adaptive sampling mode.
By comparing rounds 1 to 5 once more, it is also possible to note that the greater
the amount of data, the closer are the outputs for the different sampling approaches.

It is important to mention that the sensors redundancy (multi-sensed scenario)

Table 5.2: RMSE and MAE for humidity and temperature per round of simulation.

Humidity Temperature
Round | RMSE MAE Range (%) RMSE MAE Range (°C)
1 1.4024 0.5365 (19.91-51.01) | 0.6954 0.1894 (25.44 - 51.01)
1.4519 0.5720 (17.15-50.44) | 0.8583 0.2517 (25.46 - 57.53)
0.9148 0.4110 (16.84 - 52.23) | 0.8082 0.3369 (25.59 - 50.65)
() ()
() ()

1.1486 0.3656 (19.06 - 51.23) | 0.6642 0.2609 (25.31 - 58.59
1.4887 0.4738 (16.45 - 50.46) | 0.9738 0.2384 (25.40 - 58.09

U~ W N

42

Humidity - Fixed Sampling @ Humidity - LE-Stream @ Temperature - Fixed Sampling @ Temperature - LE-Stream

e W oS e

Temperature (°C) / Humidity (%)

Time

Figure 5.2: Temperature and humidity readings processed with different sampling
strategies.

assumed by LE-Stream contributes directly in terms of data accuracy, as it is already
mentioned in Chapter [d. The experiments presented so far support this hypothesis.
Furthermore, this sensors redundancy assumption is also an important enabler for
the novel adaptive sampling and active node selection strategies proposed in this

work and evaluated in the sections to follow.

5.3 Efficiency in Terms of Energy Consumption Re-

duction

Once it is proved that the reduced number of samples does not significantly affect
the accuracy of the output data, we need to verify the benefit of the adaptive sam-
pling strategy in terms of energy consumption. To verify how efficient the proposed
framework is on reducing the energy consumption of the sensor nodes when com-
pared to a traditional fixed sampling approach, we use PowerPi [90]. It is a power
consumption model to calculate energy consumed by an application running on a
Raspberry Pi device (RPi).

To calculate the energy consumption of an application with PowerPi, it is re-

43

quired that only the application to be measured is running on the device, along with
essential operating system tasks. Since our experiments rely on concurrent processes
simulating sensor nodes running on shared hosts, an assumption was made to allow
this calculation: the energy consumption was measured individually on a physical
Raspberry Pi 3 model B+ for each of the four main actions performed by a sensor
node. The four main actions performed by a sensor node which were individually

measured are:

1. Sampling: call the physical sensor to obtain the temperature and humidity
values - 0.2104W.

2. Sending: send sampled data to the edge node - 2.5368W.
3. Getting window: get time interval from edge node - 1.0092W.
4. Sleeping: sensor inactive for 1s - 0.1745W.

The total energy consumption EC; of a sensor node ¢ is computed as a weighted
sum of each of these individual measures plus a constant value of 2.5198 W for
idle time [90]. The weights are based on the application logs, where the number of

requests I; and the sleep time S; of the sensor node is registered:

EC; = (0.2104 + 2.5368 + 1.0092) R; + 0.1745S; + 2.5198 (5.1)

The assumption made can lead to calculated values that might not precisely
represent the actual energy consumption of the devices. However, for a strictly
comparative analysis between the scenarios, the calculations performed are valid.
Figures and represent, respectively, the average energy consumption per
sensor node and total energy consumed by sensor nodes for each round of simula-
tion. Table indicates the energy savings achieved for sensor nodes by LE-Stream
(RTE-S) in comparison with Fixed Sampling (FS) in both . LE-Stream leads to
an average energy consumption savings per sensor node ranging from 42.95% to
60.59% and a total energy consumed by sensor nodes savings ranging from 42.96%
to 75.30%, which is a very significant result. It is also possible to state, from the
same Fig. [5.3 that actions which involve communication between the sensor and
edge nodes (specially “Sending") are the most expensive in terms of energy consump-
tion. The LE-Stream essentially replaces the “Sending" activity by less expensive
actions: “Sleeping", which is the least expensive activity and “Getting" which is also

a communication activity but with much smaller payloads.

44

R1: Fixed Sampling

R1: LE-Stream

R2: Fixed Sampling

R2: LE-Stream

R3: Fixed Sampling

R3: LE-Stream

R4: Fixed Sampling

R4: LE-Stream

R5: Fixed Sampling

RS5: LE-Stream

Activity: @ Getting @ldle @ Sampling @ Sending @ Sleeping

S
ES
S
%
E

x®
Energy Consumption (W)

Figure 5.3: Average energy consumption per sensor node for each round.

R1: Fixed Sampling

R1: LE-Stream

R2: Fixed Sampling

R2: LE-Stream

R3: Fixed Sampling

R3: LE-Stream

R4: Fixed Sampling

R4: LE-Stream

R5: Fixed Sampling

R5: LE-Stream

Activity: @ Getting @ldle @ Sampling @ Sending & Sleeping

; l
2

1.5M
Energy Consumption (W)

Figure 5.4: Total energy consumed by sensor nodes for each round.

