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Abstract 

Given a biobjective linear programming problem, we develop an affine scaling 

algorithm with min-max direction and demonstrate its convergence for an efficient 

solution. We implement the algorithm for some minor issues in literature. 
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1 Introduction 

The biobjective linear programming problem is presented in many applications such as 

the linear programming problem (monocriterion), in the sense that a new objective is 

necessary. 



According to Clímaco et al. [7], there are some classifications of methods of 

resolution of a multicriterion problem. Basically, there are methods that try to find the 

group of efficient solutions (see, for example, Bornstein et al. [6]) and also, those that try 

to find an efficient solution adequate for the decision maker amongst all others. We will 

follow this idea. 

We work with this perspective by using the relative interior of the feasible set 

(primal, dual or primal-dual) of the multiobjective linear programming problem that can 

be found in Arbel & Oren [3, 4], in which is developed primal and primal-dual interior 

point algorithms, respectively, both using a specific utility function to be optimized; in 

Aghezzaf & Ouaderhman [1], in which is developed an interior point method using, also, 

a specific utility function to be optimized; in Fonseca et al. [11], in which is developed a 

dual feasible infeasible-interior-point algorithm for the network flow problem. 

Given a biobjective linear programming problem, we develop an affine scaling 

algorithm with min-max direction and demonstrate its convergence to an efficient 

solution. We implement the algorithm for some minor issues in literature. 

This work is divided into the following sections: section 2 presents the biobjective 

linear programming problem and some hypothesis; the algorithm and its convergency is 

introduced in section 3; in section 4, we present some implementations; and in section 5, 

our final considerations are given. 

2 The problem 

Consider the following multiobjective linear programming problem 

(PLMO)    minimize       z = Cx 

                subject to      Ax = b 

                                    x ≥ 0, 

where 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚 and 𝐶 ∈ 𝑅𝑝×𝑛, with 0 < m < n. 

 Denote  

𝑋 = {𝑥 ∈ 𝑅𝑛; 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} 

the feasible set and  

𝑋0 = {𝑥 ∈ 𝑋; 𝑥 > 0} 

the set of feasible interior points. 

 Consider i = 1, …, p. A solution 𝑥1 ∈ 𝑋 is considered an efficient solution when 

there is no other solution 𝑥2 ∈ 𝑋 such that 𝐶𝑖𝑥
2 ≤ 𝐶𝑖𝑥

1, for every i and the inequality is 



strict for at least one i. A point in objective space 𝑧 = 𝐶𝑥̅ ∈ 𝑍 ⊂ 𝑅𝑝 is said nondominated 

solution when 𝑥̅ is an efficient solution. 

 In a multiobjective problem, a compromise solution satisfying the decision maker, 

within the efficient solutions, is to be selected. 

 Next, we enunciate a proposition that states that a single optimal solution matches 

with an efficient solution in a multiobjective problem. 

Proposition 2.1 Consider 𝑖, 𝑘 = 1,… , 𝑝 and given scalar values 𝑤𝑖, 𝑖 ≠ 𝑘 for some k. If 

𝑥∗is the single optimal solution of the linear optimization problem 

(𝑃𝐿𝑀𝑂)𝑘    minimize         𝑧𝑘 = 𝐶𝑘𝑥 

                                                 subject to        𝑥 ∈ 𝑋 

                                                                        𝐶𝑖𝑥 ≤ 𝑤𝑖, 𝑖 = 1,… , 𝑝, 𝑖 ≠ 𝑘, 

so 𝑥∗is an efficient solution to the problem (PLMO). 

Proof Clímaco et al. [7]. 

 The problem we propose to solve is the biobjective linear programming problem  

(P)  minimize         𝑧𝑐 = 𝑐𝑇𝑥 

       minimize         𝑧𝑑 = 𝑑𝑇𝑥 

   subject to        𝐴𝑥 = 𝑏 

                         𝑥 ≥ 0, 

where 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑛 and  𝑑 ∈ 𝑅𝑛, with a rank of A equal to m, for 0 < m < n. 

 Observe that, in case of m = n, the problem (P) is reduced to a problem of solving 

linear systems. The matter of rank(A) = m enables the use of the projection matrix by 

guaranteeing the inverse of matrix (𝐴𝐴𝑇). 

