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EMBEDDINGS DE PALAVRAS PARA TRANSFERÊNCIA DE APRENDIZADO
DE REDES DE DEPENDÊNCIA RELACIONAL COM BOOSTING
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Algoritmos de aprendizado de máquina têm obtido sucesso nas mais diversas
áreas de aplicação. Porém, os métodos tradicionais assumem dados independentes e
identicamente distribuídos (i.i.d.), desprezando a estrutura relacional dos dados, que
contém informações cruciais sobre como objetos participam de relações e eventos.
Dentre os algoritmos de aprendizado de máquina, os modelos de aprendizado estatís-
tico consistem em uma representação concisa das dependências probabilísticas entre
atributos de um objeto. O aprendizado estatístico relacional estende aprendizado
estatístico para representar e aprender a partir de dados contendo diferentes objetos
e como estes se relacionam. Apesar de não seguirem a suposição i.i.d., também as-
sumem que dados de treinamento e teste seguem a mesma distribuição. Para lidar
com cenários em que os dados têm diferentes distribuições, surgiu a transferência de
aprendizado, que consiste em usar o conhecimento adquirido em uma ou mais tarefas
já resolvidas como um ponto de partida para resolver uma nova tarefa. Para aplicar
transferência de aprendizado em aprendizado estatístico relacional, o primeiro de-
safio é como transferir a estrutura, mapeando o vocabulário de um domínio de
origem para um domínio de destino. Nesta dissertação, propomos o TransBoostler,
que utiliza vetores de palavras pré-treinados para mapear vocabulários, uma vez
que os nomes dos predicados normalmente tem uma conotação semântica que pode
ser mapeada para um modelo de espaço vetorial. Após a transferência, aplica-se
revisão de teoria para adaptar o modelo mapeado aos novos dados de treinamento.
Durante os experimentos, o TransBoostler realizou com êxito a tarefa de transferir
árvores entre domínios com desempenho igual ou superior a trabalhos anteriores, e
com redução no tempo de treinamento para a maioria dos cenários investigados.
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Machine learning algorithms have proven to be a great asset in different ap-
plications. However, traditional machine learning methods assume data is inde-
pendent identically distributed (i.i.d.) and despises the relational structure of the
data, which contains crucial information about how objects participate in relation-
ships and events. Statistical machine learning models are a concise representation
of probabilistic dependencies among the attributes of an object. Statistical Rela-
tional Learning (SRL) extends statistical learning to represent and learn from data
with several objects and their relations. SRL models do not suppose data to be
i.i.d. but, as traditional machine learning models, also assume training and testing
data are sampled from the same distribution. Transfer learning has emerged as an
essential technique to handle scenarios where such an assumption does not hold,
as it relies on leveraging the knowledge acquired in one or more learning tasks as
a starting point to solve a new task. When employing transfer learning to SRL,
the primary challenge is to transfer the learned structure, mapping the vocabulary
from a source domain to a different target domain. In this dissertation, we propose
TransBoostler, which uses pre-trained word embeddings to guide the mapping as
the name of a predicate usually has a semantic connotation that can be mapped
to a vector space model. After transferring, TransBoostler employs theory revision
to adapt the mapped model to the target data. In the experimental results, Trans-
Boostler has successfully transferred trees from a source to a different target domain.
It performs equal or better than previous works and requires less training time for
most of the investigated scenarios.

vii



Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Knowledge 6
2.1 Relational Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Inductive Logic Programming . . . . . . . . . . . . . . . . . . 9
2.1.3 Statistical Relational Learning . . . . . . . . . . . . . . . . . . 11

2.2 RDN-Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Relational Dependency Networks . . . . . . . . . . . . . . . . 13
2.2.2 Functional gradient boosting of RDNs . . . . . . . . . . . . . 15
2.2.3 Algorithm for learning RDNs . . . . . . . . . . . . . . . . . . 16

2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Notations and Definition . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Transfer Learning Techniques and Approaches . . . . . . . . . 20
2.3.3 Relation-based Transfer Learning . . . . . . . . . . . . . . . . 22

2.4 Words Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 fast-Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 TransBoostler: word embeddings-based transfer learning algo-
rithm 30
3.1 Transferring the Structure . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Mapping Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Text Normalization . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



3.2.2 Word-Vectors Representation . . . . . . . . . . . . . . . . . . 33
3.2.3 Mapping by Similarity . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Theory Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experiments and Results 40
4.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Depth-first mapping . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Ranked-first mapping . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion 54
5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 56

ix



List of Figures

2.1 Example of an RDN for the movies domain. . . . . . . . . . . . . . . 15
2.2 Example of RRT to predict if A workedunder B. . . . . . . . . . . . . 16
2.3 Difference between traditional machine learning processes (left) and

transfer learning processes (right). . . . . . . . . . . . . . . . . . . . . 20
2.4 Example of relational-based transfer mechanisms [1]. . . . . . . . . . 23

3.1 Example of transference from IMDB (left) to UW-CSE (right) given
the source structure and the corresponding mappings. . . . . . . . . . 31

3.2 Example of representation such that “company has office” and “com-
pany ceo” are in the same feature space. . . . . . . . . . . . . . . . . 34

3.3 Representation of the ranked-first mapping as the Maximum-Weight
Bipartite Matching problem when transferring from Cora to IMDB. . 35

4.1 Learning curves for AUC ROC (left) and AUC PR (right) for IMDB
→ UW-CSE transfer experiment when performing depth-first mapping. 50

4.2 Learning curves for AUC ROC (left) and AUC PR (right) for IMDB
→ Cora transfer experiment when performing depth-first mapping. . 50

4.3 Learning curves for AUC ROC (left) and AUC PR (right) for Cora
→ IMDB transfer experiment when performing depth-first mapping. . 51

4.4 Learning curves for AUC ROC (left) and AUC PR (right) for Yeast
→ Twitter transfer experiment when performing depth-first mapping. 51

4.5 Learning curves for AUC ROC (left) and AUC PR (right) for Twitter
→ Yeast transfer experiment when performing depth-first mapping. . 51

4.6 Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Sports → NELL Finances transfer experiment when performing
depth-first mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Finances → NELL Sports transfer experiment when performing
depth-first mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Learning curves for AUC ROC (left) and AUC PR (right) for Yeast
→ Twitter transfer experiment when performing ranked-first mapping. 52

x



4.9 Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Sports → NELL Finances transfer experiment when performing
ranked-first mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Finances → NELL Sports transfer experiment when performing
ranked-first mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



List of Tables

3.1 Similarities between pairs of predicates of the same arity in Cora and
IMDB domains using WMD. . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Mappings when using depth-first (left) and ranked-first (right) map-
ping approaches for transferring Cora → IMDB based on Table 3.1. . 36

4.1 Statistics of the six datasets used to evaluate TransBoostler. . . . . . 42
4.2 Difference between TreeBoostler and TransBoostler using four simi-

larity metrics when mapping IMDB to Cora using depth-first mapping
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Difference between TreeBoostler and TransBoostler using four simi-
larity metrics when mapping Twitter to Yeast using depth-first map-
ping approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Comparison between TransBoostler and baselines for IMDB and Cora
datasets when performing depth-first mapping. . . . . . . . . . . . . . 46

4.5 Comparison between TransBoostler and baselines for Yeast and Twit-
ter datasets when performing depth-first mapping. . . . . . . . . . . . 46

4.6 Comparison between TransBoostler and baselines for NELL Sports
and NELL Finances datasets when performing depth-first mapping. . 46

4.7 Comparison between TransBoostler and baselines for pair of datasets
IMDB → UW-CSE independent of the mapping approach. . . . . . . 47

4.8 Difference between TreeBoostler and TransBoostler using four simi-
larity metrics when mapping Yeast to Twitter using ranked-first map-
ping approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Comparison between TransBoostler and baselines for Yeast and Twit-
ter datasets when performing ranked-first mapping. . . . . . . . . . . 49

4.10 Comparison between TransBoostler and baselines for NELL Sports
and NELL Finances datasets when performing ranked-first mapping. 50

xii



List of Algorithms

2.1 A generic ILP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 RDN-Boost: Gradient Tree Boosting for RDN’s [2] . . . . . . . . . . . 18

3.1 Top-Level TransBoostler Transfer Algorithm . . . . . . . . . . . . . . . 32
3.2 Depth-first mapping by similarity given (ordered) source and target

lists of predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Ranked-first mapping by similarity given source and target lists of

predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Top-Level Theory Revision Algorithm [3] . . . . . . . . . . . . . . . . 39

xiii



Chapter 1

Introduction

Machine Learning is a subfield of Artificial Intelligence concerned with constructing
computer programs able to perform a task by experience [4]. Machine learning
algorithms have proven to be a great asset in different applications such as text
mining, computer vision, speech recognition, and others [5–7]. Traditional machine
learning methods assume data is independent and identically distributed (i.i.d.). In
this way, data is represented in a tabular format using attribute-value pairs. Each
example corresponds to a single row or tuple, and each feature or attribute to a single
column. This type of representation despises the relational structure of the data,
which contains crucial information about how objects participate in relationships
and events [8]. Most real-world data is relational and consists of different types of
entities characterized by a different set of attributes [9].

Statistical Relational Learning (SRL) combines elements from statistical and
probabilistic modeling to relational learning aiming at representing, reasoning, and
learning in domains with complex relational and rich probabilistic structures [10].
Thus, the input to an SRL learning algorithm is often just a single and richly con-
nected instance and not a sequence of i.i.d. observations as for traditional machine
learning methods. SRL has succeeded in many real-world applications as real data
also requires handling uncertainty from noise and incomplete information like mis-
spellings and occlusions. As most machine learning models, SRL models also assume
training and testing data must belong to the same feature space and are sampled
from the same distribution. If those distributions differ from each other, a new
model must be trained using newly collected data.

To address the existence of training and testing data from different distributions,
Transfer Learning [1] has emerged as an important technique given that collecting
new data can be a costly or even impossible task. Transfer learning has recently
gained much interest from researchers due to its success in Deep Learning applica-
tions [6]. Based on how people can intelligently apply knowledge learned previously
to solve new problems, transfer learning relies on leveraging the knowledge acquired
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in one or more learning tasks and domains to achieve a good initial performance
for solving a new task. One example is the classification of emails as spam or not
spam. One needs to collect a lot of labeled emails from a group of users to train a
classifier. If a new email user with an email distribution different from the first set
shows up, we might adapt the learned model for this user. Transfer learning cares
most about the target tasks rather than learning all of the source and target tasks
simultaneously. Furthermore, it also targets at reducing the amount of time it takes
to learn a model from scratch [11]. More importantly, applying transfer learning to
SRL models admits training and testing domains to differ in distributions as it has
successfully been verified in previous works [3, 12, 13]. However, relational learning
differs from function-based and traditional machine learning methods since in the
former data usually has a rich vocabulary composed of classes, objects, their prop-
erties and relationships [14]. Therefore, the challenge of applying transfer learning
to SRL models is primarily how to transfer the learned structure, mapping the vo-
cabulary from a source domain to the most appropriate objects, properties, and
relations in a different target domain. For example, suppose a model built upon a
movie domain defining a relation between an actor working under a director. Now,
suppose one wants to learn the concept of a student being advised by a professor in
an academic domain. Arguably, those relations in both domains have a similar se-
mantic, and learning the advised by relation could benefit from the concept learned
for describing the worked under relation. However, to transfer the concept from
the source movie domain to the target university domain, there are other predicates
that need to be mapped, besides the main ones. For example, the movie domain
has actor, director, movie, properties that could be mapped to student, professor,
publication predicates, to name a few.

TreeBoostler [3], a system that employs transfer learning to the Relational De-
pendency Boosting (RDN-Boost) framework [2], recursively tries to transfer nodes
from source relational regression trees to build target relational regression trees. It
tries every possible mapping from a source predicate and chooses the best mapping
using weighted variance as the decision criterion. Trying every possible mapping
can be costly and time-consuming. Thus, devising other more efficient mechanisms
for mapping the vocabulary is vital in Statistical Relational learning methods.

In this dissertation, we propose to use pre-trained word embeddings [15] to guide
the mapping as the name of the predicates usually have a semantic connotation that
can be mapped to a Vector Space Model (VSM). The mechanism proposed is named
as TransBoostler. As TreeBoostler, it also focuses on transferring Boosted Relational
Dependency Networks (RDNs) but it uses pre-trained word vector representations
of predicates for mapping. As presented in [2], boosting RDNs has superior per-
formance when compared to traditional SRL approaches. TransBoostler maps the
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predicates that appear in trees learned in the source domain to the most similar
predicates in a target domain. Thus, this approach leads to a richer mapping as it
takes advantage of the context of embeddings to choose mappings which also reduces
the searching space.

Nevertheless, only transferring vocabulary may result in possible faults that can
prevent theories from predicting examples correctly [13]. As TreeBoostler, Trans-
Boostler also includes a Theory Revision [16] component to propose modifications
in order to count on predicates from the target domain that were not mapped to
any predicate from the source domain. Furthermore, the same concept can be ex-
pressed in different ways in the VSM. So the revision component may accommodate
modifications pointed out by the target training data. In the context of relational
regression trees, theory revision includes modifying the trees by adding or remov-
ing branches in specific locations. Those locations are selected according to the
performance of the current tree to cover or not positive and negative examples.

1.1 Research Questions

This dissertation aims at answering the following research questions, regarding
similarity-based transfer learning and baselines:

Q1 Does TransBoostler learn more accurate models than the baselines?

Q2 Can TransBoostler transfer theories by relying on word embeddings similarity?

Q3 How important is revising the theory when transferring relies on word
embeddings-based similarity?

Q4 Is the mapping by similarity approach faster than the baselines?

Q5 Does TransBoostler perform better than the baselines with increasing amounts
of examples in the target data?

