

CATS#: A TESTING TECHNIQUE TO SUPPORT THE SPECIFICATION OF TEST

CASES FOR CONTEXT-AWARE SOFTWARE SYSTEMS

Andréa Cristina de Souza Doreste

Dissertação de Mestrado apresentada ao Programa de

Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários à

obtenção do título de Mestre em Engenharia de Sistemas

e Computação.

Orientador: Guilherme Horta Travassos

Rio de Janeiro

Dezembro de 2021

CATS#: A TESTING TECHNIQUE TO SUPPORT THE SPECIFICATION OF TEST

CASES FOR CONTEXT-AWARE SOFTWARE SYSTEMS

Andréa Cristina de Souza Doreste

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientador: Guilherme Horta Travassos

Aprovada por: Dr. Guilherme Horta Travassos

 Dr. Claudio Miceli de Farias

 Dr. Santiago Matalonga Motta

RIO DE JANEIRO, RJ - BRASIL

DEZEMBRO DE 2021

iii

Doreste, Andrea Cristina de Souza

CATS#: A Testing Technique to Support the Specification

of Test Cases for Context-Aware Software Systems / Andrea

Cristina de Souza Doreste. – Rio de Janeiro: UFRJ/COPPE,

2021.

IX, 107 p.: il.; 29,7 cm.

Orientador: Guilherme Horta Travassos

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2021.

Referências Bibliográficas: p. 107-108

1. Software Engineering. 2. Software Testing. 3. Context-

Aware Software System. I. Travassos, Guilherme Horta. II.

Universidade Federal do Rio de Janeiro, COPPE, Programa de

Engenharia de Sistemas e Computação. III. Título.

iv

“E ali logo em frente, a esperar pela gente, o futuro está”

(Aquarela – Vinicius de Moraes e Toquinho)

v

Agradecimentos

Gostaria de agradecer a Deus por todas as oportunidades e bênçãos ao longo de

todo o caminho.

Agradeço também a todas as pessoas que trabalharam, se esforçaram e

cooperaram para que enfrentássemos a pandemia e chegássemos até aqui. Agradeço

também a todas as pessoas que acreditaram na ciência e, tendo a opção, escolheram ficar

em casa. A todos os cientistas brasileiros que continuaram fazendo ciência no meio do

caos, minha eterna admiração.

Gostaria de agradecer a minha mãe, Márcia Souza, e ao meu tio, Nilton Ferreira,

por todo apoio, suporte, compreensão e parceria. Eu não teria chegado até aqui se vocês

não estivessem ao meu lado. Obrigada por apoiarem, desde o início, a minha decisão de

fazer mestrado. Obrigada por tudo, especialmente por estarem sempre ao meu lado.

Agradeço também a toda a minha família e a todos os familiares que a vida me

deu, que me apoiam e torcem tanto por cada passo que eu dou.

Obrigada aos meus amigos por tanto! A minha vida é muito melhor com vocês.

Em especial gostaria de agradecer a Débora Pina. Citando uma cantora que nós

duas gostamos "long live all the mountains we moved, I had the time of my life fighting

dragons with you". A gente escolheu segurar a mão uma da outra no dia em que viramos

engenheiras, passamos por muitos momentos incríveis e estressantes juntas e eu espero

que muitos outros ainda venham pela frente. Eu tenho muito orgulho de ser sua amiga, da

mulher e cientista que você está se tornando e estarei aqui pra te aplaudir ou te acolher a

cada passo.

A Juliano Marinho, obrigada por toda a paciência e compreensão que você teve

comigo, como sua co-orientadora. Como sua amiga, obrigada por fazer parte da minha

vida e por essa parceria tão incrível que a gente vem construindo ao longo dos anos. Ser

sua co-orientadora de TCC foi um enorme presente pra mim e não tinha uma forma

melhor de fechar o mestrado do que dividir esse caminho contigo.

Ao meu ex-colega de apartamento e eterno amigo, Brian Confessor, obrigada pela

paciência, pela amizade e pelas diversas conversas interessantes e fora da caixa. Que você

tenha muito sucesso na sua nova jornada e, se precisar de mim, estarei aqui (mas, por

vi

favor, se for pra revisar texto ou dar opinião como pesquisadora, inclua a tradução pro

inglês ou português que japonês eu aida não aprendi).

Ao meu amigo, Marcos Filho, por sempre ter estado ao meu lado (mesmo quando

estávamos geograficamente distante). Você, inúmeras vezes, trouxe significado e alegria

pra minha vida quando eu não conseguia por conta própria e fazia o dia a dia parecer uma

aventura. Foi um prazer dividir essa jornada contigo e, como eu já disse algumas vezes,

espero que um dia você enxergue o potencial gigante que você tem e que alcance tudo

que eu sei que você pode alcançar. Eu estarei sempre torcendo e vibrando por você!

Agradeço a minha psicóloga, Wanessa Lisbôa, por todo o apoio, paciência e

competência. Obrigada por me ajudar a entender melhor meus próprios pensamentos e a

lidar com a ansiedade no meio de uma pandemia que abalou o mundo.

Gostaria também de agradecer aos meus companheiros da linha ESE. Talita,

Hélvio, Luciana, Taísa, Hilmer, Valéria e Danyllo, vocês são uma grande inspiração pra

mim. Rebeca, eu espero que um dia, "quando eu crescer", que eu seja igual a você. Victor

Vidigal, obrigada pelo suporte, parceria e oportunidades, eu aprendi muito contigo. Bruno

e Alessandro, foi um enorme prazer dividir o mestrado, as disciplinas e o caminho com

vocês, obrigada pela amizade, pelo companheirismo e parceria.

Agradeço aos professores Claudio Miceli e Santiago Matalonga por aceitarem o

convite para participar da minha banca.

Por fim, gostaria de agradecer ao meu orientador, Guilherme Horta Travassos.

Obrigada pelo carinho, pela compreensão, pelas broncas, pela confiança e por sempre me

tornar uma versão melhor de mim mesma. Sob a sua orientação e tutela eu me tornei

engenheira. Sob sua orientação, eu dou mais um passo no caminho de virar cientista. Por

causa da sua orientação, eu me tornei (e me torno) uma profissional e um ser humano

melhor a cada dia. Obrigada por cada voo que o senhor me permitiu dar, por cada

conversa, cada conselho, cada acolhimento e por essa parceria que eu espero,

honestamente, que não se encerre com o final do mestrado.

vii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CATS#: UMA TÉCNICA DE TESTE PARA APOIAR A ESPECIFICAÇÃO DE

CASOS DE TESTE PARA SISTEMAS DE SOFTWARE SENSÍVEIS AO

CONTEXTO

Andréa Cristina de Souza Doreste

Dezembro/2021

Orientador: Guilherme Horta Travassos

Programa: Engenharia de Sistemas e Computação

Sistemas de Software Contemporâneos (CSS - Contemporary Software Systems)

apresentam características distintas daquelas usualmente encontradas em Sistemas de

Software Convencionais. Uma delas é a sensibilidade ao contexto, que é quando o

contexto e sua variação afetam o comportamento do sistema de software de modo

imprevisível e impensado. Dessa forma, é essencial garantir o correto funcionamento de

Sistemas de Software Sensíveis ao Contexto (CASS - Context-Aware Software Systems).

No entanto, percebe-se na literatura uma ausência de tecnologias e estratégias que apoiem

o teste desse tipo de sistema. Com base nisso, esse trabalho apresenta uma técnica que

visa apoiar a especificação de casos de teste para CASS chamada CATS#. CATS# evolui

a técnica CATS (Context-Aware Test Suite) Design e apresenta um conceito adaptado de

caso de teste que leva o contexto em consideração e oferece um template de teste que

possibilita a captura (e representação) da variação do contexto durante a execução do caso

de teste. A técnica CATS# foi aplicada em um projeto conduzido por estudantes de

graduação e os resultados indicam sua viabilidade inicial.

viii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

CATS#: A TESTING TECHNIQUE TO SUPPORT THE SPECIFICATION OF TEST

CASES FOR CONTEXT-AWARE SOFTWARE SYSTEMS

Andréa Cristina de Souza Doreste

December/2021

Advisor: Guilherme Horta Travassos

Department: Computer Science and Systems Engineering

Contemporary Software Systems (CSS) bring distinctive characteristics compared

to conventional systems to the table. One of them is context-awareness when the context

and its variation affect the software system's behavior in unthinkable (sometimes

unpredictable) ways. Therefore, it is essential to ensure the correct functioning of this

type of system. However, as far as it could be investigated, there is a lack of software

technologies to support these systems' testing. This work presents CATS#, a testing

technique to support the specification of test cases for Context-Aware Software Systems

(CASS). CATS# evolves the CATS (Context-Aware Test Suite) Design technique by

adapting the test case concept to include the context and offers a test template capable of

capturing (and representing) the variation of context that can influence the system's

behavior during test execution. CATS# was applied in a project by undergraduate

students. The results indicate its initial feasibility to support the specification of CASS

test cases for situations not covered by conventional testing techniques.

INDEX

ix

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Problem and Objectives .. 3

1.3 Methodology ... 4

1.4 Contributions .. 5

1.5 Dissertation Organization ... 6

2 Concepts and Definitions .. 8

2.1 Introduction .. 8

2.2 Software Testing for Conventional Systems .. 9

2.3 Context-Aware Software System ... 12

2.3.1 Context .. 12

2.3.2 Context-Awareness .. 13

2.4 Software Testing for CASS .. 14

2.4.1 Literature Review .. 14

2.4.2 Discussion .. 16

2.5 CATS Design .. 17

2.5.1 Identify the Context Variables ... 20

2.5.2 Identify the Thresholds .. 20

2.5.3 Generate Test Suite .. 22

2.6 Chapter Considerations... 22

3 Testing CASS – A Structured Review .. 24

3.1 Introduction .. 24

3.2 Structured Review Goal .. 24

3.3 Methodology ... 24

3.3.1 Search String ... 25

x

3.3.2 Selection Procedure ... 26

3.3.3 Inclusion Criteria ... 26

3.4 Extraction Form .. 26

3.5 Results .. 29

3.5.1 Summary of the Findings .. 29

3.5.2 Discussion .. 30

3.5.3 CASS Test Case Model ... 30

3.6 Chapter Considerations... 33

4 CATS#: Towards Evolving CATS Design .. 35

4.1 Introduction .. 35

4.2 The first version of CATS# .. 36

4.2.1 The CATS# v1 process .. 36

4.2.2 Internal evaluation of CATS# v1 .. 46

4.2.3 Discussion .. 52

4.3 The second version of CATS#.. 54

4.3.1 The CATS# v2 process .. 54

4.3.2 Internal Evaluation .. 62

4.3.3 Discussion .. 74

4.4 Chapter Considerations... 76

5 CATS# - Final version ... 77

5.1 Introduction .. 77

5.2 CATS# - Final Version ... 77

5.3 Chapter Considerations... 87

6 Assessment Study .. 89

6.1 Introduction .. 89

xi

6.2 Study Planning .. 90

6.3 Study Execution .. 91

6.4 Study Results .. 94

6.4.1 Using CATS# .. 94

6.4.2 Using CATS Design .. 98

6.4.3 Discussion .. 102

6.4.4 Threats to validity and limitations ... 107

6.5 Chapter Considerations... 108

7 Conclusion ... 110

7.1 Introduction .. 110

7.2 Contributions .. 110

7.3 Limitations .. 112

7.4 Future Work .. 113

REFERENCES ... 115

Appendix A – Structure Review Extractions ... 118

A.1 An Automated Functional Testing Framework for Context-aware Applications

 .. 118

A.2 Software adaptation in wireless sensor networks. ... 134

Appendix B - Parasite Watch - CATS# v2 ... 141

1

1 Introduction

1.1 Motivation

Nowadays, it is possible to observe the emergence of many Contemporary

Software Systems (CSS), such as the Internet of Things (IoT), Cypher-Physical Systems

(CPS), Smart Cities, Self-driving cars, and others. Most of these software systems interact

closely with the real world, with animals, nature, and human beings.

Faqaha et al. [1] describe three problem domains where IoT is useful: nursing

home patient monitoring, eating disorders, and in-door navigation systems for blind and

visually impaired people. Martini et al. [2] describe technological resources for indoor

agriculture, creating a Smart Farming application. Andrade et al. [3] show a Smart

Research Building as an example of a smart environment, and Priyadarshini et al. [4]

show the application of CPS in the healthcare industry.

These applications deal closely with lives. Therefore, software engineers must

assure the quality of such software systems. However, compared with Conventional

Software Systems, CSS has specific characteristics, such as autonomy, high connectivity,

a deeper necessity of interoperability, and context-awareness, among others [5] [6].

Context-Awareness is the ability to sense the context in which the software system

is immersed, taking advantage of it to provide relevant information or services to the

actors that use it [7].

The context itself is abstract, infinite, and dynamic. It englobes all possible

information about the software system, the hardware, the environment, and the users.

Therefore, it can change at any time. Moreover, while entirely capturing the context is

impossible, a failure may occur if a Context-Aware Software System (CASS) does not

adapt its behavior when the context varies [8].

CASS failure may result in profound damage since these systems deal closely

with the real world, as was mentioned before. Therefore, their adequate behavior must be

assured [9].

2

In Software Engineering, there are different ways of verifying a system's quality.

One of them is software testing. Software testing is the activity performed during (and

after) the development cycle responsible for verifying whether a software system behaves

adequately. The main objective of software testing is to reveal these failures, ideally,

before they affect the users [10].

There are many techniques and strategies to test conventional software systems.

However, these strategies are not able to reveal failures regarding context-awareness. It

is because they do not consider the context or that it varies. Based on that, it is possible

to conclude that new testing strategies should be proposed to test CASS, considering its

context and variation [11].

The Context-Awareness Testing for Ubiquitous Systems (CAcTUS) project was

started in 2015 to investigate this research topic. The main goal of the CAcTUS project

was to understand and create strategies to test Ubiquitous Systems regarding the context-

awareness property. As a result of the project, Silva [8] created a Context-Aware Test

Suite (CATS) Design.

CATS Design searched the inspiration to create a testing strategy focused on the

context and its dynamicity in different domains. It was the initial step towards

understanding how to test CASS. However, since the knowledge about the context

evolved, it was necessary to create a new technique.

In this work, a new testing technique for CASS is presented. While this technique

was inspired by CATS Design, it evolves the conceptual background entirely, introduces

new elements, and evolves its process.

This new technique will be presented through the next chapters and the entire

research investigation and evaluation. This first chapter presents the problem being

addressed, the methodology used to conduct this research, and how this dissertation is

organized.

3

1.2 Problem and Objectives

As mentioned in the previous section, verifying the correct functioning of a

context-aware software system is not a trivial task. These software systems can sense the

context where they are immersed and adapt their behavior accordingly. Nevertheless, the

context is abstract and dynamic. It cannot be entirely captured, and it can change at any

time.

A testing strategy for CASS must capture the context and, particularly, its

variation. Suppose the manner a software system behaves after being affected by the

variation of context is not tested during the development phase. In that case, it is not

possible to assure the system will respond accordingly. Thus, while a conventional

software system failure is manageable, it can cause real damage in CASS, such as a car

crash between autonomous vehicles or jet airplane accidents.

Conventional software testing strategies were not designed to capture the context.

Therefore, new testing strategies must be proposed, investigated, and evaluated, focusing

on testing the context-awareness property.

Based on that, an investigation was conducted to collect information about how

the context affects the behavior of real-life applications. With this knowledge, it would

be possible to propose a testing technique to support the specification of CASS test cases,

which is the main goal of this research.

The following questions guided this work:

• How to test a Context-Aware Software System?

• Why is the testing of CASS different from Conventional Software

Systems?

• How does the context influence test activity?

Besides proposing a testing strategy, the secondary objectives of this research

were investigating how the context usually behaves and affects a software system.

While searching the literature, it was noticeable that different authors have

different interpretations of the context. In this work, the context is mathematically

represented, considering the inaccuracy regarding this concept in the literature.

4

Furthermore, using a universal language such as Math and its models may facilitate

communication about this topic. Therefore, it was the chosen approach to conduct this

research.

1.3 Methodology

The methodology presented in Figure 1, considering the research goal and the

questions presented in the previous section, was followed during this work.

Figure 1. Methodology

The research had the four main phases, explained below:

• Acquire initial knowledge about the problem: The research problem

was defined in this phase. Additionally, the main concepts on which this

research would be based were identified and studied. The CATS Design

technique was also studied in detail. At this phase, the necessity of

observing how the context behaves in real-life applications arose.

5

• Complement by searching the literature: At this phase, a strategy was

defined to find context-aware applications in the literature. A structured

review was conducted reusing the data from Amalfitano et al. [11]. The

selection procedure had the following steps: inclusion based on title,

inclusion based on abstract, and inclusion based on the application

described in the articles. The lessons learned during this stage inspired the

proposed solution.

• Construct a solution: After the results obtained in the previous phase,

models representing how the context affects the testing activity were

created. Based on these models, the construction of a solution began. The

entire CATS Design process was tailored, evolved, and new elements were

included to encapsulate the observations made at the previous phases.

Finally, the solution was built using an iterative process composed of four

steps: Learn, Build/Adapt, Measure, and Proofs of concepts.

• Evaluate the Solution: After three iterations and some adjustments, the

proposed solution was evaluated.

1.4 Contributions

As direct results and contributions of this work, it is possible to cite:

• A discussion about the importance of considering the context while testing

CASS;

• A discussion about what makes CASS testing different from Conventional

Software Systems;

• Mathematical models to represent the context and how it influences the

testing of CASS, and;

• A process for supporting the designing of CASS test cases.

As indirect results, it is possible to mention the following publications:

6

• Doreste, A. C. S., Travassos, G. H. Towards Supporting the Specification

of Context-Aware Software System Test Cases. In: XXIII Ibero-American

Conference on Software Engineering (CIbSE), 2020, Curitiba.

• Doreste, A. C. S., Amaral, I. D., Gonçalves, T. G., Travassos, G. H.

Digitalizando o Microscópio Óptico: a solução do Parasite Watch. In:

Anais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde.

SBC, 2019. p. 324-329.

• Amalfitano, D., Matalonga, S., Doreste, A., Fasolino, A.R., Travassos,

G.H. A Rapid Review on Testing of Context-Aware Contemporary

Software Systems, 2019.

https://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf.

• Souza, B. D., Doreste, A., Xexéo, G., Reis, C. Utilizando o Framework

MDA para Avaliar a Estética de um Jogo: Um Estudo Preliminar sobre a

Percepção de Estudantes de Graduação. In: Anais do Simpósio Brasileiro

Games (SBGames), 2018, Foz do Iguaçu

1.5 Dissertation Organization

This dissertation is organized into six chapters as follows:

• Chapter 1. Introduction: This first chapter introduces this work. It

presents the motivation. The problem addressed the objective of this

research and the methodology and the contributions.

• Chapter 2. Concepts and Definitions: This chapter presents the basic

concepts used as foundations of this research, such as the definition of the

context, the context-awareness property, and software testing.

• Chapter 3. Testing CASS - A Structure Review: This chapter presents

the Structured Review to investigate how the context and its variation

usually affect the context-aware applications and their results.

• Chapter 4. CATS# - Towards Evolving CATS Design: This chapter

presents all the evolution from CATS Design until the final version of

https://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf

7

CATS#. It presents in detail both CATS# versions 1 and 2 and their

internal evaluation.

• Chapter 5. CATS# - Final Version: This chapter describes the final

version of the CATS# technique and presents all the needed information

for everyone interested in using it.

• Chapter 6. Assessment Study: This chapter presents the realized

assessment study using an application named COVID Safe classroom. In

this study, CATS# and CATS Design were used to create a test plan and

compared to observe if there would be any advantages of using CATS#.

• Chapter 7. Conclusion: This chapter concludes this work. It presents the

main contributions, limitations, and open items for future work.

8

2 Concepts and Definitions

2.1 Introduction

“Humans are quite successful at conveying ideas to each other and reacting

appropriately. This is due to many factors: the richness of the language they share, the

common understanding of how the world works, and an implicit understanding of

everyday situations. When humans talk with humans, they are able to use implicit

situational information, or context, to increase the conversational bandwidth.

Unfortunately, this ability to convey ideas does not transfer well to humans interacting

with computers.” (Dey and Abowd, 1999)

 In 1999, Dew and Abowd wrote a paper explaining the importance and context-

awareness property. According to them, humans are, naturally, context-aware, but not

necessarily computers are. This statement can be applied to a classical computer machine

from 1999. Since then, computers have evolved. Nowadays, an increasing number of

software systems and applications are influenced by the context (even if they are not fully

aware of it) [7].

Paradigms such as the Internet of Things (IoT), Cyber-Physical System (CPS),

and Smart Cities, among others, deal with computational information and sensors,

actuators, and hardware limitations. These systems use information captured from the

“real world” to make decisions that can affect the users, their lives, and the environment

they are immersed in [12].

Considering how much these context-aware systems can affect users' lives, it is

primordial to ensure they behave correctly. One way of doing this is through software

testing, conducted to evaluate whether a software system behaves as it should [13].

However, as was mentioned before, there are considerable differences between a

classical computer machine from 1999 and the modern context-aware software systems.

Therefore, it is important to investigate whether a test strategy applied for conventional

software systems is suitable to evaluate CASS's correct behavior.

9

Due to all the previous issues, this chapter presents:

• The main concepts of software testing for conventional software

systems

• The notions of context and context-aware software systems

• How the concepts of software testing can be adapted to CASS

These definitions were used as a foundation for this research. Understanding them

is the first step towards understanding how to test CASS.

2.2 Software Testing for Conventional Systems

The ISO/IEC/IEEE 29119:2013 is a series of international standards for software

testing. Their purpose is to support the software testing activities in different scenarios

and provide a common vocabulary that can reference organizations worldwide.