Still, the biobjective linear programming problem (P) can be written as it follows: 

(P’)    minimize        𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) 

                                               subject to                  𝑥 ∈ 𝑋, 

where 

  𝑓1(𝑥) = 𝑐𝑇𝑥   and   𝑓2(𝑥) = 𝑑𝑇𝑥, 

with 

  𝑓: 𝑅𝑛 → 𝑅2   and   𝑓𝑖 ∶  𝑅𝑛 →  𝑅,  i = 1, 2. 

 

The gradients ∇𝑓1(𝑥) = 𝑐 and ∇𝑓2(𝑥) = 𝑑. 

 We can also rewrite the definition of efficient solution (Pareto optimal) for 

problem (P’), in this way: a decision vector 𝑥∗ ∈ 𝑋 is Pareto optimal if there is no other 

decision vector 𝑥 ∈ 𝑋 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for some i, i = 1, 2. 

 In this work, we will consider the following hypothesis: 

(H1) the feasible set 𝑋 is bounded; 

(H2) the set of feasible interior points 𝑋0 is nonempty; 



(H3) it is given an feasible interior point 𝑥0; 

(H4) the vectors c, d ∉ R (𝐴𝑇), where R (𝐴𝑇) denotes the row space of A; 

(H5) the monocriteria problems in 𝑧𝑐 or in 𝑧𝑑 both have a single optimal solution; and 

(H6) the monocriteria problems in 𝑧𝑐 or in 𝑧𝑑  are nondegenerate.  

 The hypothesis (H1) and (H2) guarantee the existence of optimal solutions to the 

monocriteria problems both in 𝑧𝑐 and in 𝑧𝑑. The hypothesis (H3) enables the use of an 

algorithm that develops in the relative interior of the feasible set. The hypothesis (H4) 

dismisses the optimal solutions to each monocriterion problem as any feasible point. The 

hypothesis (H5) guarantees the existence of efficient solutions, and the hypothesis (H6) 

is used to demonstrate the convergence of the algorithm. 

3 The algorithm and its convergence 

Consider problem (P). The idea of the affine scaling method is based on Dikin [7]. 

In other words, from a biobjective linear programming point of view, we can say that the 

Dikin method consists in walking by the interior of a polyhedral set 𝑋 through feasible 

interior points generated by the solution of a sequence of subproblems, (𝑃𝑘), 𝑘 = 0, 1, …, 

knowing: 

(𝑃𝑘)   minimize               𝑧𝑐 = 𝑐𝑇𝑥 

         minimize               𝑧𝑑 = 𝑑𝑇𝑥 

     subject to              𝐴𝑥 = 𝑏 

                                                    (𝑥 − 𝑥𝑘)𝑇𝑋𝑘
−2(𝑥 − 𝑥𝑘) ≤ 1, 

where 𝑥𝑘 ∈ 𝑋0 is the center of the largest simple ellipsoid and 𝑋𝑘 = 𝑑𝑖𝑎𝑔(𝑥𝑘). 

 Next, we will enunciate a proposition that states that we can disregard the 

restriction 𝑥 ≥ 0 of the problem (𝑃𝑘). 

Proposition 3.1 Consider 𝑥𝑘 ∈ 𝑋0 and 𝑋𝑘 = 𝑑𝑖𝑎𝑔(𝑥𝑘). So, the ellipsoid  

{𝑥 ∈ 𝑅𝑛; (𝑥 − 𝑥𝑘)𝑇𝑋𝑘
−2(𝑥 − 𝑥𝑘) ≤ 1} 

is contained within the non-negative orthant of 𝑅𝑛. 

Proof Barnes [5]. 

Now, we enunciate a master algorithm for the problem (P), based on Dikin’s idea 

for a linear programming problem. 

 



Algorithm 3.2 Master 

    Data: 𝑥0 ∈ 𝑋0. 
    k := 0. 

    REPEAT 

         Obtain 𝑥𝑘+1 ∈ 𝑋 resolving subproblem (𝑃𝑘). 

         k := k + 1. 

    UNTIL ‘convergence’. 

 Consider k = 0, 1, …. Observing the master algorithm, the question now is: how 

to solve subproblem (𝑃𝑘)? For each k, solving subproblem (𝑃𝑘) is just as hard as the 

original problem (P). However, we will develop a strategy to obtain a single solution to 

each (𝑃𝑘), so that, in the end, we will have an efficient solution for problem (P). That is 

what will be done for the remaining of this section. 

 The following result solves to the problem of minimizing a linear function in a 

ball with equality constraints. 