Table 5.3: Energy savings for sensor nodes.

Average per Sensor Node (W) Total Consumption (W)
Round FS LE-S Savings FS LE-S Savings
1 1,092.82 520.15 52.40% 163,922.39 78,021.86 52.40%
2 1,085.82 536.34 50.61% 325,745.93 80,451.68 75.30%
3 1,089.57 475.46 56.36% 653,744.54 285,277.32 56.36%
4 1,097.22 625.91 42.95% 1,316,664.64 751,087.01 42.96%
5 1,085.59 427.84 60.59% | 2,605,418.02 1,026,822.90 60.59%

5.4 Effectiveness of Active Node Selection on Im-

proving the Workload Distribution

Once it was demonstrated how efficient LE-Stream is in terms of energy consump-
tion, it is also important to understand how effective the active node selection feature
is on solving the poor workload distribution problem described on Chapter [4.3] To
make this evaluation possible, the application logs include the computation of the
standard deviation metric over the statistics maintained by the Selector component.
The standard deviation is calculated each 30s for each simulation round. Also,
the simulation rounds were executed again with the Selector component disabled
to allow understanding the standard deviation behaviour in LE-Stream with and
without the active node selection feature enabled. Fig[5.5/shows the standard devi-
ation metric calculated over time for each round of simulation for both cases. The
red lines represent the calculated standard deviation for LE-Stream with the active
node selection feature disabled while the blue lines represent the calculated standard
deviation for LE-Stream with the active node selection feature enabled. Table [5.4]
shows the standard deviation metric calculated at the end of each simulation round
either with active node selection (ANS) enabled and disabled and the relation ANS
Enabled / ANS Disables to measure the effectiveness of the ANS feature.

Table 5.4: Standard deviation calculated at the end of each simulation round.

Round ANS Disabled ANS Enabled Relation

1 251.53 157.59 62.65%
2 222.77 72.61 32.59%
3 258.76 68.76 26.57%
4 215.75 12.67 5.87%
5 334.98 72.62 21.68%

Regardless of whether the ANS feature is enabled or disabled, the tendency for
the standard deviation to increase over time is always true. This means that there
is always a trend for imbalance in the workload distribution over time. However, the
active node selection feature proved to be very effective in contributing to a better
workload distribution by slowing down the growth of the standard deviation in all
rounds of simulation. With a better distribution of the workload between the sensor
nodes, not only the occurrence of samples with incorrect values but also the death of
sensors due to lack of energy take longer to happen. In this way, it can be said that
the ANS feature contributes to increasing the overall operating life of the system,
increasing the time during which there is coverage of the monitored phenomenon.

It is possible to claim that the effectiveness of the active node selection feature

is greater in scenarios with larger numbers of sensor nodes, as shown in Figure [5.5]

46

Active node selection @ Disabled @ Enabled

Round 1
Round 2 //
- ——
Round 3 //
Round 4 //_,
—

Round 5

Sandard Deviation

—

Time

Figure 5.5: Progress of the standard deviation metric on LE-Stream with and with-
out the active node selection feature.

However, it is not possible to establish a direct relationship between the effectiveness
of the feature and the increase in the number of sensor nodes. As it can be seen
in Table 5.4, on the simulations performed the ANS feature was more effective in

round 4 than in round 5.

5.5 Data Stream Processing Speed

Earlier research on computer response times suggests that:

e 0.1 s is the limit for having the user feel that the system is reacting instanta-
neously, meaning that no special feedback is necessary except to display the
result [91];

e 1.0 s is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay. Normally, no special feedback is

necessary during delays of more than 0.1s but less than 1.0s [91];

e 2.0 s is the limit where response to simple commands becomes unacceptable

to users [92].

47

According to the definitions above, to meet the strict response time requirement
we consider 1.0 s as a threshold for the data prediction task’s runtime. To achieve
such goal on this multi-sensed environment, it is required to choose fast and non
compute intensive algorithms when implementing the Predictor component to run
on an edge device. DBSCAN was chosen for data cleaning / pre-processing due to
its good capability of finding arbitrarily shaped clusters, what makes it robust to
outlier detection [83]. The experiments carried involve continuous variables, which
are real values over a non-empty range. Thus, We believe that a simple average is
able to fairly represent the temperature and humidity values given a set of samples
over a given short period of time. Thus, the statistical Mean function was chosen
as the aggregation function for this implementation.