According to the ISO/IEC/IEEE 29119:2013, software testing is a process

conducted to evaluate the properties of one or more test items (product/functionality

under test) with the following goals:

• Provide information about the quality of the test item

• Find defects before the test item reaches the production phase

• Mitigate the risks the test item with poor quality can present to the

stakeholders

The test process generally applied for conventional software systems is presented

in Figure 2. A test item is performed according to a test script, considering a predefined

Test Environment. A test script is a procedure that must be followed during manual or

automated testing. The test environment is the facilities, hardware, software, firmware,

procedures, and documentation used to perform the test [13].

10

Figure 2. Conventional Test Process

During the process, a set of input values (test input) stimulates the test item under

very specific environmental configurations (test conditions), producing a set of behaviors

as the response (test output).

After executing this process, the test result will indicate whether the process failed

or passed. Therefore, the test passes when the test output is like the set of expected

behaviors from the software system (expected results). When the test output is different

from the expected results, the test fails. In other words, there is a failure when the system

does not behave as expected. If the test fails, an investigation must occur in the software

system to determine the cause of that failure.

The combination of test input, test conditions, and expected results defines a Test

Case (TC) presented in Figure 3 [14]. The test case is the most basic element of a test

process. Therefore, its input and conditions should be chosen considering the test item

that must be stimulated.

11

Figure 3. Conventional Test Case Model

As was mentioned before, one of the primary goals of testing is revealing defects.

However, the test activity shows the presence of defects, not their absence. Therefore, it

is not possible to affirm that the software is defect-free, even if the test process does not

reveal any defect [10]. The best approach, in this case, is to change the test strategy since

the one used does not appear to be detecting them.

While many software systems share a certain amount of characteristics, they will

differ in many aspects. Software testing must consider this. In addition, the same testing

technique can work for a specific type of software system and not reveal failures when

applied to a different one. Therefore, different testing approaches (test strategies) should

be applied to different software systems.

For this reason, it is necessary to investigate whether software testing strategies

successfully applied in a conventional software system can be used for testing CASS.

Following this path, the next step is understanding how the context behaves, the software

system's effects, and CASS's basic characteristics. The next section will explore these

questions.

12

2.3 Context-Aware Software System

2.3.1 Context

According to the quote that opens this chapter, context is informally described as

"implicit situation information" such as "the common understanding of how the world

works" or "implicit understanding of everyday situations." Although it gives an idea about

the context, the term "implicit information" is too vague, especially when considering

software systems. Thus, a more precise and formal definition is necessary. This work uses

an adaption version of the formal definition proposed by Dew and Abowd in 1999 [7]:

"Context is the overall set of information used to characterize the situation of an

entity. An entity can be a person, a place, an application, a thing (in case of IoT), or any

other type of logical or physical objects, including the system itself."

The context itself is as infinite and abstract as the implicit knowledge of how the

world works. However, in everyday situations, a specific set of information helps humans

deal with a specific problem in a specific moment: look for traffic information to choose

the better route to work, look for the forecast to decide whether to take an umbrella and

so on. Information that does not have much value in some situations can be extremely

important in others. The same occurs with software systems.

In this way, although the context cannot be entirely captured, it is possible to

capture specific pieces of information, named Context-Variable (CV). Additionally,

according to the above-presented definition, the “set of information” will characterize the

situation of an entity. Therefore, a finite set of Context-Variable will characterize a

Context-Situation, as shown in Figure 4.

13

Figure 4. Context Representation

Another relevant characteristic of the context is its dynamicity. The context is

always changing, always varying. It is possible to observe in everyday situations: a sunny

sky can become cloudy; a warm day can become cold and rainy. The traffic on an avenue

can become intense after an accident. All these changes can occur at any time. Therefore,

a context variation can occur at any time and should be considered while designing

solutions for engineering such software systems.

2.3.2 Context-Awareness

Context-Awareness is the software system's property of capturing the context

variables to provide relevant information or services to the different actors interacting

with the system [15]. A system with this property is called Context-Aware Software

System (CASS).

As far as it was investigated, there are at least two types of CASS:

• Type 1 (T1): Captures the context to make the context information

available for their users or actors but does not have its behavior affected

by the context.

• Type 2 (T2): Captures the context and uses the context information to

decide. In this case, the software system has its behavior affected by the

context

14

An example of Type 1 is a software system that collects the temperature of a room

to display it to the users through a dashboard. An example of Type 2 is the previous

software system that automatically uses the temperature to determine whether to turn the

air-conditioner ON or OFF.

Types 1 and 2 are not mutually exclusive. A software system can be partially T1

and partially T2 (such as a software system that displays the temperature in a dashboard

and uses it to turn the air-conditioner ON or OFF). The main difference is that T1 uses

context information as regular input. In contrast, in T2, the context information can affect

the whole functionality of the system. T1 behaves similarly to conventional systems. T2

must respond according to the context.

As was mentioned in section 2.2.1., the context can vary at any time. Therefore,

T1 will not be affected. However, T2 must be prepared to deal with the variation of

context. In other words, when the context changes, T2 must adapt and keep its behaviors

consistent with the context.

While there are many techniques to help construct conventional software systems

that can be successfully applied in T1, there is a lack of software technologies and

techniques to help the engineering and verification of T2 [11].

T2 Software systems must be specified, designed, and verified considering the

context and variation. However, the conventional practices used to engineer the software

systems do not consider the context [11].

Based on this lack of technologies, a software testing technique (which considers

T2 systems) is presented in this work. The next session explains why CASS testing

(especially T2) must be different from conventional test strategies.

2.4 Software Testing for CASS

2.4.1 Literature Review

After understanding the basic concepts related to the Software Testing and

Context-Awareness area, it is necessary to look into the literature to understand how

researchers are investigating the issue of testing CASS and how far they have gone with

their investigation. The following paragraphs illustrate what we found out.

15

In a study published in 2017, Matalonga et al. [16] conducted a quasi-Systematic

Literature Review (qSLR) to investigate the existent methods used to test CASS and how

efficient they were. They used the same definition as us, proposed by Dey and Abowd

[ref], and focused on Ubiquitous Systems. They selected 12 technical articles and

analyzed them. As a result, they concluded that the existent test methods for CASS were

not completely context-aware since they were based on selecting a specific context

variable (location, for example) and assigning a fixed value for it, without any context

variation during the testing.

A few years later, Luo et al. [17] surveyed to collect context simulation methods

for testing mobile context-aware applications. The authors argued that conducting real-

world tests for mobile context-aware applications can be laborious and time-consuming.

Considering this scenario, using simulated context data to test the applications would be

an alternative. The authors presented a comparison of the most relevant context

simulation techniques. They concluded their work arguing that more research is needed

to support the testing of mobile context-aware applications.

Continuing with the mobile application domain, Almeida et al. [18] performed a

systematic mapping to identify the Android testing tools and the Android context-aware

testing tools in the technical literature. As a result, they identified 80 general Android

testing tools and 10 Android context-aware testing tools: five specifically to test context-

awareness and five with a generic approach that includes context-awareness testing.

Matalonga et al. [19] executed a Rapid Review focusing on Context-Aware

Contemporary Software Systems (CACSS) outside the mobile domain. The authors

define CACSS as Contemporary Software Systems (such as Ubiquitous Systems, Internet

of Things, Industry 4.0, among others) that are also context-aware and argue that they are

mainstream in our society. The Rapid Review had the goal of investigating how the

industry was dealing with the testing of CACSS regarding the context variation. However,

the results indicate that even if it is possible to find some techniques and strategies to test

CACSS, they are mostly focused on improving the test suite. Therefore, the authors could

not find studies regarding testing techniques and strategies managing the context variation

during the testing lifecycle process.

16

Lastly, Siqueira et al. [20] performed a Systematic Literature Review (SLR) and

a thematic analysis of studies to characterize state of the art in Adaptive and Context-

Aware Systems. Hence, they selected 102 studies and concluded that while there are some

trends (such as model-based testing and hybrid techniques), some issues like uncertainty

and prediction of changes are little investigated).

2.4.2 Discussion

Section 2.2 presented how software testing occurs in conventional software

systems. However, when it comes to CASS, the context should be considered. When a

software system is in the production phase, dealing with the real world, the variation of

context happens at any time, and the system should adapt. To observe the same behavior

during the test phase, the variation of context must affect the test process during the test

execution, as Figure 5 presents.

A context variation takes the software system from one situation (situation 1) to

the other (situation 2). For example, suppose the variation of context occurs after the

ending of the test process. In that case, just the first situation (situation 1) is evaluated by

the test. On the other hand, if the variation of context occurs before the beginning of the

process, just the second situation (situation 2) is evaluated.

The test process must capture the software system response to the variation of

context, as would happen in real life [9]. Therefore, the context must vary during the test

process execution.

Capturing the context during the test execution is not an easy task. The test process

itself was not designed for that. Nothing happens once the input is submitted, and nothing

changes until the output is generated. Therefore, the conventional test process can be

considered static, and a more dynamic test process is necessary to test CASS.

However, it is possible to observe from section 2.4.1 that, when looking into the

literature, there is a gap of testing techniques helping the software engineer to capture the

context during the test execution.

Therefore, new test strategies with a more dynamic approach should be proposed.

17

Figure 5. CASS Test Process

2.5 CATS Design

As mentioned in Chapter 1, CATS Design was created during the CAcTUS project

and designed a testing technique for Ubiquitous software systems that focuses on the

context-awareness property presented by this type of software system. To do this, the

author got inspiration in problems with similar characteristics from domains such as

Cybernetics and Organizational Resilience [8].

Although these domains did not have the concept of context, they share

similarities. In cybernetics, for example, the goal is to control a complex system

autonomously. If a disturbance occurs, the system should respond adequately without

impacting its behavior. Moreover, the Organizational Resilience domain states that a

18

system should be resilient. It must have many different manners to handle a disturbance

to decrease the likelihood of failure [8].

Inspired by how these domains dealt with the necessity of adapting according to

the changes, a process was created and refined. It is presented in Figure 6. It is centered

on constructing a test oracle based on three elements: context variable, threshold, and

expected result.

As mentioned in section 2.3.1, a context variable represents specific information

about the context, such as location, temperature, or network availability. The threshold is

the value assumed by the Context Variable, representing the variation from one context

to another. The expected result is the behavior expected from the system once the

threshold is reached.

The context variable is the temperature, using the situation mentioned in section

2.3.2 as an example; the threshold reaches a previously defined value. The expected result

is the software system turning ON the air-conditioner.

With these three elements, the test oracle will be part of a test case. The process,

shown in Figure 6, will guide the software engineers through the activities to create these

test cases.

The CATS Design process comprises three main phases: Identify the Context

Variables, Identify the Threshold, Generate the Test Suite. The following section will

expose the activities that must be performed in each of them.

19

Figure 6. CATS Design process

20

2.5.1 Identify the Context Variables

This phase aims to identify the Context Variables based on the requirements and

the software engineer's knowledge about the domain. It comprises two activities: Analyze

the Requirements looking for Context Variables and Identify Additional Context

Variables. The output of each activity is a list of variables of context, which can be merged

in one single list of every identified CV.

2.5.2 Identify the Thresholds

Once the context variables are identified, the goal of this phase is to identify their

thresholds. Therefore, this phase is composed of four activities: Generate Conceptual

Model, Identify the Thresholds in the Conceptual Model, Generate Analytical Model, and

Identify the Thresholds in the Analytical Model to help the software engineers with such

an identification.

A Conceptual Model based on the software system behavior will be the output of

the first activity. This model will be composed of boxes and arrows, as it is possible to

observe in Figure 7. Boxes will represent the system’s states or usage situations, while

arrows will represent transitions, both passive and caused by an actor intervention.

Figure 8 shows an example of a Conceptual Model for the Air-Conditioner

situation from section 2.3.2. Two usage situations can be observed: air conditioner turned

ON or OFF. Both passive situations (like the temperature reaching a THR) or usage

intervention (the user manually turning the AC ON or OFF) could cause the system to

vary from one situation to another.

21

Figure 7. CATS Design Conceptual Model Elements

Figure 8. Conceptual Model for the AC example

After generating the model, the user should study the artifact carefully to identify

every possible threshold. A list of the identified thresholds will be the output of this

activity.

After modeling the software system behavior and listing the identified thresholds,

the next activity generates an analytical software system model. To accomplish this, the

user will use the list of CVs from phase one (Identify the Context Variable) to describe

how they should interact with the software system. The output of this task will be the

description of all context variables and their expected influence over the system. Table 1

shows an example of the AC situation mentioned previously.

22

Context-Variable Effect

Temperature If bigger than THR, turn on the Air Conditioner

Table 1. Analytical Model for the AC example

The final activity of this phase is to identify every threshold from the previously

generated analytical model. The output, in this case, will also be a list of every identified

threshold.

2.5.3 Generate Test Suite

After identifying both context variables and threshold, the first activity of this

phase is using them to describe the test oracles. Each usage situation or software system

feature affected by the context variation should be listed, as well as their threshold and

the test oracle (known as expected result) for them. The test oracle must be based on the

requirements specification, and any situation without a described test oracle must be

identified as “Not Specified.”

 Once all the information regarding the context is available and the test oracle, the

next activity describes the test cases considering both the usage situations and transitions.

Each test case must contain the context variable that may influence the software

system behavior, the identified thresholds, and the test oracle obtained through the

documentation. The described test cases will be the output of this activity, and, finally,

the last activity consists of packaging them in a test suite. A package of context-aware

test cases will be the output of the entire CATS Design process.

2.6 Chapter Considerations

This chapter presents the most important concepts that guided this work:

conventional software testing, context, context-awareness, CASS software testing.

It also presented a literature review and CATS Design: a testing technique capable

of helping the specification of test cases for CASS. It is worth mentioning that, although

CATS Design does not make explicit how to define a variation of context as the transition

23

from one context situation to another, it uses a very close and intuitive concept,

represented by the conceptual model.

Understanding the basic concepts and the challenges presented by CASS was an

initial step. However, there were knowledge gaps about the context in the literature and

test situations CATS Design cannot cover.

We performed a Structured Review to investigate how the context usually affects

real-life applications and software test processes to understand them. The next chapter

presents all the information about the performed Structured Review and the gaps found.

24

3 Testing CASS – A Structured Review

3.1 Introduction

As it is possible to observe in Chapter 2, the conventional software testing

strategies do not consider the context element during the execution of the test case

(Figures 2 and 3). Also, evidence shows that when the context is not considered during

the testing phase, some failures can occur during the production phase, causing accidents

[19].

A structured review was executed to understand how the context affects the real-

life application and, consequently, the test process. This chapter shows the protocol used

to run this study, the obtained results, and our conclusions.

3.2 Structured Review Goal

This study guided the necessity of observing how the context and its variation

usually affect context-aware applications in the production phase to suggest an adequate

test strategy.

Therefore, the goal was to search for context-aware applications in the literature

and observe the context influences in their execution.

3.3 Methodology

In November 2018, Amalfitano et al. [11] executed a Rapid Review to investigate

the Testing Techniques available for CASS. Due to the similarity between the topics of

interest, this study reused their primary sources while searching for Context-Aware

applications.

25

3.3.1 Search String

Amalfitano et al. [11] used Scopus1 as the search engine. The search string was

structured based on PICOC (Population, Intervention, Comparison, Outcome, Context)

[21], as can be observed below:

Population: Contemporary Software Systems

Synonyms: ("Ambient Intelligence" OR "Assisted Living" OR "Multiagent Systems" OR

"Systems of Systems" OR "Internet of Things" OR "Cyber Physical Systems" OR

"Autonomous Systems" OR "Autonomic Computing" OR "Multi-Agent Systems" OR

"Pervasive Computing" OR "Mobile Computing" OR "Distributed Systems" OR

"Cooperative Robotics" OR “Adaptive Systems" OR "Industry 4.0" OR "Fourth

Industrial Revolution" OR "Web of Things" OR "Internet of Everything" OR

"Contemporary Software Systems" OR "Smart Manufacturing" OR Digitalization OR

Digitization OR "Digital Transformation" OR "Smart Cit*" OR "Smart Building" OR

"Smart Health" OR "Smart Environment" OR “Digital Transformation”)

Intervention: Software Testing

Synonyms: (“Test* Management” OR “Test* Planning” OR “Test* Monitoring” OR

“Test* Control” OR “Test* Completion” OR “Test* Design” OR “Test* Type” OR

“Test* Implementation” OR “Test* Environment” OR “Test* Execution” OR “Test*

Reporting” OR “software test*” OR “software validation” OR “software verification”)

Comparison: No

Outcome: Software Testing Technologies

1 https://www.scopus.com/

26

Synonyms: (“Technique” OR “Technolog*” OR “Method” OR “Activity” OR “Tool” OR

“Process” OR “Practice” OR “Mechanism” OR “Instrument” OR “Task” OR “Service”

OR “Strategy”)

Context: (“Variation” OR “Context” OR “Context Awareness” OR “Context Variation”)

Additionally, the articles were limited to Computer Science and Engineering area

from 2002 to 2019.

3.3.2 Selection Procedure

One researcher performed the following selection procedure, while a second

researcher reviewed the entire process and results:

1. Run the search string

2. Apply the inclusion criteria based on the paper Title

3. Apply the inclusion criteria based on the paper Abstract

4. Apply the inclusion criteria based on the paper Full text

3.3.3 Inclusion Criteria

1. The paper must be in the domain of software engineering;

2. The paper must be in the domain of Contemporary Software Systems

3. The paper must report a primary study

4. The paper must present a system or application influenced by the context

5. The paper must be written in the English language

3.4 Extraction Form

In this study, two different extraction forms were used. The first one, presented in

Table 2, had the goal of capturing important information about the article in general. The

second one (Table 3) aimed to capture important information about the applications

27

themselves. More than one application was presented in the same article in some cases.

In cases like these, each application was captured by a different form.

Tables 2 and 3 also present an excerpt of the application extracted from Mirza and Khan

[22].

Paper ID 12

Bibliography: Mirza, A. M., & Khan, M. N. A. (2018). An Automated Functional Testing

Framework for Context-aware Applications. IEEE Access, 6, 46568-46583.

Abstract: “In the modern era of mobile computing, context-aware computing is an

emerging paradigm due to its wide spread applications. Context-aware

applications are gaining increasing popularity in our daily lives since these

applications can determine and react according to the situational context and

help users to enhance usability experience. However, testing these

applications is not straightforward since it poses several challenges, such as

generating test data, designing context-coupled test cases, and so on.

However, the testing process can be automated to a greater extent by

employing model-based testing technique for context-aware applications.

To achieve this goal, it is necessary to automate model transformation, test

data generation, and test case execution processes. In this paper, we propose

an approach for behavior modeling of context-aware application by

extending the UML activity diagram. We also propose an automated model

transformation approach to transform the development model, i.e., extended

UML activity diagram into the testing model in the form of function nets.

The objective of this paper is to automate the context-coupled test case

generation and execution. We propose a functional testing framework for

automated execution of keyword-based test cases. Our functional testing

framework can reduce the testing time and cost, thus enabling the test

engineers to execute more testing cycles to attain a higher degree of test

coverage.”

General

Information:
• “Our proposed framework would automate testing process of

context-aware applications which includes generation and

execution of context-coupled test cases to evaluate accuracy of

context recognition and adaptation.”

• “Test cases generated from test model are in the form of abstract

test cases, so they are platform and tool independent. Abstract test

cases are human readable and can be executed manually. To

execute generated test cases automatically, abstract test cases need

to be converted according to tool specific test scripts referred as

concrete test scripts [44].”

Context-

Awareness

Information:

• “To test context-aware applications, it is important to understand

these features and plan test strategy accordingly. Few important

features of context-aware applications are context, quality of

context, sources of context, context interpretation and reasoning.”

• “Context information is retrieved from different sources which can

be grouped into two broad categories, physical sensors and data

28

sensors. Examples of physical sensors are GPS, heat and proximity

sensors which are used to obtain location and temperature of the

device as well as proximity to other neighboring devices

respectively. Similarly, examples of data sensors include preferred

usage profiles, social networking profiles, calendar and task list of

a smartphone. However, context information retrieved from both

types of sensors can introduce imperfection e.g., ambiguity,

imprecision, errors/omissions about the sensed context due to many

reasons such as noise or failure of sensors [7]. These imperfections

in the context information may cause context-aware application to

behave erroneously.”

Study Type: “To validate our framework, we conducted two case studies and results of

these case studies are compared with the results of selected contemporary

studies.”

Table 2. Excerpt of the application extracted from Mirza and Khan

Application’s Name Call-a-Cab App

Application

Description
• “Our first case study is based on call-a-cab context-aware

application [47]. This application allows users to call a cab to

their current location. User location can be obtained using GPS

sensor or can be fed manually. If application fails to

automatically obtain GPS location, then it reverts to manual

mode requiring the user to feed the location.”

• “we identify three context reconfiguration points (Call-a-Cab-

GPS, Call-a-Cab-Manually and Network Available) where

application needs to collect current context to carry out further

functionality. While calling a cab using GPS, if GPS

connection fails then application will fall back to manual mode.

Similarly, while calling cab manually, if GPS location is found,

application will fall back to automatic mode. After obtaining

user location,application needs to send cab request using

cellular network. If cellular network is lost, then an error dialog

will be displayed otherwise request will be sent.”

Table 3. Excerpt of the application extracted from Mirza and Khan

 The extraction form for each selected article will be presented entirely in

Appendix A.

29

3.5 Results

3.5.1 Summary of the Findings

The Search string mentioned in section 3.3.1 returned 492 articles. As Table 4

shows, from the 492, 54 were selected considering the title and 35 considering the

abstract.

RR Testing Database (Nov. 11th, 2018)

Total 492

Selected by Title 54

Selected by abstract 35

Selected Applications 2

Table 4. Summary of the Findings

After a full reading, only two articles were selected considering the inclusion

criteria presented in Section 3.3.3. Their name, author’s information, and descriptions of

the applications they contain are shown below (Table 5).