Proposition 3.3 Suppose that 𝑢 ∈ 𝑅𝑛 is not in row space of A. So, the problem  

minimize                 𝑢𝑇ℎ 

     subject to                𝐴ℎ = 0 

                                      ‖ℎ‖ ≤ 1, 
has the solution, 

ℎ̂ = −
𝑢𝑝

‖𝑢𝑝‖
, 

where 𝑢𝑝 is a vector u projected in the null space of matrix A, denoted by 𝑁(𝐴). 

Proof Gonzaga [12]. 

We denote 𝑐𝑝 and  𝑑𝑝 as vectors c and d projected in the null space of matrix A, 

respectively.  

We want to develop a strategy to obtain a direction along which the values of the 

objective functions in  𝑧𝑐 and  𝑧𝑑 decrease. An alternative is to find a direction with the 

shortest distance from to origin to the convex hull of vectors  𝑐𝑝 and  𝑑𝑝 (see, for example, 

Menezes [14]), knowing that: 

(ED)    minimize                 
1

2
‖𝑣‖2 

                          subject to       𝑣 = 𝑡𝑐𝑝 + (1 − 𝑡)𝑑𝑝 

                                             𝑡 ∈ [0,1]. 

Using the Karush-Kuhn-Tucker conditions for the optimization problem (ED), we 

obtain: for 𝑐𝑝 − 𝑑𝑝 ≠ 0, 



 for   𝑡 = 0, 𝑑𝑝
𝑇(𝑐𝑝 − 𝑑𝑝) ≥ 0; 

for   𝑡 = 1, 𝑐𝑝
𝑇(𝑐𝑝 − 𝑑𝑝) ≤ 0; 

        for   𝑡 ∈ (0,1), 𝑡 =
−𝑑𝑝

𝑇(𝑐𝑝−𝑑𝑝)

(𝑐𝑝−𝑑𝑝)
𝑇
(𝑐𝑝−𝑑𝑝)

. 

If 𝑐𝑝 − 𝑑𝑝 = 0, then 𝑣 = 𝑐𝑝 (or 𝑣 = 𝑑𝑝). 

Next, we will elaborate a procedure over problem (ED). Consider β the optimal 

value of (ED) and ℎ̂ a solution. If 𝛽 = 0, then a decrease direction does not exist for both 

𝑐𝑇ℎ̂ and 𝑑𝑇ℎ̂, and there may be an indeterminacy of the choice of ℎ̂. To avoid this 

indeterminacy, the search procedure will be as it follows. 

Procedure 3.4 About (ED). 

    Solve (ED). 

    If 𝑣 ≠ 0, 𝑡ℎ𝑒𝑛 ℎ̂ =
−𝑣̂

‖𝑣̂‖
 

     Else, ℎ̂ = 0. 

 The problem of finding directions in (ED) means finding the shortest distance to 

the convex hull of vectors 𝑐𝑝 and 𝑑𝑝, of which the result is a vector 𝑣 for 𝑣 ≠ 0. Then, 

take ℎ̂ = −
𝑣̂

‖𝑣̂‖
 if 𝑣 ≠ 0. Note that the directions obtained are in 𝑁(𝐴). 

 Notice that, in virtue of procedure 3.4 and proposition 3.3, the vector 𝑢𝑝 is vector 

𝑣, for 𝑣 ≠ 0. 

Our strategy to solve subproblem (𝑃𝑘), 𝑘 = 0,1, …, is in the following result. 

Theorem 3.5 Suppose that 𝑐 ∈ 𝑅𝑛 and 𝑑 ∈ 𝑅𝑛 are not in the row space of A. So, problem 

(𝑃𝑘), 𝑘 = 0,1, …, has the solution 

𝑥̂ = 𝑋𝑘 (𝑒 −
𝑣̅

‖𝑣̅‖
), 

where 𝑥𝑘 ∈ 𝑋0, 𝑋𝑘 = 𝑑𝑖𝑎𝑔(𝑥𝑘), e denotes the vector of ones in 𝑅𝑛, 𝑐̅ = 𝑋𝑘𝑐, 𝑑̅ = 𝑋𝑘𝑑,

𝐴̅ = 𝐴𝑋𝑘, 𝑃𝐴̅ = 𝐼 − 𝐴̅𝑇(𝐴̅𝐴̅𝑇)−1𝐴̅ is the projection matrix in null space of 𝐴̅ and 

𝑣̅ = 𝑃𝐴̅(𝑡̂𝑐̅ + (1 − 𝑡̂)𝑑̅) = 𝑡̂𝑐𝑝 + (1 − 𝑡̂)𝑑𝑝, 

𝑡̂ ∈ [0,1] is obtained by procedure 3.5 for 𝑣̅ ≠ 0.  In case of 𝑣̅ = 0 on procedure 3.4, then 

do monocriterion optimization over 𝑐̅ or 𝑑̅. 