In all rounds of simulations the data prediction process is called once every five
seconds to generate the output data which were used to plot the graphs of Fig. [5.]]
and Fig. 5.2 The time elapsed in each run was also registered as an attribute on
the output data. This information allowed us to evaluate how fast the data is being
processed, considering the data cleaning and aggregation tasks. Table[5.5shows how
many times the data prediction task ran (Count), the average speed time in seconds
and its respective standard deviation (Std. Deviation) for each simulation round.
We highlight that the average processing speed in all rounds of simulation is far below
the established threshold of 1 s. For round 5, which involves the largest volume of
data processed, the average represents only 25% of this threshold. Fig [5.6| shows
how the data prediction processing speed increases as the volume of data processed
(number of buffered samples) grows. The graph presents a linear progression, which
suggests a good scalability of the proposed solution using the chosen algorithms.
There were actually a very small number of data points (9) above the threshold line
(1.0 s), which represent less than 0.3% of the total and therefore can be considered
outliers. These outliers are outside the plotting area to provide a better view of the
relevant part of the data. It is important to highlight that even with a number of

samples in the order of 7 thousand units, the processing time remains below 0.6 s.

Table 5.5: Average data prediction processing speed per simulation round.

Round Count Average (s) Std. Deviation

1 613 0.03 0.03
2 687 0.05 0.04
3 962 0.08 0.08
4 961 0.18 0.10
) 684 0.25 0.28

48

Processing Speed (s)

Round @1 @2 @3 ©4 @5

°
°
. %
o0 °
°
°
()
° e
°

Buffered Samples

Figure 5.6: Data prediction processing speed per amount of buffered samples

49

Chapter 6
Conclusion and Future Work

This work presented LE-Stream, a latency and energy-aware DSP framework for
edge based IoT systems. LE-Stream contributes to advance the state of the art on
[oT data processing by addressing the latency and energy dimensions of the data
stream processing problem without compromising data accuracy. Experiments show
that a combination of an adaptive sampling strategy with a data prediction model
was very effective in reducing the number of samples and network traffic. Being
energy efficient, LE-Stream has reduced the average energy consumption of sensor
nodes up to 60.58%. An active node selection feature improves the workload dis-
tribution among the sensor nodes which also contributes to increasing the overall
operating life of the system, thus increasing the time during which there is cover-
age of the monitored phenomenon. The experimental results described in Chapter
indicate that the proposed data prediction model deployed at the edge of the
network successfully addresses strict response time requirements by meeting a strict
execution time threshold of 1s for the data prediction activity. The main contri-
bution of LE-Stream is its capability of tackling strict response time processing,
energy consumption and data accuracy requirements all together. Thus, it might
be used to enable the development of long running latency-aware DSP IoT systems
in remote outdoor environments, where energy sources are scarce and it undesirable
or unfeasible replacing batteries frequently.

In the current version of LE-Stream, collaboration between edge nodes is not
considered, but we believe that this is an important direction for future research.
Such collaboration can allow building a broader view of the phenomena monitored in
the environment. It can also lead to more efficient decisions regarding adapting data
sampling rates and shutting down redundant sensors. For example, if collaboration
allows the identification of several edge nodes monitoring the same phenomenon,
adaptation decisions can be made involving a larger geographic area, without the
need to involve the cloud. Moreover, such collaboration between edge nodes could

leverage the usage of LE-Stream to the federated learning field.

20

Also, LE-Stream does not consider the mobility factor of sensor nodes, where
a certain sensor node that communicates with a gateway A starts to communicate
with a gateway B. The active node selection scheme needs to know the activity
history of the sensor nodes involved in the sensing activity in question to perform
their calculations correctly. Since the mobility of sensor nodes can be not only a
characteristic but a critical factor for certain IoT applications, adding this sensor
node mobility capability to LE-Stream would also be a very interesting direction for
feature research.

Even though LE-Stream had already achieved very significant results in terms
of energy consumption reduction, it can be possible to achieve an even greater
reduction by improving the communication model between sensor nodes and the
gateway. Currently the sensor nodes (Sampler) make 2 requests (PUT /sample
and GET /time_window) when sending samples to the gateway (Gatherer), as of
depicted on Fig. By following the principle of exchanging communication
operations for computing operations as described on Chapter [2.5] Finding a way
to adapt the CoAP protocol so that the Sampler could send back the time window
value to the Sampler when responding to the PUT /sample request would also be a
promising research direction.

Although the framework presents promising results when identifying sudden vari-
ations in monitored phenomena, studying other algorithms for computing time in-
tervals can also be an opportunity for increasing the framework’s reactivity to such
variations. TCP congestion control is proved as a good solution, but there might a

better solution for the specific purpose of reacting to sudden variations.

51

References

[1] ATZORI, L., IERA, A., MORABITO, G. “The Internet of Things: A survey”,
Computer Networks, v. b4, pp. 2787-2805, 2010. ISSN: 1389-1286. doi:
10.1016/j.comnet.2010.05.010.

[2] AKYILDIZ, 1., SU, W., SANKARASUBRAMANIAM, Y., et al. “Wireless sensor
networks: a survey”, Computer Networks, v. 38, pp. 393-422, 2002. ISSN:
1389-1286. doi: https://doi.org/10.1016/S1389-1286(01)00302-4.

[3] DIAS DE ASSUNCAO, M., DA SILVA VEITH, A., BUYYA, R. “Distributed
data stream processing and edge computing: A survey on resource elastic-
ity and future directions”, Journal of Network and Computer Applications,
v. 103, pp. 1-17, 2018. ISSN: 1084-8045. doi: 10.1016/j.jnca.2017.12.001.