Article
Name

An Automated Functional Testing
Framework for Context-Aware

Applications [22]

Software Adaptation in Wireless
Sensor Networks [23]

Authors Aamir Mehmood Mirza, Muhammad
Naeem Ahmed Khan

Mikhail Afanasov, Luca Mottola,
Carlo Ghezzi

Application
Name

Call-a-Cab App Wildlife Tracking Application

Application
Description

“Our first case study is based on call-a-
cab context-aware application [47]. This
application allows users to call a cab to
their current location. User location can
be obtained using GPS sensor or can be
fed manually. If the application fails to
automatically obtain GPS location, then
it reverts to manual mode requiring the
user to feed the location. Testing this
application requires test cases to
include location determination modes,
setting valid and invalid location and
manipulation of the network connection

“Battery-powered WSN nodes are
embedded in collars attached to
animals, such as zebras or badgers.
The devices are equipped with
sensors to track the animals’
movement, such as GPS and
accelerometer readings, and to
detect their health conditions, for
example, based on body
temperature. Low-power short-
range radios are used as proximity
sensors by allowing nodes to
discover each other whenever they

30

to simulate unexpected service loss. (...)
While calling a cab using GPS, if GPS
connection fails then application will fall
back to manual mode. Similarly, while
calling cab manually, if GPS location is
found, application will fall back to
automatic mode. After obtaining user
location,application needs to send cab
request using cellular network. If cellular
network is lost, then an error dialog will
be displayed otherwise request will be
sent.”

are within communication range,
using a form of periodic radio
beaconing. A node logs the radio
contacts to track an animal’s
encounters with other animals,
enabling the study of their social
interactions. The radio is also used
to off-load the contact traces when
reaching a fixed base station. Small
solar panels harvest energy to
prolong the node lifetime [5].”

Table 5. Summary of the Findings

3.5.2 Discussion

Based on the initial number of returned articles (492) and the search string, the

expectation was to find a higher number of applications. Therefore, the result raises the

question: "Why were there just two applications in the final set?" After reviewing the

entire process, it was possible to realize that many applications called context-aware for

their authors were not context-aware according to our understanding.

As was mentioned before, context is an abstract concept. Consequently, it can be

used to represent different situations. Each situation will influence the test process

differently and require a specific test strategy considering the testing perspective.

For this reason, the conventional test case model (Figure 3) was evolved to

consider the context and to represent how the context can affect the test creation of test

cases. Therefore, the next subsection presents the CASS Test Case Model.

Finally, it is important to mention that although it was impossible to capture many

context-aware applications, this study was essential to increase the understanding of the

context and help notice these different interpretations. Additionally, the knowledge

acquired in this step guided the next ones.

3.5.3 CASS Test Case Model

After finishing the structured review process, it was possible to notice that, from

the testing perspective, the variation of context would either affect the test input or the

test conditions.

31

For example, imagine an application collecting the user's location, usually using

GPS, to show restaurants nearby. Suppose that the GPS is disabled (such as the

smartphone running out of battery and disabling the GPS consequently). The application

should adapt to the new context situation and ask the user to enter his/her location

manually. The first case (showing restaurants nearby based on GPS location) would be

an example of context manifested as test input (user's location). However, in the second

case (low battery), the context information would affect all testing conditions (GPS signal

and battery).

The above example shows two different scenarios that the conventional test case

model cannot capture the situation, as shown in section 2.2. However, these scenarios and

how they will affect the test execution must be captured because they require different

test strategies.

Due to the necessity of representing them, a new test case model was created.

Figure 9 presents its first version. While the conventional test case model is based only

on Inputs (I), Conditions (C), and Expected Results (E), the new one introduces the

Context (represented by Context Variables) as the fourth element of the model.

32

Figure 9. CASS Test Case Model – v1

In this way, the Input and the Conditions will combine each one with the Context

Variable they are influenced. Consequently, the Expected Result will be attached with the

same CV because each context element will produce a different Expected Result.

This model can represent different scenarios. For example:

• Conventional: in this case, there will be no context (CX = {}). Thus, the

test case will be: CT = {I, C, E}

33

• Context affecting the Test Input: in this case, the context will affect the

Test Input (I). The context will not affect the conditions during all the test

processes. Thus, the test case formula will be CT = {(I, CX), C, (E, CX)}.

• Context affecting the Test Conditions: in this case, the context will

affect the Test Conditions (C). The Input will not be affected. Thus, the

test case formula will be CT = {I, (C, CX), E}.

• Context affecting both the Test Input and Conditions: in this case, the

context will simultaneously influence the Input and Conditions. Thus, the

test case formula will be presented in Figure 9: CT = {(I, CX), (C, CX),

(E, CX)}

Table 6 summarizes the presented test scenarios.

Test Case Model Input (I) Condition (C) Expected Result (E)

Conventional Not Affected Not Affected Not Affected

CASS Model A Affected Not Affected Affected

CASS Model B Not Affected Affected Affected

CASS Model C Affected Affected Affected

Table 6. CASS Test Scenarios

 Although the model can represent the four mentioned scenarios, it does not

represent the correct relation between the context variables and the other test case

variables. Therefore, it needed to evolve. As a result, the model in Figure 9 evolved

throughout this research. These evolutions will be presented in the next chapter.

3.6 Chapter Considerations

This Chapter presented the Structured Review to investigate how the context and

its variation usually affect context-aware applications in the production phase. The

primary sources of Amalfitano et al. [11] were reused due to the similarity between the

34

topics of interest. However, while they searched for testing techniques available for

CASS, we were looking for Context-Aware Applications.

After going through the process, just two applications were selected from 492

articles, which raises the question, “why were obtained such a small number of

applications?”. While reviewing the process, it was possible to notice that what the

authors defined as Context-Aware applications were not Context-Aware according to our

understanding of the topic. Therefore, the Conventional Test Case Model was enhanced

to capture these differences and how each will influence the Test Process, creating the

CASS Test Case Model (which considers the context).

It is worth mentioning that although this study was not able to capture a lot of

context-aware applications, it was essential to increase the understanding of the context

and to help notice the existence of these different test situations. Thus, the knowledge

acquired in this study guided the next steps.

35

4 CATS#: Towards Evolving CATS Design

4.1 Introduction

The testing of CASS is the research question that drives this work. While looking

for solutions, the two first phases presented in Figure 1 were executed: Acquire initial

knowledge on the Problem (described in Chapter 2) and Complement by searching the

literature (described in Chapter 3). In phase 2, it was also possible to study the main

concepts regarding CATS Design, a technique grounded in evidence to describe context-

aware test cases for Ubiquitous Systems. It presented interesting ideas, an intuitive

process, and useful characteristics.

The main finding from the structure review (described in Chapter 3) was the

necessity of adapting the test strategy according to test scenarios. CATS design addresses

many important issues about the test for context-awareness application. However, it does

not consider how the context can differently affect the test cases and test process.

Therefore, we decided to use it as a start point and use our findings from Chapter 3 to

evolve the technique.

As a tribute to the shoulders this work stands on, the technique developed during

this research is CATS#. It aims to evolve CATS Design to deal with CASS test scenarios

(mentioned in Chapter 3) while evolving the entire process to make it suitable for different

types of CASS (not only Ubiquitous Systems, as CATS Design does).

This chapter presents the process of evolving CATS Design to become CATS#.

At this phase, the methodology to build the solution was based on Learn, Adapt/Build

and Measure, iteratively [24], as presented in Figure 10.

36

Figure 10. Methodology for constructing CATS#

We learned, previously, from CATS Design the advantages of building a first

version of the technology and performing an internal evaluation to allow its incremental

evolution. As a result, CATS# passed through two intermediary versions before getting

into its final form. The intermediary versions (CATS# v1 and v2) and their internal

evaluations are exposed in this chapter. The final version of CATS# is presented in

Chapter 5.

4.2 The first version of CATS#

4.2.1 The CATS# v1 process

At this first version, the main idea was evolving CATS Design to englobe the

knowledge acquired with the Structured Review (see Chapter 3). The resulting technique

(CATS#) should conduct software engineers to specify CASS test cases considering the

different test scenarios. Furthermore, the intention was also to evolve the process to

facilitate its application.

Figure 11 presents the first version of CATS#. It contains eight steps: two exactly

equal to CATS Design (Generate analytical model and Describe the test oracle), five that

were modified at some level (Extract Variables, Identify Context Variables, Generate

Conceptual Model, Identify the thresholds, and Describe Test Cases), and one new

(Identify Test Scenario). The new step aims to include the test scenarios in the process.

Four of the five modified steps had the goal of evolving the CATS Design process itself.

The exception is the Describe Test Cases step which proposes a new test template to

consider the specific pieces of context variation.

37

Figure 11. CATS# Process

38

1. Extract Variables

This step condenses the two initial steps from CATS Design. Then, it extends

them to all possible variables presented in the Requirements Document (or any other

artifact describing how the software system is supposed to work). The rationale is that the

variables that do not represent the context itself could be affected by its variation.

Therefore, they can help analyze how the context affects the software system's behavior.

2. Identify Context Variables

Once all possible variables are listed, the intention is to identify those representing

the context. It is not necessary to create a new list at this step. The idea is that using the

list from step 1, the user marks the context variables with any graphical element (such as

underlining, highlighting, and so on) that differentiates them from the regular ones.

3. Generate Conceptual Model

This step remains almost the same as CATS Design. The only modification was

regarding the arrow representing the transitions. The ones from CATS Design were

fulfilled and colored. The one used by CATS# was simple in this first version. The arrows

used by both techniques are presented in Figure 12. The idea of changing this graphical

element was to simplify the model and make it easy to be designed in different tools.

Figure 12. Difference Between Arrows

4. Generate Analytical Model

39

This step remains almost the same as CATS Design. The model preserves the two

fields that must be filled out: Context-Variable and Effect. Nevertheless, while evolving

the process, it became clear that, since the Effect will be a consequence of a CV reaching

a THR, the THR itself should be included in this model since it is a part of the effect.

Table 7 shows an example using part of the Restaurant Application scenario from

section 3.5.3. The model in Table 7 represents how the context interacts with the system

and how the system should behave.

Context-Variable Effect

GPS Availability • If it is TRUE, it automatically gets the user’s location

• If it is FALSE, ask the user’s location manually

Internet Connection • If it is TRUE, return to restaurants nearby

• If it is FALSE, not defined

Table 7. Conceptual Model of the Restaurant Application

5. Identify the Thresholds

This step synthesizes two steps from CATS Design: “Identify the Thresholds in

the Conceptual Model” and “Identify the Thresholds in the Analytical Model.” The idea

is that both models will work together. THRs from one model should be reflected in the

other. Consequently, there is no necessity of going through the step twice.

6. Identify Test Scenarios

This step is new and aims to use a new Test Case model to represent the context,

its interaction with the Test Case, and, consequently, the Test Process.

The model in Figure 9 evolved to the one in Figure 13, using the set theory to

represent the problem better. Besides, it evolves the relation among context variables and

the other test case variables (Input, Conditions, and Expected Results) while still capable

of describing the four scenarios mentioned in section 3.5.3.

40

Figure 13. CASS Test Case Model – version 2

This model is relevant because, as was mentioned before, how the context

variation affects the test case will influence the test strategy. Therefore, it is important to

guarantee that the test cases and testing execution capture the same variations of context

that affect the software system in the production phase when the context can freely vary

[9].

The context needs to vary during the testing execution. Furthermore, as far as it

could be investigated in this research, these are the strategies that should be followed

according to the model from Figure 13:

• As mentioned before, when there is no context, there will be no need to capture

its variation. Therefore, the model gets back to Conventional Test Case Model,

and conventional test strategies should be used.

41

• When the context influences just the Test Case Input and the conditions remain

static, the context variations will not affect the testing execution. The only

consequence will be increasing the number of test cases to represent the different

context variations.

• When the context influences just the conditions and the input remains static, it

is necessary to use a new test strategy to capture the context variations during the

testing execution.

• When the context influences the input and the conditions simultaneously, it

will be necessary to use a proper test environment capable of varying both Input

and Conditions during the testing execution. Unfortunately, there is no such

environment available yet [11]. Therefore, it is necessary to create a new

environment capable of using computing techniques to simulate these variations.

However, this is out of the scope of this work, being a future step.

A summary of these testing strategies is presented in Table 8, which shows a

different perspective of the test scenarios presented in Chapter 3. Additionally, Figure 14

shows examples of how the test case would be specified following the CASS Test Case

Model A (Figure 14.a) and CASS Test Case Model B (Figure 14.b).

Test Case Model Input (I) Condition (C) Expected Result (E)

Conventional Static Value Static Value Static Value

CASS Model A Dynamic Value Static Value Dynamic Value

CASS Model B Static Value Dynamic Value Dynamic Value

CASS Model C Dynamic Value Dynamic Value Dynamic Value

Table 8. Testing Strategies

42

Figure 14. CASS Test Case Model – version 2 - Examples

7. Describe the Test Oracle

The previous step had the goal of helping the software tester to perceive whether

the context will affect the Input or the Conditions of the test cases. The software tester

should use this information to specify the test cases, creating the test oracle at this step.

In CATS Design, the Test Oracle was composed of three elements: Feature,

Context, and Expected Output (Table 9 shows an example).

Feature Context Expected Output

Search for Restaurants GPS going unavailable Ask location manually

Search for Restaurants Loss of Internet

Connection

Not specified

Table 9. CATS Design Test oracle

However, in CATS#, the Test Oracle suffered some modifications. The most

important one is that the context information will be captured through Inputs and

Conditions Variables. Additionally, each test case must have an Identification Number

(Id), and the “Expected Output” column was renamed for “Expected Result” to maintain

the consistency between this step and the previous one.

Table 10 shows an example of the CATS# Test Oracle. Since the context will

directly affect the Input and Conditions variables of a test case, its variation should be

captured through them. In the example in Table 10, the context affected the GPS

availability, a condition variable. In this way, the context variation is represented at the

condition’s column with the “GPS Available” variable varying between the value “True”

43

to the value “False.” In addition, the Expected Result column will capture the system’s

expected behavior after the context variation. The same applies to the Internet Connection

variable.

Test Case Id Input Conditions Expected Result

TC01 User’s

location

GPS available = True → GPS

available = False

Ask location

manually

TC02 User’s

location

Int. Connection = True → Int

Connection = False

Not specified

Table 10. CATS# Test Oracle

8. Describe the test case

After creating the test oracle, the test cases must be described so that it will be

possible to execute the testing later. It is the most significant step in the CATS# process

and the most different from CATS Design.

CATS Design focuses on preparing a test oracle. Then, if any context variation

occurs during the test case execution, the oracle would have the behavior expected from

the software system in the face of that situation.

In CATS#, the intention is to cause the context variation during the testing

execution because it is the only way to verify the system behavior in that situation.

Therefore, a specific CV is chosen to vary, while the others must remain fixed during

testing. With this goal, the CATS Design template was modified. The new one is

presented in Table 11 and has the goal of helping the user to specify which variation must

occur and when, exactly, it must occur.

44

Id <test case id>

Test Objective <Briefly describes the test case goal objective>

Preconditions <Describes the preconditions in general>

Fixed Conditions <Describes the conditions that must remain static

during the test execution>

Input <Describes the test case input>

Test Steps 1. <Describes the first step that should be followed>

2. <Describes the second step …>

3. <Describes the third step …> (c1)

4. <Describes the fourth step, after the variation

specified in c1>

Varying Conditions c1. <Describes the specific conditions that must vary

in test step 3>

Expected Result <Describes the expected result after the variation

specified in c1>

Pos Conditions <Describes the pos conditions in general>

Table 11. CATS# Test Template

As shown in Table 11, a new field called “Fixed Conditions” is responsible for

specifying which Context Variables, previously identified as test case conditions, must

remain static during testing execution. Besides, the “Varying Conditions” field specifies

which CV must vary (considering the previously established threshold).

Additionally, the CATS# template gains a structured flow like use cases. The idea

is to indicate in which step an exception flow must occur, using tags, such as the "c1"

presented in Table 11, to identify when a specific context variation must occur. In this

way, if there is a tag 'c1' after step 3, it means the testing execution must be momentaneous

paused until the variation specified as 'c1' happens. Thus, the software system must

remain paused until the context variation occurs and, once it is over, the test execution

can proceed to step 4.

The other presented fields are characteristics of conventional testing templates and

are also present in CATS Design. Table 12 shows a comparison between the templates of

CATS Design and CATS# v1.

45

CATS Template CATS# v1 Template

Test Case ID Test Case ID

Test Objective Test Objective

Precondition Precondition

<not available> Fixed Conditions

Test Input Test Input

Test Steps Test Steps

Relevant Context Variables Varying Conditions (C)

Known Threshold <not available>

Expected Result for each Threshold Expected Result (E)

Postconditions Postconditions

Table 12. CATS Test Template x CATS# v1 Test Template

Step 8 is the last step from the CATS# process. After this, it is expected that the

software engineer will be capable of

• Identify how the context will affect the software system and the test cases;

and

• Specify the test cases for test scenarios when the context influences the input;

and

• Specify the test cases for test scenarios when the context influences the

conditions; and

• Use the test template to specify both CASS and conventional test cases

whether it is necessary

This process focuses on test case specification. On some occasions, causing the

variations will be quite common, such as Disable GPS, Losing Internet Connection,

Increasing temperature, among others.

However, there will be occasions that demand a specific environment to simulate

the necessary context variations. For these cases, just the CATS# process will not be

46

enough. Developing a context-aware testing environment is out of the scope of this work.

However, it is necessary to strengthen the benefits of using CATS# to test context-aware

software systems.

After this first version, it was necessary to evaluate it. Therefore, a proof of

concept was developed using an example application. The next section will describe the

application and present CATS# v1 to specify CASS test cases.

4.2.2 Internal evaluation of CATS# v1

At this step, the idea was to use a real-life application from Afanasov, Mottola,

and Ghezzi [23] to use CATS# v1 and evaluate the technique. The software system is a

Wildlife Tracker to monitor the behavior of wild animals and their encounters.

The solution is a WSN (Wireless Sensor Network). Battery-powered nodes are

embedded in collars and attached to animals. In addition, each node is equipped with a

GPS sensor, two low-powers short-range radios working as proximity sensors, and solar

panels to prolong the node lifetime. A proximity sensor is responsible for detecting the

presence of Base-Stations (BS), and the other is responsible for detecting the presence of

animals (Figure 15). When an animal is detected, the information about the encounter

should be logged in (Figure 16.b). Then, the collected data should be sent to the Base-

Station (Figure 16.c). Additionally, the GPS sensor captures the pace of the animal's

movement, and it may be disabled if the battery is running low (Figure 16.a). More

information about the application can be found in Afanasov, Mottola, and Ghezzi [23].

Figure 15. Wildlife Tracker Application

47

Figure 16. Wildlife Tracker Scenarios

The CATS# v1 technique was applied to specify the test cases for the Wildlife

Tracker Application according to the steps below.

1. Extract Variables

The first step should capture the variables from the Requirement Document (or

any document containing the problem specification). In this case, the application

description was used. The variables list is presented below in Table 13.

2. Identify Context Variables

After listing the variables, the second step highlighted the ones that appear to be

Context Variables. In this example, the variables representing the context are bold in

Table 13.

List of Variables

• GPS Sensor status

• Animal location

• Accelerometer

• Animal Proximity

• Base-Station Proximity

• Memory available

• Battery level

Table 13. Wildlife Tracker - List of variables

3. Generate Conceptual Model

After identifying the CVs, the conceptual model was designed. Figure 17 presents

the model. It has four states:

48

1. Log-in information from GPS: when the battery level > THR and there is no

proximity with either a BS or another animal. This "state" was considered

"normal," the initial one. The other states will have this one as a starting point.

2. Disable GPS: occurs when the battery level reaches a pre-defined THR. It

was considered that the THR is a value that the user will define. However, its

real value does not matter at this point, but the context changes once it is

reached, and the system must adapt.

3. Send data to the BS: occurs every time an animal gets closer to a BS. Once

the proximity is over, the software system must go back to the log-in

information “state.”

4. Collect data from the animal’s encounter: every time another animal is

near. Like the previous “state,” the system must go back to the log-in

information state once the proximity is over.

The transitions and thresholds that will “trigger” them are more valuable than the

states. They help the software engineer understand the context variation and the

consequences (or effects) of these transitions.

Figure 17. WildLife Tracker Conceptual Model

49

4. Generate Analytical Model

Here, the difference from CATS Design is that the Analytical Model was based

on the problem description and the Conceptual Model.

Table 14 presents the model. The first row of the table presents two “states”: “Log-

in information from GPS” (when the battery level ≥ THR) and “Disable GPS” (when the

battery level < THR). The second row is related to the “Collect data from the animal’s

encounters” state (when animal proximity = YES), and the third row is related to the

“Send data to BS” state (when Base-Station Proximity = YES).

CV Effect

Battery level
• if battery level < THR, GPS status = OFF

• if battery level ≥ THR, GPS status = ON

Animal Proximity
• if animal proximity = YES, collect data from

encounters

Base-Station Proximity
• if Base-Station Proximity = YES, send data to the

Base-Station

Table 14. Wildlife Tracker Analytical Model

5. Identify the Thresholds

After designing both Conceptual and Analytical Models, the next step is the

identification of their thresholds. Finally, the identified THRs are listed in Table 15. As

expected, the THRs are related to the CVs described in the Analytical Model (Table 14)

and the transitions from the Conceptual Model (Figure 17).

Thresholds

• Battery level going down the threshold

• Battery level going up the threshold

• Getting closer to a base-station

• Getting closer to an animal

Table 15. Identified Thresholds

6. Identify the Test Scenarios

After getting all three elements: context variables, thresholds, and effects, it is

important to classify each test case according to the CASS Test Scenarios: Conventional,

50

CASS Model A, CASs Model B, CASS Model C. Table 16 presents the classification for

this problem.