In order to answer these questions, we evaluated TransBoostler in real-world rela-
tional datasets. TransBoostler trains on one single fold and test the remaining folds
to simulate the scenario of few data available. Then, we compare the performance of
TransBoostler for different amounts of target data using traditional cross-validation
methodology. We also tested mapping by similarity using four different similar-
ity metrics. Our results demonstrate that the proposed algorithm can successfully
transfer learned theories across different domains by mapping predicates using sim-
ilarity (Q2). However, mapping by similarity can impair performance depending
on the source and target domains, and the amount of data available (Q1 and Q5).
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For some pairs of datasets, TransBoostler proved to be faster than at least one of
the baselines. However, for others, it is no longer faster than learning from scratch
(Q4). Lastly, results show that TransBoostler cannot learn accurate models by just
transferring the structure. Thus, for most of the experiments, revising the structure
is important to improve the theories (Q3).

1.2 Contributions

The contributions of this dissertation include:

• A word embeddings similarity-based transfer learning algorithm that builds
target trees based on the structure learned in previously relational tasks. It
takes advantage of the context of predicates and performs predicate mapping
by similarity, which has good performance and can be less time-consuming;

• A mapping component that can be applied to different and more general re-
lational models, which is the main contribution of this dissertation;

• An accepted paper at the 30th International Conference on Inductive Logic
Programming. The paper “Mapping Across Relational Domains for Transfer
Learning with Word Embeddings-based Similarity” [17] was selected as the
recipient of the best student paper award for the conference track.

1.3 Outline

The remainder of this dissertation is organized as follows:
Chapter 2, introduces necessary background to understand the contents of this

work. It is given a brief overview of First-Order Logic, Inductive Logic Programming,
and Statistical Relational Learning. We describe the algorithm for boosting RDNs
along with concepts for understanding Relational Dependency Networks, Functional
Gradient Boosting, and Relational Regression Trees. Secondly, we review Word
Embeddings, the fast-Text model, and the similarity metrics used in this work.
Lastly, we present some related work and compare the literature with our proposed
method.

Chapter 3 presents the proposed algorithm named TransBoostler and its process
of transference. We propose two approaches to perform mapping by similarity using
pre-trained word embeddings: (1) following the order in which predicates appear in
the source structure, so predicates closer to the root are the first to be mapped and;
(2) mapping is performed by following an ordered list of similarities between pairs
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of source and target predicates. In this approach, the order in which each predicate
appears in the source structure does not matter.

Chapter 4 presents the experimental results of TransBoostler for different
datasets. We compare results with previous work and learning from scratch in
the target domain in two experiments for each mapping approach. The first ex-
periment simulates a transfer learning environment with limited target data. The
second considers a scenario with increasing amounts of target data.

Finally, Chapter 5 presents conclusions and some future work directions.
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Chapter 2

Background Knowledge

In this chapter, we introduce an overview of concepts used to build this work. First,
we describe the concepts related to relational learning by presenting First-order logic,
Inductive Logic Programming, and an overview of Statistical Relational Learning.
Then, we describe the Relational Dependency Boosting (RDN-Boost) framework
along with Relational Dependency Networks, Functional Gradient Boosting, and
Relational Regression Trees. Third, we introduce an overview of Transfer Learning.
Finally, we introduce Word Embeddings, the fast-Text model, and the similarity
metrics applied for mapping predicates. Pre-processing tools used in this dissertation
are briefly described as they are mentioned in Section 3.2.

2.1 Relational Learning

Traditional machine learning methods such as decision trees, artificial neural net-
works, and linear models expect inputs in a tabular format. In this type of repre-
sentation, each example corresponds to a single row or tuple, and each feature or
attribute to a single column. This type of representation considers attribute-value
pairs and assumes independent and identically distributed (i.i.d.) entities.

These techniques are limited from a knowledge representation perspective, which
is essentially propositional (based on boolean or propositional logic). Propositional
representation despises the relational structure of the data, which contains crucial
information about how objects participate in relationships and events [8]. Most
real-world data is relational, and consist of different types of entities characterized
by different sets of attributes [9] such as chemical databases like Yeast [18]. Then,
exploring the structure of relational data allows finding solutions to more general
and complex problems [8].

Relational representation arises as a more expressive knowledge representation
for learning because it can represent domains for multiple entities and the relation-
ships among them. Relational datasets store data across multiple tables, where each
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table represents different types of entities and how these entities may relate to each
other. In addition, dealing with real data also requires the ability to handle uncer-
tainly that can arise on many levels. Real-world data can be noisy and/or contain
incomplete information like occlusions and misspellings. Relational learning tasks
require sophisticated treatment of uncertainly at multiple levels of representation.

2.1.1 First-Order Logic

A robust way to represent relational data is using First-Order Logic (FOL). FOL is
a formal language that aims to knowledge representation and reasoning in Artificial
Intelligence [19]. It is an extension of propositional logic to represent objects, their
properties, and how these objects relate to each other [20]. It also assumes that
certain relations between objects may or may not hold. Domains are represented by
logical facts containing predicates and terms. Logical facts are statements, and a
set of logical facts form a knowledge base. Knowledge bases can also contain rules.

Constants are used to represent objects from the real world. Variables are terms
to be substitute by constants or function symbols to answer questions about which
constants relate to each other. Predicates represent relations between objects in
the domain. We follow the Prolog [21] syntax. Variables’ names start with capital
letters and predicates and constants are in lowercase. The example publication(title,
jane) is a logical fact that can be used to represent the relation between a published
material identified by title and the person named as jane that wrote that material.
Both are objects of the real world.

A relation is defined by a set of tuples of objects that satisfies it. In the former
example, publication is the name of the predicate while title and jane are constants
representing the entities of the domain. The name does not matter formally, but
it is important for readability to a clear interpretation of symbols. Arguments of a
predicate are associated with a type and predicates have an arity, i.e., the size of
the tuple of arguments to represent a relation. In our example, the first argument
is associated with the type title while the second is associated with the type person.
Since we have two arguments, we say this predicate is of arity two or its a binary
relation. Predicates can also represent properties of objects. Two examples are actor
and director to distinguish if a person is an actor or a director (or both). As actor
and director have one single argument of type person, we say their arity is one or
its a unary relation. Predicates are usually referred to as name/n, where n is their
arity.

Some relations are functional, which means a given object is related to exactly
one other object by the relation. Taking the relation cosine as example, any angle
has one and only number that is its cosine. It is a mapping of a set of tuples in
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which every input is related to a unique output. Back to the example, the function
symbol cosine gives the cosine of every possible angle of interest. Function symbols
are used to refer to objects without using their names.

A term can be a variable, a constant or a function symbol applied to terms.
Terms represent objects of the real world. If t1, ..., tn are terms, and f a function
symbol of arity n, then we say f(t1, ..., tn) is also a term [22]. An atom is a predicate
applied to terms, i.e., a predicate symbol followed by a list of terms as its arguments.
Our example publication(title, jane) is an atom that states that title was published
by jane. The atom may be true or false, depending on if it holds or not a relation in
the real world. Atoms that assert a relationship among constants are called ground
atoms (e.g. publication(title, person)). A literal can be an atom or a negated atom.
If the atom is true, then the negated atom is false and vice-versa. In our example,
¬ publication(title, jane) states that title was not published by jane.

Atoms are connected to build formulas. A single atom is already a formula
and connectives can be used to build complex formulas. There are five logical
connectives. Considering two formulas P and Q, the connectives are:

• ¬ (not) means ¬P is the negation of P . It is the only connective that operates
on a single atom. It states that ¬P is true whenever P is false;

• ∧ (and) states that (P ∧ Q) is true whenever both atoms P and Q are true.
Then, P ∧ Q is called a conjunction. If one of the literals is false, then the
conjunction is false;

• ∨ (or) states that (P ∨Q) is true if at least one of the literals, P or Q, is true.
This construction is called a disjunction;

• → or ← (implies). A formula such as P → R is an implication or conditional.
That means R is a conclusion or consequent of its premise P . Then, P → R

is true whenever R is true or both P and R are false;

• ↔ (equivalent) states that P ↔ Q is true whenever both P and Q have the
same logical value. This type of construction can also be called biconditional.

FOL has two standard quantifiers: the universal quantifier (∀) and the existential
quantifier (∃). Quantifiers are used to express properties or concepts about the entire
collection of objects in the real world. We can express the information “Socrates is
a human then he is a mortal” using FOL:

human(socrates)→ mortal(socrates)

If we want to say that every human is mortal, we can use the universal qualifier:
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∀X human(X)→ mortal(X)

The formula above is true if and only if all sentences obtained by substituting X
for a constant are true, i.e., if the implication is true for all objects in the universe.

The information “There is a prime number that it is even” can also be expressed
using FOL. By using the existential qualifier, we can say that exists at least one
prime number that is even:

∃X prime(X) ∧ even(X)

The formula above will be true if prime(X) ∧ even(X) is true for some object
in the universe. A disjunction of literals preceded by a universal quantifier is called
a clause. It must have a quantifier for each variable presented in the disjunction of
literals. A Horn clause is a disjunction of literals with at most one positive literal. A
Horn clause is usually written in its implication form and omitting the quantifiers.
In the example below, the disjunction daughter(Y,X) ∨ son(Y,X) is called the body
of the clause, and parent is called the head.

parent(X, Y )← daughter(Y,X) ∨ son(Y,X)

A Horn clause with exactly one positive literal is called a definite clause. Where
there are no positive literals, the clause is called a negative Horn clause. A fact is
a clause whose body is empty, consisting of a single positive literal. We usually do
not use arrows while representing facts (e.g. parent(james,harry)).

2.1.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subarea of Artificial Intelligence formed at
the intersection of Machine Learning and Logic Programming [23]. ILP deals with
learning a general theory, given a set of ground atoms as examples to learn a target
predicate to infer the value of unseen examples [22]. ILP takes a set of logical facts
(knowledge base) into account and deals with two kinds of examples: positives and
negatives. Positive examples are the true ones, while relationships that do not hold
are called negative examples. Positive and negative examples are given as sets E+

and E−, respectively, of ground atoms. Suppose we would like to use ILP to learn
the relation parent(X,Y), which states that a person X is the father/mother of a
person Y . To learn the parent relation, consider the following knowledge base:
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KB =



father(arthur, ginny)

father(james, harry)

mother(molly, ginny)

mother(lillian, harry)

The following facts are our positive examples:

E+ =


parent(arthur, ginny)

parent(james, harry)

parent(lillian, harry)

And the following facts are our negative examples, i.e., relationships that do not
exist in the real world:

E− =


parent(ginny, arthur)

parent(harry, james)

parent(harry, lillian)

As we already have the information provided from KB and using the new facts
E+ and E−, we want to find the relationships:

H : parent(X, Y )← father(X, Y )

parent(X, Y )← mother(X, Y )

where H is our theory, a finite set of clauses, and, together with KB, should
cover all the given positive examples presented in E+ (completeness):

KB ∧H � E+

Hence, H is not a consequence of KB and E− (consistency):

KB ∧H ∧ E− 2 �

Consistency and completeness together form correctness. Then, H is correct if
it is complete and consistent [22]. The goal of an ILP system is to find a hypothesis
that covers all positive (complete) and none of the negative examples (consistent).
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To provide the reader with a general understanding of ILP algorithms and imple-
mentations, Algorithm 2.1 presents a generic ILP algorithm. It starts from the
predicate we want to learn, set as the head of a rule whose body starts empty. Each
step of the algorithm consists of adding a literal to the body of the rule to specialize
it in an attempt of making the clause not prove negative examples proved before
while still proving the positive examples. This literal can be one of the predicates
from the problem statement, the negation of one of the predicates from the problem
statement, equality between two bound variables and inequality between two bound
variables. Recursive literals are allowed in some ILP systems if they do not cause
an infinite regression.

Unfortunately, it might be not possible to find a hypothesis that is both complete
and consistent. Therefore, we want to find a hypothesis as close as possible to
correct. Thus, the goal is to find the best hypothesis given a space of candidate
solutions as ILP can be considered a search problem [23]. ILP systems differ by
the direction in which the search starts [22]. Considering how it searches for a new
clause, Algorithm 2.1 relies on the top-down approach as it starts from an empty
theory, the most general possible theory, proving all examples, and specialize it at
each step if needed. There is also the bottom-up approach, which starts from the
most specific theory and generalizes it. ILP systems usually use a quality criterion
as the stop criteria. As the goal is to classify unseen examples, one possible quality
criterion is accuracy. Algorithms stop searching for better solutions when it reaches
the desired percentage of correctly classified objects.

Algorithm 2.1: A generic ILP algorithm.
Function GENERIC_ILP_ALGORITHM(KB, E+, E-, target_predicate):

theory ← {}
while E+ > 0 do

clause ← learnNewClause(KB, E+, E-, target_predicate)
E+ ← E+ \ {positive examples covered by clause}
theory ← theory ∪ clause

end
return theory

2.1.3 Statistical Relational Learning

ILP has been a proper solution when dealing with relational data. However, the
learned rules have a deterministic nature [14]. The objective of manipulating rela-
tional data is to reach conclusions about an entity based on the properties of other
entities to which the first is related. These conclusions can be reached by finding
correlations that are not deterministic by exploring information between links [14].
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Besides, dealing with real data also requires the ability to handle uncertainly that
can arise on many levels. Real-world data can be noisy and contain incomplete
information like occlusions and misspellings. Relational learning tasks require so-
phisticated treatment of uncertainly at multiple levels of representation [10]. It
might have uncertainty about the attributes of objects, an object’s type, identity,
and relationship membership.

Statistical Relational Learning (SRL) combines elements from statistical and
probabilistic modeling to represent and learn in domains with complex relational
and rich probabilistic structure [10]. SRL models are a concise representation of
probabilistic dependencies among the attributes of different related objects. Rep-
resentations using SRL can be based on logic or frame-oriented formalisms. Most
of its popular tasks are collective classification, linked-based clustering, and link
prediction [9]. There are several different SRL formalisms, including Probabilis-
tic Relational Models [24], Relational Dependency Networks [25], Bayesian Logic
Programming [26] and Markov Logic Networks [27]. We present a brief review of
each model, except for relational dependency networks, which we detail in the next
section.

