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ABSTRACT
In this work, we present an approach to guarantee that the hyperbolic augmented
Lagrangian function (HALF) has local saddle points. This result is obtained under
the second-order sufficient condition.
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1. Basic Results

Throughout this paper, we are interested in studying the following inequality con-
strained nonconvex optimization problem

(P ) min{f(x) | x ∈ S},

where

S = {x ∈ X ⊆ IRn | gi(x) ≥ 0, i = 1, ...,m},

is the feasible set of the problem (P), where f : IRn → IR and gi : IR
n → IR, i = 1, ...,m

are continuously differentiable functions and where X is a nonempty closed set in IRn.

The Lagrangian function of the problem (P) is L : IRn × IRm
+ → IR, defined as

L(x, λ) = f(x)−
m∑
i=1

λigi(x), (1.1)

where λi ≥ 0, i = 1, ...,m.
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The dual function of problem (P) is Φ : IRm
+ → IR, is defined as follows

Φ(λ) = min
x∈X

L(x, λ), (1.2)

and the corresponding Lagrangian dual problem of (P) is

(D) max{Φ(λ) | λ ∈ IRm
+}.

A pair (x∗, λ∗) is said to be a local saddle point of L(x, λ) if there exists a δ > 0
such that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), (1.3)

holds for all λ ≥ 0 and x ∈ X ∩N(x∗, δ), where N(x∗, δ) = {x ∈ IRn | ∥x− x∗∥ ≤ δ} .

Let x∗ ∈ X be a local solution to problem (P). Let’s consider the following classic
assumption:

A. (Second-order sufficiency condition) Let x∗ ∈ X be a local solution to (P).
Assume that x∗ is a regular point of problem (P) and satisfies the second-order
sufficient conditions; that is, ∇gi(x

∗), i ∈ I(x∗), are linearly independent and there
exists λ∗ ≥ 0 such that

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗
i∇gi(x

∗) = 0, (1.4)

λ∗
i gi(x

∗) = 0, i = 1, ...,m, (1.5)

and the Hessian matrix

∇2
xxL(x

∗, λ∗) = ∇2f(x∗)−
∑

i∈J(x∗)

λ∗
i∇2gi(x

∗), (1.6)

is positive definite on the cone

M(x∗) =
{
d ∈ IRn, d ̸= 0 | dT∇gi(x

∗) = 0, for any i ∈ J(x∗)
}
, (1.7)

where J(x∗) = {i | λ∗
i > 0, i = 1, ...,m} .

Assumption A is widely used in different types of augmented Lagrangian functions,
see, Arrow et al. (1973), Sun et al. (2005) and Echebest et al. (2016). The following
result will be important, to guarantee the existence of local saddle points.

Corollary 1.1. (See, Corollary 12.9 of Avriel (1976)) Let A be an n× n matrix and
let B be an m × n matrix. Then zTAz > 0 for every z ̸= 0 satisfying Bz = 0 if and
only if there exists a number c∗ > 0 such that, for all c > c∗, it follows that,

zT
(
A+ cBTB

)
z > 0,
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Figure 1. Hyperbolic Penalty Function

for all z ̸= 0.

1.1. Hyperbolic Penalty

The hyperbolic penalty was introduced in Xavier (1982) and is meant to solve the
problem (P). The penalty method adopts the hyperbolic penalty function (HPF)

P (y, λ, τ) = −λy +
√

(λy)2 + τ2, (1.8)

where P : (−∞,+∞)× IR+ × IR++ → IR. The graphic representation of P (y, λ, τ), is
as shown in Figure 1.

Remark 1.1. The HPF is originally proposed in Xavier (1982) and studied in
Xavier (2001). In these works, the following properties are important for HPF:

(a) P (y, λ, τ) is asymptotically tangent to the straight lines r1(y) = −2λy and
r2(y) = 0 for τ > 0.

(b) � P (y, λ, 0) = 0, for y ≥ 0.

� P (y, λ, 0) = −2λy, for y < 0.

Due to the properties (a) and (b) the HPF is equivalent to a smoothing of the penalty
studied in Zangwill (1967).

In particular we use the following properties:

P0) P (y, λ, τ) is k−times continuously differentiable for any positive integer k for
τ > 0.

P1) P (0, λ, τ) = τ, for τ > 0 and λ ≥ 0.
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P2) P (y, λ, τ) is strictly decreasing function of y, i.e.,

∇yP (y, λ, τ) = −λ

(
1− λy√

(λy)2 + τ2

)
< 0,

for τ > 0 and λ > 0.

P3) P (y, λ, τ) is a convex function equal to τ for λ = 0, i.e., P (y, 0, τ) = τ.