Proof Consider the problem (𝑃𝑘), k = 0, 1, …. By making a scale change 



𝑥 = 𝑋𝑘𝑥̅, 

where 𝑋𝑘 = 𝑑𝑖𝑎𝑔(𝑥𝑘) and 𝑥̅ ∈ 𝑅𝑛, we transform the ellipsoid with center in 𝑥𝑘 in a ball 

with center in point 𝑒 = [1,1, … ,1]𝑇 ∈ 𝑅𝑛, because point 𝑥𝑘 = 𝑋𝑘𝑒. In other words, 

substituting 𝑥 = 𝑋𝑘𝑥̅ in problem (𝑃𝑘), we obtain the following biobjective nonlinear 

programming problem: 

(𝑃̅𝑘)    minimize               𝑐̅𝑇𝑥̅ 

          minimize              𝑑̅𝑇𝑥̅ 

             subject to          𝐴̅𝑥̅ = 𝑏 

                                        ‖𝑥̅ − 𝑒‖ ≤ 1, 

where 𝑐̅ = 𝑋𝑘𝑐, 𝑑̅ = 𝑋𝑘𝑑, 𝐴̅ = 𝐴𝑋𝑘 and 𝑥̅ ∈ 𝑅𝑛. We know that problem (𝑃̅𝑘) is problem 

(𝑃𝑘) with a scale change defined by 𝑋𝑘
−1. In that way, vector e is in interior feasible point 

to subproblem (𝑃̅𝑘), k = 0, 1, …, because 

𝐴̅𝑒 = (𝐴𝑋𝑘)𝑒 = 𝐴(𝑋𝑘𝑒) = 𝐴𝑥𝑘 = 𝑏  and   ‖𝑒 − 𝑒‖ = 0 ≤ 1. 

 Taking a feasible direction ℎ = 𝑥̅ − 𝑒, and since 𝑐̅𝑇𝑒 and 𝑑̅𝑇𝑒 are constant, we 

have the problem 

minimize               𝑐̅𝑇ℎ 

                                                     minimize              𝑑̅𝑇ℎ 

  subject to          𝐴̅ℎ = 0 

                             ‖ℎ‖ ≤ 1, 

of which the solution is 

ℎ̂ = −
𝑣̅

‖𝑣̅‖
 , 

according to procedure 3.4, for 𝑣̅ ≠ 0. If 𝑣̅ = 0, then do monocriteria optimization over 

𝑐̅ or 𝑑̅. 

 So, for 𝑣̅ ≠ 0, 

𝑥̅ = 𝑒 + ℎ̂ = 𝑒 −
𝑣̅

‖𝑣̅‖
 , 

is solution for (𝑃̅𝑘). Finally, the solution to problem (𝑃̅𝑘) is obtained by rescaling the 

solution in (𝑃̅𝑘), 

𝑥̂ = 𝑋𝑘𝑥̅ = 𝑋𝑘 (𝑒 −
𝑣̅

‖𝑣̅‖
). 



This ends the demonstration. 

 Now, consider the following proposition. 

Proposition 3.6 Let S be a nonempty closed convex set of 𝑅𝑛. A point 𝑦𝑥 ∈ 𝑆 is the 

projection of 𝑥 ∈ 𝑅𝑛onto S if and only if  

(𝑥 − 𝑦𝑥)
𝑇(𝑦 − 𝑦𝑥) ≤ 0 

for all 𝑦 ∈ 𝑆. 

Proof Hiriart-Urruty and Lemaréchal [13]. 

 Consider procedure 3.4 with 𝑣̅ not null and the last proposition. Taking x as the 

origin, 𝑦𝑥 = 𝑣̅ and 𝑆 = {𝑡𝑐𝑝 + (1 − 𝑡)𝑑𝑝 ∈ 𝑅𝑛; 𝑡 ∈ [0,1]}, for any 𝑦 ∈ 𝑆, we obtain 

0 < 𝑣̅𝑇𝑣̅  ≤  𝑣̅𝑇𝑦. 

In this manner, like in the previous theorem, sequences (𝑐𝑇𝑥𝑘) and (𝑑𝑇𝑥𝑘) are strictly 

decreasing monotonous sequences, because ℎ̂ = −
𝑣̅

‖𝑣̅‖
. 