Context

Variable
Effect Threshold Test Scenarios

Battery

Level

≥ THR, GPS status = ON
Battery Level going

down the threshold

CASS - Model

B

< THR, GPS status = OFF
Battery Level going

up the threshold

CASS - Model

B

Animal

Proximity

= YES, collect data from

encounters

Getting closer to an

Animal

CASS - Model

A

Base-Station

Proximity

= YES, send data to the

Base-Station

Getting closer to a

Base-Station

CASS - Model

A

Table 16. Identification of the test Scenarios

The first two rows describe the battery level going down and up the threshold.

Both cases were classified as CASS Test Case Model B since the "battery level" variable

would be a test case condition.

The other two remaining rows of the table describe the scenarios involving

Animal or Base Station Proximity. They were classified as CASS Test case Model A

since they fit better as a test case input.

7. Describe the Test Oracle

At this step, all test scenarios were classified according to the test strategy that

should be applied. Four test cases were specified (Table 17) considering Table 16 and the

proper testing strategies for CASS – Modal A and B.

• TC01: In this case, the CVs were related to the Conditions. Thus, the CASS

Test Case Model B was used, and the Battery Level must vary during the test

execution.

• TC02 and TC03: The CVs were related to the Input in these cases. Thus, the

CASS Test Case Model A was used. Since the context variation occurs in the

input, two test cases were specified to test this scenario: BS Proximity = NO,

and BS Proximity = YES. During all testing execution, the Battery Level must

remain bigger than the THR value.

51

• TC04 is a conventional scenario with no variation occurring during the test

execution. Thus, a conventional test case was specified.

Id Input Context Conditions Expected Result

TC01 Animal location
CX0 Bat. Level≥ THR GPS status = ON

CX1 Bat. Level< THR GPS status = OFF

TC02 BS Proximity = NO CX0
Bat. Level ≥ THR

Log Data in the node

TC03 BS Proximity = YES CX3 Send Data to BS

TC04 Animal location
CX0

Bat. Level ≥ THR
Log in GPS

information

Table 17. WildLife Tracker Test Oracle

8. Describe the Test Cases

After describing the test oracle, the last step was using the CATS# v1 testing template

to describe how the test process should occur. Table 18 presents the fulfilled test template

from section 4.2.1 for the test case TC01.

The goal of TC01 was to verify the variation of the Battery Level while all other

CVs remain constant. Therefore, the specified test steps should be followed to test this

functionality. After executing the third test step, the system must be paused, and the

variation in c1 must be provoked (manually or automatically). After the variation occurs,

the next test step should be executed. The expected behavior, in this case, is the software

system disabling the GPS sensor.

52

Id TC01

Test Objective Verify the variation of the Battery Level

Preconditions • The BS is out of reach

• Battery-Level ≥ THR

• Solar Panel is deactivated

• GPS status = ON

Fixed Conditions • Animal proximity = NO

• BS proximity = NO

Input GPS location (lat, long)

Test Steps 1. Starts the node

2. Change the node position

3. The node starts to collect data (c1)

4. Change the node position

Varying Conditions c1. Bat. Level ≥ THR → Bat. Level < THR

Expected Result The system disables the GPS

Pos Conditions • GPS status = OFF

• Battery-Level < THR

Table 18. Wildlife Tracker test template

4.2.3 Discussion

As was mentioned previously, we used CATS Design as inspiration and evolved

its process into CATS# v1. Table 19 shows the difference between the two processes. As

it is possible to observe, there were:

1. Removed steps - such as “Analyze the Requirements looking for Context

Variables” and “Identify Additional Context Variable”;

2. Maintained steps - such as “Generate Conceptual Model” and “Generate

Analytical Model

3. Evolved steps from CATS Design - such as “Extract Variables” and “Identify

Context Variables”; and

4. New steps included - such as “Identify the Test Scenarios.”

53

The main idea was to simplify the process and use our findings from Chapter 3 to

evolve the technique.

Steps CATS Design CATS# - First Version

Analyze the Requirements

looking for Context Variables

Included Removed

Identify Additional Context

Variable

Included Removed

Extract Variables It did not exist in

this version

An evolution of step 1 from

CATS Design

Identify Context Variables It did not exist in

this version

An evolution of step 2 from

CATS Design

Generate Conceptual Model Included Maintained

Identify the THR in the

Conceptual Model

Included Removed

Generate Analytical Model Included Maintained

Identify the THR in the

Analytical Model

Included Removed

Identify the Thresholds It did not exist in

this version

Joining Steps 4 and 6 from

CATS Design into one

Identify the Test Scenarios It did not exist in

this version

Included

Describe the test oracle Included Maintained

Describe the Test Cases Included Maintained with an evolved

template

Package the Test Suite Included Removed

Table 19. Wildlife Tracker test template

After creating CATS# v1, we used the application described in 4.2.2 to evaluate

the process itself and the proposed enhancements.

The performed evaluation is limited. Nevertheless, it represents a proof of concept

to analyze the proposed process qualitatively and implicitly. Additionally, there were

undeniable threats, such as the researcher's natural interest in the outcome and the biases

that come with it.

However, the main focus of this first internal evaluation is to observe how much

the proposed process would be adequate (or not) to model CASS test cases. Furthermore,

54

a scenario found in the literature was used to analyze the suitability of CATS# version 1

while looking for opportunities for improvements, and we learned from it (as it is the goal

of the Learn, Adapt/Build and Measure methodology). Below is what we could conclude

after learning with the evaluation:

1. It is possible to specify the analytical model after the two initial steps

2. The analytical model can help the design of the conceptual model

3. The conceptual model can be used to represent the context situations and

variations to help the software engineer to understand better the necessary test

cases

The entire CATS# v1 process was evolved considering these issues. Its second

version is presented in the next section.

4.3 The second version of CATS#

4.3.1 The CATS# v2 process

After the first version of CATS# and its internal evaluation, we measured,

observed, and learned. As mentioned in the methodology from section 4.1, the next step

was adapting. Therefore, we updated the process, and the proposed modifications were

included in the second version of CATS#, presented in this section. The major

modification to this new version was made on the conceptual model.

The conceptual model from CATS Design was inspired in other domains and had

the main goal of helping the identification of thresholds. This goal was maintained in

CATS# v1. However, this second version includes a conceptual modal to identify

thresholds and help the software testers understand the entire software system behavior

regarding the context variations.

To do this, we used the concept of context situations presented in Chapter 2. A

threshold is still represented and triggers the variation from one situation to another. User

events are also represented as triggers. The main idea is that each context variation,

represented by an arrow in the model, is a potential test case.

55

Additionally, we added a matrix to map the software system functionalities across

different context situations. Again, the goal is to help the software tester identify what

functionality will be affected by the context variation.

Figure 18 shows the second version of CATS#. Again, the modified steps are

presented in gray, the new ones are in bold, and the ones that remain the same are in

white. More information about the changes made is presented below.

56

Figure 18. The second version of CATS#

57

1. Extract Variables

This step remains the same as in CATS# v1.

2. Identify Context Variables

This step remains the same as in CATS# v1.

3. Generate Analytical Model

This step was slightly modified when compared to CATS# v1. The Analytical

Model presented in section 4.2.1 has two fields that must be filled out: Context-Variable

and Effect. This model was updated to three fields (Context-Variable, Threshold, and

Effect) to fill the information. Although the information captured by the updated model

will not change, the idea is to improve the organization and draw the software testers’

attention to every piece of information captured in this step. Table 20 shows an example

using the Restaurant application from section 3.5.3

Context-Variable THR Effect

GPS Availability

TRUE Automatically gets the user’s location

FALSE Ask the user’s location manually

Internet Connection

TRUE Returns to Restaurants nearby

FALSE Not Defined

Table 20.CATS# Conceptual Model - version 2 with three different columns to improve

organization

Besides this modification, creating the Analytical Model becomes the third step

of the CATS# v2 process, happening before designing the Conceptual Model. Therefore,

the choice to change the orders between the designing of the two models was motivated

by the fact that creating the Analytical Model is possible before steps one and two of the

CATS# v1 process. Additionally, as explained in the next step, it can help the software

tester create the conceptual model, which will become more complex.

4. Generate Conceptual Model

58

The conceptual model represents only a small step in the previous processes

versions (CATS Design and CATS# v1). However, in this version, it becomes the central

part of the CATS# process. Therefore, every step/activity previously executed had the

intention of helping to design the conceptual model. Likewise, every step/activity

executed later is guided by it.

In CATS# v2, the conceptual model intends to represent the software system

behavior using the concepts of context situations and variations. The context situation is

characterized by the relevant context variables and their values. A variation represents

either a context variable reaching its threshold (white arrow) or a user action (gray arrow).

Additionally, each white arrow has a tag describing the threshold value triggering a

specific variation. Sometimes, this value includes only one CV, but in some cases, the

threshold will be characterized by a combination of CVs indicated by .AND. operations.

Usually, .OR. operations are unnecessary because, as far as it could be

investigated, an .OR. operation would represent different cases of variations, which the

same arrow will not represent. Figure 19 shows the graphical representation of the CATS#

v2 Conceptual Model Elements.

Figure 19. CATS# v2 - Conceptual Model Elements

59

Additional to context situations and variations, the concept of macro-context

situations was used as a high-level representation of a specific set of context situations.

The situations represented inside a macro-context situation will be affected by a context

variation the same way, which allows them to be represented together.

It is possible to represent the entire model through context situations and

variations, but the software system's complexity may generate a graphically confused

representation. In this case, macro-context situations can help since they represent a high-

level abstraction of the software system.

To exemplify the use of the conceptual model elements, Figure 20 shows a small

example modeling the Analytical Model previously presented in this section (Table 20).

Figure 20 presents three Context-Situations (Get User location Automatically, Ask User’s

location and Not Defined) as well as a macro-context situation (Return to Restaurants

nearby). Both context-situations inside the macro-context will be affected in the same

way by the Internet Connection becoming unavailable. Consequently, they can be

represented by a Macro-context Situation as well.

Figure 20. Conceptual Model from the Restaurant Application

60

A complete example of how context and macro context situations can be

combined will be presented in section 4.3.2, where the internal evaluation of CATS# v2

is presented.

Although the Conceptual Model can be compared with a State Diagram, they

represent different levels of abstractions: A State Diagram represents a set of application

states [25], and the Conceptual Model will represent a set of context situations and their

variations.

Also, the crucial detail about the proposed conceptual model is that each white

arrow represents a potential test case that could be explored depending on the testing

strategies. Possible testing strategies would be specifying test cases for all the transitions

among context and macro-context situations, specifying at least one test case for each

context variation, and specifying test cases for the most critical part of the software

system.

5. Mapping Functionalities and Context Situations

This new step complements the conceptual model to map the system’s

functionalities with the context situations.

While the Conceptual Model can represent the identified context situations and

their variations, it does not show how the context variation will affect the software

system's functionalities. Therefore, a situation matrix S has been created to support this

representation. Its rows represent the functionalities, and the columns represent the

context situations.

Equation 1. Situation Matrix function

Equation 1 shows the function that should be used to fulfill the matrix. For

example, if the context situation c enables the functionality f and the context situation c'

disables it, the values of each row of the matrix will be:

Equation 2. Example of values for some rows from Situation Matrix

61

Therefore, if an event promotes the variation of context situation c to context

situation c', it will affect functionality f. An expected behavior must be specified at the

next step because of context variation.

6. Identify the Test Scenarios

This step remains the same as in CATS# v1.

7. Describe the test oracle

In this version, the main difference from CATS# v1 is the inclusion of the System

Feature field in the oracle to describe which functionality should be affected by the

specified variation on that test case. All other parts are like CATS# v1. Table 21 shows

an example.

Additionally, the test cases from the Conceptual Model (indicated by arrows)

should be listed while combined with the Situation Matrix from step 5.

TC Id System

Feature

Input Conditions Expected

Result

TC01 Search for

Restaurants

User’s

location

GPS available = True →

GPS available = False

Ask location

manually

TC02 Search for

Restaurants

User’s

location

Int. Connection = True

→ Int Connection =

False

Not specified

Table 21. CATS# v2 Test Oracle

8. Select Test Cases

After listing all possible combinations of test cases and software system features,

a set of specific test cases should be selected at this step. The testing strategy used should

be considered to select the test cases. In an ideal scenario, all test cases listed in step 7

must be specified and executed. However, in situations with limited resources, a small

but meaningful set of Test Cases could be selected from the list and specified.

9. Describe the test case

This step remains the same as in CATS# v1.

62

4.3.2 Internal Evaluation

In section 4.2.2, a small application was used to evaluate CATS# v1. Then, after

evolving the process, another internal evaluation was conducted with the same objective.

However, while the first one (Wildlife tracker) was a small application found during the

Structured Review, the second software system is a real-life application called Parasite

Watch.

The Parasite Watch is a software system for supporting the diagnosis of parasitic

diseases which captures images of biological samples obtained from patients and uses an

image recognition algorithm to make a diagnostic suggestion. As parasitic diseases are a

substantial problem in developing countries, some information (as the location of each

image) should be collected to help governments with public health politics. Therefore,

although it is not purely a safety-critical system, it is a real project, based on real

necessities, planned to adapt according to the different usage situations [26][27].

The Parasite Watch must adapt to operate in different environments, such as no

network connection or power availability (in this case, a battery and solar panel must be

used). There are two modes of operations when considering network availability:

• Local lab: there is no network connection available. In this case, the diagnosis

must be made locally, and the host must store the images. Some disadvantages

of this mode of operation are the restricted space for image storage and

outdated image recognition algorithms. The software system automatically

transfers the files to solve the limited memory space when a memory drive is

detected. If there is no space in the memory left, the system shows a message

to the user and pauses its operation until it is solved.

• Online Lab: there is a network connection available. In this case, the system

must send the captured images to an Online server and receive the diagnosis.

The Online server will contain the latest version of the image recognition

algorithm and the database used for training the algorithm. When executed at

this mode, the system must automatically update the local lab algorithm (if not

updated yet) and synchronize the images stored locally with the Online server

database.

63

Additionally, when considering the power availability, there are three modes of

operations:

• Electricity is available: All functionalities are available as well

• The software system uses the battery or solar panel: Some functionalities

must be disabled, such as the Software System Update, Synchronization, and

Transferring Files to Memory Drive.

• The software system uses a battery that is running low: In this case, it

should operate at Energy Saving Mode, which means disabling the network

connection (whether it is available) and GPS location.

The Parasite Watch Specification Document was used to specify the test cases.

However, since it was not written considering the context perspective, some information

could not be found. Consequently, it was necessary to act like stakeholders to fill in the

blanks. The information missing in the documentation was added later in the Analytical

Model and is represented differently, with an underline.

This gap in the original Parasite Watch documentation was not noticed before the

application of CATS# v2 and made us realize that CATS# v2 could also work as an

inspection technique focusing on the context perspective. Therefore, as a side effect of

applying CATS# v2, the quality of the specification document improved.

 The CATS# v2 was applied to specify the test cases for this software system

according to the steps below.

1. Extract Variables

At this first step, the goal is to extract all the relevant variables from the Parasite

Watch Specification Document. Table 22 shows the identified variables. Besides, it was

possible to identify one missing variable in the documentation, which was included later

in Table 22 and is underlined.

2. Identify Context Variables

Since the idea of this step is to highlight the CVs, they are represented in bold in

Table 22.

64

Variables List

• Internet Available

• Diagnosis

• Power Available

• Updated

• USB Device

• Battery Level

• Geolocation

• Date

• Synchronized

• Time

• Image

• Point of Interest

• Memory

Available

Table 22. Step 1 and 2 from CATS# v2

3. Generate the Analytical Model

Table 23 shows the Analytical Model describing the Parasite Watch modes of

operations using Context Variables and their thresholds.

When the Internet is available, the Parasite Watch will operate in Online Lab

mode, enabling the functionality of synchronization and updating. Conversely, when the

Internet becomes unavailable, the system should change to Local Lab, interrupting any

Online Lab operation.

Considering whether the Power is available, some functionalities should be

disabled when executing in battery mode (Power Available = False, Battery Level >

20%), and the software system must function with more restrictions when the system is

running out of battery (Energy Saving Mode).

Also, the expected behaviors are briefly described when the memory becomes

unavailable and when a memory drive is detected.

It is worth mentioning that some situations will rely on a combination of more

than one CV. For instance, when Internet Available is True and Updated is False, the

system must update the software if Power Available is True.

65

CV THR Effect

Internet Available

True

Use Online Lab to make the diagnosis

If Synchronized = False, sync diagnosis

If Updated = False, update de Software

False

Use Local Lab to make the diagnosis

If Synchronized = False, stop sync

If Updated = False, stop updating

Power Available

True Use energy from Power

False

Use energy from Battery or Solar Panel

If Synchronized = False, do not sync

If Updated = False, do not update

If USB Dev. = True, do not transfer files

Battery Level

 > 20%
If Internet Av. = True: Online Lab Mode

If Internet Av. = False: Local Lab Mode

≤ 20%
Disable GPS

Disable Internet

Memory. Available False Display a message and pause the system

Memory Drive True Transfer files to Memory Drive

Table 23. Analytical Model

4. Generate the Conceptual Model

The Parasite Watch software system model has seven context situations and

variations, presented in Figures 21, 22, 23, and 24. In Figure 21, the software system was

modeled without macro-context situations, resulting in a confused and incomplete model

version. For example, there should be an arrow between the “System Paused” context-

situation and “Sending Files Online,” but there is no more space to draw left in Figure 21.

In Figures 22, 23, and 24, some of the context situations were organized in two

macro-context situations, representing a high-level view of the software system, and

resulting in a more organized model.

66

Figure 21. Conceptual Model without macro-context situations

67

As it is possible to see in Figures 21, 22, 23, and 24, each context variation has a

tag showing what threshold value causes that modification. Some variations are

composed of .AND. operations. When a combination of variables varies when the change

happens, the other must be set previously at that value. The variations among macro-

contexts can also affect the context situations inside them. In this way, if the software

system is in the "Sending Files Online" situation and the battery level reaches 20%, it

must enter energy-saving mode (Figures 21, 23, and 24), when the Internet Connection

and GPS geolocation will be disabled.

Notice that all context situations happening inside a macro-context situation have

their characteristics. For example, all context situations inside Online Lab have Internet

available. According to this model, the Parasite Watch software system will have at least

17 test cases, considering the variations between context and macro-context situations.

Figure 22.Conceptual Model using a macro-context situation – part 1

68

Figure 23. Conceptual Model using a macro-context situation – part 2

69

Figure 24. Conceptual Model using a macro-context situation – part 3

70

5. Mapping Functionalities and Context Situations

The Situations Matrices for Parasite Watch are presented in Tables 24, 25, and 26.

The matrices in Tables 24 and 25 show the functionalities affected by the context

variation inside their macro context situations (Local and Online Lab, respectively). Table

26 maps the same functionalities considering the variation among macro-context

situations.

When functionality is enabled in a specific context situation and then disabled

during a variation to another context situation, the software system must have an expected

behavior because it can occur while the functionality is executing.

An example would be when the Internet becomes unavailable during the

execution of "Submit to Online Diagnosis." This functionality will be affected (at least

interrupted), and how the software system should behave must be specified. In the case

of the previous example, it has been determined that the expected behavior would be

submitting the diagnosis again to the local lab automatically.

Although the matrix does not specify the expected behavior, this will describe the

oracle.

System Features
Transferring files

to USB

System

Paused

Storing

Locally

Capture Image False False True

Submit to Local Diagnosis False False True

View Diagnosis False False True

Transfer to Mem. Drive True False False

Table 24. Local lab Situation Matrix for Parasite Watch

71

System Features Updating
Sending Files

Online

Synchronizing at

Background

Capture Image False True True

Submit to Online

Diagnosis
False True True

View Diagnosis False True True

Update Software True False False

Sync with the database False False True

Table 25. Online lab Situation Matrix Parasite Watch

System Features Local Lab
Online

Lab

Energy Saving

Mode

Capture Image True True True

Submit to Local Diagnosis True False True

Submit to Online Diagnosis False True False

View Diagnosis True True True

Capture Geolocation True True False

Enable Local Lab's Features True False False

Enable Online Lab's Features False True False

Table 26. Situation Matrix Macro-context Situations for Parasite Watch

6. Identifying the Test Situations

The CASS Test Case Model was used to classify the test scenarios at this step.

Most of the cases regarding the context variation are of CASS Test Case Model B, and

the necessary variation of context in conditions is presented in Table 27.

7. Describe the test oracle

The entire list of test cases for the Parasite Watch software system comprises 33

test cases. Table 27 shows a sample of the test case list. The complete specification is

available in Appendix B.

As was mentioned before, in this version of CATS#, the list captures the test cases

with the variation of context and the functionality in which the test case must be applied.

Id System Feature Input (I) Conditions (C) Expected Result (E)

72

01
Capture

Geolocation

User’s

location

Bat. Level > 20% →

Bat. Level ≤ 20%

Dis. GPS (Energy

Saving Mode)

04 Capture Image Image
Mem. Av. = True →

Mem. Av. = False
System Paused

15
Submit to Online

Diagnosis
Image

Internet Av. = True

→ Internet Av. False
Submit to Local Lab

29 Update Software

Power Av. = True →

Power Av. = False;

Updated = False

Interrupt Updating

Table 27. Parasite Watch Test Oracle

8. Select the test case

Since the purpose of this proof of concept was to evaluate the modifications at the

CATS# process, only three test cases, specified as CASS Test Case Model B, were

chosen: TC01, TC15, and TC29. They were specified using the CATS# v2 Testing

template in Tables 28, 29, and 30.

9. Describes the test case

Finally, Tables 28, 29, and 30 present the test cases using the CATS# v2 template.

The main goal of the template is to specify which context variables must remain constant

and which must vary during the test case execution to verify whether the software system

behaves as expected.

73

Id TC01

Test Objective To test the “Capturing Geolocation” Functionality from

Local Lab

Preconditions • GPS Available = True

• Battery Level > 20%

Fixed Conditions • Internet Available = False

• Power Available = False

Input User’s location

Test Steps 1. Register Blade (Id and Date)

2. Open Camera

3. See Image (c1)

4. Capture Image

Varying Conditions c1. Bat. Level > 20% → Bat. Level ≤ 20%

Expected Result Capture the last location available and disable GPS (Enter in

Energy Saving Mode)

Pos Conditions • GPS Available = False

• Battery Level ≤ 20%

Table 28. Test Template for TC01

Id TC15

Test Objective Verify the Internet becoming unavailable while executing

the functionality “Submit to Online Diagnosis.”