[4] KARKOUCH, A., MOUSANNIF, H., AL MOATASSIME, H., et al. “Data qual-
ity in internet of things: A state-of-the-art survey”, Journal of Network
and Computer Applications, v. 73, pp. 57-81, 2016. ISSN: 1084-8045. doi:
10.1016/j.jnca.2016.08.002.

[5] QIN, Y., SHENG, Q. Z., FALKNER, N. J., et al. “When Things Matter”, J.
Netw. Comput. Appl., v. 64, pp. 137-153, abr. 2016. ISSN: 1084-8045.
doi: 10.1016/j.jnca.2015.12.016.

[6] KLEIN, A., LEHNER, W. “How to Optimize the Quality of Sensor Data
Streams”, 4th International Multi-Conference on Computing in the Global
Information Technology, ICCGI 2009, 01 2009. doi: 10.1109/ICCGI.2009.
10.

[7] DAUTOV, R., DISTEFANO, S., BRUNEO, D., et al. “Pushing Intelligence to
the Edge with a Stream Processing Architecture”. In: 2017 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp.
792-799, 2017. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.
2017.121.

52

[8] JANJUA, Z. H., VECCHIO, M., ANTONINI, M., et al. “IRESE: An intelligent
rare-event detection system using unsupervised learning on the IoT edge”,
Engineering Applications of Artificial Intelligence, v. 84, pp. 41-50, 2019.
ISSN: 0952-1976. doi: 10.1016/j.engappai.2019.05.011.

[9] ANASTASI, G., CONTI, M., DI FRANCESCO, M., et al. “Energy conservation
in wireless sensor networks: A survey”, Ad Hoc Networks, v. 7, pp. 537—
568, 2009. ISSN: 1570-8705. doi: 10.1016/j.adhoc.2008.06.003.

[10] LE BORGNE, Y.-A., SANTINI, S., BONTEMPI, G. “Adaptive Model Selection
for Time Series Prediction in Wireless Sensor Networks”, Signal Process.,
v. 87, pp. 3010-3020, dez. 2007. ISSN: 0165-1684. doi: 10.1016/j.sigpro.
2007.05.015.

[11] GIOUROUKIS, D., DADIANI, A., TRAUB, J., et al. “A Survey of Adap-
tive Sampling and Filtering Algorithms for the Internet of Things”. In:
Proceedings of the 14th ACM International Conference on Distributed
and FEvent-Based Systems, DEBS 20, p. 27-38, New York, NY, USA,
2020. Association for Computing Machinery. ISBN: 9781450380287. doi:
10.1145/3401025.3403777.

[12] ABABNEH, N. “Evaluation of On/Off scheduling protocols for ad hoc and sen-
sor networks”. In: 2010 IEEE International Conference on Wireless Com-
munications, Networking and Information Security, pp. 419-423, 2010.
doi: 10.1109/WCINS.2010.5544122.

[13] RAHMAN, A., JADOON, W., KHAN, F. “Energy Efficiency techniques in
cloud computing”, International Journal of Computer Science and Infor-

mation Security (IJCSIS), v. 14, pp. 317-323, 07 2016.

[14] DELICATO, F. C. Service-Oriented Middleware for Wireless Sensor Networks.
Tese de Doutorado, Universidade Federal do Rio de Janeiro - Electrical

Engineering Department, Rio de Janeiro, Brazil, 6 2005.

[15] AL-FUQAHA, A., GUIZANI, M., MOHAMMADI, M., et al. “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applica-
tions”, IEEE Communications Surveys Tutorials, v. 17, pp. 2347-2376,
2015. doi: 10.1109/COMST.2015.2444095.

[16] KRCO, S., POKRIC, B., CARREZ, F. “Designing IoT architecture(s): A
European perspective”. In: 2014 IEEE World Forum on Internet of Things
(WF-10T), pp. 79-84, 2014. doi: 10.1109/WF-10T.2014.6803124.

93

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

27]

28]

LI, W., SANTOS, 1., DELICATO, F. C., et al. “System modelling and per-
formance evaluation of a three-tier Cloud of Things”, Future Generation
Computer Systems, v. 70, pp. 104-125, 2017. ISSN: 0167-739X. doi:
10.1016/j.future.2016.06.019.

TAHERKORDI, A., ELIASSEN, F., MCDONALD, M., et al. “Context-Driven
and Real-Time Provisioning of Data-Centric IoT Services in the Cloud”,
ACM Trans. Internet Technol., v. 19, nov. 2018. ISSN: 1533-5399. doi:
10.1145/3151006.

PAETZ, C. Z-Wave Essentials. North Charleston, SC, USA, CreateSpace
Independent Publishing Platform, 2018. ISBN: 171870822X.

PORCU, G., BURON, J., BRANDT, A. “Home Automation Routing Require-
ments in Low-Power and Lossy Networks”. RFC 5826, abr. 2010.