 Consider the subproblem (𝑃𝑘), k = 0, 1, …. The ellipsoid with axes parallel to the 

coordinate axes is the largest possible simple ellipsoid in the positive orthant. We must 

discredit the possibility of obtaining a non-efficient solution in this subproblem with a 

null coordinate.  

Theorem 3.7 Consider 𝑥̂ a solution to subproblem (𝑃𝑘), whatever k, k = 0, 1, …. If  𝑥̂𝑗 =

0 for some j, j = 1, 2, …, n, then 𝑥̂ is an efficient solution to problem (P). 

Proof Fix arbitrarily k, k = 0, 1, …, and consider the subproblem (𝑃𝑘). Suppose 𝑥̂ as a 

solution to (𝑃𝑘) such as 𝑥̂𝑗 = 0 for some j, j = 1, 2, …, n. According to the previous 

theorem, if  𝑣̅ = 0 we must execute monocriterion optimization. Thus, the following 

result; according to Saigal [16]. By the definition of projection matrix and scale change 

𝑐̅ = 𝑋𝑘𝑐, 𝑑̅ = 𝑋𝑘𝑑 and 𝐴̅ = 𝐴𝑋𝑘, for 𝑋𝑘 = 𝑑𝑖𝑎𝑔(𝑥𝑘) with 𝑥𝑘 ∈ 𝑋0, we have that, for 

𝑡̂ ∈ [0,1] and 𝑣̅ ≠ 0, 

𝑣̅ = (𝐼 − 𝐴̅𝑇(𝐴̅𝐴̅𝑇)−1𝐴̅)(𝑡̂𝑐̅ + (1 − 𝑡̂)𝑑̅). 

Developing this equality, 



𝑣̅ = 𝑋𝑘[𝑡̂𝑐 + (1 − 𝑡̂)𝑑 − 𝐴𝑇(𝐴𝑋𝑘
2𝐴𝑇)−1𝐴𝑋𝑘

2(𝑡̂𝑐 + (1 − 𝑡̂)𝑑)]. 

Taking 

𝑦 = (𝐴𝑋𝑘
2𝐴𝑇)−1𝐴𝑋𝑘

2(𝑡̂𝑐 + (1 − 𝑡̂)𝑑)   and   𝑠 = (𝑡̂𝑐 + (1 − 𝑡̂)𝑑) − 𝐴𝑇𝑦,                  (1) 

we obtain 

𝑣̅ = 𝑋𝑘𝑠.                                                    (2) 

So, by using the previous theorem, 

𝑥̂ = 𝑋𝑘 (𝑒 −
𝑣̅

‖𝑣̅‖
) = 𝑋𝑘 (𝑒 −

𝑋𝑘𝑠

‖𝑋𝑘𝑠‖
) = 𝑋𝑘𝑒 −

𝑋𝑘
2𝑠

‖𝑋𝑘𝑠‖
 . 

Thus, 

𝑥̂ = 𝑥𝑘 −
𝑋𝑘

2𝑠

‖𝑋𝑘𝑠‖
 . 

Then, making use of the hypothesis,  

0 = 𝑥̂𝑗 = 𝑥𝑗
𝑘 −

(𝑥𝑗
𝑘)

2
𝑠𝑗

‖𝑋𝑘𝑠‖
 . 

So, 𝑥𝑗
𝑘𝑠𝑗 = ‖𝑋𝑘𝑠‖. Then, 𝑥𝑖

𝑘𝑠𝑖 = 0 for every 𝑖 ≠ 𝑗. Since 𝑥𝑖
𝑘 > 0 by definition of 𝑋𝑘, we 

obtain 𝑠𝑖 = 0 for every 𝑖 ≠ 𝑗. Thus, 𝑠 ≥ 0. Taking y and s as according to (1) and 

considering the condition (𝑥̂)𝑇𝑠 = 0, for 𝑡 ∈ (0,1), it follows by the sufficient conditions 

of Karush-Kuhn-Tucker for efficient solutions (Pareto optimal), see Miettinen [15], that 

𝑥̂ is an efficient solution to problem (P). Still, for 𝑡̂ = 0 or (1 − 𝑡̂) = 0 in (1), by the 

Karush-Kuhn-Tucker optimality conditions, 𝑥̂ is an optimal solution for monocriteria 

problem (P). And, according to proposition 2.1, 𝑥̂ is an efficient solution to problem (P). 