Preconditions • Internet Available = True

Fixed Conditions • Power Available = True

• Memory Available = True

Input Image

Test Steps 1. Register Blade (Id and Date)

2. Capture Image

3. Submit to Online Diagnosis (c1)

4. Open Diagnosis

Varying Conditions c1. Internet Available = True → Internet Available = False

Expected Result Receive diagnosis from Local Lab

Pos Conditions • Internet Available = False

Table 29. Test Template for TC15

74

Id TC29

Test Objective Verify the Power becoming unavailable while updating

software

Preconditions • Updated = False

• Power Available = True

Fixed Conditions • Internet Available = True

Input

Test Steps 1. Enter Updating mode

2. While Updating (c1)

Varying Conditions c1. Power Availability = True → Power Availability = False

Expected Result Interrupt Updating

Pos Conditions • Internet Available = False

Table 30. Test Template for TC29

4.3.3 Discussion

Applying CATS# v2 in the Parasite Watch software system made it easier to

understand the context (which is something abstract, as mentioned earlier) and its

variation through context variables and context situations, making it more feasible to plan

a testing strategy.

Although it is presented in Chapter 2 as part of our basic definitions, the main idea

of using context situations as a set of context variables arises during this second trial of

CATS#. Additionally, the Parasite Watch software system confirmed our initial

assumption about the need for an enhanced test case model for CASS and the use of

macro-context situations to improve organization in case of a more complex model.

Additionally, the Situation matrix comes to map System features and Context-

Situations to complement the rationale, so it is possible to observe which functionalities

will be affected by the context variation.

Table 31 presents a comparison to understand better the differences between

CATS# v1 and v2. It is possible to observe that the core of the process remains the same.

75

However, some improvements were done such as the evolution of the Conceptual Model

and the inclusion of the Situation Matrix to map functionalities and context situations.

CATS# versions First Version Second Version

Extract Variables Included Included

Identify Context Variables Included Included

Generate Conceptual Model At Step 3 An evolved version

At Step 4

Generate Analytical Model At Step 4 At Step 3

Mapping Functionalities and

Context Situations

Absent from this

version

Included

Identify the Thresholds Included Absent from this version

Identify the Test Scenarios Included Included

Describe the test oracle Included An evolved version

Select Test Cases Absent from this

version

Included

Describe the test case Included Included

Table 31. Comparison between versions of CATS#

As threats to validity, it is possible to mention the fact that Parasite Watch is not

purely a safety-critical and context-aware system, which can limit how much it is possible

to generalize the observed outcome. Additionally, this internal evaluation was also

performed by the researchers. Therefore, the experience acquired during the research

process and the first internal evaluation should also be considered.

As a restriction, we need to mention that the Parasite Watch software system is

completely specified but not completely developed. Hence, we could not execute the test

case we designed during this trial.

However, since Parasite Watch is a more complex system based on real-world

necessities and with some context-aware functionalities, it gave us a shred of initial

indication of CATS# v2 feasibility. Furthermore, it allowed us to realize we were almost

getting into a stable version. Small modifications and adjusts were done between this

version of CATS# and the final one. The final version of CAT# will be presented in the

76

next chapter. Additionally, chapter 6 presents its application in real life, but by people not

directly involved in its creation and evolution.

4.4 Chapter Considerations

This chapter presented the evolution of CATS Design (described in section 2.5)

through the final version of CATS# (which will be described in the next chapter). We

adopted a Learn, Adapt/Build, and Measure methodology to evolve the process. First, we

learn from CATS Design to create the first version of CATS#. Then, an internal

evaluation was conducted using the Wildlife Tracker application from Afanasov, Mottola,

and Ghezzi [23].

After the first evaluation results, some improvements were noticed, and the

second version of CATS# was proposed and evaluated using the Parasite Watch software

system.

Both evaluations performed were proofs of concept performed by the researcher.

Thus, although there were undeniable threats in this experimental setting, the goal, which

was to observe the CATS# process while looking for opportunities for improvements,

was achieved.

After these two evaluation trials to evolve CATS# and based on the results

obtained in the second internal evaluation (Parasite Watch software system), it is time to

move forward. The final version of CATS#, presented in the next chapter, consolidates

the previous versions.

The main difference between CATS# v2 and its final version is that step 5

becomes non-mandatory. This decision was based on the fact that, even if mapping

functionalities and context situations are useful in the case of more complex systems, it

is unneeded in the case of less complex systems. Therefore, the user can decide whether

to use it. Besides this, some adjustments were made in the templates and terminology, as

will be possible to observe in the next chapter.

Additionally, Chapter 6 will present the evaluation in a real-life scenario while

being applied by other people.

77

5 CATS# - Final version

5.1 Introduction

Chapter 2 presented CATS Design, our starting point, and Chapter 4 presented all

the evolution between CATS Design until the second version of CATS#. This one will

present the final version of CATS#.

Since we realized, with Parasite Watch, that we were getting closer to a stable

version, some small modifications were done in CATS# version two to prepare the

application to be evaluated by people not involved in the project. Therefore, while the

evaluation is described in Chapter 6, this Chapter presents the CATS# process

completely, step by step, including the ones maintained from CATS Design or created

during the CATS# version 1.

This time is not about evolving the process anymore (as in sections 4.2.1 and

4.3.2.). Instead, it is about describing the final version of CATS#. Hence, the next section

will present all the needed information for everyone interested in using it.

5.2 CATS# - Final Version

The CATS# final process is presented in Figure 25. It comprises nine steps: one

optional (dashed line) and eight mandatories. First, for specifying test cases using CATS#,

it is necessary to have a document describing the software system behavior. There is no

restriction about the document type (uses cases, scenarios, detailed application

description), but it must exist. Once it exists, the software engineer should follow the

steps below.

78

Figure 25. CATS# final version

79

1. Extract Variables

In this step, it is necessary to go through the documentation to extract every

variable representing or influencing the system's behavior. Both context and conventional

variables should be listed. The rationale is that the variables that do not represent the

context itself could be affected by its variation. Therefore, they can help analyze how the

context affects the software system's behavior.

2. Identify Context-Variables

After having all variables, it is time to identify the ones representing the context.

In this step, it is not necessary to create a new list. Instead, the idea is that using the list

from step 1, the user marks the context variables with any graphical element (such as

underlining, highlighting, and so on) that differentiates them from the regular ones.

3. Generate Analytical Model

An analytical model is a tool used to represent specific aspects of the software

system based on observing and analyzing its characteristics and behaviors. In our case,

this analysis will rely on the documentation describing the software system behavior and

the context variables identified in the previous step.

CATS# analytical model captures the characteristics and behaviors through three

elements: the context variables, the threshold values, and the expected result. Table 32

shows the template. First, it is necessary to fill the template with the Context Variables

from step 2. After that, the threshold values must be identified and listed accordingly. The

threshold is a value reached by a specific CV that will trigger the variation from one

context situation to another. Once this change is triggered, a specific behavior/result is

expected.

The model from Table 32 has the goal of helping the user identify these elements

and the relationship among them.

80

Context Variable Threshold Expected result

< 𝑐𝑣0>
> 𝑡ℎ𝑟0

< 𝑒1>
≤ 𝑡ℎ𝑟1

< 𝑐𝑣1>
= 𝑡ℎ𝑟2

< 𝑒0>
= 𝑡ℎ𝑟3

Table 32. Analytical Model Template

After describing this model, it will be used to design the Conceptual model in the

next step.

4. Generate Conceptual Model

Usually, textual descriptions are quite acceptable for conventional software

systems considering that all information regarding the testing (input, conditions, results)

remains static from the moment an input is submitted to the software system until the

moment it deploys the results.

However, when dealing with the context and its variation, textual descriptions can

make representing different situations and configurations challenging. Therefore, using a

more systematic and precise specification can increase the understanding of the software

system execution [25]. Considering this, we used a conceptual model to support the

understanding and communication of testing scenarios.

A conceptual model describes some aspects of the software system behavior

through concepts and relationships. For example, the CATS# Conceptual Model captures

the testing scenarios using two elements: context situations and variations.

Relevant context variables and their values characterize the context situation. A

variation represents either a context variable reaching its threshold (white arrow) or a user

action (gray arrow). Figure 26 shows their graphical representation.

Each white arrow has a tag describing what threshold value will trigger a specific

variation. This variation can depend on just one CV or be characterized by a combination

of CVs indicated by an .AND. operation. .OR. operations will not be necessary since they

would represent different cases of variations which, in this case, is represented by

different arrows. Every arrow in this model, especially the white ones, will be a potential

test case since it characterizes a context variation.

81

Figure 26. Conceptual Model elements

The conceptual model is the core of CATS# since it will guide potential test cases.

Therefore, every step previously executed had the intention of helping the conceptual

model design. Likewise, every step executed after it follows his guidance. Hence, it is

important to have a very organized model. For that reason, a third element was

incorporated into the model, the macro-context situations (also presented in Figure 26), a

higher-level representation of a set of context situations having the same variations to

another context situation (macro or not).

It is possible to design an entire model without using a macro-context situation.

However, a very complex software system can result in a messy and incomplete model.

For these cases, having a higher-level representation will help.

Figure 27 shows an example/template of a conceptual model designed based on

the analytical model template from Table 32. It has three context situations with their

respective threshold.

More information about the conceptual model can be found in section 4.3.1.

82

Figure 27. Conceptual Model example

5. Mapping functionalities and Context Situations

Both analytical and conceptual models from steps 3 and 4 represent context

situations and their variation. However, they do not show how the variation will affect

the system functionalities. Depending on the functionality being executed, the context

variation can affect (or not) the system behavior. Therefore, a situations Matrix S has

been created to map this relationship between context-situations and functionalities.

Equation 3. Situation Matrix Function

Equation 3 shows how the matrix must be fulfilled. If functionality 𝑓0 is enabled

in the context situation 𝑐0, the value of the Sf0,c0
= True. If the same functionality is not

enabled in a context situation 𝑐1, then the value of 𝑆𝑓0,𝑐1
= 𝐹𝑎𝑙𝑠𝑒 . The matrix template

(filled accordingly to the previous example) is displayed in Table 33.

83

 Context Situations

Functionalities <𝑐0> <𝑐1> <𝑐2>

<𝑓0> True False

<𝑓1>

<𝑓2>

Table 33. Situation Matrix example

This step is the only optional from the CATS#. However, although the software

engineer can skip this step for a small system, it is highly recommended to guarantee that

all the relevant functionalities will be tested in the case of complex systems.

6. Identify Context Situations

From a testing perspective, the context variation will either affect the test input or

the test conditions, which will demand different test strategies. As far as we know, there

will be at least four testing situations when considering CASS testing. They are presented

in Table 34 and made us realize the necessity of a new test case model capable of

capturing the influence of the context and the different test scenarios.

Test Case Model Input (I) Condition (C) Expected Result (E)

Conventional Static Value Static Value Static Value

CASS Model A Dynamic Value Static Value Dynamic Value

CASS Model B Static Value Dynamic Value Dynamic Value

CASS Model C Dynamic Value Dynamic Value Dynamic Value

Table 34. Testing Strategies

84

The CATS# test case model considers the context situation as the fourth element

of a test case, as Figure 28 displays, to englobe these different scenarios that need to be

represented and tested. Relevant variables and their values characterize a context

situation. Hence, while specifying Test Case Input, Conditions, and Expected Result, the

related context variables must also be considered.

Figure 28. CATS# Test Case Model

CATS# Test Case Model can represent the four situations summarized in Table

34:

85

• Conventional Test Case Model: the context does not influence the software

system. Consequently, Input, Conditions, and Expected Results do not change

(they have static values). In this case, the model falls back to the conventional test

case model (Figure 26.1), and conventional test strategies can be used.

• CASS Test Case Model A: the context influences the input but not the conditions.

Thus, the input will vary, but the Conditions remain static. In this case, the test

strategy will be the same as the Conventional Test Case Model. In addition,

however, it is necessary to produce more test cases to cover all the context

influences combinations of input (Figure 26.2).

• CASS Test Case Model B: the context influences the test case conditions but

does not influence its input. Thus, the Conditions should accordingly vary while

executing the test case. Therefore, a test strategy capturing context variation

during the testing execution is necessary (Figure 26.3). This way, it will affect

testing execution as much as the software system at runtime.

• CASS Test Case Model C: the context simultaneously influences the test input

and the test conditions, combining CASS Test Case Models A and B. In this case,

a specific testing environment is necessary to control the variations (Figure 26.4)

simultaneously. Unfortunately, as far as we know, a test environment with this

execution capacity is not available yet [11], and it is an open item for future works.

In this step, the software engineer must use the model from Figure 28 to identify

which test scenarios the application has and, consequently, which test strategies should

be used. This information should be considered in the next step.

7. List Test Cases

The previous steps had the goal of helping identify:

• context variables, thresholds, and expected results (steps 1, 2, and 3);

• the transitions among context situations (step 4);

• how the software system functionalities will be affected by them (step 5);

and

• identifying which test strategy should be used for each test case (step 6).

86

This step had the goal of putting all this information together, creating an oracle,

and listing all necessary test cases. The template from Table 35 will help the software

engineer with this task since it has all the necessary fields.

TC Id
System

Functionality
Input Conditions

Expected

Result

TC01 <𝑓0> <𝐼𝑐𝑥0> <𝐶𝑐𝑥0> → <𝐶𝑐𝑥1> <𝐸𝑐𝑥1>

TC02 <𝑓0> <𝐼𝑐𝑥1> <𝐶𝑐𝑥0> <𝐸𝑐𝑥0>

Table 35. CATS# v2 Test Oracle

8. Select Test Cases

After putting all information together in step 7, it is time to move forward and

select which test cases will be specified according to the chosen test strategy described in

step 9. In an ideal scenario, all test cases listed in step 7 must be specified and executed.

However, in situations with limited resources, a small but meaningful set of Test Cases

could be selected from the list and specified. Possible test strategies are specifying at least

one test case for each variation of context at the conceptual model or specifying the test

cases for the most critical part of the software system.

9. Describe Test Cases

After creating the test oracle and selecting the test cases, it is time to describe

them. CATS# makes available a tailored template to support the description of CASS test

cases (see Table 36) to help the software engineer in this task. The intention is to cause a

specific context variation during the test execution. In this way, the CATS# test template

has a field called "Fixed Conditions" to describe the CVs that must remain fixed during

the test execution and a "Varying Conditions" field to specify which CV must vary during

the test execution.

However, describing the variation that must occur is not enough. It is also

necessary to specify when it should occur. The template gains a structured flow to address

this necessity, using tags such as 'ci' to indicate that the variation c1 must occur after each

test step. For example, if there is a tag 'c1' after step 2, it means the testing execution must

be paused until the variation specified in 'c1' happens. Once it is over, the test execution

can continue to the next step.

87

Id <test case id>

Test Objective <Briefly describes the test case goal objective>

Preconditions <Describes the preconditions in general>

Fixed Conditions <Describes the conditions that must remain static

during the test execution>

Input <Describes the test case input>

Test Steps 1. <Describes the first step that should be followed>

2. <Describes the second step …>

3. <Describes the third step …> (c1)

4. <Describes the fourth step, after the variation

specified in c1>

Varying Conditions c1. <Describes the specific conditions that must vary

in test step 3>

Expected Result <Describes the expected result after the variation

specified in c1>

Pos Conditions <Describes the pos conditions in general>

Table 36. CATS# Test Template

The remaining fields of the template are characteristics of regular test templates

for a conventional system such as pre-conditions, test objective, input, expected result

(which, in this case, must consider that the variation had occurred), and pos conditions.

It is worth mentioning that the pre and post conditions are not related only to the

test case conditions that must vary but also to the test environment conditions, such as

having the application installed in an online server.

It is the last step of the CATS# process, and it has, as output, a set of test cases to

test context-aware software systems. Conventional Test Cases should also be included in

the final set of test cases according to the system characteristics. In this case, the context-

aware related fields (fixed and varying conditions) must be ignored, while all the others

must be filled up.

5.3 Chapter Considerations

This Chapter presented the final version of CATS# with some small evolutions

when considering the one presented in section 4.3. The updates done for the final version

88

of CATS# were making step 5 optional, evolving the CATS# test case model, and

updating the terms used across all templates to maintain consistency (for example, the

"Effect" field from the analytical model became "Expected Result").

For a deeper explanation about each step of the process, Chapter 4 must be

consulted. The next chapter will present a study conducted to evaluate the process and

compare CATS# final version with the original process, CATS Design.

89

6 Assessment Study

6.1 Introduction

In the previous chapters, we described the path from CATS Design until the final

version of CATS#. The technique was constructed using the Learn, Adapt/Build and

measure Methodology [24]. Thus, we learn first from the literature and CATS Design,

then by ourselves, and it was time to move forward and learn from observing other people

using CATS#. We executed the assessment study described in this chapter with this goal

in mind.

In the final stage of their graduation, the study was conducted by analyzing

undergraduate students applying the CATS# technique to specify the test cases for the

COVID Safe classrooms application.

This study was conducted during a software engineer course at the Federal

University of Rio de Janeiro (UFRJ) during the second semester of 2020, while the whole

world, especially Brazil, was suffering from the COVID-19 pandemic. The world’s

situation, in this case, had consequences in our daily lives. One of them was that UFRJ

paralyzed most of the face-to-face activities and established strict biosafety protocols for

the ones that still needed to happen. Considering the circumstances, the idea of COVID

Safe classrooms arises as an application responsible for monitoring a specific classroom

to guarantee the safety of students and professors that need to go to universities.

During the module, the students built a Minimum Viable Product (MVP) of the

proposed application, using both requirements document (at the first phase of the project)

and User Stories. Then, they created a test suite based on these documents and using

CATS#. This chapter describes the details of the assessment study. More information

about the COVID Safe classrooms application can be found in the repository2.

2 https://git-lab.cos.ufrj.br/ese_tecnodigital/safe/safe-ufrj/-/wikis/home

90

6.2 Study Planning

The main idea of this study was to compare CATS Design and CATS# to observe

if there would be any advantages of using CATS#.

To evaluate this, the participants should use the design artifacts created for the

COVID Saferoom application to design test cases using the CATS#. On the other hand,

the same documentation should be used by us also to create a set of test cases using CATS

Design this time.

The participants were undergraduate students from the Object-Oriented Software

Development course (DSOO - "Desenvolvimento de Software Orientado a Objeto" in

Portuguese), an elective module usually chosen by students at the end of their graduation

course. The students enrolled in this module are usually from Engineers courses,

especially Computing and Information Engineer, and Electrical and Computing Engineer

from UFRJ. Due to COVID-19 restrictions, the module was offered remotely.

The idea was to present the CATS# technique during the class and make all

templates from CATS# available for them.

From that point, a test case specification document would be required as one of

the project's artifacts. After that, the participants would have the freedom to use just the

parts of CATS# they considered useful (or not using CATS# at all). Then, from our side,

when their specification document was complete for MVP 1, we would use them to

describe test cases using CATS Design.

When both test case specification documents were ready, we would compare

them, especially these three factors: Number of Identified CVS, Number of Test Cases in

general, Number of CASS Test Cases.

The next section will present the study execution, while section 6.4 will show our

results. Since the study was conducted in Rio de Janeiro, Brazil, the original artifacts were

designed in Portuguese. Therefore, the examples shown in this Chapter were translated

from Portuguese to English by the researchers.

91

6.3 Study Execution

As mentioned in the previous section, the first step in this study execution was

presenting CATS# to the participants, students enrolled in the DSOO course from UFRJ.

The students must have previously attended the Software Engineering course to

participate in this course. Therefore, they were all familiar with the main concepts of

software testing for conventional systems (the ones mentioned in section 2.2). However,

they needed to learn about Context and Context-Awareness before being introduced to

CATS#.

In this way, we did a presentation to review the concepts of the software testing

area, expose the concepts of context and context-aware software systems. Then, we

introduced them to the CATS# process and artifacts.

Due to COVID-19 restrictions, the study was conducted remotely. The presentation

was made during one of the DSOO classes, using a conference room, and the participants

had time to explore and review the CATS# templates on their own after the class.

The second step was asking them for a test case specification document as one of

the deliverables of the MVP of the COVID-19 Safe room. After that, they were free to

use just the parts of CATS# they considered convenient for the application. They were

also free to choose other methods and templates to specify the test cases.

As was mentioned in section 6.1, the goal of the COVID-19 Saferoom application

was monitoring rooms considering environmental conditions regarding the COVID-19

pandemic. Therefore, the application would monitor CO2, Temperature, and Humidity

levels. Additionally, it would also monitor the number of people in the room. Figure 29

shows the dashboard of the built application.

92

Figure 29. COVID Safe room dashboard

The COVID-19 Saferoom MVP was based on a small set of requirements and user

stories. Table 37 presents the requirements, and Table 38 presents an example of a User

Story. It is worth mentioning that requirements usually define what the system shall do

and the system restrictions. At the same time, User Stories are focused on what value a

functionality (which can include more than one requirement) can bring to a specific user

and the criteria to accept them [28].

93

Requirement ID Description

RF10
The dashboard must present the risk level of one or more rooms in

a floor plan.

RF11
The system should display the detailed risk level of a room in a

dashboard.

RF12

The system should send notifications to administrators via the

dashboard when a room's risk level changes to Red, following the

standards defined in the Biosafety Guide.

RF17

The system should indicate with an icon on the floor plan when a

room needs cleaning automatically when the number of people in

the installation being used drops to zero

RF18
The system should allow the creation of users with Administrator

and Employee profiles.

Table 37. Covid Saferoom requirements translated

ID Issue 12

Value Proposition

As an admin, I would like to see a notification with descriptive

icons and a written message about the event on the dashboard

whenever the risk level of room changes to a critical state to

take appropriate action

Acceptance Criteria

When there is a problem, a popup message should appear

informing the administrator of the problem.