Probabilistic Relational Models (PRMs) are the first successful methods
proposed for SRL [9]. It combines logical representation with probabilistic semantics
based on directed graphical models. In PRMs, random variables correspond to at-
tributes from different tables, and edges represent correlations between sets. There
are two types of PRMs: PRMs that consist of fixed objects and their relationships
fixed and uncertainly is only over descriptive attributes of entities and relationships;
and PRMs with structural uncertainly in which objects are fixed but uncertainly is
over objects to which relationships correspond to. Parameters are learned using the
likelihood function which is defined as the probability of the data given the graph-
ical model. To learn the structure, PRMs use greedy algorithms that iteratively
modify the structure by adding, removing, or reversing edges to increase the score.
The maximum a posteriori (MAP) and score functions like Bayesian Information
Criterion (BIC) [28] can be used for evaluating different structures. The structure
with highest score is chosen as the next candidate.

Bayesian Logic Programming (BLP) is based on Bayesian networks [29]. It
uses logic programming to unify Bayesian networks with logic programming. BLPs
use Bayesian clauses that use a conditional probability table to present the dis-
tribution of the head of the clause conditional on its body [9]. Also, BLPs use
combining rules to unite the information on a single literal that is the head of sev-
eral clauses. BLPs are produced from logical programs. Logical programs consist of
sets of clauses. BLPs use Bayesian clauses, which are different from logical clauses
because they use a conditional probability table to keep the probability of the head
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conditioned to its body. Combining rules are used to compute the conditional prob-
ability distribution for the variable that includes the union of all parents. Learning
in BLPs is a probabilistic extension of learning in ILP. A score function is used to
evaluate how accurate the clauses are and the best match refers to parameters of
associated conditional probability distributions that maximize the score function.
This score function is based on maximum likelihood. Structure learning follows the
same approach of rule learning in ILP systems, i.e., adding and deleting literals, in-
stantiating variables, and using unification of variables on literals or clauses. Several
operations are executed simultaneously to speed up the learning procedure.

Markov Logic Networks (MLNs) extend FOL by adding weights for each
formula [9]. MLNs are a set of pairs of formulas and their corresponding weights.
Every formula is in FOL and weights can be any real number. Each ground in a
MLN is represented as a binary node. The value of a node is 1 if the ground atom
is true and 0 if it is false. An edge connects two nodes if the ground predicates
appear together in at least one grounding of a formula. The size of the model grows
with the number of objects. Parameter learning consists of finding the weight of the
formulas, which is equivalent to computing parameters in other models. Weights
are computed by maximizing the pseudo-likelihood of the data, which approximates
the log-likelihood that is NP-hard to compute. Structure is learned using CLAU-
DIEN [30] system, for example.

Inference is computational complex and the biggest limitation of most SRL mod-
els. Pseudo-likelihood can fail in giving significant results if querying variables are
distant in the model. Also, structure learning in SRL can face difficulties of scala-
bility and efficiency due to large datasets. Similar to ILP methods, MLNs’ structure
learning is not scalable and very inefficient for large datasets. Inference is quicker
in RDNs because they approximate joint distributions.

2.2 RDN-Boost

In this section, we introduce the SRL framework used in this work, namely RDN-
Boost. RDN-Boost learns a set of relational regression trees using gradient-based
boosting. Before describing the algorithm itself, the following subsections give an
overview of Relational Dependency Networks and Functional Gradient boosting.
Finally it describes the learning algorithm along with Relational Regression Trees.

2.2.1 Relational Dependency Networks

Propositional data record the characteristics of homogeneous and statistically inde-
pendent objects. Relational data, in contrast, record characteristics of heterogeneous
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objects and the relations among these objects [10]. Many machine learning research
has focused on “flattened” propositional data, which despises the relational structure
of the data and, as a consequence, crucial information. Relational models extend
the flat propositional representation of the variables and conditional dependencies
among them to relational representation. Also, they remove the assumption of i.i.d.
instances assumed by conventional learning techniques.

One of such models are Relational Dependency Networks (RDNs) [25], which
are graphical models that have the capacity of expressing and reasoning over depen-
dencies. Also, dealing with real-world data requires handling with autocorrelation,
which is a statistical dependency between the values of the same variable on re-
lated entities and a ubiquitous characteristic of relational datasets. RDNs allow
representing cyclic dependencies which are required to express and exploit autocor-
relation during collective inference [25]. In addition, they consist of a simple method
for structure learning and parameter estimation, so models are easier to understand
and interpret. As RDN extends Dependency Networks, we first introduce the latter.

Dependency Networks (DNs) [31] allows cyclic dependencies as it accepts bi-
directional relationships among variables. DNs are an approximate representation
of the joint distribution with a set of conditional probability distributions that are
learned independently [10]. It encodes probabilistic relationships among a set of
variables X in a way that combines characteristics of both undirected and directed
graphical models. Dependencies among variables are represented with a bidirected
graph G = (V,E) in which dependencies are quantified with a set of conditional
probability distributions P . Each node vi ∈ V corresponds to an feature Xi ∈ X
and is associated with a conditional probability distribution P (vi|Pa(vi)) that gives
the probability of the feature given its parents. G contains a directed edge from
each parent node vj to each child node vi, i.e. e(vj, vi) ∈ E iff Xj ∈ Pa(vi), where
Pa(vi) is the set of parents of node vi, a set of variables that render Xi conditionally
independent of the other variables: P (vi|V − vi) = P (vi|Pa(vi)).

RDNs extend DNs to work with relational data by approximating the joint dis-
tribution of a set of random variables as a product of conditional distributions over
a ground atom. RDNs consist of a set of predicates and function symbols that can
be grounded given the instantiation of variables. Associated with each predicate Yi
in the domain is a conditional probability distribution P (Yi|Pa(Yi)) that defines the
distribution over the values of Yi given its parents’ values Pa(Yi) [25]. Aggregators
such as count, max and average can be used to combine the values of groundings.
Figure 2.1 presents an example of RDN for the movies domain. The nodes indicate
predicates and the edges probabilistic dependencies between predicates. Note that
there are bidirectional relationships between actor, director and movie predicates
because if a person has participated in a movie, there is a probability this person
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is an actor or a director. Then, learning RDNs corresponds to learn conditional
probability distributions. To capture there distributions, NEVILLE and JENSEN
[25] use relational probability trees [32] and relational Bayesian classifiers [33].

actor director

movie

Figure 2.1: Example of an RDN for the movies domain.

2.2.2 Functional gradient boosting of RDNs

Proposed by NATARAJAN et al. [2], gradient boosting of RDNs is based on the
method proposed by FRIEDMAN [34] called gradient-tree boosting, in which poten-
tial functions are represented by sums of regression trees that grown stage-wise.

Assuming that training examples are of the form (xi, yi) for i = 1, · · · , N and
yi ∈ {1, · · · , K}, RDN-Boost is based on gradient-ascent where the learning algo-
rithm starts with an initial potential ψ0 and iteratively adds gradients ∆i. After m
iterations, the potential is given by

ψm = ψ0 + ∆1 + · · ·+ ∆m (2.1)

As proposed by FRIEDMAN [34], ∆m is the functional gradient at episode m
given by

∆m = ηm × Ex,y

[
∂

∂ψm−1

logP (y|x;ψm−1)

]
(2.2)

where ηm is the learning rate. The expectation Ex,y cannot be computed because
the joint distribution P (x,y) is unknown. Then, the functional gradient methods
treat data as a surrogate for the joint distribution and compute functional gradients
for each training example (xi, yi), instead of computing over the potential function,
conditioned on the potential from the previous iteration (ψm−1):

∆m(yi;xi) = ∇ψ

∑
i

log(P (yi|xi;ψ))|ψm−1 (2.3)

As pointed out by DIETTERICH et al. [35], functional gradient boosting is the
fitting of a regression function hm(y, x) on the training examples [(xi, yi),∆m(yi;xi)].
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hm(y, x) is not exactly the same as ∆m but it will point in the same direction
assuming that are given enough training examples. Then, the regression function is
trained in form of regression tree hm and fitted to minimize

∑
i

[hm(yi,xi)−∆m(yi,xi)]2 (2.4)

over all examples. It allows learning both the structure and the parameters
of RDNs simultaneously. Interactions among variables are introduced only when
needed, the algorithm does not consider the potentially large search space, so the
number of parameters grows with the number of the training episodes. Also, the al-
gorithm is fast and straightforward to implement, and combining multiple regression
trees contributes to avoiding overfitting [35].

2.2.3 Algorithm for learning RDNs

Each conditional probability distribution learned in RDNs can be represented as
Relational Regression Trees (RRTs) [32]. Following previous work [36], RDN-Boost
uses RRTs to fit the gradient function at every feature in the training examples.
Different from classical regression trees such as decision trees, RRTs’ inner nodes
(or test nodes) are conjunctions of literals. In RRTs, a variable introduced in some
node cannot appear in its right sub-tree, so new variables are bound along left-tree
paths [36]. Figure 2.2 presents an example of RRT.

actor(A),director(B)

movie(C,A),movie(C,B) -0.141

0.858 -0.141

True False

True False

Figure 2.2: Example of RRT to predict if A workedunder B.

For RDN-Boost, boosted trees are learned for a given relation and combined
in ensemble. Each RRT can be viewed as new features combinations, each one
corresponding to each path from the root to a leaf. It implements the regression tree
learner named TILDE [37]. The learning algorithm starts with an empty tree and
repeatedly searches for the best test for a node according to some splitting criterion
such as weighted variance. Similar to classical regression trees, examples in the
node are split into success and failure, according to the test. After every split, this
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procedure is recursively applied to obtain its corresponding subtrees. RDN-Boost
uses weighted variance as the test criterion.

Back to the example presented in Figure 2.2, the goal is to predict if A worke-
dunder B. Each path between the root and leaf can be considered as a clause in
a logic program. Then, clauses are evaluated from left to right for a given query
and the corresponding regression value is returned. In this example, B is a di-
rector and A is an actor and both worked in the same movie, as evaluated by
node movie(C,A),movie(C,B). Then, the value returned is 0.858. If A is not an
actor and/or B is not a director, node actor(A),director(B) is not satisfied, then
the regression value returned is -0.141. Intuitively, if A is not an actor and B is
not a director, there is a lower probability of A worked under B. Negative values
indicate lower probabilities. Thus, the left-most path of the tree is actor(A) ∧ di-
rector(B) ∧ movie(C,A) ∧ movie(C,B) → workedunder(A,B). The regression tree
learner is also able to learn recursive rules by introducing special predicates, such
as recursive_target for the target predicate.

The algorithm proposed by NATARAJAN et al. [2] is named RDN-Boost and is
presented in Algorithm 2.2. It iterates over all predicates, and, for each predicate
k, it generates all examples for the regression tree learner (calling the FitRelRe-
gressTree function) to get the new regression tree and updates its model (F k

m). This
process is repeated for a number of iterations m, which is the number of boosted
trees. After m steps, the current model F k

m will approximate the corresponding gra-
dient for the predicate k. Each regression tree serves as the individual components
(∆m(k)) of the final potential function. The initial potential F 1

0 is usually set to
capture the uniform distribution considering all experiments.

The function GenExamples generates the examples for the regression-tree learner
and takes as input the current predicate index k, the data, and the current model
F . It iterates over all examples and computes the probability and the gradient for
each one. Computing the probability yi is done considering all the trees for Yi.
Regression values are computed based on the groundings of the current example, so
the gradient is set as the weight of the example. The main algorithm iterates over
all examples and learns the potentials for each predicate. The set of regression trees
for each predicate forms the structure of the conditional distribution and the set of
leaves form the parameters of the conditional distribution.

2.3 Transfer Learning

Machine learning models often assume training and test data are sampled from the
same distribution [38]. If distributions differ, a new model must be trained from
scratch using newly collected training data. Furthermore, SRL models may suffer
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Algorithm 2.2: RDN-Boost: Gradient Tree Boosting for RDN’s [2]
Function TreeBoostForRDNs(Data):

for 1 ≥ k ≥ K do
for 1 ≥ m ≥M do

Sk ← GenExamples(k;Data;F k
m−1)

∆m(k)← FitRelRegressTree(Sk;L)
F k
m ← F k

m−1 + ∆m(k)

end
P (Yk = yk|Pa(Xk)) α ψ

k

end
return
Function GenExamples(k,Data,F):

S ← 0
for 1 ≥ i ≥ Nk do

Compute P (yik = 1|Pa(xik))
∆(yik;x

i
k)← I(yik = 1)− P (yik = 1|Pa(xik))

S ← S ∪ [(xik, y
i
k),∆(yik;x

i
k)]

end
return S

from the lack of high-quality data instances and a long training time. When there
are too many relations, the available ones may be too scarce to learn an accurate
model [1].

Transfer Learning [1] has emerged as an important technique when training and
testing data differ in distribution. As data can be easily outdated, and newly data
can be expensive or impossible to collect, it may be the key to reduce re-calibration
effort as a model trained in one time period can be adapted to predict data in a
new time period [1, 38]. Besides, as most machine learning models may only succeed
when trained using large amounts of data, models may have poor performance in new
scenarios. Transfer learning aims at providing machine learning methods with the
ability of recognizing knowledge previously learned in a source domain and apply
this knowledge to a new model in a target domain. It contributes to improving
performance and tends to make learning a new task less time- and data-consuming,
as exploiting knowledge learned from one or more previous tasks avoids learning
from scratch one specific domain. Most important, it allows domains, tasks, and
distributions to differ [38]. It also assists in solving data sparsity and cold start
problems in large-scale and online applications [1]. Transfer Learning has attracted
researchers due to its success in Deep Learning applications [11]. And it is suitable
for relational learning to overcome the reliance on large-high-quality data as it relies
on useful information provided from other related domains [1].
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2.3.1 Notations and Definition

Following the notations introduced by PAN and YANG [38], a domain D consists of
two components: a feature space X and a marginal probability distribution P (X),
where X = {x1, · · · , xn} ∈ X . Taking the document classification problem as an
example, where each term is a binary feature, X is the space of all term vectors, xi
is the ith term vector which corresponds to some documents, and X is a particular
learning sample. In general, if two domains are different, they may have different
feature spaces or different marginal probability distributions.