This puts end to the demonstration. 

 Now we are ready to enunciate the algorithm. 

Algorithm 3.8 Biobjective Dikin. 

    Data: 𝑥0 an initial feasible interior point and 𝜖 > 0. 

    k:=0. 

    REPEAT 

         Scaling: 



              𝑋𝑘 ≔ 𝑑𝑖𝑎𝑔(𝑥𝑘). 
              𝐴̅ ≔ 𝐴𝑋𝑘. 
              𝑐̅ ≔ 𝑋𝑘𝑐. 
              𝑑̅ ≔ 𝑋𝑘𝑑. 
         Projection: 

              𝑃𝐴̅ ≔ 𝐼 − 𝐴̅𝑇(𝐴̅𝐴̅𝑇)−1𝐴̅. 
              𝑐𝑝 ≔ 𝑃𝐴̅𝑐̅. 

              𝑑𝑝 ≔ 𝑃𝐴̅𝑑̅. 

         Procedure 3.4: 𝑣̅. 
         Test: 

              If 𝑣̅ = 0, 𝑡ℎ𝑒𝑛 𝑑𝑜 𝑚𝑜𝑛𝑜𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛. 
         Direction: 

              ℎ̅ ≔ −
𝑣̅

‖𝑣̅‖
. 

         Rescaling: 

              ℎ𝑘 ≔ 𝑋𝑘ℎ̅. 
         New point: 

              𝑥𝑘+1 ≔ 𝑥𝑘 + ℎ𝑘 . 
         𝑘 ≔ 𝑘 + 1.     
   UNTIL  𝑥𝑗

𝑘 < 𝜖 for some j = 1, …, n. 

 Notice in this algorithm that the monocriterion optimization must be decided a 

priori about 𝑐̅ or 𝑑̅. 

Definition 3.9 A sequence (𝑧𝑘) in 𝑅𝑛 converges quasi-Fejér to 𝑆 ⊂ 𝑅𝑛 if, for every 𝑧 ∈ 𝑆 

exists a sequence of non-negative numbers (𝜀𝑘) such that 

‖𝑧𝑘+1 − 𝑧‖2 ≤ ‖𝑧𝑘 − 𝑧‖2 + 𝜀𝑘  and ∑ 𝜀𝑘∞
𝑘=1 < ∞. 

 The following lemma helps to demonstrate the convergence of the algorithm. 

Lemma 3.10 Consider the hypothesis (H1) − (H5). Let (𝑥𝑘) be the sequence generated 

by algorithm 3.8. Then 

‖𝑥𝑘+1 − 𝑥̂‖2 ≤ ‖𝑥𝑘 − 𝑥̂‖2 + ‖𝑥𝑘+1 − 𝑥𝑘‖2, 

where 𝑥̂ ∈ {𝑥 ∈ 𝑋; 𝑓(𝑥) ≤ 𝑓(𝑥𝑘), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝑁}. 

Proof Suppose the hypothesis (H1) − (H5). Consider procedure 3.4 in algorithm 3.8 with 

𝑣̅ ≠ 0. Consider problem (P’) equivalent to problem (P). By definition, fi, i=1,2, is a 

convex and differentiable function. According to proposition 3.6, the sequence (𝑓(𝑥𝑘)) 

is decreasing. Because function f is defined in a compact feasible set, the set 



𝐸 = {𝑥 ∈ 𝑋; 𝑓(𝑥) ≤ 𝑓(𝑥𝑘), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝑁} 

is nonempty. Take 𝑥̂ ∈ 𝐸. In virtue of procedure 3.4 and scale change in algorithm, for 

each 𝑘 ∈ 𝑁 exists 𝜆𝑘 = (𝑡𝑘, 1 − 𝑡𝑘)𝑇 , 𝑡𝑘 ∈ [0,1], such that 

ℎ𝑘 = −(1 𝜏𝑘
⁄ )𝑋𝑘𝑃𝐴𝑋𝑘

𝑋𝑘 ∑𝜆𝑖
𝑘

2

𝑖=1

∇𝑓𝑖(𝑥
𝑘), 

where 

𝜏𝑘 = ‖𝑃𝐴𝑋𝑘
𝑋𝑘 ∑ 𝜆𝑖

𝑘

2

𝑖=1

∇𝑓𝑖(𝑥
𝑘)‖. 