NIEMINEN, J., SAVOLAINEN, T., ISOMAKI, M., et al. “IPv6 over BLUE-
TOOTH(R) Low Energy”. RFC 7668, out. 2015.

HONKANEN, M., LAPPETELAINEN, A., KIVEKAS, K. “Low end ex-
tension for Bluetooth”. In: Proceedings. 2004 IEEE Radio and Wire-
less Conference (IEEE Cat. No.04TH8746), pp. 199-202, 2004. doi:
10.1109/RAWCON.2004.1389107.

MONTENEGRO, G., SCHUMACHER, C., KUSHALNAGAR, N. “IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals”. RFC 4919, ago. 2007.

CHESHIRE, S., KROCHMAL, M. “Multicast DNS”. RFC 6762, fev. 2013.

CHESHIRE, S., KROCHMAL, M. “DNS-Based Service Discovery”. RFC 6763,
fev. 2013.

SHELBY, Z., HARTKE, K., BORMANN, C. “The Constrained Application
Protocol (CoAP)”. RFC 7252, jun. 2014.

HUNKELER, U., TRUONG, H. L., STANFORD-CLARK, A. “MQTT-S —
A publish /subscribe protocol for Wireless Sensor Networks”. In: 2008
3rd International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE °08), pp. 791-798, 2008. doi:
10.1109/COMSWA.2008.4554519.

OASIS. “Advanced Message Queuing Protocol (AMQP) Version 1.0”. 2012.

o4

29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

FIELDING, R. T. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California,
Irvine, 2000.

RICHARDS, R. “Representational State Transfer (REST)”. In: Pro PHP XML
and Web Services, Apress, pp. 633-672, Berkeley, CA, 2006. ISBN: 978-
1-4302-0139-7. doi: 10.1007/978-1-4302-0139-7\ 17.

RAWAT, P., SINGH, K. D., CHAOUCHI, H., et al. “Wireless sensor networks:
a survey on recent developments and potential synergies”, The Journal
of Supercomputing, v. 68, pp. 1-48, Apr 2014. ISSN: 1573-0484. doi:
10.1007/s11227-013-1021-9.

FIELDING, R. T., RESCHKE, J. “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content”. RFC 7231, jun. 2014.

ZHU, Q., WANG, R., CHEN, Q., et al. “IOT Gateway: BridgingWireless Sensor
Networks into Internet of Things”. In: 2010 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, pp. 347-352, 2010.
doi: 10.1109/EUC.2010.58.

WANT, R., FARKAS, K., NARAYANASWAMI, C. “Guest Editors’ Introduc-
tion: Energy Harvesting and Conservation”, IEEE Pervasive Computing,
v. 4, pp. 14-17, 2005. doi: 10.1109/MPRV.2005.12.

RAGHUNATHAN, V., SCHURGERS, C., PARK, S., et al. “Energy-aware
wireless microsensor networks”, IEEE Signal Processing Magazine, v. 19,
pp. 40-50, 2002. doi: 10.1109/79.985679.

POTTIE, G. J., KAISER, W. J. “Wireless Integrated Network Sensors”,
Commun. ACM, v. 43, pp. 51-58, maio 2000. ISSN: 0001-0782. doi:
10.1145/332833.332838.

KARL, H., WILLIG, A. Protocols and Architectures for Wireless Sensor Net-
works. Hoboken, NJ, USA, John Wiley & Sons, Inc., 2005. ISBN:
0470095105.

SANTI, P. “Topology Control in Wireless Ad Hoc and Sensor Networks”, ACM
Comput. Surv., v. 37, pp. 164-194, jun. 2005. ISSN: 0360-0300. doi:
10.1145/1089733.1089736.

KESHAVARZIAN, A., LEE, H., VENKATRAMAN, L. “Wakeup Scheduling in
Wireless Sensor Networks”. In: Proceedings of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’06,

95

|40]

[41]

[42]

|43

[44]

[45]

[46]

47]

48]

[49]

p. 322-333, New York, NY, USA, 2006. Association for Computing Ma-
chinery. ISBN: 1595933689. doi: 10.1145/1132905.1132941.

DEMIRKOL, I., ERSOY, C., ALAGOZ, F. “MAC protocols for wireless sensor
networks: a survey”, IEEE Communications Magazine, v. 44, pp. 115121,
2006. doi: 10.1109/MCOM.2006.1632658.

LANGENDOEN, K. “Medium access control in wireless sensor networks”,
Medium Access Control Wirel. Netw., v. 2, 11 2007.

RAGHUNATHAN, V., GANERIWAL, S., SRIVASTAVA, M. “Emerging tech-
niques for long lived wireless sensor networks”, IEEE Communications
Magazine, v. 44, pp. 108-114, 2006. doi: 10.1109/MCOM.2006.1632657.