Given a specific domain D = {X , P (X)}, a task consists of two components: a
label space Y and a objective predictive function f(·), and it is denoted by T =

{Y , f(·)}. f(·) is a not observed function that can be learned from the training data
and can be used to predict unseen examples. Training data consists of pairs {xi, yi},
where xi ∈ X and yi ∈ Y . We use f(x) to predict the corresponding label of a new
instance x. From a probabilistic point of view, f(x) can be written as a conditional
probability P (y|x).

Given only one source domain DS and one target domain DT , which is
the most popular case in literature, we denote the source domain as DS =

{(xS, yS), · · · , (xSn , ySn)}, where xSi
∈ XS is the data instance and ySi

∈ YS is
its corresponding label. Similarly, we denote the target domain data as DT =

{(xT , yT ), · · · , (xTn , yTn)}, where xTi ∈ XT and yTi ∈ YT is its corresponding label.
In most cases, 0 ≤ nt << ns. Finally, we can define transfer learning following [38]:

Definition 2.1. Transfer Learning: Given a source domain DS and a learning
task TS, a target domain DT and a learning task TT , transfer learning aims to
help improve the learning of the target predictive function fT (·), i.e., the conditional
probability distribution PT (YT |XT ), in DT using knowledge in DS and TS, where
DS 6= DT , or TS 6= TT .

We illustrate the transfer learning process in Figure 2.3. As can be seen, in a
traditional machine learning process (left), models learn from scratch, while transfer
learning techniques (right) transfer the knowledge previously learned from one or
more solved tasks to a target task that has fewer training data available. It settles
the problem of lack of data in the target domain with more knowledge gained from
the source tasks.

As a domain is a pair D = {X , P (X)}, so the condition DS 6= DT implies that
either XS 6= XT or PS(X) 6= PT (X). Either the term features are different between
two sets, or their marginal distributions are different. In the same way, as a task is
defined as a pair T = {Y , P (Y |X)}, so the condition TS 6= TT implies that either
YS 6= YT or P (YS|XS) 6= P (YT |XT ). When target and source domains are the same
(DS = DT ) and so are their learning tasks (TS = TT ), it becomes a traditional ma-
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Figure 2.3: Difference between traditional machine learning processes (left) and
transfer learning processes (right).

chine learning problem. We have two different scenarios when domains are different:
(1) the feature spaces between the domains are different (XS 6= XT ); (2) the feature
spaces between domains are the same but marginal probability distributions be-
tween domain data are different (P (XS) 6= P (XT ), where XSi

∈ XS and XTi ∈ XT ).
The first scenario corresponds to when the two sets of documents are described in
different languages, while the second may correspond to when we have source and
target domains focusing on different topics, for example.

Given two specific domains, there are two scenarios for when the learning tasks
TS and TT are different: (1) the label spaces between the domains are different
(YS 6= YT ); (2) the conditional probability distributions between the domains are
different (P (YS|XS) 6= P (YT |XT ), where YSi

∈ YS and YTi ∈ YT ). The first scenario
is like the source domain has binary document classes, while the target domain has
ten classes. The second scenario corresponds to the situation where the source and
target documents are very unbalanced in terms of the user-defined classes. If there
is an explicit or implicit relationship between the feature spaces of the two domains,
we say source and target domains are related.

2.3.2 Transfer Learning Techniques and Approaches

Researches on transfer learning focuses on three issues, which are important to design
a transfer learning algorithm [1, 38]:

What to Transfer focuses on answering which part of knowledge can be trans-
ferred across domains or tasks. Some knowledge is specific for individual domains
or tasks, and some knowledge may be common between different domains such that
they may help improve performance for the target domain or task.

When to Transfer asks in which situations transferring is practicable. The goal
is to know when knowledge should or should not be transferred. When domains are

20



not related to each other, brute-force transfer may be unsuccessful, and it can even
hurt the performance of learning in the target domain. This is often referred as
negative transfer. Most of the current studies focus on “what to transfer” and “how
to transfer” but how to avoid negative transfer is also an important open issue that
is attracting the researcher’s attention.

How to Transfer specifies the form that a transfer learning method takes.
Different answers to this question give a categorization for transfer learning algo-
rithms [1]:

1. instance-based algorithms: knowledge transferred corresponds to the weights
attached to source instances;

2. feature-based algorithms: knowledge transferred corresponds to the subspace
spanned by the features in the source and target domains;

3. model-based algorithms: knowledge transferred is embedded in part of the
source domain models;

4. relation-based algorithms: knowledge to be transferred corresponds to rules
specifying the relations between the entities in the source domains.

Last but not least, transfer learning can be categorized into three sub-settings,
each based on different situations between the source and target domains and tasks.
For more details about transfer learning categorization, please refer to [38].

1. Inductive transfer learning : when the target task is different from the source
task. In this case, it does not matter if the source and target domains are the
same or not. Some labeled data in the target domain are required to induce an
objective predictive model fT (·) for use in the target domain. Inductive trans-
fer learning can be categorized into two cases according to different situations
of labeled and unlabeled data in the source domain:

1.1 When a lot of labeled data is available, inductive transfer learning is
similar to the multi-task learning setting. However, inductive transfer
learning setting only aims at achieving high performance in the target
task by transferring knowledge from the source task while multi-task
learning tries to learn the target and source tasks simultaneously.

1.2 There is no labeled data available in the source domain. Thus, inductive
transfer learning setting is similar to the self-taught learning setting [39].
In the latter, label spaces between the source and target domains may be
different, which implies that the information of the source domain cannot
be used directly.
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2. Transductive transfer learning : the source and target tasks are the same, but
the source and target domains are different. No labeled data in the target do-
main are available but a lot of labeled data in the source domain are available.
It can be categorized into two cases:

2.1 The feature spaces between the source and target domains are different
(XS 6= XT );

2.2 The feature spaces between domains are the same (XS = XT ) but
the marginal probability distributions of the input data are different
(P (XS) 6= P (XT )).

3. Unsupervised transfer learning : It is similar to inductive transfer learning set-
ting, yet, the target task is different from but related to the source task. It
focus on solving unsupervised learning tasks in the target domain and there
are no labeled data available in both source and target domains in training.

2.3.3 Relation-based Transfer Learning

As for traditional learning methods, relational learning models can also suffer from
the lack of data [1]. Besides, changes in the relational domain lead to the learned
model performing poorly so it must be rebuild from scratch. For SRL models, the
main challenge is how to transfer vocabulary from a source domain into a quite
different target domain. Transferring is based on the assumption that the relations
among data in the source and target domains have common regularities. There are
two mechanisms of relation-based transfer learning:

• First-order Relation-based : it assumes that, if two domains are related, they
may share some similar relations among data instances, which can be trans-
ferred across domains. As an example, the relation workedunder between an
actor and a director is analogous to the relation advisedby between a student
and a professor.

• Second-order Relation-based : it assumes two related domains share some sim-
ilar relation-independent structural regularities. These regularities can be ex-
tracted from the source domain and then transferred to the target domain.
Many abstract rules about relations are valid across different real-world do-
mains. As an example, in linguistics, words with similar distributional char-
acteristics tend to be semantically related.

Figure 2.4 shows an example of both mechanisms from a academic domain into
the movies domain. Unfortunately, there has not been too much research about
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“when to transfer” for relational domains. We describe some of the current work in
section 2.5. For more details about relational-based transfer please refer to [1]. In
this dissertation, we focus on first-order transfer as we assume predicates are similar
given their contexts.

Academic domain (source domain)

student(B) professor(A)

publication(C)

advisedby

publishes publishes

Movies domain (target domain)

actor(B) director(A)

movie(C)

workedunder

cast of cast of

advisedby(B,A), publication(B,C)         
 publication(A,T)

workedunder(B,A), castof(B,C)           

castof(A,T)First-order transfer

P1(x,y),P2(x,z)          P2(y,z)

Second-order transfer
Sec

on
d-o

rde
r tr

an
sfe

r

Figure 2.4: Example of relational-based transfer mechanisms [1].

2.4 Words Embeddings

Predicates come in natural language, so we must represent them numerically as we
want to compute similarities. For most Natural Language Processing (NLP) tasks,
the main challenge is how to represent information expressed in natural language.

For computers, words such as “desk” are nothing but a sequence of characters.
Simple approaches like representing words as patterns of bits and one-hot vector rep-
resentation have some limitations [15]. First, both do not incorporate the semantic
information of words because “table” and “desk” are similar words with totally differ-
ent representations. We want to represent words in a way that encodes the semantics
of words. Second, the former is a character-wise representation, so the size of the
representation depends on the length of the words (number of characters). A vari-
able size is not desirable to integrate machine learning models and complicates the
comparison of representations of different words. The latter grows with the size of
the vocabulary, so it is model storage-intensive for large vocabularies.

Proposed by SALTON et al. [40], the Vector Space Model (VSM) arises as a
solution to the limitations of previous representations. It is the most successful
and influential model to encode words, documents, sentences, concepts or entities
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as vectors. In this type of representation, objects are represented as vectors in a
multi-dimensional continuous space. This space is usually called semantic space, and
the representation of these objects are called distributed representations. The VSM
model introduces the notion of similarity as the similarity of two words (vectors)
can be measured by their distance in the space. Besides, many more words can
fit into a low dimension space. It addresses the storage-intensive issue of one-hot
encoding as a vocabulary of size m can fit into an n-dimensional vector space,
where n << m. All words are placed to the VSM automatically by analyzing
word co-occurrences in large text corpora. Word representation learning is usually
characterized as an unsupervised or self-supervised learning. Then, there is no need
for manual annotation of the training data. This enables the use of raw texts that
are available at scale. Word representations generated using neural networks are
commonly referred to as Word Embeddings [15].

Word Embeddings are the most common and useful way to represent words
as dense vectors of fixed length. These vectors have an intuitive interpretation as
the meaning of a word is encoded such that words closer in the vector space are
expected to be similar in meaning. When it comes to word embeddings, a word is
characterized by the company it keeps, so words that appear in similar contexts must
have similar meanings [15]. For instance, student and professor tend to have similar
semantics since they usually appear in similar contexts. Word embeddings represent
natural language using geometric relations and efficiently transposes discrete word
representation into a continuous space, which is why they are widely used in NLP
problems [41]. An approach to learning these representations is to train log-bilinear
models such as Word2Vec [42] and fast-Text [43]. Both models are based on either
Continuous Bag-of-Words (CBOW) or Skip-gram architectures. CBOW architecture
predicts missing words using their surrounding context, while Skip-gram aims to
predict the words in the surrounding context given a target word. In this work, we
focus on the fast-Text representations and the Skip-gram architecture. First, because
it covers words that may not appear in the vocabulary; then, we are interested in
predicting the context of a given word.

2.4.1 fast-Text

Proposed by BOJANOWSKI et al. [43], fast-Text is an extension of the model
proposed by MIKOLOV et al. [44], in which embeddings are created from sub-words
to alleviate issues with out-of-vocabulary words.

Given a word vocabulary of size W , where each word is identified by its index
w ∈ {1, . . . ,W}, the goal is to learn a vector representation for each word in the
vocabulary. Given a large training corpus as a sequence of words w1, . . . , wT , the
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objective of the Skip-gram model is to maximize the log-likelihood

LL =
T∑
t=1

∑
c∈Ct

log p(wc|wt), (2.5)

where Ct is the context, the set of indices of words surrounding word wt. Then,
the probability of observing a context word wc given wt will be parameterized using
the mentioned word vectors. Suppose we have a scoring function s that maps pairs of
(word, context) to scores in R. The problem of predicting context words is modeled
as a set of independent binary classification tasks, where the goal is to predict the
presence or absence of context words. Given a word at position t, called wt, all
context words are considered as positive examples and negative samples are chosen
at random from a dictionary. For a context position c, using binary logistic loss, we
obtain the negative log-likelihood

NLL = log
(

1 + e−s(wt,wc)
)

+
∑
n∈Nt,c

log
(

1 + es(wt,n)
)
, (2.6)

where Nt,c is a set of negative examples chosen at random from the vocabulary.
Denoting the logistic loss function ` : x 7−→ log(1 + e−x), the objective function can
be re-written as

T∑
t=1

[∑
c∈Ct

`(s(wt, wc)) +
∑
n∈Nt,c

`(−s(wt, n))
]
. (2.7)

The scoring function s can be defined as the scalar product between word and
context vectors. Suppose a word wt and a context word wc, we can define two vectors
uw and vw in Rd for each word in the vocabulary. These are commonly referred as
input and output vectors. Then, the score can be computed as s(wt, wc) = uTwt

vwc ,
where vectors uwt and vwc correspond to words wt and wc, respectively.

The model described above is the Skip-gram model with negative sampling,
proposed by MIKOLOV et al. [44]. This model ignores the internal structure of
words by using a distinct vector representation for each word. To incorporate this
information, BOJANOWSKI et al. [43] proposed a different scoring function s.
In the fast-Text model, each word w is represented as a bag of character n-gram.
Special boundary symbols < and > are added to the beginning and the end of
words, allowing to distinguish prefixes and suffixes from other character sequences.
The word w is also included in the set of its n-grams, to learn a representation for
each word in addition to character n-grams. As an example, taking the word where
and n = 3, it will be represented by the character n-grams:

< wh,whe, her, ere, re >
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and the special sequence

< where > .