Remark 1.2. For any λ ≥ 0, y ≥ 0 and τ > 0. We have τ2 > 0, so we can obtain
the following inequalities

(λy)2 < (λy)2 + τ2,

follow,

−λy −
√

(λy)2 + τ2 < 0 < −λy +
√

(λy)2 + τ2, (1.9)

considering the definition of the function P in (1.9), we have

P (y, λ, τ) > 0. (1.10)

2. Hyperbolic Augmented Lagrangian Function

The hyperbolic augmented Lagrangian function (HALF) LH : IRn × IRm
+ × IR++ →

IR, is given as follows

LH(x, λ, τ) = f(x) +

m∑
i=1

P (gi(x), λi, τ).

The function LH is introduced and studied in Xavier (1992), Mallma-Ramirez et al.
(2021) and Mallma-Ramirez (2022).

Definition 2.1. A pair (x∗, λ∗) is said to be a local saddle point of LH for τ > 0
fixed. If there exists a δ > 0 such that

LH(x∗, λ, τ) ≤ LH(x∗, λ∗, τ) ≤ LH(x, λ∗, τ), (2.11)

holds for all λ ≥ 0 and x ∈ X ∩N(x∗, δ).

The following sections are mainly based on the work of Xavier (1992).

2.1. Saddle Point Theory

Theorem 2.1. If (x∗, λ∗) is a local saddle point of LH(x, λ, τ) for some τ > 0, then
x∗ is a local optimal solution to the problem (P).
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Proof. Let (x∗, λ∗) be a local saddle point, see Definition 2.1, then there exists
δ > 0 such that

LH(x∗, λ, τ) ≤ LH(x∗, λ∗, τ) ≤ LH(x, λ∗, τ), (2.12)

for all x ∈ X ∩N(x∗, δ) and λ ≥ 0, with N(x∗, δ) = {x ∈ IRn | ∥x− x∗∥ ≤ δ} .

First, we claim that x∗ is a feasible solution to the problem (P). We will show by
contradiction, that is, suppose that gi(x

∗) < 0 for some i. In this inequality, we apply
the property P2, so it follows that

P (0, λi, τ) < P (gi(x
∗), λi, τ), (2.13)

by P1 and definition of P in (2.13), we have

0 < P (gi(x
∗), λi, τ) = −λigi(x

∗) +

√
(λigi(x∗))

2 + τ2 → ∞, λi → ∞, (2.14)

which contradicts the first inequality of (2.12). So, gi(x
∗) ≥ 0 for all i = 1, ...,m.

Henceforth, for any feasible x (i.e., gi(x) ≥ 0, i = 1, ...,m) and λi ≥ 0, we have the
following: From (2.12), we get

f(x∗) +

m∑
i=1

P (gi(x
∗), λ∗

i , τ) = LH(x∗, λ∗, τ)

≤ LH(x, λ∗, τ) = f(x) +

m∑
i=1

P (gi(x), λ
∗
i , τ), (2.15)

then by (2.15), it follows that

f(x∗) ≤ f(x) +

m∑
i=1

(P (gi(x), λ
∗
i , τ)− P (gi(x

∗), λ∗
i , τ)) , (2.16)

from (2.16), let us define

W =

m∑
i=1

(P (gi(x), λ
∗
i , τ)− P (gi(x

∗), λ∗
i , τ)) . (2.17)

On the other hand, of (2.12), we have, LH(x∗, λ, τ) ≤ LH(x∗, λ∗, τ), i.e.,

f(x∗) +

m∑
i=1

P (gi(x
∗), λi, τ) ≤ f(x∗) +

m∑
i=1

P (gi(x
∗), λ∗

i , τ),
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it follows that

m∑
i=1

P (gi(x
∗), λ∗

i , τ) ≥
m∑
i=1

P (gi(x
∗), λi, τ), (2.18)

since that λi ≥ 0, i = 1, ...,m, in particular taking λi = 0, i = 1, ...,m in (2.18), then
we obtain the following

m∑
i=1

P (gi(x
∗), λ∗

i , τ) ≥
m∑
i=1

P (gi(x
∗), 0, τ), (2.19)

and by P2 in (2.19), we have

m∑
i=1

P (gi(x
∗), λ∗

i , τ) ≥
m∑
i=1

τ. (2.20)

We apply the property P2 in gi(x) ≥ 0, i = 1, ...,m, so we get

m∑
i=1

P (0, λi, τ) ≥
m∑
i=1

P (gi(x), λi, τ), (2.21)

for λi ≥ 0, i = 1, ...,m. Now let us consider in particular λi = λ∗
i , i = 1, ...,m. Thus,

it follows from (2.21), that

m∑
i=1

P (0, λ∗
i , τ) ≥

m∑
i=1

P (gi(x), λ
∗
i , τ), (2.22)

now, we appliying the property P1 in (2.22), we will have

m∑
i=1

τ ≥
m∑
i=1

P (gi(x), λ
∗
i , τ). (2.23)

We replace (2.20) in (2.23), thus we obtain

0 ≥ W =

m∑
i=1

(P (gi(x), λ
∗
i , τ)− P (gi(x

∗), λ∗
i , τ)) . (2.24)

Therefore, replacing (2.24) in (2.16), hence we get f(x∗) ≤ f(x), whenever
x ∈ X ∩N(x∗, δ) is feasible. Therefore, x∗ is a local optimal solution of (P).