Notification must be sent to all administrators to assume the

event verification status.

The system should inform when a task is already assigned to an

administrator

The system should not allow the same notification to be

assigned to more than one administrator

Table 38. Issue 12 translated from Portuguese

Using both User Stories and Requirements, the participants specified a set of test

cases using CATS#. Table 39 shows the relationship between the specified requirements,

user stories, and test cases.

94

Requirements ID User Stories Test Cases ID

RF10 Issue 10 01,02,03, and 04

RF11 Issue 11 05

RF12 Issue 12 06,07,08, and 09

RF17 Issue 13 10,11,12, and 13

RF18 Issue 14, Issue 38 14,15,16,17, and 18

Table 39. Relation between requirements, user stories, and test cases

The last step was using the same design documentation to specify the test cases

using CATS Design. Until the end of the study execution, the researcher did not have

access to the test cases specified by the participants. The participants also did not have

access to the test cases specified by the researchers nor the CATS Design technique itself.

After the study execution, both test case specifications were compared. The results

of this analysis are presented in the next section.

6.4 Study Results

6.4.1 Using CATS#

The participants used the following templates for the test case documentation

specification: Analytical Model, Conceptual Model, and Test Template. However, since

they wrote User Stories, they broke the general test case specification into small pieces,

each of them considering the different US. In this way, instead of having one analytical

model and one conceptual model for the entire application, they made one for each US

they classified as context-aware.

For example, based on the US described in Table 38, they identified two context

variables: CO2 level and Number of People in the room, and designed the analytical

model presented in Table 40.

95

Context-

Variable
Threshold Expected Result

CO2 Level CO2 Level ≥ 1000ppm

A message should appear in a popup

informing that the CO2 level is high

for a particular room for each admin.

Number of people

in the room

Number of people in the

room > Maximum number

of people in the room

For each administrator, a message

should appear in a popup informing

that, for a given room, the maximum

capacity has been exceeded.

Table 40. Analytical Model for Issue 12 translated from Portuguese

Considering the Analytical Model from Table 40, they also designed the

Conceptual Model presented in Figure 30, mapping the transitions among fourth context-

situation application: No Notification, CO2 Notification, Maximum Number of people in

the room notification, and a fourth situation join both CO2 and Maximum Number of

people in the room.

Figure 30. Conceptual Model for Issue 12

They specified four test cases for this issue: two conventional and two contexts

aware. The two CASS test cases, presented in Tables 41 and 42, were related to the CO2

level going low, reaching 1000 ppm and the number of people in the room reaching their

96

maximum, respectively. Both test cases would trigger system notifications to indicate a

critical situation that needs intervention.

ID 06

Test Objective
Testing the functionality of triggering a notification when

the CO2 level reaches a critical state

Preconditions • CO2 Level < 1000ppm

Fixed Conditions
Number of people in the room <= Maximum number of

people in the room

Input Current CO2 Level

Test Steps
1. Execute steps 1 to 6 from test case 5

2. Wait until the CO2 Level notification arises

Varying Conditions
CO2 Level < 700ppm → CO2 Level ≥ 1000ppm ¹

¹ The variation will occur by using a simulator

Expected Result

A red notification with the text 'Room XXXX Has a CO2

Level Problem' and a button that says 'Take this case' should

appear to all administrators.

Pos Conditions CO2 Level ≥ 1000ppm

Table 41. Test Case 06 for Issue 12 translated from Portuguese

97

Id 07

Test Objective

Testing the functionality of triggering a notification when

the number of people reaches its maximum

the level reaches a critical state

Preconditions
• Number of people in the room <= Maximum

Number of people in the room

Fixed Conditions CO2 Level < 1000ppm

Input Number of People in the room

Test Steps

1. Execute steps 1 to 6 from test case 5

2. Wait until the Maximum people in the room

notification arises

Varying Conditions

Current Number of People in the room <= Maximum

Number of People in the room → Current Number of

People in the room > Maximum Number of People in

the room¹

¹ The variation will occur by using a simulator

Expected Result

A red notification with the text ‘Room XXXX Has a

Capacity Problem’ and a button that says Take this case’

should appear to all administrators.

Pos Conditions
Current Number of People in the room > Maximum

Number of People in the room

Table 42. Test Case 07 for Issue 12 translated from Portuguese

After specifying test cases for the critical situations, they specified two

conventional test cases, displayed in Tables 43 and 44.

Id 08

Test Objective
Testing the functionality of assigning an employee to a

critical situation

Preconditions
• A notification should be appearing on the screen

with a “take the case” button

Test Step
1. Admin sees the notification

2. Admin selects the “take the case” button

Expected Result
The notification color should change to orange, and it should

inform Admin X is handling the critical situation.

Table 43. Test Case 08 for Issue 12 translated from Portuguese

98

Id 09

Test Objective
Test the functionality of only one administrator taking on

a specific notification.

Preconditions

• Two users with the admin profile must be logged

into the system

• A notification should be popping up on the

screen with the 'Take the case' button

Test Step
1. Admins 1 and 2 see the notification

2. Admin1 and 2 click the 'Take the case' button

Expected Result

Only one Admin was able to take over the notification.

Therefore, the notification must change its color to an

orange hue and inform the other admin that they are taking

action.

Table 44. Test Case 09 for Issue 12

 Table 45 summarizes the findings from this part of the experiment. The next

section will show the application of CATS Design to specify the test cases.

COVID-19 Saferoom – CATS# version

CV 2

Test Cases 18

CASS Test Cases 06

Table 45. Summary of test cases

6.4.2 Using CATS Design

The first step was analyzing the requirements while looking for Context Variables.

In this step, eight CVs were identified. They are listed below:

• Number of people in the room

• Temperature

• CO2 Level

• Risk Level

• Maintenance Status

• Cleaning Status

99

• Internet Status

No additional variables were found during the second step, Identify Additional Context

Variable.

Since the information from the required documentation was limited, we continued using

the User Story. As they were self-contained, a similar approach from section 6.4.1 was

used, and the models (both conceptual and analytical) were designed based on each user

story. However, while the participants ignored the other User Stories during creating the

new models, we tried to aggregate the information found during the specification. One

example was the Conceptual Model for Issue 12 (in section 6.4.1), Figure 31. Two CVs

were considered to design the model: Number of people in the room and CO2 Level.

ID Issue 10

Value Proposition As a general user, I would like to have access to a floor plan

view with the risk level of every room so I can assess the risk

I will be exposed to

Acceptance Criteria • The risk level should be represented by a circle with

the color assigned to its static classification.

• When the number of people in a room is greater than

or equal to the room limit, an icon indicating that the

room is full should be shown.

• When the CO2 level exceeds 700ppm, a yellow icon

should be displayed on the floor plan indicating a

problem with CO2, and when this level exceeds

1000ppm, the same red icon should be displayed.

Table 46. Issue 10

However, we knew from Issue 10 (Table 46) that if the CO2 level reaches 700

ppm, the system should change the color of the room in the dashboard for yellow, and we

knew from Issue 12 that if the CO2 Level reaches 1000 ppm, a notification must appear

to the admins. Hence, both issues were considered while designing the Conceptual Model

from Figure 31.

100

Figure 31. Issue 12 Conceptual Model - Cats Design

With this model, two thresholds were identified: The number of people reaching

the maximum number and CO2 reaching 1000 ppm.

 The next step was creating the analytical model from Table 47. With this model,

a new threshold was found, Number of people in a room = 0. Although this case's effect

was not described in Issue 12, we found the information in Issue 13 and added it to the

model.

Context Variables Effect

Number of People = 0: Send a notification about the need for cleaning

≥ room’s limit: Display an icon indicating that the Number

of People is above the limit

CO2 ≥ 1000 ppm: Triggers Red Alert/Notification

Table 47. Analytical Model from CATS Design translated from Portuguese

101

 After identifying the threshold, the test oracle was described, as shown in Table

48.

Feature Context Expected Output

Inform the need for

cleaning

Number of People = 0

(empty room)

Send a notification about

the need for cleaning

Notify that the number of

people in a room is above

the limit (show icon)

Number of People reaches

the room’s limit

Send a notification about

the number of people in

the room above the limit

Inform about the CO2

level

CO2 level reaches 700

ppm

Send a notification about

the CO2 level

Notify about the CO2 level CO2 level reaches 1000

ppm

Send a notification about

the CO2 level

Table 48. CATS Design Test Oracle translated from Portuguese

 The last step, in this case, is to describe the Test template, as shown in Table 49.

Test Case ID CATS02

Test Objective Verify the functionality of informing the risk level

Precondition: The user is authenticated as an admin

Test Input:

Test Steps: 1. An authenticated user accesses the

application mains page

Relevant Context Variables: 1. Number of People

2. CO2 Level

Known Thresholds: a. Number of People = 0 (empty room)

b. Number of People >= room’s limit

(crowded room)

c. CO2 level reaches 1000 ppm

Test Expected Outputs for each

Threshold

a. Send a notification about the need for

cleaning

b. Send a notification about the number of

people in the room above the limit

c. Send a notification about the CO2 level

Table 49. CATS Design test template

102

Table 50 summarizes the findings from this part of the experiment. The next

section will compare both parts of this study, CATS# (section 6.4.1) and CATS Design,

and discuss the general findings.

COVID-19 Saferoom – CATS Design version

CV 2

Test Cases 03

CASS Test Cases 03

Table 50. Summary of test cases

6.4.3 Discussion

Table 51 shows a comparison between CATS Design and CATS#. As it is possible

to observe, the number of Identified CVs to this first MVP was the same in both

techniques. However, the number of test cases increased from three in CATS Design to

18 in CATS#. Regarding this, we could identify two reasons.

 CATS Design CATS#

Identified CVs 02 02

Number of Test Cases 03 18

Number of CASS Test Cases 03 06

Table 51. Comparison between CATS Design and CATS#

The first one is that the CATS# process includes four test cases model, including

one for situations where context will not interfere, and the conventional test case should

be used. Therefore, conventional test cases will also be part of one specification

conducted by the CATS# process. The participants identified and specified 12

conventional test cases for the COVID-19 Saferoom application. On the other hand,

CATS Design was completely focused on specifying just CASS test cases, and no

conventional test case was identified in this case.

Nevertheless, the number of CASS test cases also increased from three in CATS

Design to six in CATS#, and the reason was the difference between the test template used

by each technique.

103

The goal of the CATS Design test template is to create an oracle and map all the

possible variations that could occur during the test execution. It does not mean they will

occur, but the expected behavior is mapped if they do. Table 52 shows the same test

template from section 6.4.2. The goal of the test is to “Verify the functionality of

informing the risk level,” and if one of the changes described in the Known Threshold

fields occurs, the “Test Expected Outputs for each threshold” can tell us what to expect.

However, these context variations might not happen at all.

Test Case ID CATS02

Test Objective Verify the functionality of informing the risk level

Precondition: Usuário Autenticado como Administrador

User is authenticated as an admin

Test Input:

Test Steps: 2. An authenticated user accesses the

application mains page

Relevant Context Variables: 3. Number of People

4. CO2 Level

Known Thresholds: d. Number of People = 0 (empty room)

e. Number of People >= room’s limit

(crowded room)

f. CO2 level reaches 1000 ppm

Test Expected Outputs for each

Threshold

d. Send a notification about the need for

cleaning

e. Send a notification about the number of

people in the room above the limit

f. Send a notification about the CO2 level

Table 52. CATS Design test template example

 In CATS#, the idea is to specify which variations must occur during the test

execution and cause them to validate the software system behavior. In this way, for the

CATS Design test case from Table 52, three different CATS# test cases should be

specified: one for the number of people reaching zero, another for the number of people

reaching the maximum allowed, and the last one for the CO2 level reaching 1000 ppm. It

exactly was what the participants did, as shown in Tables 53, 54, and 55, respectively.

104

ID 10

Objetivo do Teste
Test the functionality of triggering a cleaning notification

when the number of people in the room is zero.

Pré-condições Current Location > 0

Condições Fixas Not Applicable

Entrada Number of People in the room

Passos do Teste

1. Access the application's home page

2. Click the login button located at the top right of the

screen

3. Put the user with the profile Employee

testefuncionario@teste.com

4. Enter the password testefuncionariossafeurfj

5. Click on the login button

6. Wait for the login processing to finish

7. Wait until the number of people in the room is zero.

Condições Variáveis

Number of People in the room > 0 → Number of People in

the room = 0 ¹

¹ The variation will occur by using a simulator

Resultado Esperado

• A red notification with the text ‘Room XXXX Needs

Cleaning’ and a button that says “Take the case” should

appear to all employees

• A cleaning icon should appear on the floor plan

Pós-condições Number of people in the room = 0

Table 53. Test Case 10 for Issue 12

105

Id 07

Test Objective

Testing the functionality of triggering a notification when

the number of people reaches its maximum

the level reaches a critical state

Preconditions
• Number of people in the room <= Maximum

Number of people in the room

Fixed Conditions CO2 Level < 1000ppm

Input Number of People in the room

Test Steps

1. Execute steps 1 to 6 from test case 5

2. Wait until the Maximum people in the room

notification arises

Varying Conditions

Current Number of People in the room <= Maximum

Number of People in the room → Current Number of

People in the room > Maximum Number of People in

the room¹

¹ The variation will occur by using a simulator

Expected Result

A red notification with the text ‘Room XXXX Has a

Capacity Problem’ and a button that says Take this case’

should appear to all administrators.

Pos Conditions
Current Number of People in the room > Maximum

Number of People in the room

Table 54. Test Case 07 for Issue 12

106

ID 06

Test Objective Testing the functionality of triggering a notification when

the CO2 level reaches a critical state

Preconditions • CO2 Level < 1000ppm

Fixed Conditions Number of people in the room <= Maximum number of

people in the room

Input Current CO2 Level

Test Steps 1. Execute steps 1 to 6 from test case 5

2. Wait until the CO2 Level notification arises

Varying Conditions CO2 Level < 700ppm → CO2 Level ≥ 1000ppm ¹

¹ The variation will occur by using a simulator

Expected Result A red notification with the text 'Room XXXX Has a CO2

Level Problem' and a button that says 'Take this case' should

appear to all administrators.

Pos Conditions CO2 Level ≥ 1000ppm

Table 55. Test Case 06 for Issue 12

Besides the test template, another difference between CATS Design and CATS#

is that the last classify the CVs in two different types regarding the test case: the ones that

impact the test case input and the ones that impact the test case conditions. As it was

possible to observe by the specified test cases, the participants classified both variables,

the number of people in the room and CO2 level, as attached to the test cases conditions.

It is a discrepancy between what we thought initially and what they did. CATS Design

did not require context variable classification, but as going through the process, we

noticed, based on our experience, they would impact mostly the test case input (CASS

Model A).

Two hypotheses can justify this discrepancy. First (and most probable), the

participants' lack of experience in Context-Aware applications might cause some

confusion between the CASS Model A and B, and they end up classifying erroneously.

The second one is that, during practice, there will be no real differences between CASS

Model A and CASS Model B regarding the validation. Therefore, varying the CVs during

the test execution would be welcomed for both models. These hypotheses need further

investigation and are open items to be addressed in future works.

107

Another unexpected point for using both CATS Design and CATS# is that they

were both built considering as an initial input the complete requirements specification.

However, they did well with an incremental agile development approach. In addition, we

did not notice any cons in having more than one analytical and conceptual model since

the test cases were specified the same way they would be using a Waterfall methodology.

Finally, two more considerations must be made. The first is that the participants

classified the CATS# process as easy to use. However, the test case classification

discrepancy showed they misunderstood some of the CATS# concepts. Additionally,

since the MVP1 was constructed remotely and could not access a classroom with sensors

and tags, they simulated the data by code. It is interesting because, as was mentioned in

Chapter 4, there will be cases that cause the variation can be complicated. For them, using

simulated data as input sent to the software system could be a nice thing to have.

6.4.4 Threats to validity and limitations

The main limitation of this study was that it was conducted during the COVID-19

pandemic when, due to safety protocols, the participants could not access the University.

Therefore, it was necessary to execute the study remotely without having control of the

participants' environment and behaviors.

Another limitation was the application itself. When we planned to use the COVID-

19 Saferoom application, we considered the general scope, with context-aware test

situations from CASS Models A and B. However, since just the first MVP was ready

during the study execution, we had limited test situations classified as conventional and

CASS Modal A. Therefore, CASS Model B, the most interesting scenario for us, could

not be truly observed during this study. This issue also impacted the generalization of

results since we did not have a safety-critical and complete context-aware application at

the end.

Additionally, it was not possible to execute the specified test cases since the

application went offline right after the end of the course.

Finally, it is also necessary to mention the researcher's experience when compared

with the participants. Although undergraduate students from software engineer areas can

be compared with practitioners at the beginning of their careers [29], the researcher had

108

more experience regarding the context. Therefore, some particularities would be more

easily perceived independently of the process that guided the test case specification.

The researcher's natural interest in the outcome was also a threat to validity. We

partially handled this by not accessing the test cases designed by the participants before

having our test case specification. However, the previous knowledge acquired during the

creation of CATS# can influence even if we use the CATS Design technique.

6.5 Chapter Considerations

This chapter presented the assessment study to compare CATS# and CATS Design.

To do this comparison, we used the COVID-19 Safe classrooms application, responsible

for monitoring rooms to guarantee the safety of students and professors that needed to go

to universities during the COVID-19 pandemic. The first MVP was used to create the set

of test cases that would be compared. The participants, students from computing engineer

courses from UFRJ enrolled in the Object-Oriented Software Development module,

specified the test cases using CATS# while the researcher used CATS Design.

As a result of this study, we noticed that both techniques identified the same number

of Context Variables. However, the specification using CATS Design returned three test

cases (all of them context-aware), while the one done using CATS# returned 18 test cases

(six of them context-aware). Two reasons explain this difference. First, CATS# also

include the test specification of conventional test cases scenario. Second, while CATS

Design intended to map any possible context variation that could (but might not) happen

during the test execution, CATS# wanted to specify the exact variation that must occur to

validate the system.

We also noticed that both techniques behaved well in an incremental agile

development approach, even if they were not constructed to this methodology.

Additionally, the participants reported the technique was easy to use, but the produced

models indicate they misunderstood some of the CATS# concepts.

Finally, the study was executed during the COVID-19 pandemic when, due to safety

protocols, the participants could not access the University. Therefore, it was necessary to

109

execute the study remotely without having control of the participants' environment and

behaviors. In addition, the MVP used to design the test cases was also not completely

context-aware, which limited our results. However, our general findings show that

CATS# works, even if it needs validation. During the study execution, some other

questions also arose, such as how difficult it could be to differentiate between CASS

models A and B. In practice, these differences might not be considered since both

scenarios require accurate testing. Nevertheless, these questions will be considered open

items to be addressed in future work.

110

7 Conclusion

7.1 Introduction

This research had four phases: acquire initial knowledge on the problem,

complement by searching the literature, construct a solution and evaluate the solution.

The first one presented the particularities of testing Context-Aware Software

System and why conventional testing strategies are not enough for testing them. It also

presented how the meaningful parts of the context, which are infinite and abstract, can be

captured through context variables and how they can affect software systems.

The second phase was about conducting a Structure review to observe how the

context and its variation usually affected context-aware application in the production

phase. After analyzing the results found in the literature, a new test case model for CASS

was proposed and evolved throughout this work.

In the third phase, we evolved the CATS Design testing technique into a new one,

called CATS#. CATS# was built using the Learn, Adapt/Build, and Measure

methodology, and it had the goal of englobe the knowledge acquired during the second

phase. In addition, it evolved the CASS test case model mentioned previously and

proposed a new testing template to englobe the context variation during the test execution.

The last phase was conducting an assessment study to observe people not involved

in this research using CATS#.

This chapter will present the main contributions of this research. It also presents

the identified limitations and how this work can evolve in future work.

7.2 Contributions

The main contribution of this research is the CAST# technique. An evolution of

the CATS Design technique, grounded in evidence to help software engineers during the

specification of test cases for context-aware software systems from different domains

(such as IoT, Smart Buildings, WSN, among others).

111

Although CATS# englobes both process and templates meant to work together,

they can also be used separately. Therefore, the analytical and conceptual models, the

Situation Matrix, and the test template (which help the user cause the context variation

during the test execution) can also be considered contributions of this work.

Additionally, as a side effect of applying the CATS# technique, gaps in the

specification document were found, which means the initial steps of CATS# can also be

used as an inspection technique to improve requirements considering the context

perspective.

This work also contributes to the organization of the context-awareness

conceptual background, transforming them into mathematical models that allow a more

precise representation of elements such as context, context variables, context situations.

Going one step ahead, we also created an enhanced test case model, which includes the

context as a fourth element to demonstrate how it will affect the test of CASS. We also

propose different strategies that should be adopted in each case and can be used as a guide

to software engineers during the testing of CASS.

As a contribution of the master's in general, it is possible to cite the following

material:

• The Towards Supporting the Specification of Context-Aware Software

System Test Cases article [15] and presentation3 into the XXIII Ibero-

American Conference on Software Engineering (CIbSE) where we

presented the first version of CATS# technique

• An article with the title "Digitalizando o Microscópio Óptico: a solução

Parasite Watch" presented in the "Simpósio Brasileiro de Computação

Aplicada à Saude", a conference focused on the computing application

aplied in the health area. In this case, the article was about the construction

of the Parasite Watch Solution

3 https://www.youtube.com/watch?v=qKilvz8FvTE&ab_channel=CIbSE2020

112

• An article with the name "Utilizando o Framework MDA para Avaliar a

Estética de um Jogo: Um Estudo Preliminar sobre a Percepção de

Estudantes de Graduação" published in the SBGames, a Brazilian

conference focused in games.