It is important to say that the sequence < her >, which correspond to the
word her, is different from the tri-gram her from the word where. Then, given a
dictionary of n-grams of size G and a word w, the set of n-grams appearing in w

can be denoted by Gw ⊂ {1, . . . , G}. A vector representation zg is associated to each
n-gram g and a word is represented by the sum of the vector representations of its
n-grams, which leads to the scoring function

s(w, c) =
∑
g∈Gw

zTg vc. (2.8)

2.4.2 Similarity Metrics

Word vectors afford useful operations like addition, subtraction, distance measures,
among others [41]. In this work, we apply three distance measures to find a suitable
mapping between a pair of predicates:

Euclidean Distance is the simplest way to measure distance between two real-
valued vectors. The distance between two vectors ~p, ~q ∈ Rn is given by:.

d(p, q) = ||p− q||2. (2.9)

Soft Cosine Measure is a modification of the traditional cosine similarity
measure as it takes into account the similarity between features (words) in the
VSM [45]. It considers the cosine similarity of each pair of features to build a
matrix of similarity s which introduces new features to the VSM. Thus, the Soft
Cosine similarity between two vectors ~p, ~q ∈ Rn is given by Equation 2.10. If there
is no similarity between features, sii = 1 and sij = 0 for i 6= j, is equivalent to the
traditional cosine similarity measure.

soft_cosine(p, q) =

∑∑N
i,j si,jpiqj√∑∑N

i,j si,jpipj

√∑∑N
i,j si,jqiqj

(2.10)

Word Mover’s Distance (WMD) also considers the semantic similarity be-
tween word pairs [46]. It is a special case of Earth Mover’s Distance [47] as it
considers the “travel cost” between words to obtain the minimum cumulative cost
of moving a given document d to a document d′. It takes an embedding matrix
X ∈ Rd×n for a finite size vocabulary of n words, where the ith column, xi ∈ Rd,
represents the embedding of the ith word in d-dimensional space. It assumes text
documents represented as normalized bag-of-words (nBOW) vectors, d ∈ Rn, where
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the vector d is a point on the n − 1 dimensional simplex of word distributions. If
word i appears ci times in the document, then di = ci∑n

j=1 cj
. Thus, documents with

no words in common will lie in different regions of the simplex, but may still be
semantically close. In the end, the nBOW vector d becomes very sparse as most
words will not appear in every document.

The distance between words i and j is obtained by the Euclidean distance,
c(i, j) = ||xi − xj||2, which is the cost associated with “traveling” from one word
to another. Thereby, semantic similarity between feature pairs is incorporated to
the distance metric. Finally, WMD solves the linear transportation program pre-
sented in 2.11 to obtain how costly it is to travel from one document to another.

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑
j=1

Tij = di ∀i ∈ {1, ..., n}

n∑
i=1

Tij = d′j ∀j ∈ {1, ..., n}.

(2.11)

As T ∈ Rn×n is a sparse flow matrix where Ti,j ≥ 0 denotes how much of word
i in d travels to word j in d′. To transform d into d’, the entire outgoing flow from
word i must be equal di, as guaranteed by constraint

∑
j Tij = di. Similarly, the

incoming flow to word j must be equal d′j, as guaranteed by constraint
∑

iTij = d′j.
Last but not least, the objective function is the minimum (weighted) cumulative
cost required to move all words from d to d’.

Relaxed Word Mover’s Distance (RWMD) is a variation of WMD which op-
timizes computation by relaxing the transportation problem [46]. For datasets with
many unique words or a large number of documents, solving WMD optimal trans-
port is nonviable, as the best average time complexity for WMD scales O(p3logp),
for p denoting the number of unique words in the documents [48]. In addition,
much tighter bounds are obtained by relaxing WMD. Relaxation is done by remov-
ing one of the two constraints. Removing both constraints results in the trivial lower
bound T = 0. By removing the second constraint, the relaxed linear transportation
program becomes

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑
j=1

Tij = di ∀i ∈ {1, ..., n},
(2.12)

which yields a lower-bound to the WMD distance since every WMD solution
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(satisfying both constraints) is still a feasible solution if one constraint is removed.

2.5 Related Work

Graph Neural Networks (GNNs) have widely been used to learn structured data, and
some of the work includes the use of Transfer Learning techniques [49–51]. However,
in this work, we only focus on symbolic representation. In the literature, there are
works focused on either transferring similar relations or structural regularities. Nev-
ertheless, the main question that remains is how to transfer vocabulary considering
different domains.

LTL [12] focus on finding structural regularities as it performs type-matching to
identify predicates in the target domain that are similar in their relational structure
to predicates in the source domain. It performs type-based tree construction as it
tries to match paths between the source and target tree structures. Paths in the
source domain match paths in the target domain if the same number of arguments
are related to each link path. After transferring trees, it uses theory refinement in
each clause by adding or deleting predicates to try to improve its accuracy.

The TAMAR [13] algorithm assumes domains share similar relations. It uses
weighted pseudo-log-likelihood (WPLL) to transfer MLNs from a source domain
to a target domain. It performs an exhaustive search through the space of all legal
mappings. A mapping is legal if each source predicate in a given clause is mapped to
a compatible target predicate or to “empty”. Predicates are compatible if they have
the same arity and if the types of arguments match the current type constraints.
The mapping that gives the best WPLL in the target domain is used as mapping for
a clause in the source domain. In the end, it revises the structure using a algorithm
similar to FORTE [52] to improve its accuracy.

An extension of TAMAR, SR2LR [53] also considers the transfer of MLNs by
producing type-consistent mappings. The main difference is that SR2LR deals with
minimal target data as it considers only one entity is available (single-entity-centered
case) in the target domain. Then, the theory is generalized for more than one entity.

GROOT [54] differs from previous approaches as it relies on a genetic algorithm
to find mappings for transferring RDNs. Each individual is composed of chromo-
somes which are feasible mappings and a fitness function value. Chromosomes cor-
respond to trees. An individual is a set of trees and each node of its trees is an
alelo. Mapping is performed randomly but restricted to the arity of predicates and
type-consistence. Predicates are mapped sequentially and respecting the order they
appear in the trees.

TODTLER [55] tries to generalize regularities from one model to another based
on second-order clauses. Thus, knowledge transfer is viewed as the process of learn-
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ing a declarative bias in one domain. It proposes a two-stage procedure that learns
which second-order patterns are useful in the source domain to bias the learning
process in the target domain towards models that have the same patterns.

TreeBoostler [3] is the most closely related to our algorithm as it also focuses on
transferring RDNs. It follows the same concept of legal mappings defined by MI-
HALKOVA et al. [13]. A mapping is legal if predicates share the same arity and
the types of their arguments agree. It performs an exhaustive search by building
type constraints to find adequate mappings for a source predicate in the target
domain. Weighted variance is used as the decision criterion to choose the best ade-
quate mapping given the structure of the source regression trees. Then, to improve
its accuracy, it revises those trees by pruning and expanding nodes. Our algorithm
proposes a modification to TreeBoostler’s mapping component. It takes advantage
of the semantics of pre-trained word vectors to find mappings by similarity. In this
way, there is no need for searching the whole space of possible mappings. In the
end, it refines the clauses by pruning and expanding trees to better fit the target
domain, following the same approach as proposed by AZEVEDO SANTOS et al.
[3].

There are many applications of embeddings for relational tasks such as
TransE [56] that represents relationships as translations in the embedding space.
Given two entities h and t, and a relation l, it follows an energy-based framework
to state that both are related if h + l ≈ t, which means t should be the nearest
neighbor of h+ l. Based on TransE, TransH [57] proposes improvements to TransE
flaws by enabling an entity to have distributed representations when it is involved in
different relations. Relations are translating operations on a hyperplane and entities
can have multiple representations accordingly to a relation. However, entities may
be similar and close to each other but may be different in some specific aspects and
far from each other in the corresponding relation spaces. Thus, TransR [58] models
entities and relations in distinct spaces, entity and multiple relation spaces, and
learns embedding via translation between projected entities. In [59], authors inves-
tigate neural-net embeddings to assist the classification of relational data instances
and show evidence that embedded representations can be useful for problems poor
in domain knowledge, but results depend on the embedding method used.
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Chapter 3

TransBoostler: word
embeddings-based transfer learning
algorithm

This chapter introduces our proposed algorithm, a word embeddings-based transfer
learning approach for relational domains named TransBoostler. It comprises the
same top-level components as proposed by AZEVEDO SANTOS et al. [3]. First, the
source boosted trees structure is transferred to a different target domain by finding
adequate predicate mappings by similarity. Next, the algorithm revises the mapped
trees by pruning and expanding nodes to fit the target data better. The most
significant difference compared to TreeBoostler is how our algorithm finds adequate
predicate mappings. It tries to solve the problem of transferring vocabulary by
mapping predicates by similarity.

3.1 Transferring the Structure

Following TreeBoostler [3], TransBoostler also adopts the local mapping approach
introduced by MIHALKOVA et al. [13]. It consists of mapping predicates as they
appear in each source clause, so mapping is performed separately and independently
of how other clauses were mapped. The other approach, called global mapping,
differs from the local approach as it establishes a mapping for each source predicate
to a target predicate, and this mapping is used to translate the entire source trees.
The global mapping is computationally costly as the size of the search space grows
exponentially with the number of predicates in the source domain. Local mapping
is generally more scalable since the number of predicates in a single clause is smaller
than the total number of predicates of the source domain.

Each path from the root to the leaf in a relational regression tree can be seen
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as a clause in a logic program. RDN-Boost works on a set of relational trees, so
these paths are not independent of each other as they may share the same inner
nodes. Then, once a predicate in the source domain is mapped, its corresponding
target mapping is propagated to the entire structure. In this way, every inner node
is translated according to the translations already found, even when using the local
mapping. Transference starts from the root node of the first source tree and works
recursively to find the best mapping for non-mapped predicates. Algorithm 3.1
presents the top-level transfer algorithm described. Given the theory learned in
the source domain and adequate mappings, our proposed algorithm replaces every
source predicate with its corresponding mapping. Figure 3.1 presents an example of
RRT for transferring from IMDB to UW-CSE. The resulting structure (right) is the
starting point, so the algorithm continues learning to fit the target data. We detail
the mapping component in the next section.

actor(A),director(B)

movie(C,A),movie(C,B) -0.141

0.858 -0.141

student(A),professor(B)

publication(C,A),publication(C,B) -0.141

0.858 -0.141

Mappings

actor -> student

director -> professor

movie -> publication

Figure 3.1: Example of transference from IMDB (left) to UW-CSE (right) given the
source structure and the corresponding mappings.

3.2 Mapping Component

One of the differences between SRL models and traditional machine learning mod-
els is the richness of their vocabulary. Nevertheless, we focus on only transferring
predicates. Assuming domains can be related, the main challenge is how to find
relations between predicates from a source to a target domain. We also assume
predicates have meaningful names, so TransBoostler takes advantage of the seman-
tic of pre-trained word vectors to find a suitable mapping by similarity. To do it,
TransBoostler first builds a list of pairs of predicates ordered by similarity, com-
puted with similarity metrics over the embeddings of the predicates. Next, it can
map predicates as they appear in structure, so predicates closer to the root have
priority, or it follows an ordered list of pairs by similarity to employ the most similar
mappings.

3.2.1 Text Normalization

Preprocessing is an important step in many NLP tasks since textual data need to be
standardized. In relational datasets, predicates can be made of one or more words.

31



Algorithm 3.1: Top-Level TransBoostler Transfer Algorithm
Input: theory, a set of regression trees
Input: tarPreds, a set of predicates from target domain
Function TRANSFER(theory):

transferred← 0
for tree ∈ theory do

new_tree← 0
TRANSFER_TREE(node.root, new_tree)
Append new_tree to transferred

end
return transferred
Function TRANSFER_TREE(node, transfer_node):

if node is leaf then
Define transfer_node as leaf
Stop procedure

end
predicates← Get set of predicates not mapped from node
if predicates is empty then

new_node← Translates predicates in node
transfer_node← new_node

end
else

corresponding_mappings← given predicates get the most similar
predicates
Update the global variable mappings

end
if transfer_node is not empty then

Call TRANSFER_TREE(node.left, transfer_node.left)
Call TRANSFER_TREE(node.right, transfer_node.right)

end
else

if node.left is leaf then
Call TRANSFER_TREE(node.right, transfer_node)

end
else

Append node.right to the right-most path of node.left
Call TRANSFER_TREE(node.left, transfer_node)

end
end

return transferred
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As we want to turn words into vectors using a pre-trained model, the first step of
the mapping process is to split each predicate into its component words. In this
way, we may ensure to get the corresponding vectors to each word.

To perform word segmentation, we use Ekphrasis [60] with Wikipedia corpora.
Ekphrasis is a text processing tool which performs many preprocessing tasks, includ-
ing word segmentation, which is used for segmenting hashtags. Word segmentation
is done using the Viterbi algorithm [61] and uses word statistics of unigrams and bi-
grams from unlabeled data to obtain word probabilities. In this way, predicates such
as athleteplaysforteam can be segmented into its component words athlete plays for
team. Furthermore, some predicates or words can appear in their shortened form,
which is the case of “ta” that stands for teaching assistant and “tempadvisedby” that
stands for temporarily advised by. After word segmentation, every shortened word
is replaced by its full form using a pre-built dictionary. Thus, “ta” becomes “teaching
assistant” and “tempadvisedby” becomes “temporarily advised by”.