TANG, C., RAGHAVENDRA, C. S. “Compression Techniques for Wireless
Sensor Networks”. In: Raghavendra, C. S., Sivalingam, K. M., Znati, T.
(Eds.), Wireless Sensor Networks, Springer US, pp. 207-231, Boston, MA,
2004. ISBN: 978-1-4020-7884-2. doi: 10.1007/978-1-4020-7884-2\ 10.

FASOLO, E., ROSSI, M., WIDMER, J., et al. “In-network aggregation tech-
niques for wireless sensor networks: a survey”, IEEE Wireless Communi-
cations, v. 14, pp. 70-87, 2007. doi: 10.1109/MWC.2007.358967.

RISTESKA STOJKOSKA, B., MAHOSKI, K. “Comparison of Different Data
Prediction Methods for Wireless Sensor Networks”. In: Proceedings of the
10th Conference for Informatics and Information Technology, 04 2013.

AKYILDIZ, 1. F., KASIMOGLU, I. H. “Wireless sensor and actor networks:
research challenges”, Ad Hoc Networks, v. 2, pp. 351-367, 2004. ISSN:
1570-8705. doi: 10.1016/j.adhoc.2004.04.003.

MORABITO, R., COZZOLINO, V., DING, A. Y., et al. “Consolidate 10T
Edge Computing with Lightweight Virtualization”, IEEE Network, v. 32,
pp. 102-111, 2018. doi: 10.1109/MNET.2018.1700175.

FEI, X., SHAH, N., VERBA, N., et al. “CPS data streams analytics based
on machine learning for Cloud and Fog Computing: A survey”, Future
Generation Computer Systems, v. 90, pp. 435-450, 2019. ISSN: 0167-
739X. doi: https://doi.org/10.1016/j.future.2018.06.042.

BABCOCK, B., BABU, S., DATAR, M., et al. “Models and Issues in Data
Stream Systems”. In: Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS

o6

‘02, p. 1-16, New York, NY, USA, 2002. Association for Computing Ma-
chinery. ISBN: 1581135076. doi: 10.1145/543613.543615.

[50] ISAH, H., ABUGHOFA, T., MAHFUZ, S., et al. “A Survey of Distributed Data
Stream Processing Frameworks”, IEEE Access, v. 7, pp. 154300-154316,
2019. doi: 10.1109/ACCESS.2019.2946884.

[51] GAMA, J. A., ZLIOBAITUNDEFINED, I, BIFET, A., et al. “A Survey on
Concept Drift Adaptation”, ACM Comput. Surv., v. 46, n. 4, mar 2014.
ISSN: 0360-0300. doi: 10.1145/2523813.

[52] AGGARWAL, C. C. “Mining Sensor Data Streams”. In: Managing and Mining
Sensor Data, Springer US, pp. 143-171, Boston, MA, 2013. ISBN: 978-1-
4614-6309-2.

[63] TSAI, C.-W., LAI, C.-F., CHIANG, M.-C., et al. “Data Mining for Internet
of Things: A Survey”, IEEE Communications Surveys Tutorials, v. 16,
pp. 77-97, 2014. doi: 10.1109/SURV.2013.103013.00206.

[54] MOHAMMADI, M., AL-FUQAHA, A., SOROUR, S., et al. “Deep Learn-
ing for IoT Big Data and Streaming Analytics: A Survey”, IEEFE
Communications Surveys Tutorials, v. 20, pp. 2923-2960, 2018. doi:
10.1109/COMST.2018.2844341.

[55] SHOBANADEVI, A., MARAGATHAM, G. “Data mining techniques for
[oT and big data — A survey”. In: 2017 International Conference
on Intelligent Sustainable Systems (ICISS), pp. 607-610, 2017. doi:
10.1109/1SS1.2017.8389260.

[56] LI, S., XU, L. D., ZHAO, S. “The internet of things: a survey”, Information
Systems Frontiers, v. 17, pp. 243-259, Apr 2015. ISSN: 1572-9419. doi:
10.1007/s10796-014-9492-7.

[57] MEHMOOD, E., ANEES, T. “Challenges and Solutions for Processing Real-
Time Big Data Stream: A Systematic Literature Review”, IEEE Access,
v. 8, pp. 119123-119143, 2020. doi: 10.1109/ACCESS.2020.3005268.

[58] SAMIZADEH NIKOUI, T., RAHMANI, A. M., BALADOR, A, et al. “Internet
of Things architecture challenges: A systematic review”, International
Journal of Communication Systems, v. 34, pp. e4678, 2021. doi: 10.1002/
dac.4678.

o7

[59] XU, Y., HELAL, A. “Scalable Cloud-Sensor Architecture for the Internet of
Things”, IEEE Internet of Things Journal, v. 3, pp. 285298, 2016. doi:
10.1109/JI0T.2015.2455555.

[60] CATARINUCCI, L., DE DONNO, D., MAINETTI, L., et al. “An IoT-Aware
Architecture for Smart Healthcare Systems”, IEEE Internet of Things
Journal, v. 2, pp. 515-526, 2015. doi: 10.1109/JI0T.2015.2417684.