• A technical report named “A Rapid Review on Testing of Context-Aware

Contemporary Software Systems " searched strategies for testing CASS in

the literature. The protocol from this work was reused and adapted in

Chapter 3

It is also worth mentioning the participation in some academic projects such as:

• A Research Internship at the Rochester Institute of Technology,

conducting a structured review about the architectural antipatterns

• The participation in different projects from the Experimental Software

Engineer lab such as Parasite Watch, Camarão IoT (an application to

monitor the creation of freshwater shrimp; OximetroIoT (a project to

create a low-cost oximeter);

• The COPPE/UFRJ Women's support group helped with technical

activities and participated in a speech about gender parity challenges in

the post-pandemic context.

• The participation in a project to teach kids (especially girls) how to code

using Python

• The co orientation of an undergrad student in his final work where he

created a chatbot to attend and help the students from the Computing and

Information Engineer course from UFRJ

7.3 Limitations

The main limitation of this work is the lack of evaluation of CATS# with a real

Context-Aware Software System which englobes the four test scenarios mentioned

before. The assessment study conducted and presented in Chapter 6 was limited and

presented many threats to validity, such as:

113

• The participants were not practitioners but software engineers students

• The study was conducted remotely without the possibility of controlling the

participants' environment or fully observing their behavior during the execution.

• The application was limited when considering the context-aware testing scenarios

available, and the most significant scenario (CASS Test Case Model B) could not

be evaluated.

• It was not possible to execute the specified test cases in any of the performed

experiments since they were not available

Due to issues related to research time and environment (such as the COVID-19

crisis), it was not possible to execute more experimental studies to assess the validity of

the proposed technique. Therefore, as will be mentioned in the next section, more robust

experiments are considered future work.

7.4 Future Work

It is possible to mention the necessity of more robust experiments using CATS#

to specify the test cases for complex and fully context-aware applications in future work

and execute the specified test cases. With these evaluations, it would be possible to use

the Learn, Adapt/Build, and Measure methodology and continue evolving CATS#.

Additionally, some questions arose after the study execution, such as how difficult

it could be to differentiate between CASS models A and B and whether these differences

will be significant in practice as they are in theory. These questions need further

investigation and should be addressed in the future.

Finally, as was mentioned before in this research, forcing the context to vary as

specified is not always an easy task, especially in cases where both input and conditions

must vary during the test execution. Therefore, to completely support CASS testing, it is

necessary to build a tool to help software engineers control the Test Environment.

As far as we are aware of it, to ensure the quality of CASS, the context must vary

as much as it would in real life. CATS Design was the first step towards this goal, and

114

CATS# was another one. Building this new test environment is the next. After putting all

these pieces together, it will be, finally, possible to unchain the context and set it free. [9]

115

REFERENCES

[1] AL-FUQAHA, A. et al., “Internet of things: A survey on enabling technologies,

protocols, and applications.” IEEE communications surveys & tutorials, v. 17, n. 4, p.

2347-2376, 2015.

[2] MARTINI, B. G. et al., “IndoorPlant: A Model for Intelligent Services in Indoor

Agriculture Based on Context Histories.” Sensors, v. 21, n. 5, p. 1631, 2021.

[3] ANDRADE, R. M. C. et al. “Multifaceted infrastructure for self-adaptive IoT

systems.” Information and Software Technology, v. 132, p. 106505, 2021.

[4] PRIYADARSHINI, I. et al., “A new enhanced cyber security framework for medical

cyber-physical systems.” SICS Software-Intensive Cyber-Physical Systems, p. 1-25,

2021.

[5] DE SOUZA, B. P., MOTTA, R. C., TRAVASSOS, G. H., “The first version of

SCENARIotCHECK: A Checklist for IoT based Scenarios.” Proceedings of the XXXIII

Brazilian Symposium on Software Engineering. 2019. p. 219-223.

[6] MOTTA, R. C., DE OLIVEIRA, K. M., TRAVASSOS, G. H., “Rethinking

interoperability in contemporary software systems.” 2017 IEEE/ACM Joint 5th

International Workshop on Software Engineering for Systems-of-Systems and 11th

Workshop on Distributed Software Development, Software Ecosystems and Systems-of-

Systems (JSOS). IEEE, 2017. p. 9-15.

[7] DEY, A. K., ABOWD, G. D., 1999, Towards a better understanding of context and

context-awareness. GVU Technical Report GIT-GVU-99-22. Georgia Institute of

Technology. Atlanta, GA. Retrieved from https://smartech.gatech.edu/handle/1853/3389

[8] SILVA, F. R., 2016, Cats Design: A Context-Aware Testing Approach. Master’s

dissertation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

[9] MATALONGA, S., TRAVASSOS, G. H., “Testing context-aware software systems:

Unchain the context, set it free!”. In Proceedings of the 31st Brazilian Symposium on

Software Engineering (SBES'17). ACM, New York, NY, USA, 250-254. DOI:

https://doi.org/10.1145/3131151.3131190

[10] QUADRI, S. M. K., FAROOQ, S. U., 2010, “Sofware Testing – Goals, Principles,

and Limitations,” International Journal of Computer Applications, v. 6, n. 9 (Sep), pp.

1.

[11] AMALFITANO, D. et al., 2019, A Rapid Review on Testing of Context-Aware

Contemporary Software System. https://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf.

[12] MOTTA, R. C., “Towards a Strategy for Supporting the Engineering of

Contemporary Software Systems." arXiv preprint arXiv:1904.11741, 2019.

https://smartech.gatech.edu/handle/1853/3389
about:blank
https://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf

116

[13] International Organization of Standardization. (2013). Software and systems

engineering – Software testing – (ISO/IEC/IEEE 29119-1)

[14] DELAMARO, M. E., MALDONADO, J. C., JINO, M. “Conceitos Básicos”.

Introdução ao Teste de Software, 4th ed, chapter 1, Rio de Janeiro, Brazil, Elsevier Editora

Ltda, 2007

[15] DORESTE, A. C. S., TRAVASSOS, G. H., “Towards Supporting the Specification

of Context-Aware Software System Test Cases,” XXIII Ibero-American Conference on

Software Engineering (CIbSE), Curitiba, Brazil, 2020

[16] MATALONGA, S., RODRIGUES, F., TRAVASSOS, G. H., 2017, "Characterizing

testing methods for context-aware software systems: Results from a quasi-systematic

literature review." Journal of Systems and Software, v. 131 (2017), pp. 1-21.

[17] LUO, C. et al., 2020, "A survey of context simulation for testing mobile context-

aware applications." ACM Computing Surveys (CSUR), v.53, n.1 (2020), pp. 1-39

[18] ALMEIDA, D. R., MACHADO, P. D. L., ANDRADE, W. L., 2019, "Testing tools

for Android context-aware applications: a systematic mapping." Journal of the Brazilian

Computer Society v. 25, n.1 (2019), pp. 1-22.

[19]MATALONGA, S. et al., 2021, "Alternatives for Testing of Context-Aware

Contemporary Software Systems in industrial settings: Results from a Rapid review."

arXiv preprint arXiv:2104.01343, Retrieved from https://arxiv.org/abs/2104.01343

[20]SIQUEIRA, B. R., et al., 2021, "Testing of adaptive and context‐aware systems:

approaches and challenges." Software Testing, Verification, and Reliability, v. 31, n. 7,

e1772.

[21] BOOTH, A., SUTTON, A., PAPAIOANNOU, D., 2016, “Systematic approaches to

a successful literature review.”, 2nd ed, SAGE Publications Ltd

[22] MIRZA, A. M., KHAN, M. N. A., “An Automated Functional Testing Framework

for Context-aware Applications.” IEEE Access, 6, 46568-46583, 2018.

[23] AFANASOV, M. et al., “Software Adaptation in Wireless Sensor Networks.” ACM

Trans. Auton. Adapt. Syst. 12, 4, Article 18, 29 pages, Jan. 2018.

https://doi.org/10.1145/3145453

[24] CAROLI, P. 2017, To the Point – A Recipe for Creating Lean Products, Leanpub

[25] DELAMARO, M. E., MALDONADO, J. C., JINO, M. “Conceitos Básicos”.

Introdução ao Teste de Software, 4th ed, chapter 3, Rio de Janeiro, Brazil, Elsevier Editora

Ltda, 2007

[26] DORESTE, A. C. S., et al., “Digitalizando o Microscópio Óptico: a solução do

Parasite Watch”. Simpósio Brasileiro De Computação Aplicada À Saúde (SBCAS), 19. ,

2019, Niterói. Rio de Janeiro, Brazil, 2019

https://arxiv.org/abs/2104.01343
about:blank

117

[27-] DORESTE, A. C. S., Pipeline de Implantação Contínua no Contexto de Internet

das Coisas para Raspberry Pi, Trabalho de Conclusão de Curso, Universidade Federal

do Rio de Janeiro, Rio de Janeiro, Brazil. Available at:

http://www.repositorio.poli.ufrj.br/monografias/monopoli10024252.pdf, Last Accessed

on November 22nd, 2021

[28-] VALENTE, M. T., “Engenharia de Software Moderna,” Available at:

https://engsoftmoderna.info/, Last Accessed on November 22nd, 2021

[29-] CARVER, L. et al., “Issues in using students in empirical studies in software

engineering education,” in Proceedings - International Software Metrics Symposium, vol.

2003-Janua, pp. 239– 249. 2003

[30] DIAS-NETO, A. C., MATALONGA, S., SOLARI, M., ROBIOLO, G.,

TRAVASSOS, G. H., 2017, "Toward the characterization of software testing practices in

South America: looking at Brazil and Uruguay," Software Quality Journal, v. 24, n. 4

(2017), pp. 1145-1183

[31] SANTOS, I. S., ANDRADE, R. M. C., ROCHA, L. S., MATALONGA, S.,

OLIVEIRA, K. M., TRAVASSOS, G. H., 2017, "Test case design for context-aware

applications: Are we there yet?", Information and Software Technology, v. 88 (2017), pp.

1-16

[32] MATALONGA, S., RODRIGUES, F., TRAVASSOS, G. H. (2015). "Matching

context-aware software testing design techniques to ISO/IEC/IEEE 29119", International

Conference on Software Process Improvement and Capability Determination, Springer,

Cham, 2015. p. 33-44.

http://www.repositorio.poli.ufrj.br/monografias/monopoli10024252.pdf
https://engsoftmoderna.info/

118

Appendix A – Structure Review Extractions

A.1 An Automated Functional Testing Framework for Context-aware

Applications

Paper ID 12

Bibliography: Mirza, A. M., & Khan, M. N. A. (2018). An Automated Functional

Testing Framework for Context-aware Applications. IEEE Access, 6,

46568-46583.

 Abstract: “In the modern era of mobile computing, context-aware computing is

an emerging paradigm due to its wide spread applications. Context-

aware applications are gaining increasing popularity in our daily lives

since these applications can determine and react according to the

situational context and help users to enhance usability experience.

However, testing these applications is not straightforward since it

poses several challenges, such as generating test data, designing

context-coupled test cases, and so on. However, the testing process

can be automated to a greater extent by employing model-based

testing technique for context-aware applications. To achieve this goal,

it is necessary to automate model transformation, test data generation,

and test case execution processes. In this paper, we propose an

approach for behavior modeling of context-aware application by

extending the UML activity diagram. We also propose an automated

model transformation approach to transform the development model,

i.e., extended UML activity diagram into the testing model in the

form of function nets. The objective of this paper is to automate the

context-coupled test case generation and execution. We propose a

functional testing framework for automated execution of keyword-

based test cases. Our functional testing framework can reduce the

testing time and cost, thus enabling the test engineers to execute more

testing cycles to attain a higher degree of test coverage.”

General

Information:

• “ However, for both of the testing types, test case generation

and maintenance are expensive and difficult tasks. Using

model based testing techniques are generally considered as a

solution to this problem. Model based testing is a test

automation technique which is regarded as a process to

automate test designing to generate test cases from system

under test (SUT) model [2].”

• “Our proposed framework would automate testing process of

context-aware applications which includes generation and

119

execution of context-coupled test cases to evaluate accuracy

of context recognition and adaptation.”

• “we present our test automation framework named as

ContextDrive. Our proposed model consists of six phases.

First two phases deal with behavior modeling and model

transformation. Our previous study [13] mainly focuses at

model transformation and explains step by step the entire

model transformation process followed by the initial results

obtained by implementing first two phases. In this paper, we

have adopted the same transformation process followed by

describing an automated functional testing procedure to

generate and execute context-coupled test cases. This study

employs the same mapping as discussed in our previous study.

Model annotation, abstract test cases generation, executable

test case generation and automated test case execution phases

are discussed in detail in this study. We have conducted two

case studies and have validated the results with selected

contemporary studies. Context Drive is illustrated in Figure

1.”

120

• “Test cases generated from test model are in the form of

abstract test cases, so they are platform and tool independent.

Abstract test cases are human readable and can be executed

manually. To execute generated test cases automatically,

abstract test cases need to be converted according to tool

specific test scripts referred as concrete test scripts [44].”

• “Test automation tools are categorized into four main

categories: Record and Playback, Functional Decomposition,

Data Driven and Keyword-driven tools. All the approaches

except keyword-driven testing suffer from the issues of

maintainability. Keeping in view the merits and demerits of

automated testing approach employed by test automation

tools, our framework supports two test script execution

methods: functional decomposed test scripts and keyword-

driven test scripts. We use Appium for test script execution

which is an open source tool for testing mobile applications.

Appium supports Windows, iOS and Android platforms

which implies that the developed test scripts are reusable and

121

can be executed across all supported platform with no or

minimal changes [45].”

Context-

Awareness

Information

• “In this modern age, small and powerful smart devices are

commonly being used to communicate with each other and

perform complex computational tasks in concurrent fashion.

The technological advancements have led to the development

of new type of applications known as context-aware

applications or self-adaptive applications. Context-aware

applications can infer and react to their environment and adapt

to situational context instantly in order to provide a better user

experience. Some examples of context-aware applications

include WALKPATH [3] and City Guide [4]. Context-aware

applications are used in many walks of life such as healthcare,

entertainment etc. Context-aware applications have several

distinctive features which make these applications different

from the conventional or non-context-aware applications. The

foremost element that makes a context-aware application

distinctive from the conventional application is the context

itself. Context is a form of information detachable from an

activity/action and it defines characteristics of the

environment where that activity/action has taken place [5].

The context could have several dimensions and there are a

number of models to identify the context dimensions. One

such model is the pentagonal model proposed in [6]. This

model identifies five context dimensions of an entity namely

individuality, time, activity, location and relationships.”

• “To test context-aware applications, it is important to

understand these features and plan test strategy accordingly.

Few important features of context-aware applications are

context, quality of context, sources of context, context

interpretation and reasoning.”

• “Context information is retrieved from different sources

which can be grouped into two broad categories, physical

sensors and data sensors. Examples of physical sensors

areGPS,heatandproximitysensorswhichareusedtoobtain

location and temperature of the device as well as proximity to

other neighboring devices respectively. Similarly, examples of

data sensors include preferred usage profiles, social

networking profiles, calendar and task list of a smartphone.

However, context information retrieved from both types of

sensors can introduce imperfection e.g., ambiguity,

imprecision, errors/omissions about the sensed context due to

many reasons such as noise or failure of sensors [7]. These

imperfections in the context information may cause context-

aware application to behave erroneously.”

122

• “Context-aware applications apply analytical and reasoning

techniques for interpretation of context to identify user needs

and adapt to change in the user’s context accordingly. Context

reasoning is the process of analyzing context data to

comprehend new knowledge from raw data obtained from

sensors [7]. Testing the context-aware applications is a

difficult task due to many challenges such as developing test

adequacy and coverage criteria, context adaptation, context

data generation [8], designing context-aware test cases,

developing test oracle and devising new testing techniques to

test context aware applications [9], [10]. Designing,

maintaining and executing context-aware test cases is a hard

and time-consuming task due to high volatility of the context.

In view of this, there is a need to develop an automated testing

framework for context-aware applications to make the testing

process efficient and effective. Addressing this research gap,

hence serves as a motivation to undertake this study.”

• “A brief account of the contributions of our study is as

follows. Context adaptation cannot be modelled using

standard notation of UML activity diagram; thus, we have

extended UML activity diagram for behavior modeling of

context-aware applications by adding a context-aware activity

node. MBT facilitates automation of testing process and we

have utilized MBT to generate context-coupled test cases, are

search challenge which was not addressed earlier.”

• “In this regard, Satoh [37] were constricted to evaluate their

proposed approach for just one context dimension which was

simply the location context. Most of the proposed techniques

aim at solving a very specific problem [38] e.g., test oracle

development or test case generation etc. Similarly, some

testing approaches developed for context-aware applications

are software platform depended which are prone to become

outdated with technological advancement. For instance,

MobileTest [39] was developed for Symbian platform which

has now become obsolete. Yet another issue is that mutation

testing techniques have been used for generating context-

aware test cases despite the fact that mutation testing does not

ensure correctness of the functional requirements [9].”

• “Several factors such as information heterogeneity and user’s

mobility etc. influence context information and can cause

change in context at any point in time. For example, user’s

context could have multiple dimensions such as time and

location. User’s mobility perpetually affects these two context

dimensions which results in changes in the surrounding

objects such as people and places. Because of these changes,

the context-aware application needs to adapt with the

changing situations to reflect user’s current context status.

123

Since, context information is retrieved from many sources,

therefore, it is quite possible that these sources provide the

same information in different formats with varying degree of

context quality [40]. In view of this, standard UML Activity

diagram is too general to model context-aware applications

[41] since it cannot adequately model all the adaptation

factors and aspects of the user’s context [42]. To overcome

this shortcoming, it is recommended to use extended UML

notations [40].”

• “Our target is to generate context-coupled test cases from the

test model. The test cases designed for conventional software

have static output. This is not true for context-aware

applications where context-coupled test cases are designed to

test context-adaptation. In context-coupled test cases the

expected output of the test case is dynamic and changes

according to the current context, even during the execution of

test cases. Thus, identifying context dependent functionalities

in development model is imperative to generate context-

coupled test cases. Since context adaption cannot be modelled

using standard notation of activity diagram; therefore, we

propose to extend UML activity diagram using the stereotype

mechanism of UML notation. Thus, in this study, we have

used a typecast of Activity Node named context aware

activity node for behavior modeling of context-aware

functionalities.”

• “There are several advantages of using context-aware activity

node e.g., context reconfiguration points can be easily

identified. Context reconfiguration points refer to those events

that alter values of the context parameters. Using context

reconfiguration points, different context dimensions and

context activities such as jogging, driving etc. can be easily

identified. After identifying context reconfiguration points,

main and alternative flows of context depended functionalities

are identified. Moreover, we can also identify those

parameters where context change can occur so that expected

output for each functional flow could be determined. Some of

context factors identified for a context reconfiguration point

‘‘meeting’’ are listed in Table 3.”

124

Study Type • “To validate our framework, we conducted two case studies

and results of these case studies are compared with the results

of selected contemporary studies.”

Application’s

Name

Smart Home Application

Application

Description

• “Using our proposed approach, we have developed UML

activity diagram for a smart home application as depicted in

Figure 9.

• “The intrusion detection system is enabled when user selects

‘‘Leave Home’’ option. The intrusion detection system is

composed of video surveillance and infrared sensor. On

detecting motion using infrared sensor, intrusion detection

system instantiate video surveillance system and record

intruder’s video. In Figure 9, Intrusion Detection is a context

aware activity node.”

• “Keyword-driven test case is depicted in Table 8. TS_ID filed

represent test step ID which is used for logging purposes.

Outcome of each step (Pass/Fail) is record in the ‘‘Result’’

column. If a test step fails, test case will be marked failed.”

125

Application’s

Name

Call-a-Cab App

Application

Description

• “Our first case study is based on call-a-cab context-aware

application [47]. This application allows users to call a cab to

their current location. User location can be obtained using

GPS sensor or can be fed manually. If application fails to

automatically obtain GPS location, then it reverts to manual

mode requiring the user to feed the location. Testing this

application requires test cases to include location

determination modes, setting valid and invalid location and

manipulation the network connection to simulate unexpected

service loss.”

• “Firstly, we develop UML activity diagram for Call-A-Cab

app using our proposed modeling notations as depicted in

Figure 12.”

126

• “As evident from Figure 12, we identify three context

reconfiguration points (Call-a-Cab-GPS, Call-a-Cab-Manually

and Network Available) where application needs to collect

current context to carry out further functionality. While calling

a cab using GPS, if GPS connection fails then application will

fall back to manual mode. Similarly, while calling cab

manually, if GPS location is found, application will fall back

to automatic mode. After obtaining user location,application

needs to send cab request using cellular network. If cellular

network is lost, then an error dialog will be displayed

otherwise request will be sent.”

• “In the second phase, we transform UML activity diagram into

function net and import it in MISTA. We annotated our model

in the next phase and added initial marking along with

labeling function net elements as depicted in Figure 13.”

• “In the fourth phase, we generated test suite consisting of 91

test cases. Out of these 91 test cases, we had 5 test cases with

valid path (positive test cases) and 88 test cases with invalid

path (negative test cases). Depth of the deepest test was 6.”

127

Application’s

Name

Smart Home App

Application

Description

• “Our proposed solution can also be used with complex

models. In the second case study, we selected a Smart Home

app which is a quite complex app. We developed UML

activity diagram of smart home application shown in Figure

14. This UML activity diagram is adapted from [48] for

experimentation in our study. When a user selects ‘‘Leave

Home’’ mode, Fire Protection and Security Systems are

enabled. Fire Protection system is composed of three sensors,

SMOG sensor, Gas sensor and Temperature sensor. These

three sensors provide continuous input to context activity node

named ‘‘FireDetection’’. If fire is detected,then an alert SMS

is sent on the predefined cell number and fire extinguisher is

128

also instigated. Security system of smart home app has already

been elaborated in section 4.1”

• “Smart home app senses environment and drives context as

‘‘Normal’’, ‘‘Intrusion’’ or ‘‘Fire’’. Context can change

suddenly, and an adaptation can occur at any time from

‘‘Normal’’ context to ‘‘Fire’’ or ‘‘Intrusion’’ context and vice

versa. It is also possible that due to erroneous input from the

sensors, adaptation of ‘‘Intrusion’’ or ‘‘Fire’’ occur and alarm

is triggered and abruptly ‘‘Normal’’ context can occur when

sensor does not detect any further intrusion or fire.”