Lastly, we can have inflected forms like members and member. These words
have the same lemma. We call a lemma a set of lexical forms having the same stem,
the same major part-of-speech, and the same word sense [62]. To handle plural
nouns and also turn verbs into their base form, we use WordNet lemmatizer [63].
By applying lemmatization, we can determine if words have the same root besides
surface differences. Examples are words sang, sung, and sings, which are forms
of the verb sing [62]. Another example, words am, are, and is share the same
lemma be. The lemmatizer maps all inflected forms to their base form. Verbs and
plural nouns are identified in predicates by a Part-Of-Speech Tagger (POS Tagger)
tool [64]. Given a sequence of tokenized words like Janet will back the bill and a
tagset, the output is a set of tags that correspond to each word. In this case, noun,
aux, verb, det, noun. As words are ambiguous, book can be a verb or a noun, the
goal is to find the correct tag for the situation by resolving ambiguities and choosing
the proper tag for the context [62]. If a word is tagged as a verb or a plural noun,
it is turned into its corresponding base form.

3.2.2 Word-Vectors Representation

As we want to compute similarities, we must represent each predicate numerically.
Then, word vectors pre-trained on Wikipedia with fast-Text Skip-gram [65] are used
to represent each predicate into the VSM. The use of pre-trained word vectors is
essential here as the predicates of relational datasets constitute a very limited vocab-
ulary. Also, pre-trained word vectors contribute to finding more similar predicates
as similar words are approximated by context. If a word does not belong to the
pre-trained model vocabulary, it is represented as a null vector.
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company has office

company ceo

company has office ceo

Figure 3.2: Example of representation such that “company has office” and “company
ceo” are in the same feature space.

Representing each component word of a predicate as its corresponding word-
vector might result in a set of vectors. When applying Euclidean distance, word
vectors in the same predicate are concatenated to become one single vector. Con-
catenation avoids information loss since we have very short sentences. In the example
of Figure 3.2, we would like to compute the similarity between predicates company
has office and company ceo. However, company has office is a 3-dimensional vector
while company ceo is 2-dimensional. The former has components [~x, ~y, ~z] and the
latter [~x, ~w]. We must express both in the same feature space before concatenating.
To do it, two new vectors whose components represent terms in predicates are cre-
ated. Then, we have m-dimensional vectors, where m is the number of unique words
in both predicates. In our example, it results in two new 4-dimensional vectors. The
word “company” is the only one they have in common, so the word vector ~x appears
in the same position in both arrays. Words that do not appear in a predicate are
represented as a null vector of the same dimension. To express company has office,
we set its components to [~x, ~y, ~z,~0]. To express company ceo, we set its components
to [~x,~0,~0, ~w].

3.2.3 Mapping by Similarity

A source predicate is mapped to a target predicate if they have the highest sim-
ilarity value in comparison with other target predicates. Suppose a source pred-
icate movie and a list of predicates of the target domain [author, sameauthor,
venue]. Then, movie is mapped to author if and only if sim(movie, author) >

sim(movie, sameauthor) and sim(movie, author) > sim(movie, venue), where sim
is the similarity function. To maintain variables’ consistency, we only consider pred-
icates of the same arity. If there is a tie, we follow alphabetical order. A predicate
is considered as an adequate mapping if it follows Definition 3.1. The comparison
between predicates stands for alphabetical order. It is not permitted to have more
than one distinct source predicate mapped to the same target predicate. If the
algorithm cannot find a compatible mapping, the predicate is mapped to “empty”.
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genre

haswordauthor

haswordvenue

author

movie

0.175

0.157

0.173

0.163
0.179

0.164

Predicates of Source
Domain

Predicates of Target
Domain

Figure 3.3: Representation of the ranked-first mapping as the Maximum-Weight
Bipartite Matching problem when transferring from Cora to IMDB.

Definition 3.1. Let p(X1, · · · , Xn) be an atom in the source vocabulary (DS) con-
sisting of a predicate p and arity n. Let q(Z1, · · · , Zm) be an atom in the tar-
get vocabulary (DT ) consisting of a predicate q and arity m. We say that q/m is
the corresponding mapping of p/n if m = n (they have the same arity), and if
sim(p, q) ≥ sim(p, i) and q > i, ∀i ∈ {DT − q}.

When mapping predicates to their most similar, the order we perform map-
ping matters. We can either follow the order that predicates appear in the source
structure or follow the rank of similarities. We propose two approaches to perform
mapping by similarity: (1) it follows the order in which predicates appear in the
source structure, so predicates that appear closer to the root have priority to be
mapped to their similar corresponding targets, or; (2) it ignores the order in which
predicates appear in nodes of trees and follows unrestrictedly the ordered list of
similarities between pairs of source and target predicates. This approach prioritizes
the pairs at the top of the rank. It is a greedy solution to the problem of finding
maximum-weight matchings in a bipartite graph, where the two disjoint sets U and
V of vertices are sets of predicates from the source and target domains, respectively.
Then, we have a bipartite graph with weighted edges to connect a vertice from U to
V . Weights are given by the similarity between predicates. Figure 3.3 presents an
example based on Table 3.1. We call the former approach depth-first mapping and
the latter ranked-first mapping. The first approach is presented in Algorithm 3.2
and the second in Algorithm 3.3.

Suppose we want to map predicates from Cora to IMDB. Suppose the theory
has three predicates in its structure which appear in the following order: haswor-
dauthor, author, and haswordvenue. After building pairs of predicates, similarities
are computed using WMD and presented in Table 3.1. The corresponding map-
pings are presented in Table 3.2 for depth-first mapping and ranked-first mapping.
When performing the depth-first mapping, the predicates haswordauthor and au-
thor are mapped to movie and genre, respectively, in the target domain. As source
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Table 3.1: Similarities between pairs of predicates of the same arity in Cora and
IMDB domains using WMD.

Similarity
haswordauthor, movie 0.175
haswordauthor, genre 0.157
haswordvenue, movie 0.173
haswordvenue, genre 0.163
author, movie 0.179
author, genre 0.164

Table 3.2: Mappings when using depth-first (left) and ranked-first (right) mapping
approaches for transferring Cora → IMDB based on Table 3.1.

Depth-First Ranked-First
haswordauthor(A,B) → movie(A,B) author(C,A) → movie(C,A)
author(C,A) → genre(C,A) haswordvenue(D,B) → genre(D,B)
haswordvenue(D,B) → empty haswordauthor(A,B) → empty

predicates cannot be mapped to the same targets, there are no predicates left for
haswordvenue because IMDB has only two predicates of arity two. When perform-
ing ranked-first mapping, it is the predicate haswordauthor that is mapped to empty
since the predicates haswordvenue and author are closer to the predicates genre and
movie, respectively.

After transfer, there are three different scenarios as modeled by AZEVEDO SAN-
TOS et al. [3]: (1) the best scenario is when all literals in an inner node have a
non-empty predicate mapping, which means we were able to find a mapping for
each predicate in the source trees; (2) an inner node has one or more predicates
mapped to “empty”, but at least one is mapped to non-empty. In this case, predi-
cates mapped to empty are discarded; (3) an inner node has all its literals mapped
to an empty predicate. This is the worst case because discarding all literals results
in an empty node, which affects the tree structure. Then, the algorithm discards
the empty node, promotes its left child and appends its right child to the right-most
path of the subtree. If the left child is a leaf, the right child is promoted. If both
are leaves, it is discarded.

3.3 Theory Revision

Mapping only vocabulary is usually not enough as knowledge comes from a differ-
ent distribution domain [13]. To repair possible faults that can prevent theories
from predicting examples correctly, our proposed algorithm also uses Theory Re-
vision [16]. The theory revision component searches for points in theory that are
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Algorithm 3.2: Depth-first mapping by similarity given (ordered) source
and target lists of predicates.
Function MAP_PREDICATE(srcPreds, tarPreds):

similarities← {}
mappings← {}
for srcPred ∈ srcPreds do

srcPredWordV ector ← PRE_PROCESS(srcPred)
for tarPred ∈ tarPreds do

if sameArity(srcPred, tarPred) then
tarPredWordV ector ← PRE_PROCESS(tarPred)
sim← Compute similarity between srcPredWordV ector and
tarPredWordV ector word vectors
Insert sim to similarities

end
end
Sort similarities
mostSimilar ← get the most similar target predicate using
similarities
Insert mostSimilar to mappings

end
return mappings

return mappings

Algorithm 3.3: Ranked-first mapping by similarity given source and target
lists of predicates.
Function MAP_PREDICATE(srcPreds, tarPreds):

similarities← {}
for srcPred ∈ srcPreds do

srcPredWordV ector ← PRE_PROCESS(srcPred)
for tarPred ∈ tarPreds do

if sameArity(srcPred, tarPred) then
tarPredWordV ector ← PRE_PROCESS(tarPred)
sim← Compute similarity between srcPredWordV ector and
tarPredWordV ector word vectors
Insert sim to similarities

end
end

end
Sort similarities in ascending order
mappings← get the most similar predicate using similarities
return mappings

return mappings
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responsible for misclassified examples, and it proposes modifications to adjust the
initial mapped source theory to fit the target data, hence, improving its inferential
capabilities. We follow the same approach as proposed by AZEVEDO SANTOS
et al. [3] which is briefly described in the following.

Every path in trees that is responsible for the misclassification of examples is de-
fined as a revision point, i.e., its weighted variance is greater than a given threshold
δ. If positive examples are not covered (i.e. false negatives) by the theory, it means
the theory is too specific and needs to be generalized, so we call it a specialization
point. If theory covers negative examples, it is too general and needs to be special-
ized, so we call it a generalization point. These points must be modified to increase
accuracy. Modifications are proposed to revision points by applying revision oper-
ators. First, it applies the pruning operator (generalization operator) to increase
the coverage of examples by deleting nodes from a tree. It prunes the tree from the
bottom to the top recursively, removing nodes whose children are leaves marked as
revision points. Secondly, it applies the expansion operator (specialization opera-
tor). It decreases the coverage of examples by expanding nodes in each tree as it
recursively adds nodes that give the best split in a leaf marked as a revision point.

The pruning procedure could prune an entire tree. If this happens, the revision
algorithm would have to expand nodes from an empty tree, which is the same
scenario as learning from scratch. If pruning results in a null model, deletion of all
trees, the operator is ignored as if it was never applied. In the end, both transferred
and revised theory are scored using the conditional log-likelihood. If the revised
theory scores better than before, it is implemented. To provide the reader with a
general understanding of the revision component, Algorithm 3.4 presents the revising
procedure along with the revision operators.
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Algorithm 3.4: Top-Level Theory Revision Algorithm [3]
Input: theory, a set of regression trees
Function REVISION(theory):

newTheory ← {}
for tree ∈ theory do

newTree← PRUNING(tree)
Append newTree to newTheory

end
if newTheory is null then

newTheory ← theory
end
for tree ∈ newTheory do

tree← EXPAND_NODES(tree)
end
Compute score theory and newTheory
if scorenewTheory > scoretheory then

return newTheory
end
else

return theory
end

Function PRUNNING(node):
left← PRUNNING(node.left)
right← PRUNNING(node.right)
if left is leaf and right is leaf then

if left.variance > δ and right.variance > δ then
Remove node from node and put a leaf in its place

end
end
return node

return node
Function EXPAND_NODES(node):

left← node.left
if left is a leaf and left.variance > δ then

bestNode← Find new node that gives the best split
Add bestNode to left
left← EXPAND_NODE(left)

end
right← node.right
if right is a leaf and right.variance > δ then

bestNode← Find new node that gives the best split
Add bestNode to right
right← EXPAND_NODE(right)

end
return node

return transferred
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Chapter 4

Experiments and Results

In this chapter, we present the experiments performed to evaluate the proposed
algorithm and the results obtained from them. To investigate the research questions
presented in this dissertation, we have performed two experiments. The first one is
a simulation of a transfer learning environment with few data available; the second
simulates a scenario with increasing amounts of target data.

4.1 Research questions

We conducted a set of experiments for each mapping approach to investigate the fol-
lowing research questions regarding the similarity-based transfer learning approach
and baselines. We present the results for depth-first and ranked-first mappings sep-
arately.

Q1 Does TransBoostler learn more accurate models than the baselines?

Q2 Can TransBoostler transfer theories by relying on word embeddings similarity?

Q3 How important is revising the theory when transferring relies on word
embeddings-based similarity?

Q4 Is the mapping by similarity approach faster than the baselines?

Q5 Does TransBoostler perform better than the baselines with increasing amount
of examples in the target data?

The question Q1 addresses if the proposed method improves learning in rela-
tional domains. Also, it concludes if it outperforms learning from scratch and a
previous transfer learning approach. Question Q2 is important to address if trans-
ferring the vocabulary by relying on word embeddings-based similarity is cogent.
We would like to know if TransBoostler transfers well across domains by assuming
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predicates are related by their contexts. Also, we investigate how it depends on
theory revision to improve theories inference capacities (Q3). Question Q4 is a
common question in the machine learning environment as one of the objectives of
applying transfer learning is to reduce training time. In addition, it is desirable to
build an approach that is less time-consuming than previous works. Question Q5
evaluates the proposed algorithm for different numbers of examples to evaluate if
TransBoostler tends to make learning a new task less data-consuming.

4.2 Datasets

We evaluated TransBoostler using six publicly available relational datasets paired
as in previous literature [3, 12, 13, 53]:

IMDB dataset [66] contains information such as director, actor, genre, and movie.
The goal is to use the relations between the entities to predict which actor has
worked for a director by learning the workedunder relation. It is divided into five
mega-examples where each one presents information about four movies. A mega-
example is a large set of connected facts [67]. Mega-examples are disconnected and
independent of each other.

Cora [68] is a dataset of Computer Science research papers. It contains 1295
distinct citations to 122 papers which were segmented into fields like author, title,
venue. Entities can also be connected by relations sametitle, samebib, and sameau-
thor to indicate if two papers have the same title, the same bibliography, or the
same author, respectively. There are also relations to consider words in entities’
names like haswordauthor, haswordtitle, and haswordvenue. It is divided into five
mega-examples and its goal is to predict if two venues represent the same conference
by learning the samevenue relation.