This way, from the non-negativity of 𝜆𝑖
𝑘 and convexity of each 𝑓𝑖, i = 1, 2, we have that 

                                                    (𝜆𝑘)𝑇𝑓(𝑥̂) ≥ ∑ 𝜆𝑖
𝑘2

𝑖=1 [𝑓𝑖(𝑥
𝑘) + (∇𝑓𝑖(𝑥

𝑘))
𝑇
(𝑥̂ − 𝑥𝑘)] 

                                                                      ≥ ∑ 𝜆𝑖
𝑘2

𝑖=1 [𝑓𝑖(𝑥
𝑘) − (∇𝑓𝑖(𝑥

𝑘))
𝑇
(𝑥𝑘 − 𝑥̂)] 

   ∑ 𝜆𝑖
𝑘2

𝑖=1 [(∇𝑓𝑖(𝑥
𝑘))

𝑇
(𝑥𝑘 − 𝑥̂)] ≥ (𝜆𝑘)𝑇(𝑓(𝑥𝑘) − 𝑓(𝑥̂)). 

Adding −(𝐴𝑇𝑦)𝑇(𝑥𝑘 − 𝑥̂), for some 𝑦 ∈ 𝑅𝑚 such as (1), in both sides of this last 

inequality, we have 

(∑𝜆𝑖
𝑘

2

𝑖−1

[(∇𝑓𝑖(𝑥
𝑘)) − 𝐴𝑇𝑦)𝑇(𝑥𝑘 − 𝑥̂)] ≥ (𝜆𝑘)𝑇(𝑓(𝑥𝑘) − 𝑓(𝑥̂)) − (𝐴𝑇𝑦)𝑇(𝑥𝑘 − 𝑥̂). 

Since (𝑥𝑘 − 𝑥̂) ∈ 𝑁(𝐴) and 𝐴𝑇𝑦 ∈ 𝑅(𝐴𝑇), by definition of set E and again using (1) and 

non-negativity of 𝜆𝑘, we get 

                                       𝑠𝑇(𝑥𝑘 − 𝑥̂) ≥ (𝜆𝑘)𝑇(𝑓(𝑥𝑘) − 𝑓(𝑥̂)) ≥ 0.                              (3) 

In this point, consider the angles in the interval [0, 𝜋/2], 𝜃 for vectors s and (𝑥𝑘 −

𝑥̂), 𝜃′ for vectors (𝑥𝑘 − 𝑥̂) and 𝑋𝑘
2𝑠 and 𝛾 for vectors s and 𝑋𝑘

2𝑠. If 𝜃′ = 𝜃 − 𝛾, then the 

angle is an acute angle by definition of cosine. Suppose that 𝜃′ = 𝜃 + 𝛾. Elaborating 

cos(𝜃′) = cos(𝜃 + 𝛾) = cos(𝜃) cos(𝛾) − sin(𝜃) sin (𝛾) 



and, keeping in mind (3), we get (𝑋𝑘
2𝑠)𝑇(𝑥𝑘 − 𝑥̂) ≥ 0. Then, using (2) and the definition 

of ℎ𝑘 in algorithm, 

(ℎ𝑘)𝑇(𝑥𝑘 − 𝑥̂) ≤ 0.                                                  (4) 

This way, 

  ‖𝑥𝑘+1 − 𝑥̂‖2 = (𝑥𝑘+1 − 𝑥̂ + 𝑥𝑘 − 𝑥𝑘)𝑇(𝑥𝑘+1 − 𝑥̂ + 𝑥𝑘 − 𝑥𝑘)

= ‖𝑥𝑘 − 𝑥̂‖2 + 2(𝑥𝑘+1 − 𝑥𝑘)𝑇(𝑥𝑘 − 𝑥̂) + ‖𝑥𝑘+1 − 𝑥𝑘‖2

≤ ‖𝑥𝑘 − 𝑥̂‖2 + ‖𝑥𝑘+1 − 𝑥𝑘‖2, 

in which the inequality stems from (4). This finalizes the demonstration. 

 The next result refers to the convergence of the biobjective Dikin algorithm to an 

efficient solution to problem (P). 

Theorem 3.11 Considerer the hypothesis (H1) − (H6). Let (𝑥𝑘) be the sequence 

generated by algorithm 3.8. Then, sequence (𝑥𝑘) converges to 𝑥̂, where 𝑥̂ is an efficient 

solution to problem (P). 

Proof Suppose the hypothesis (H1) − (H6). Consider procedure 3.4 in algorithm 3.8. For 

𝑣̅ = 0, the result is as it follows; according to Dikin [9] and proposition 2.1. For 𝑣̅ ≠ 0, 

the result is as it follows; according to the previous lemma and theorem 2.10 in 

Drummond & Svaiter [10]. 