[61] LORIA, M. P., TOJA, M., CARCHIOLO, V., et al. “An efficient real-time
architecture for collecting IoT data”. In: 2017 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 1157-1166,
2017. doi: 10.15439/2017F381.

[62] VUCINIC, M., TOURANCHEAU, B., ROUSSEAU, F., et al. “OSCAR: Object
security architecture for the Internet of Things”. In: Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia

Networks 2014, pp. 1-10, 2014. doi: 10.1109/ WoWMoM.2014.6918975.

[63] WANG, T., KE, H., ZHENG, X., et al. “Big Data Cleaning Based on Mobile
Edge Computing in Industrial Sensor-Cloud”, IEEE Transactions on In-
dustrial Informatics, v. 16, pp. 1321-1329, 2020. doi: 10.1109/T11.2019.
2938861.

[64] MONTEIRO, L. C., DELICATO, F. C., PIRMEZ, L., et al. “DPCAS: Data
Prediction with Cubic Adaptive Sampling for Wireless Sensor Networks”.
In: Au, M. H. A., Castiglione, A., Choo, K.-K. R., et al. (Eds.), Green,
Pervasive, and Cloud Computing, pp. 353-368, Cham, 2017. Springer In-
ternational Publishing. ISBN: 978-3-319-57186-7.

[65] AL-HOQANI, N., YANG, S.-H. “Adaptive Sampling for Wireless Household
Water Consumption Monitoring”, Procedia Engineering, v. 119, pp. 1356—
1365, 2015. ISSN: 1877-7058. doi: 10.1016/j.proeng.2015.08.980.

[66] GUPTA, M., SHUM, L. V., BODANESE, E., et al. “Design and evaluation of an
adaptive sampling strategy for a wireless air pollution sensor network”. In:
2011 IEEFE 36th Conference on Local Computer Networks, pp. 10031010,
2011. doi: 10.1109/LCN.2011.6115154.

[67] SARKAR, C., RAO, V. S., VENKATESHA PRASAD, R., et al. “VSF: An
Energy-Efficient Sensing Framework Using Virtual Sensors”, IEEE Sen-
sors Journal, v. 16, pp. 5046-5059, 2016. doi: 10.1109/JSEN.2016.
2546839.

o8

|68

[69]

[70]

71

[72]

73]

[74]

|75]

[76]

7]

VIKASH, MISHRA, L., VARMA, S. “Performance evaluation of real-time
stream processing systems for Internet of Things applications”, Future
Generation Computer Systems, v. 113, pp. 207-217, 2020. ISSN: 0167-
739X. doi: 10.1016/j.future.2020.07.012.

XHAFA, F., KILIC, B., KRAUSE, P. “Evaluation of IoT stream processing at
edge computing layer for semantic data enrichment”, Future generation
computer systems, v. 105, pp. 730-736, Apr 2020. doi: 10.1016/j.future.
2019.12.031.

OUNACER, S., TALHAOUI, M. A., ARDCHIR, S., et al. “A New Ar-
chitecture for Real Time Data Stream Processing”, International Jour-
nal of Advanced Computer Science and Applications, v. 8, 2017. doi:
10.14569/1JACSA.2017.081106.

DAUTOV, R., DISTEFANO, S. “Stream Processing on Clustered Edge De-
vices”, IEEE Transactions on Cloud Computing, pp. 1-1, 2020. doi:
10.1109/TCC.2020.2983402.

LIU, D., YAN, Z., DING, W., et al. “A Survey on Secure Data Analytics in
Edge Computing”, IEEE Internet of Things Journal, v. 6, pp. 4946-4967,
2019. doi: 10.1109/JI0T.2019.2897619.

GARG, S., SINGH, A., KAUR, K., et al. “Edge Computing-Based Security
Framework for Big Data Analytics in VANETS”, IEEE Network, v. 33,
pp. 72-81, 2019. doi: 10.1109/MNET.2019.1800239.

GUAN, Z., ZHANG, Y., WU, L., et al. “APPA: An anonymous and privacy
preserving data aggregation scheme for fog-enhanced loT”, Journal of Net-
work and Computer Applications, v. 125, pp. 82-92, 2019. ISSN: 1084-
8045. doi: 10.1016/j.jnca.2018.09.019.

CHAUHAN, R., KAUR, H., CHANG, V. “An Optimized Integrated Framework
of Big Data Analytics Managing Security and Privacy in Healthcare Data”,
Wireless Personal Communications, v. 117, pp. 87-108, Mar 2021. ISSN:
1572-834X. doi: 10.1007/s11277-020-07040-8.

EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., et al. “The Many Faces
of Publish /Subscribe”, ACM Comput. Surv., v. 35, pp. 114-131, jun. 2003.
ISSN: 0360-0300. doi: 10.1145/857076.857078.

ZHANG, H., CHEN, G., OOI, B. C., et al. “In-Memory Big Data Manage-

ment and Processing: A Survey”, IEEE Transactions on Knowledge and

99

Data Engineering, v. 27, pp. 1920-1948, 2015. doi: 10.1109/TKDE.2015.
2427795.