UW-CSE [69] contains information about the Department of Computer Science
and Engineering at the University of Washington (UW-CSE) represented by publica-
tions and their authors, projects and their members, courses levels, etc. It consists
of five mega-examples to predict the advisedby relation (a student advised by a
professor).

Yeast protein [18] is a dataset obtained from MIPS1 Comprehensive Yeast
Genome Database and contains information about proteins with their location,
function, enzyme, complex, and phenotype. The goal is to predict if a protein
is associated with a class. It consists of four folds independent of each other.

Twitter [55] dataset consists of tweets about Belgian soccer matches divided
into two independent folds. It contains words tweeted, relations between accounts

1Munich Information Center of Protein Sequence

41



Table 4.1: Statistics of the six datasets used to evaluate TransBoostler.

Number of Total number
Number of Number of Number of Positive of ground

Dataset Constants Types Predicates Examples literals
IMDB 297 3 6 382 71824
UW-CSE 914 9 14 113 16900
Cora 2457 5 10 3017 152100
Yeast 2470 7 7 369 40128
Twitter 273 3 3 282 663
NELL Sports 4538 4 8 397 4323
NELL Finances 3340 5 10 778 51578

(following) and the type of accounts which can be a club, fan, or news. The goal is
to predict the account type.

NELL [70] is a machine learning system that extracts information from web texts
and converts it into a probabilistic knowledge base. We consider two domains from
NELL: Sports and Finances. The former contains information about the athlete
and their teams, leagues and their teams, etc. The goal is to predict which sport
is played by a team. The latter contains information about economic sectors of
companies, companies’ CEOs, companies’ country, etc. The goal is to predict if a
company belongs to an economic sector. As in [3], we split the target data randomly
into three different folds.

Statistics about all datasets are presented in Table 4.1. The total number of
ground literals is the number of all true ground literals consisting of grounding the
predicates with constants of their respective types.

4.3 Experimental Methodology

In this section, we present the experiments performed to evaluate TransBoostler.
We investigate the research questions for the two mapping approaches proposed in
this dissertation.

We follow the same experimental setup as TreeBoostler, so we set the depth
limit of trees to be 3, the number of leaves to be 8, the number of regression trees
to 10, the maximum number of literals per node to 2, subsampling of negative
examples is in a ratio of 2 negatives for 1 positive, and the initial potential is -1.8.
We test our algorithm with all the negative examples. TransBoostler is evaluated
with four similarity metrics: Soft Cosine, Euclidean distance, WMD, and RWMD.
The pre-trained fast-text model used in this work represents words as vectors of 300
dimensions.

To evaluate how revising can improve transferring, we consider two versions
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of our algorithm: one only considers predicate mapping and parameter learning
(TransBoostler*) and the completed version that additionally performs theory re-
vision (TransBoostler). We also compare results with the same two versions of
TreeBoostler. We used conditional log-likelihood (CLL), area under the ROC curve
(AUC ROC), area under the PR curve (AUC PR) [71] and training time as mea-
sures to compare performance. We did not consider the time required to load the
fast-Text model, as it is negligible, but we did consider time to calculate similarities
between predicates.

The first experiment simulates the transfer learning scenario by learning from
a reduced set of data. Following the previous literature, training is performed on
one fold and testing on the remaining n − 1 folds. Results are averaged over n
runs, where, for each run, a new learned source model is used for transference.
We measured the statistical significance between TransBoostler and the baselines
using a paired t-test with p ≤ 0.05. For the second experiment, we compare the
performance of TransBoostler for different amounts of target data. We employed
traditional cross-validation methodology as training is performed on n − 1 folds
and testing on the remaining one. Training data is shuffled and divided into five
sequence parts. As in the previous experiment, the process is done in n runs, and
curves obtained by averaging the results.

We compare our results with RDN-Boost [2], when learning from the target
dataset from scratch, and TreeBoostler [3], which is a SRL transfer learning ap-
proach. We used the Google Cloud platform for all experiments. Experiments were
conducted on an N2 virtual machine with Debian 10, 8 vCPUs, and 32GB of RAM.

4.4 Results

In this section, we present our experimental results. We call RDN-Boost as RDN-
B in tables for shorthand. As TreeBoostler was successfully compared with other
transfer methods, these results are omitted.

In tables, ? stands for TransBoostler results significantly better than TreeBoost-
ler. � indicates that the difference between TransBoostler against RDN-B results is
significantly better.

4.4.1 Depth-first mapping

Tables 4.4, 4.5, and 4.6 present the transfer experiments for pairs IMDB and Cora,
Yeast and Twitter, and NELL Sports and NELL Finances when performing depth-
first mapping. Each of them was treated as source and target domains on each turn.
TreeBoostler cannot transfer from NELL Finances to NELL Sports as it cannot
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Table 4.2: Difference between TreeBoostler and TransBoostler using four similarity
metrics when mapping IMDB to Cora using depth-first mapping approach.

TransBoostler
TreeBoostler Soft Cosine Euclidean WMD RWMD

movie venue haswordauthor author sameauthor sameauthor

find useful mappings, which results in learning from scratch. Table 4.7 presents the
results for IMDB → UW-CSE for the same mapping approach. We omitted the
opposite transferring from UW-CSE to IMDB because is as easy as learning from
scratch.

The results show TransBoostler performs comparably or better than the baselines
in all experiments except for one for AUC ROC. In general, we can positively answer
questions Q1 and Q2 for TransBoostler. As can be seen, using pre-trained word
vectors to find mappings by similarity did improve runtime for most experiments.
The only exception is when transferring between pairs IMDB and Cora. For IMDB
→ Cora, our algorithm is more time-consuming. Theories learned using IMDB
contain three distinct predicates. Two of them have arity one, and one is of arity
two. Cora has no predicates of arity one, then only one predicate of arity two is
mapped. As can be seen in Table 4.2, TreeBoostler finds venue as the best mapping
for movie, while TransBoostler using Soft Cosine, Euclidean distance, WMD, and
RWMD finds haswordauthor, author, sameauthor, and sameauthor, respectively.
Then, it takes more time to TransBoostler to revise the structure. For the opposite
experiment, Cora → IMDB, TransBoostler is competitive to both baselines and
finds the same mappings as TreeBoostler: haswordvenue is mapped to movie, and
haswordtitle is mapped to genre. The other predicates are mapped to empty. This
shows mapping by similarity is cogent. TransBoostler also finds cogent mappings
when transferring from IMDB to UW-CSE. It finds actor and director closer to
student and professor, respectively. When using the Euclidean distance, movie is
mapped to publication while other similarity metrics map movie to sameperson.

When transferring from Yeast to Twitter, we have the same AUC ROC values
for all similarity metrics. The source structure contains five distinct predicates, and
there are two predicates in the target domain. In this case, all similarity metrics
find interaction most similar to follows, and location most similar to tweets. It takes
more time to learn from the target dataset when using RWMD because it takes 27
seconds to compute similarities. For the experiment Twitter→ Yeast, TransBoostler
takes far less runtime than TreeBoostler. The source structure contains only two
distinct predicates and, as TreeBoostler creates type constraints during mapping to
reduce the searching space, only one is mapped to a target predicate. TransBoostler
maps both source predicates, as it focuses only on similarity. Then, mapping more
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Table 4.3: Difference between TreeBoostler and TransBoostler using four similarity
metrics when mapping Twitter to Yeast using depth-first mapping approach.

TransBoostler
TreeBoostler Soft Cosine Euclidean WMD RWMD

follows interaction location complex complex complex
tweets enzyme enzyme interaction interaction

predicates to a target reduces revision time. Table 4.3 shows the most similar target
predicates for each similarity metric.

Lastly, for NELL Sports → NELL Finances, our algorithm underperforms Tree-
Boostler for AUC ROC. It has a better performance than both baselines when using
Soft Cosine and WMD for AUC PR. In this case, TreeBoostler finds four adequate
mappings and TransBoostler maps every source predicate to different targets, ex-
cept for one predicate when using Euclidean distance. It also outperforms RDN-B
for both measures and it is more time-consuming. Then, we can still affirmably
answer question Q2 as most of the experiments have competitive or better results
than the baselines. In the opposite experiment, NELL Finances → NELL Sports,
TransBoostler is more time-consuming when using Soft Cosine and Euclidean. How-
ever, we can positively answer question Q4 as, for most experiments, TransBoostler
proved to be less time-consuming than the baselines. For all similarity metrics, it
has competitive results for AUC ROC and impairs performance for AUC PR. The
only exception is when using Soft Cosine similarity that has competitive results.
When learning both NELL datasets, there are over five predicates in the two source
structures. Each source predicate is mapped to its corresponding target. As tables
are very confusing, we omitted the comparison between mappings performed by
both algorithms’ mappings.

Experiments for increasing amounts of target data when using depth-first map-
ping are presented in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. Results show that
TransBoostler outperforms or equates the baselines for AUC ROC and AUC PR
curves presented in Figures 4.1, 4.3, and 4.4. Our algorithm underperforms both
baselines when transferring from IMDB to Cora as presented in Figure 4.2. When
transferring from Twitter to Yeast, TransBoostler has a poor performance when
compared to TreeBoostler, but it outperforms or equates RDN-B for most of the
amounts of target data. For AUC PR, Figure 4.6 shows it outperforms TreeBooster
for most of the similarity metrics for NELL Sports → NELL Finances. It also out-
performs RDN-B when using WMD and up to 60% of data. TransBoostler also
underperforms RDN-B when transferring from NELL Finances to NELL Sports. In
resume, TransBoostler underperforms in experiments where it has difficulty finding
the best mappings: IMDB and Cora, NELL Sports and NELL Finances.
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Table 4.4: Comparison between TransBoostler and baselines for IMDB and Cora
datasets when performing depth-first mapping.

IMDB → Cora Cora → IMDB
CLL AUC AUC Run- CLL AUC AUC Run-

ROC PR time(s) ROC PR time(s)
RDN-B -0.693 0.558 0.426 76.97 -0.075 1.000 1.000 2.89
TreeBoostler -0.659 0.606 0.530 45.74 -0.075 0.999 0.954 4.29
TransBoostler Soft Cosine -0.675? 0.599 0.464 51.18 -0.074 1.000? 1.000 4.36
TransBoostler Euclidean -0.677 0.589 0.453 52.61 -0.076 0.999 0.927 4.42
TransBoostler WMD -0.668 0.600 0.463 54.44 -0.076 0.999? 0.948 4.43
TransBoostler RWMD -0.662 0.603� 0.464 76.08 -0.074 1.000?� 0.989 30.18
TreeBoostler* -0.659 0.574 0.518 1.63 -0.115 0.982 0.888 0.95
TransBoostler* Soft Cosine -0.699? 0.500 0.379 2.20 -0.306?� 0.868 0.092 1.94
TransBoostler* Euclidean -0.699? 0.500 0.379 2.15 -0.304?� 0.868 0.092 1.90
TransBoostler* WMD -0.699? 0.500 0.379 2.23 -0.308?� 0.868 0.092 1.92
TransBoostler* RWMD -0.699 0.500 0.379 22.18 -0.391?� 0.500 0.026 26.93

Table 4.5: Comparison between TransBoostler and baselines for Yeast and Twitter
datasets when performing depth-first mapping.

Yeast → Twitter Twitter → Yeast
CLL AUC AUC Run- CLL AUC AUC Run-

ROC PR time(s) ROC PR time(s)
RDN-B -0.122 0.990 0.347 23.45 -0.253 0.926 0.230 15.55
TreeBoostler -0.096 0.994 0.395 86.63 -0.166 0.986 0.267 34.96
TransBoostler Soft Cosine -0.127 0.994? 0.382 23.38 -0.280?� 0.920 0.169 20.39
TransBoostler Euclidean -0.107 0.994 0.389 26.09 -0.282?� 0.894 0.325 13.05
TransBoostler WMD -0.107 0.994 0.374 24.55 -0.240? 0.953 0.282 19.64
TransBoostler RWMD -0.101? 0.994 0.400 84.73 -0.224? 0.965 0.344? 34.11
TreeBoostler* -0.103 0.993 0.334 7.17 -0.166 0.986 0.267 2.17
TransBoostler* Soft Cosine -0.154 0.993 0.339 4.51 -0.336?� 0.820 0.299 3.35
TransBoostler* Euclidean -0.110 0.994 0.405 5.65 -0.336?� 0.820 0.307 2.44
TransBoostler* WMD -0.110 0.994 0.391 4.45 -0.336?� 0.820 0.304 2.51
TransBoostler* RWMD -0.110 0.994? 0.388? 30.20 -0.334?� 0.820 0.310? 11.87

Table 4.6: Comparison between TransBoostler and baselines for NELL Sports and
NELL Finances datasets when performing depth-first mapping.

NELL Sports → NELL Finances NELL Finances → NELL Sports
CLL AUC AUC Run- CLL AUC AUC Run-

ROC PR time(s) ROC PR time(s)
RDN-B -0.323 0.692 0.062 24.86 -0.084 0.993 0.325 303.07
TreeBoostler -0.165 0.980 0.071 124.59 NA NA NA NA
TransBoostler Soft Cosine -0.321? 0.721 0.087 62.70 -0.117 0.993 0.316 331.29
TransBoostler Euclidean -0.320? 0.750 0.069 54.04 -0.137 0.947 0.248 350.76
TransBoostler WMD -0.324?� 0.741� 0.079 53.81 -0.136 0.948 0.243 298.12
TransBoostler RWMD -0.325? 0.713 0.071 93.78 -0.085 0.993 0.276 298.07
TreeBoostler* -0.315 0.979 0.068 8.85 NA NA NA NA
TransBoostler* Soft Cosine -0.366?� 0.531 0.001 6.92 -0.372� 0.484 0.002 12.93
TransBoostler* Euclidean -0.365?� 0.558 0.002 5.88 -0.375� 0.488 0.002 13.63
TransBoostler* WMD -0.365?� 0.540 0.002 5.66 -0.370� 0.486 0.002 14.02
TransBoostler* RWMD -0.365?� 0.540 0.002 41.66 -0.368� 0.494 0.002 48.99
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Table 4.7: Comparison between TransBoostler and baselines for pair of datasets
IMDB → UW-CSE independent of the mapping approach.