• “In the second phase, we transformed development model into

testing model using our own algorithm. We have imported this

function net in our test modeling tool. Imported test model is

depicted in Figure 15. It can be observed that elements of

generated test model need to be labeled to enhance readability.

Thus, in phase 3, we perform model annotation.”

• “In this phase, we labeled places and transition as well as add

Initial Marking and Goal States in our model. It can be noticed

that generated test model is complex and difficult to

understand and simulate. Therefore, we need to decompose

this large model into smaller modules. These small modules

are called subnets in function nets.”

• “MISTA supports decomposing large and complex function

nets into hierarchal function nets comprising one main

function and many sub-function nets. Using this functionality

of MISTA, we decomposed our complex model into hierarchal

function net composed of one main function net and two sub-

function nets. Main function net is depicted in Figure 16. It

can be observed that IntrusionSensors (shown in circle) and

FireSensor transitions (shown in rectangle) indicating that

these transitions are entry point of subnets. Initial marking

defines starting point of test model for simulation and test tree

generation. Test case is represented as a sequence of nodes

from root node to leaf nodes of the test tree.”

129

• “FireSensor transition (shown in rectangle in Figure 16) leads

to subnet labeled Fire Protection System which is depicted in

Figure 17.”

• “IntrusionSensors transition (encircled in Figure 16) leads to

subnet labeled as Intrusion Detection System and is depicted

in Figure 18.”

•

130

• “In phase 4.4, we generated abstract test cases from our test

model. For test case generation, we have used breadth first

search algorithm and set maximum depth of test tree

parameter to 100. Based on these parameters, test tree

comprising 538 test cases spanning on 361 states was

generated as depicted in Figure 19. The depth of the deepest

test was 24. In phase 5, we transformed abstract test cases into

concrete test scripts. In phase 6, we executed concrete test

case on our SUT. We generated an intrusion situation for

SUT. Our smart home application detected intrusion and

generated a warning. Output of our SUT for intrusion

detection is shown in Figure 20.”

131

• “When context-aware smart home application detects an

intrusion at home, it records video and sends alarm a san SMS

on predefined cell phone. Output of the executed test case is

depicted in Figure 21.”

• “Context can change suddenly, and context change during

execution of test case can cause a test case to fail due to

132

mismatch of expected and actual output. Therefore, a context

coupled test case should cater for context change during

execution of test case.”

• “Test cases generated through our proposed framework are

context-coupled and can cater for context changes during

execution of test case. To demonstrate this capability, we

provide an example of false fire alarm.”

• “Suppose temperature sensor detected high temperature due to

some glitch thus a warning message is displayed at user

interface of mobile application and label of ‘‘Temperature’’

sensor changed to ‘‘Fire’’ (Figure 22).”

• “Meanwhile temperature sensor detected normal temperature

and reverted to ‘‘Normal’’ status as depicted in Figure 23.”

133

• “This caused sudden context change and to adapt to current

context, smart home application should abort alarm generation

functionality. We have executed our test cases to test this

functionality. Figure 24 shows output of test case.”

• “From Figure 24, it can be observed that execution logo

four test case indicates that context was changed during

execution of test case. Since our test cases are context-coupled

thus expected output of test cases also changed accordingly

with respect to the context. Therefore, status of test case was

set to ‘‘Pass’’ as the context change was handled

properly.Whereas, with context-decoupled test cases, status of

test case would have been marked fail. As a result, test

execution log would incorrectly indicate a defect in the

application functionality.”

134

A.2 Software adaptation in wireless sensor networks.

Paper ID #24

Bibliography: Afanasov, M., Mottola, L., & Ghezzi, C. (2018). Software adaptation in

wireless sensor networks. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 12(4), .

Abstract: “We present design concepts, programming constructs, and

automatic verification techniques to support the development of

adaptive Wireless Sensor Network (WSN) software. WSNs operate

at the interface between the physical world and the computing

machine and are hence exposed to unpredictable environment

dynamics. WSN software must adapt to these dynamics to maintain

dependable and efficient operation. However, developers are left

without proper support to develop adaptive functionality in WSN

software. Our work fills this gap with three key contributions: (i)

design concepts help developers organize the necessary adaptive

functionality and understand their relations, (ii) dedicated

programming constructs simplify the implementations, (iii) custom

verification techniques allow developers to check the correctness of

their design before deployment. We implement dedicated tool

support to tie the three contributions, facilitating their practical

application. Our evaluation considers representative WSN

applications to analyze code metrics, synthetic simulations, and

cycle-accurate emulation of popular WSN platforms. The results

indicate that our work is effective in simplifying the development of

adaptive WSN software; for example, implementations are provably

easier to test and to maintain, the run-time overhead of our dedicated

programming constructs is negligible, and our verification

techniques return results in a matter of seconds.”

General

Information:

● “Wireless Sensor Networks (WSNs) bridge the gap

between the physical world and the computing machine

[30] by seamlessly gathering data from the environment

through sensors, and by taking actions on it through

actuators. Because of their intimate interactions with the

physical world, WSNs are exposed to multiple and

unpredictable environment dynamics that affect their

operation.”

● “Multiple environmental dimensions evolve concurrently

and independently, such as location and battery levels.

WSN software needs to adapt to such dynamics to maintain

efficient performance. For example, in wildlife tracking,

the inability to adapt to different situations may result in

135

earlier battery depletion, preventing WSN nodes to

eventually upload sensor data to the base-stations and thus

hampering the analysis.”

● “ We extend nesC with notions of Context-oriented

Programming (COP) [28]. Section 4 describes the resulting

language, called ConesC, which ameliorates the coupling

between functionality, rendering implementations easier to

understand and to maintain. The design concepts of Section

3 map to the programming constructs we introduce, easing

the transition from design to implementation”

● “COP is a programming paradigm often employed to

implement adaptive software. Central to COP is the notion

of layered function, that is, a function whose behavior

changes depending on the current situation and

transparently to the caller. COP already proved effective in

creating adaptive software in mainstream applications, such

as user interfaces [34] and text editors [32]. In these

settings, programmers rely on COP extensions of popular

high-level languages, such as Java [58].”

●

Context-

Awareness

Information:

● “Our work is centered on a notion of context. Such a notion

is vastly employed in various areas of computing, including

proximate selection, contextual reconfiguration, contextual

information, and context-triggered actions [1, 14, 56], yet

not in WSN software. We specifically consider a context

to be a specific situation, including both environmental

and system features,that WSN software might find itself

in. This is similar to the notion of “situation” employed

in context aware computing [13].”

● “We introduce two key concepts: (i) individual contexts,

and (ii) context groups. A context represents an individual

situation the software running on a given WSN device may

encounter [13]. Whenever that situation occurs, the

software changes its functioning accordingly,

implementing an appropriate adaptation decision. For

example, in the wildlife-tracking application described in

the Introduction, the reachability of the base-station based

on the physical location of a device represents an individual

context coupled to a corresponding functionality. This is

different to the context and functionality representing the

situation where the base-station is unreachable. A context

group is a collection of contexts sharing common

characteristics, for example, being determined by the same

environment dimension. We may group together the two

contexts representing the (un)reachability of the base-

station, as both depend on a device’s physical location.”

136

●

Study Type:

Application’s

Name

Application

Description

● “Consider the use of WSNs to track wildlife [49]. Battery-

powered WSN nodes are embedded in collars attached to

animals, such as zebras or badgers. The devices are

equipped with sensors to track the animals’ movement, for

example, based on GPS and accelerometer readings, and to

detect their health conditions, for example, based on body

temperature. Low-power short-range radios are used as

proximity sensors by allowing nodes to discover each other

whenever they are within communication range, using a

form of periodic radio beaconing. A node logs the radio

contacts to track an animal’s encounters with other animals,

enabling the study of their social interactions. The radio is

also used to off-load the contact traces when in reach of a

fixed base-station. Small solar panels harvest energy to

prolong the node lifetime [5].”

● “Using battery-powered WSN devices makes energy a

precious resource that developers need to trade against the

system functionality, depending on the situation. For

example, GPS sampling consumes non-negligible energy.

The difference between consecutive GPS readings may be

taken as an indication of the pace of movement, and used to

tune the GPS sampling frequency and granularity. The

contact traces can be sent directly to the base-station

whenever the latter is within radio range, but they need to

be stored locally otherwise. When the battery is running

low, developers may disable GPS sampling to make sure

the node survives until the next encounter with a base-

station, not to lose the collected contact traces.”

● “To give a concrete feeling of the issues at stake, Figure 1

shows a simplified implementation of adaptive

functionality using nesC [24], a dialect of C commonly

used for WSN development. NesC function calls are

asynchronous; results are returned using a notion of event

137

that essentially operates as a callback. The code implements

only one aspect of the adaptation needed in wildlife

tracking: to send readings to the base-station whenever

reachable, or to store them locally otherwise.”

● “In Figure 1, multiple orthogonal concerns are intertwined

and functionality are tightly coupled. For example, the

decision on what operating mode to employ, that is,

whether to consider the base-station as reachable, is

implemented from line 19 to 24 . This lies in the the same

module as the adaptive processing itself from line 7 to 17 .

Both functionality depend on the same global variable

base_station_reachable, whose management is entirely on

the programmer’s shoulders.”

● “Moreover, the checks to perform before changing

operating mode, such as those in lines 8 and 11, are mixed

with the functionality that changes the mode itself.”

● “Figure 2 represents the complete design of the wildlife

tracking application based on contexts and context groups.

The four context groups, shown as the outer boxes,

represent collections of individual contexts depending on

battery level, base-station reachability, as well as an

animal’s health conditions and activity levels. The

individual contexts, shown as the inner boxes in every

group, are described by a name and by actions taken when

entering or leaving a context, and by processing executing

as long as the context is active, that is, the context

corresponds to the current situation. Context and context

groups provide structure and help factor out the adaptation

necessary to deal with independent environment

dimensions.”

● “At most one context is active in each context group at any

point in time. However, multiple contexts belonging to

138

different groups may be active at the same time. Contexts

within the same group are tied with transitions that express

the conditions triggering a change of the current context. In

Figure 2, for example, a change in the battery voltage

below a threshold triggers a change from the Normal to the

Low context in the Battery group. The evolution of active

contexts in different groups thus mimics the semantics of

parallel state machines, but for the following features:

○ Context transitions may contain dependencies. For

example, if a body sensor reads an abnormal

temperature, it might indicate that the animal is

Diseased, and require a transition to the

corresponding context. In this situation, however, an

animal is most probably moving slightly or not at

all; therefore, the active context in the Activity

group should not be Running.

○ Context activation may also trigger a transition in a

different context group, as is the case in the

Reachable context of Figure 2. Because the base-

station is deployed at a known location, its

reachability indicates the device is nearby.

Therefore, we trigger a transition to the NotMoving

context in the Activity group to disable GPS

tracking and assume the base-station location as the

one of the device.”

○

● “Based on experience, we observe distinct patterns

emerging that provide structured ways to address specific

types of adaptive functionality. These patterns, discussed

next, allow developers to express complex functionality

with only a handful of concepts.”

● “Behavior control. Different behaviors of the same high-

level functionality are often represented in a single context

group. Figure 2 shows one such example in the Base-

station group, which includes two different behaviors for

139

the same high-level functionality of processing the

collected logs. The same pattern is found also in other

applications. For example, an adaptive protocol stack [22,

25] uses different protocols for the same underlying

physical layer depending on node’s mobility. The high-

level packet relay functionality is expressed with a similar

design, as we show in Section 7.”

● “Figure 3 shows an abstract view of the behavior control

pattern and its characterizing elements. Developers define a

single context group to export a functionality whose

behavior depends on the active context. An external context

“controller” drives the transitions between the contexts in

the group. In the wildlife tracking application, for example,

the context controller checks if beacons are received

indicating a nearby base-station, and accordingly activate a

specific context in the Base-station group.”

● “Content provider. We also observe cases where context-

dependent data is offered to other functionality with little to

no processing involved, differently from the behavior

control pattern that provides non-trivial context-dependent

processing. An example is in the Health conditions group

of Figure 2. Depending on the active context, the periodic

beacon is generated differently. The actual processing that

involves the beacon happens elsewhere in the system; in

this case, throughout the network stack responsible for

transmitting the beacon over the air. We notice this pattern

in other applications as well. For example, the smart-home

application we describe in Section 7 employs the same

pattern to manage user preferences depending on time of

the day.

● The characterizing elements, abstractly shown in Figure 4,

differ from those of behavior control. The “controller”

component is often fairly trivial. For example, the

“controller” in the smart-home application of Section 7

simply checks the time of the day. Differently, the

component consuming the context-dependent data plays a

key role. While functionality structured as behavior control

can be considered stand-alone, the content provider needs

to be tailored to the data consumer.”

140

● “Trigger. We also recognize designs where contexts are

used only to trigger specific operations, especially on

hardware components, without any significant context-

dependent processing or data offered. An example is the

Battery group in Figure 2. The contexts in the group are

used to enable or disable the GPS sensor depending on the

battery level. In the smart-home application of Section 7,

we notice a similar pattern when tuning lights in a room.

Depending on the amount of natural light, different

contexts are activated that tune the artificial lighting

accordingly. As shown in Figure 5, the “controller” drives

context transitions similar to behavior control. However,

unlike the other patterns, there is no external components

that either uses context dependent functionality or

consumes context-dependent data.”

141

Appendix B - Parasite Watch - CATS# v2

Steps 1 and 2 – Extract and Identify Context Variables:

Variables List

• Internet Available

• Diagnosis

• Power Available

• Updated

• USB Device

• Battery Level

• Geolocation

• Date

• Synchronized

• Time

• Image

• Point of Interest

• Memory

Available

Bold: Context Variables

Bold and underlined: Later Included

Step 3 – Generate Analytical Model

142

CV THR Effect

Internet Available

True

Use Online Lab to make the diagnosis

If Synchronized = False, sync diagnosis

If Updated = False, update de Software

False

Use Local Lab to make the diagnosis

If Synchronized = False, stop sync

If Updated = False, stop updating

Power Available

True Use energy from Power

False

Use energy from Battery or Solar Panel

If Synchronized = False, do not sync

If Updated = False, do not update

If USB Dev. = True, do not transfer files

Battery Level

 > 20%
If Internet Av. = True: Online Lab Mode

If Internet Av. = False: Local Lab Mode

≤ 20%
Disable GPS

Disable Internet

Memory. Available False Display a message and pause the system

Memory Drive True Transfer files to Memory Drive

Step 4 – Generate Conceptual Model

143

Step 5: Mapping Functionalities and Context Situations

System Features
Transferring files

to USB

System

Paused

Storing

Locally

Capture Image False False True

Submit to Local Diagnosis False False True

View Diagnosis False False True

Transfer to Mem. Drive True False False

144

System Features Updating
Sending Files

Online

Synchronizing at

Background

Capture Image False True True

Submit to Online

Diagnosis
False True True

View Diagnosis False True True

Update Software True False False

Sync with the database False False True

System Features Local Lab
Online

Lab

Energy Saving

Mode

Capture Image True True True

Submit to Local Diagnosis True False True

Submit to Online Diagnosis False True False

View Diagnosis True True True

Capture Geolocation True True False

Enable Local Lab's Features True False False

Enable Online Lab's Features False True False

Step 6: Describe the Test Oracles

Local Lab

Id System Feature Input (I) Conditions (C) Expected Result (E)

01 Capture

Geolocation

User’s

Location

Battery Level =

21% -> 19%

Disable GPS (Energy

Saving Mode)

02 Transfer to

Memory Drive

 USB = True;

Battery Level =

21% -> 19%

Interrupt transferring the

files (Energy Saving Mode)

145

● Storing Locally

Id
System

Feature
Input (I) Conditions (C) Expected Result (E)

03 Register Blade
Blade Id,

Date

Mem Av -> Mem Not

Av
System Paused

04 Capture Image Image
Mem Av -> Mem Not

Av
System Paused

05

Submit to

Local

Diagnosis

Image
Mem Av -> Mem Not

Av
System Paused

06
View

Diagnosis

Diagnosis

Id

Mem Av -> Mem Not

Av
System Paused

07 Register Blade
Blade Id,

Date

Power Av = True;

USB False -> True

Transfer to Memory

Drive

08 Capture Image Image
Power Av = True;

USB False -> True

Transfer to Memory

Drive

09

Submit to

Local

Diagnosis

Image
Power Av = True;

USB False -> True

Submit to Local

Diagnosis Start Transfer

to Memory Drive

10
View

Diagnosis

Diagnosis

Id

Power Av = True;

USB False -> True

Transfer to Memory

Drive

● System Paused

Id System Feature Input (I) Conditions (C) Expected

146

Result (E)

11 Transfer Files to

Pendrive

 Power Av. = True,

USB presence = False -> True

Transferring

Files to USB

12 Transfer Files to

Pendrive

 Power Av. =False,

USB presence = False -> True

Do not transfer

files to USB

● Transferring Files to USB

Id System Feature Input (I) Conditions (C) Expected Result (E)

13
Transfer Files to

Pendrive

Mem Av. = False

USB presence = True

-> False

System Paused

14
Transfer Files to

Pendrive

USB presence =

False;

Mem Not Av -> Av

Finish transferring the

files and going to Storing

Locally Stage

Online Lab

Id System Feature Input (I) Conditions (C)
Expected

Result (E)

15 Submit to Online

Diagnosis

Image Internet

Available =

True -> False

Submit to Local

Lab

16 Update Software Bat. Level =

21% -> 19%

Interrupt

Updating and

Disable Internet

147

(Energy Saving

Mode)

17 Sync with the database Bat. Level =

21% -> 19%

Interrupt

Synchronization

and Disable

Internet (Energy

Saving Mode)

18 Capture Geolocation User’s Location

Battery Level =

21% -> 19%

Disable GPS

and Internet

(Energy Saving

Mode)

19 Submit to Online

Diagnosis

 Bat. Level =

21% -> 19%

Submit to Local

Diagnosti and

Disable Internet

(Energy Saving

Mode)

● Sending Files Online

Id System Feature Input (I) Conditions (C)
Expected

Result (E)

19 Register Blade Blade Id, Date

Power Av. =

True;

Synchronized =

True -> False

Synchronizing

at background

20 Capture Image Image

Power Av. =

True;

Synchronized =

True -> False

Synchronizing

at background

21
Submit to Online

Diagnosis
Image

Power Av. =

True;

Synchronizing

at background

148

Synchronized =

True -> False

22 View Diagnosis Diagnosis Id

Power Av. =

True;

Synchronized =

True -> False

Synchronizing

at background

23 Register Blade Blade Id, Date

Power Av. =

True;

Updated = True

-> False

Synchronizing

at background

34 Capture Image Image

Power Av. =

True;

Updated = True

-> False

Synchronizing

at background

24
Submit to Online

Diagnosis
Image

Power Av. =

True;

Updated = True

-> False

Synchronizing

at background

25 View Diagnosis Diagnosis Id

Power Av. =

True;

Updated = True

-> False

Synchronizing

at background

● Synchronizing at background

Id System Feature Input (I) Conditions (C)
Expected

Result (E)

26 Sync with the database Power Av. True Interrupt the

149

-> False

Synchronized =

False

synchronization

27 Sync with the database

Power Av. =

True;

Synchronized =

False -> True

Interrupt the

synchronization

28 Sync with the database
User Cancels

Synchronization

Synchronized =

False

Power Av. =

True

Interrupt the

synchronization

● Updating

Id System Feature Input (I) Conditions (C)
Expected

Result (E)

29 Update Software

Power Av. True

-> False;

Updated = False

Interrupt

Updating

30 Update Software

Power Av.

=true;

Updated = False

-> True

Come back to

Sending Files

Online Mode

31 Update Software
User cancels

updating

Updated = False

Power Av. =

True

Interrupt the

software

updating

● Energy Saving Mode

150

Id System Feature Input (I) Conditions (C)
Expected

Result (E)

32
Enable Local Lab’s

Features

Battery Level =

19% -> 20%;

Internet Av. =

False

Go to Local Lab

33
Enable Online Lab’s

Features

Battery Level =

19% -> 20%;

Internet Av. =

True

Go to Online

Lab

Step 7: Describe the test case

TC Id 01

Test Objective
To test the “Capturing Geolocation” Functionality from Local

Lab

Precondition
GPS Available = True

Battery Level > 20%

Fixed Conditions
Internet Available = False,

Power Available = False

Input (I) User’s Location

Test Steps

1. Register Blade (Id e Date)

2. Open Camera

3. See image (c1)

4. Capture Image

Varying Conditions (C) C1. Bat. Level > 20% → Bat. Level ≤ 20%

Expected Result (E) Capture the last location available and disable GPS (Enter in

151

Energy Saving Mode)

Post Condition
GPS Available = False

Battery Level ≤ 20%

TC Id 15

Test Objective
Verify the Internet becoming unavailable while executing the

functionality “Submit to Online Diagnosis.”

Precondition Internet Available = True

Fixed Conditions
Power Available = True

Memory Available = True

Input (I) Image

Test Steps

1. Register Blade (Id e Date)

2. Capture Image

3. Submit to Online Diagnosis (c1)

4. Open Diagnosis

Varying Conditions (C)
c1. Internet Available = True → Internet Available =

False

Expected Result (E) Receive diagnosis from the local lab

Post Condition Internet Available = False

152

TC Id 29

Test Objective
Verify the Power becoming unavailable while updating

software

Precondition
Updated = False

Power Available = True

Fixed Conditions Internet Available = True

Input (I)

Test Steps
1. Enter Updating mode

2. While Updating (c1)

Varying Conditions (C)
c1. Power Availability = True -> Power Availability =

False

Expected Result (E) Interrupt Updating

Post Condition Internet Available = False