4 Implementations 

The programming language used was Octave and the computer was a CORE I5 

processor, 2X2GB memory and HD 500GB. 

Given the following biobjective optimization problems; according to Clímaco et 

al. [7] and Arbel [2]. Also, given an initial feasible interior point. Next, we present the 

number of iterations and the result of the execution of algorithm 3.8. Here, the tolerance 

designated is 𝜖 = 10−8 and the result has four significant digits. 

Page 91 in [7] 

(𝑃1)    minimize               𝑧𝑐 = −25𝑥1 − 20𝑥2 

    minimize               𝑧𝑑 = −𝑥1 − 8𝑥2 

              subject to              𝑥1 + 𝑥2 + 𝑥3         = 50 



                          2𝑥1 + 𝑥2 + 𝑥4       = 80 

                          2𝑥1 + 5𝑥2 + 𝑥5     = 220 

                                        𝑥1, … , 𝑥5 ≥ 0. 

 Take the initial interior feasible point 𝑥0 = [10, 10, 30, 50, 150]𝑇. On 𝑘 = 6 

iterations, the result is 

𝑥̂ =

[
 
 
 
 
2.4333𝑒 + 00
4.3027𝑒 + 01
4.5400𝑒 + 00
3.2107𝑒 + 01
1.3644𝑒 − 10]

 
 
 
 

. 

 Now, take initial feasible interior point 𝑥0 = [30, 10, 10, 10, 110]𝑇. On 𝑘 = 5 

iterations, the result is 

𝑥̂ =

[
 
 
 
 
2.0000𝑒 + 00
3.0000𝑒 + 01
6.5496𝑒 − 17
1.0000𝑒 + 01
3.0000𝑒 + 01]

 
 
 
 

. 

 Page 150 in [7] 

(𝑃2)    minimize               𝑧𝑐 = −3𝑥1 − 𝑥2 

          minimize               𝑧𝑑 = −𝑥1 − 4𝑥2 

                     subject to              −𝑥1 + 𝑥2 + 𝑥3        = 2 

      𝑥1 + 𝑥2 + 𝑥4         = 7 

         𝑥1 + 2𝑥2 + 𝑥5      = 10 

                                         𝑥1, … , 𝑥5 ≥ 0. 

 

Take initial feasible interior point 𝑥0 = [1, 1, 2, 5, 7]𝑇. On 𝑘 = 18 iterations, the result is 

𝑥̂ =

[
 
 
 
 
4.0000𝑒 + 00
3.0000𝑒 + 00
3.0000𝑒 + 00
7.0440𝑒 − 09
9.8616𝑒 − 09]

 
 
 
 

. 

Problem 1 in [2] 

(𝑃3)    minimize               𝑧𝑐 = −𝑥1 

           minimize               𝑧𝑑 = −𝑥2 

                           subject to             𝑥1 + 𝑥2 + 𝑥3   = 10 

                                               𝑥1, 𝑥2, 𝑥3 ≥ 0. 



Take initial feasible interior point 𝑥0 = [1, 1, 8]𝑇. On 𝑘 = 6 iterations, the result is 

𝑥̂ = [
5.0000𝑒 + 00
5.0000𝑒 + 00
1.0588𝑒 − 21

]. 

Problem 2 in [2] 

(𝑃4)    minimize               𝑧𝑐 = −𝑥1 

          minimize               𝑧𝑑 = −𝑥2 

                                 subject to            8𝑥1 + 6𝑥2 − 𝑥3      = 112 

            5𝑥1 + 7𝑥2 − 𝑥4      = 96 

              𝑥1 + 𝑥2 + 𝑥5        = 18 

                                               𝑥1, … , 𝑥5 ≥ 0. 

Take initial feasible interior point 𝑥0 = [13,
9

2
, 19,

1

2
,
1

2
]𝑇. On 𝑘 = 5 iterations, the result 

is 

𝑥̂ =

[
 
 
 
 
1.3250𝑒 + 01
4.7500𝑒 + 00
2.2500𝑒 + 01
3.5000𝑒 + 00
1.2143𝑒 − 10]

 
 
 
 

. 

5 Concluding remarks 

 Given a biobjective linear programming problem, we present an algorithm and 

demonstrate its convergence to an efficient solution. We suggest implementations for 

practical problems for a better assessment of this algorithm’s practical contribution.  
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