IMDB → UW-CSE
CLL AUC AUC Run-

ROC PR time(s)
RDN-B -0.257 0.940 0.282 8.74
TreeBoostler -0.247 0.939 0.302 4.78
TransBoostler Soft Cosine -0.255 0.936 0.284 5.94
TransBoostler Euclidean -0.254 0.936 0.275 6.44
TransBoostler WMD -0.247 0.936 0.274 5.89
TransBoostler RWMD -0.250 0.938 0.281 27.23
TreeBoostler* -0.267 0.930 0.293 0.63
TransBoostler* Soft Cosine -0.385?� 0.608 0.035 1.17
TransBoostler* Euclidean -0.296?� 0.906 0.131 1.53
TransBoostler* WMD -0.288?� 0.906 0.131 1.19
TransBoostler* RWMD -0.286 0.906 0.131 21.97

4.4.2 Ranked-first mapping

Tables 4.9 and 4.10 present the results for Yeast → Twitter and pairs NELL Sports
and NELL Finances when using ranked-first mapping. Due to IMDB having only
one predicate of arity two and two of arity one, there is no difference between
mapping approaches when transferring from IMDB to UW-CSE and Cora. For
both experiments, movie is mapped to its most similar. We omitted the results for
Cora → IMDB because it is the same as learning from scratch.

For Yeast→ Twitter transfer experiment, Table 4.9 shows improvement for AUC
ROC and AUC PR values when using Soft Cosine, WMD and RWMD as similarity
metrics. We can answer question Q1 positively for ranked-first mapping. However,
when using Soft Cosine, Euclidean distance, and WMD, it takes more time to learn
from the target data when compared to depth-first mapping runtimes. When using
RWMD is less time-consuming when compared to the previous approach. We can-
not answer question Q4 affirmably because it is more time-consuming than RDN-B.
Table 4.8 shows the difference between mappings when using different similarity
metrics. As can be seen, only Soft Cosine maps predicates differently, which might
explain why it has better results when compared to others. For the opposite exper-
iment, Twitter → Yeast, there is no difference between mapping approaches.

As can be seen in Table 4.10, for NELL Sports → NELL Finances, mapping
predicates to their most similar did improve results when using WMD and RWMD
for AUC ROC. However, it impairs performance for AUC PR. It also impairs per-
formance when using Euclidean distance for both AUC ROC and AUC PR. In this
case, TransBoostler performing ranked-first is less time-consuming than when per-
forming depth-first mapping and it is still less time-consuming than TreeBoostler
(Q4). Finally, for NELL Finances → NELL Sports, there is improvement for both
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Table 4.8: Difference between TreeBoostler and TransBoostler using four similarity
metrics when mapping Yeast to Twitter using ranked-first mapping approach.

TransBoostler
TreeBoostler Soft Cosine Euclidean WMD RWMD

interaction follows tweets tweets tweets tweets
location follows
enzyme
phenotype
complex follows follows follows

AUC ROC and AUC PR for Euclidean distance and WMD. Ranked-first mapping
improves performance for AUC PR except when using Soft Cosine. It also takes
less time to learn a new model than when using depth-first mapping (except for
RWMD). In general, results are competitive to RDN-B and we do have a faster
approach (Q4). As mentioned before, we omit the comparison between algorithms’
mappings as NELL datasets have too many predicates in their source structures.

Figures 4.8, 4.9, and 4.10 present the results when performing ranked-first map-
ping for Yeast → Twitter, NELL Sports → NELL Finances, and NELL Finances
→ NELL Sports, respectively. We can observe the same results for Yeast → Twit-
ter. TransBoostler outperforms or equates both baselines for AUC ROC and AUC
PR when increasing the amounts of target data. When transferring from NELL
Sports to NELL Finances, it underperforms TreeBoostler and equates RDN-B for
AUC ROC. For AUC PR, it underperforms learning from scratch but it has a better
performance when compared to TreeBoostler. Finally, for the opposite experiment,
it underperforms RDN-B for AUC ROC, except when using 60% of target data for
Euclidean distance, WMD and RWMD. It also underperforms the baseline for AUC
PR.

4.4.3 Final Remarks

As can be seen in tables, RWMD has shown to be a costly similarity metric. The
best runtime is when mapping predicates from Twitter to Yeast in which takes
around 10 seconds. It is too much time when compared to other similarity metrics,
which take less than a second. For pairs of datasets such as NELL Sports and NELL
Finances, it takes 39 and 42 seconds, respectively. Then, our algorithm when relying
on RWMD is more time-consuming than the baselines.

Both approaches lead to the same answer to question Q3: when compared to
TreeBoostler*, our algorithm is more dependent on theory revision in general. It
has a poor performance for pairs IMDB and Cora, and NELL Sports and NELL
Finances when no revision is applied. Only Yeast → Twitter experiment has com-
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Table 4.9: Comparison between TransBoostler and baselines for Yeast and Twitter
datasets when performing ranked-first mapping.

Yeast → Twitter
CLL AUC AUC Run-

ROC PR time(s)
RDN-B -0.122 0.990 0.347 23.45
TreeBoostler -0.096 0.994 0.395 86.63
TransBoostler Soft Cosine -0.088 0.996 0.465 65.22
TransBoostler Euclidean -0.099 0.994 0.397 63.98
TransBoostler WMD -0.098 0.995 0.421� 51.09
TransBoostler RWMD -0.098 0.995? 0.425 67.20
TreeBoostler* -0.103 0.993 0.334 7.17
TransBoostler* Soft Cosine -0.090 0.993 0.339 4.65
TransBoostler* Euclidean -0.159 0.993 0.341 2.20
TransBoostler* WMD -0.158 0.993 0.343 2.13
TransBoostler* RWMD -0.159 0.993 0.343 2.15

petitive results for TransBoostler*. In this case, both datasets have very similar
source structures, which might facilitate transference. In the end, revision is really
important for our proposed mapping component.

In resume, we do have competitive results for most pairs of datasets. Then, we
can positively answer question Q1 for both mapping approaches as TransBoostler
performs equally or better than baselines for most experiments. The results pre-
sented in this section show TransBoostler can successfully transfer theories by rely-
ing on word embeddings similarity (Q2). Also, mapping by similarity is faster than
previously transfer learning-based approaches but it can be more time-consuming
than learning from scratch (Q4).

In general, ranked-first mapping performs better than depth-first mapping as it
improves results for AUC ROC for all pairs of experiments. Nevertheless, ranked-
first mapping is more time-consuming when transferring from Yeast to Twitter but
is less time-consuming for pairs of datasets NELL Sports and NELL Finances. As
predicates are mapped accordingly to a rank of similarities, i.e., ignoring the order
they appear in the source structure, it might be the reason ranked-first mapping
is more time-consuming than depth-first mapping. When performing ranked-first
mapping, TransBoostler needs to perform more changes in the tree structure be-
cause it causes more literals or inner nodes to be discarded, increasing the revision
time. For NELL pairs of datasets, all predicates have a corresponding target except
for one. This is the only case there is no runtime increase. Since TransBoostler
proposes to perform first-order-based transfer learning, it is reasonable to have a
better performance when using ranked-first mapping. NELL datasets corroborate
this assumption as their predicates have more semantic values. All predicates are
small phrases.

49



Table 4.10: Comparison between TransBoostler and baselines for NELL Sports and
NELL Finances datasets when performing ranked-first mapping.

NELL Sports → NELL Finances NELL Finances → NELL Sports
CLL AUC AUC Run- CLL AUC AUC Run-

ROC PR time(s) ROC PR time(s)
RDN-B -0.323 0.692 0.062 24.86 -0.084 0.993 0.325 303.80
TreeBoostler -0.165 0.980 0.071 124.59 NA NA NA NA
TransBoostler Soft Cosine -0.315? 0.728� 0.081 57.46 -0.130 0.990 0.261 225.84
TransBoostler Euclidean -0.343?� 0.606 0.051 42.78 -0.138 0.992 0.290 229.65
TransBoostler WMD -0.213? 0.952� 0.062 51.21 -0.123 0.991 0.304 259.52
TransBoostler RWMD -0.214? 0.952� 0.054 66.86 -0.144 0.992 0.299 640.87
TreeBoostler* -0.315 0.979 0.068 8.85 NA NA NA NA
TransBoostler* Soft Cosine -0.369?� 0.494 0.001 2.22 -0.372� 0.491 0.002 4.07
TransBoostler* Euclidean -0.372?� 0.492 0.001 2.32 -0.371� 0.483 0.002 4.22
TransBoostler* WMD -0.220� 0.940� 0.012 2.50 -0.375� 0.485 0.002 9.37
TransBoostler* RWMD -0.368?� 0.541 0.002 46.45 -0.370� 0.489 0.002 14.37
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Figure 4.1: Learning curves for AUC ROC (left) and AUC PR (right) for IMDB →
UW-CSE transfer experiment when performing depth-first mapping.
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Figure 4.2: Learning curves for AUC ROC (left) and AUC PR (right) for IMDB →
Cora transfer experiment when performing depth-first mapping.
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Figure 4.3: Learning curves for AUC ROC (left) and AUC PR (right) for Cora →
IMDB transfer experiment when performing depth-first mapping.
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Figure 4.4: Learning curves for AUC ROC (left) and AUC PR (right) for Yeast →
Twitter transfer experiment when performing depth-first mapping.
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Figure 4.5: Learning curves for AUC ROC (left) and AUC PR (right) for Twitter
→ Yeast transfer experiment when performing depth-first mapping.
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Figure 4.6: Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Sports→ NELL Finances transfer experiment when performing depth-first mapping.

0.2 0.4 0.6 0.8 1.0
Proportion of training data

0.991

0.992

0.993

0.994

0.995

0.996

AU
C 

RO
C

RDN-B
Euclidean
Soft Cosine
WMD
Relax-WMD

0.2 0.4 0.6 0.8 1.0
Proportion of training data

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

AU
C 

PR

RDN-B
Euclidean
Soft Cosine
WMD
Relax-WMD

Figure 4.7: Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Finances→ NELL Sports transfer experiment when performing depth-first mapping.
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Figure 4.8: Learning curves for AUC ROC (left) and AUC PR (right) for Yeast →
Twitter transfer experiment when performing ranked-first mapping.
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Figure 4.9: Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Sports → NELL Finances transfer experiment when performing ranked-first map-
ping.
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Figure 4.10: Learning curves for AUC ROC (left) and AUC PR (right) for NELL
Finances → NELL Sports transfer experiment when performing ranked-first map-
ping.
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Chapter 5

Conclusion

In this dissertation, we presented TransBoostler: an algorithm that transfers
Boosted RDNs learned from a source domain to a different target domain. Given
the structure of the source regression trees, it constructs a target set of regression
trees as it leverages pre-trained word embeddings to find mappings between predi-
cates by similarity. We propose two mapping approaches: the first one follows the
order predicates appear in the structure, then, predicates closer to the root have
priority and; the second one ignores such order and maps predicates accordingly to
a rank of the most similar pairs of (source, target) predicates. It also relies on theory
revision to the mapped model by pruning and expanding nodes in order to improve
its accuracy.

We have performed a set of experiments to evaluate TransBoostler using six
publicy available datasets and four similarity metrics. First, we simulate a transfer
learning scenario where only a few data are available to investigate if TransBoostler
can successfully transfer across different domains. As observed in the experimen-
tal results, mapping by similarity has a good performance and can be less time-
consuming than a previous related transfer learning approach, but depends on the
pair of datasets and the similarity metric used. When compared to learning from
scratch, it improves performance but it can be more time-consuming. Then, theory
revision has proved to be a very important process, as just transferring the struc-
ture and parameter learning have worse performance for most pairs of experiments.
The only exception is the pair of datasets Yeast and Twitter. For both transferring
experiments, we have competitive results even when theory revision is not applied.
In this case, both datasets have very similar source structures, which might facil-
itate transference. Experiments also showed that theory revision is an effort that
considerably raises training time.

Experimental results also showed that the order in which predicates are mapped
matters. For some pairs of datasets and similarity metrics, the performance did
improve when using ranked-first mapping. For other pairs, the depth-first mapping
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leads to the best performance. The best order to follow when mapping depends
on the pairs of datasets and the similarity metric chosen. Regardless the mapping
approach, for most experiments, it is better to use TransBoostler as it performs
equally or better than TreeBoostler in less runtime. It also learns more accurate
models than RDN-B, even though it is more time-consuming. However, for the pair
IMDB and Cora it is still more guaranteed to search the mapping space.

5.1 Future Works

There are many possible future work directions. First, one could generalize the
mapping component proposed in this dissertation to select the top-N most similar
predicates to proceed with the mapping. Given a list of the top-N most similar
predicates, we can use the weighted variance to choose the predicate that gives the
node the best split.

It remains a future investigation to understand whether or not to transfer from
one domain to another and the effect of the data in which the embeddings were
trained. As observed in [59], results when using word embeddings must depend on
the embedding method used. Then, another possible future work direction is to
explore word embeddings methods and contexts.

The Hungarian algorithm [72] can also be applied to find the optimal solution to
the Maximum-Weight Bipartite Matching problem. As we use a greedy approach,
it only approximates the optimal solution. Another possible research question is
combining the types of arguments with predicates to try to find better mappings or
using more information like the height of a predicate in the tree, for example. A
simpler approach is to test different similarity metrics.

Finally, the proposed mapping component in this dissertation can also be applied
to different and more general relational models. Then, testing this component to
other SRL models is also interesting to investigate.
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