[78] ELMAZI, D., CUKA, M., IKEDA, M., et al. “A Fuzzy-Based System for Actor
Node Selection in WSANs Considering Load Balancing of Actors”. In:
Barolli, L., Leu, F.-Y., Enokido, T., et al. (Eds.), Advances on Broadband
and Wireless Computing, Communication and Applications, pp. 97-109,
Cham, 2019. Springer International Publishing. ISBN: 978-3-030-02613-4.

[79] HA, S., RHEE, 1., XU, L. “CUBIC: A New TCP-Friendly High-Speed TCP
Variant”, SIGOPS Oper. Syst. Rev., v. 42, pp. 64-74, jul. 2008. ISSN:
0163-5980. doi: 10.1145/1400097.1400105.

[80] SALKIND, N. FEncyclopaedia of Research Design, Vol. 1. Oaks, CA, Sage
Publications, 2010.

[81] HYNDMAN, R., ATHANASOPOULOS, G. Forecasting: Principles and Prac-
tice. Australia, OTexts, 2014.

[82] WRIGHT, D. J. “Forecasting Data Published at Irregular Time Intervals Using
an Extension of Holt’s Method”, Management Science, v. 32, pp. 499-510,
1986.

[83] CAMPELLO, R. J. G. B.,, MOULAVI, D., SANDER, J. “Density-Based Clus-
tering Based on Hierarchical Density Estimates”. In: Pei, J., Tseng, V. S.,
Cao, L., et al. (Eds.), Advances in Knowledge Discovery and Data Mining,
pp. 160-172, Berlin, Heidelberg, 2013. Springer. ISBN: 978-3-642-37456-2.

[84] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-learn:
Machine Learning in Python”, Journal of Machine Learning Research,
v. 12, pp. 2825-2830, 2011.

[85] SCHUBERT, E., SANDER, J., ESTER, M., et al. “DBSCAN Revisited, Re-
visited: Why and How You Should (Still) Use DBSCAN”, ACM Trans.
Database Syst., v. 42, jul. 2017. ISSN: 0362-5915. doi: 10.1145/3068335.

[86] TANGANELLI, G., VALLATI, C., MINGOZZI, E. “CoAPthon: Easy devel-
opment of CoAP-based IoT applications with Python”. In: 2015 IEEFE
2nd World Forum on Internet of Things (WF-IoT), pp. 63-68, 2015. doi:
10.1109/WF-10T.2015.7389028.

[87] CARLSON, J. L. Redis in Action. USA, Manning Publications Co., 2013.
ISBN: 1617290858.

60

[88] DWYER, G., AGGARWAL, S., STOUFFER, J. Flask: Building Python Web
Services. UK, Packt Publishing, 2017. ISBN: 1787288226.

[89] CHAI, T., DRAXLER, R. R. “Root mean square error (RMSE) or mean abso-
lute error (MAE)?” Geoscientific Model Development Discussions, v. 7,
pp. 1525-1534, fev. 2014. doi: 10.5194/gmdd-7-1525-2014.

[90] KAUP, F., GOTTSCHLING, P., HAUSHEER, D. “PowerPi: Measuring and
modeling the power consumption of the Raspberry Pi”. In: 39th Annual
IEEE Conference on Local Computer Networks, pp. 236-243, 2014. doi:
10.1109/L.CN.2014.6925777.

[91] NIELSEN, J. “Chapter 5 - Usability Heuristics”. In: NIELSEN, J. (Ed.), Us-
ability Engineering, Morgan Kaufmann, pp. 115-163, San Diego, 1993.
ISBN: 978-0-12-518406-9. doi: 10.1016/B978-0-08-052029-2.50008-5.

[92] SHNEIDERMAN, B. “Response Time and Display Rate in Human Performance
with Computers”, ACM Comput. Surv., v. 16, pp. 265-285, set. 1984.
ISSN: 0360-0300. doi: 10.1145/2514.2517.

61

	List of Figures
	List of Tables
	Introduction
	Background Concepts
	Internet of Things (IoT)
	IoT System Architectures
	IoT Application Protocols
	Wireless Sensor Networks (WSN)
	Energy Preservation in WSN
	Cloud, Fog and Edge Computing
	Data Stream Processing
	Data Outliers and Outlier Detection

	Related Work
	LE-Stream: a Latency and Energy-Aware Framework for Data Stream Processing in IoT
	Overview and Architecture
	Adaptive Sampling Strategy
	Active Node Selection
	Setting Workload Statistics
	Evaluating Workload Skewness
	Selecting Sensor Nodes To Deactivate

	Two-Step Data Prediction Model
	Identifying and Cleaning Incorrect Samples
	Aggregating Data

	Experimental Evaluation
	Use Case and Test Environment
	Data Accuracy Analysis
	Efficiency in Terms of Energy Consumption Reduction
	Effectiveness of Active Node Selection on Improving the Workload Distribution
	Data Stream Processing Speed

	Conclusion and Future Work
	References