2.1.1. Existence of Local Saddle Point for the HALF

Theorem 2.2. Let x∗ be a local optimal solution to the problem (P). The assumption
A is satisfied at x∗. Then there exist τ̄ > 0 and δ > 0 such that for all τ < τ̄ ,

LH(x∗, λ, τ) ≤ LH(x∗, λ∗, τ) ≤ LH(x, λ∗, τ), (2.25)
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for any x ∈ N(x∗, δ) and λ ≥ 0.

Proof. By P2 and feasibility of x∗ (i.e., gi(x
∗) ≥ 0, i = 1, ...,m), we have

P (gi(x
∗), λi, τ) ≤ P (0, λi, τ), i = 1, ...,m,

for any τ > 0 and λi ≥ 0, i = 1, ...,m. We rewrite the above, as follows

m∑
i=1

P (gi(x
∗), λi, τ) ≤

m∑
i=1

P (0, λi, τ). (2.26)

We apply P1 in (2.26), thus we obtain

m∑
i=1

P (gi(x
∗), λi, τ) ≤

m∑
i=1

τ,

by the above inequality, then we can get

f(x∗) +

m∑
i=1

P (gi(x
∗), λi, τ) ≤ f(x∗) +

m∑
i=1

τ = f(x∗) +mτ. (2.27)

Now, we will prove that, LH(x∗, λ∗, τ) = f(x∗) + mτ, thus, the first inequality in
(2.25) will be verified. Indeed, for i ∈ J(x∗) we have λ∗

i > 0 and gi(x
∗) = 0. By

definition of P and by P1 we have

P (gi(x
∗), λ∗

i , τ) = τ, i = 1, ...,m,

next, we can get

m∑
i=1

P (gi(x
∗), λ∗

i , τ) =

m∑
i=1

τ = mτ. (2.28)

Now, if i /∈ J(x∗), we have λ∗
i = 0. Then by P3, we have

P (gi(x
∗), λ∗

i , τ) = τ, i = 1, ...,m,

next, we can get

m∑
i=1

P (gi(x
∗), λ∗

i , τ) =

m∑
i=1

τ = mτ. (2.29)

From (2.28) and (2.29), we have

LH(x∗, λ∗, τ) = f(x∗) +

m∑
i=1

P (gi(x
∗), λ∗

i , τ) = f(x∗) +mτ. (2.30)
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We replace (2.30) in (2.27), so we get

LH(x∗, λ, τ) ≤ f(x∗) +mτ = LH(x∗, λ∗, τ),

so, the first inequality of (2.25) holds, for any τ > 0.

In what follows, we will prove the second inequality of (2.25). By the definition of
LH , by (1.4) and (1.5), we have that

∇xLH(x∗, λ∗, τ) = ∇f(x∗)−
m∑
i=1

λ∗
i∇gi(x

∗) +

m∑
i=1

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇gi(x

∗),

we rewrite the above as follows

∇xLH(x∗, λ∗, τ) = ∇f(x∗)−
∑

i∈J(x∗)

λ∗
i∇gi(x

∗)−
∑

i/∈J(x∗)

λ∗
i∇gi(x

∗)

+
∑

i∈J(x∗)

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇gi(x

∗) +
∑

i/∈J(x∗)

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇gi(x

∗),

so, we have

∇xLH(x∗, λ∗, τ) = ∇f(x∗)−
∑

i∈J(x∗)

λ∗
i∇gi(x

∗) = ∇xL(x
∗, λ∗) = 0. (2.31)

Now, let’s prove that there exists τ̄ > 0 such that ∇2
xxLH(x∗, λ∗, τ̄) is positive

definite. Indeed, the Hessian of LH(x, λ, τ) in the point (x∗, λ∗), is

∇2
xxLH(x∗, λ∗, τ) = ∇2

xxf(x
∗)−

m∑
i=1

λ∗
i∇2

xxgi(x
∗)

+

m∑
i=1

(
(λ∗

i )
2√

(λ∗
i gi(x

∗))2 + τ2
− (λ∗

i )
4g2i (x

∗)

((λ∗
i gi(x

∗))2 + τ2)
3

2

)
(∇xgi(x

∗))2

+

m∑
i=1

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇2

xxgi(x
∗),

we rewrite the above as follows,

∇2
xxLH(x∗, λ∗, τ) = ∇2

xxf(x
∗)−

∑
i∈J(x∗)

λ∗
i∇2

xxgi(x
∗)−

∑
i/∈J(x∗)

λ∗
i∇2

xxgi(x
∗)
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+
∑

i∈J(x∗)

(
(λ∗

i )
2√

(λ∗
i gi(x

∗))2 + τ2

)
(∇xgi(x

∗))2

+
∑

i/∈J(x∗)

(
(λ∗

i )
2√

(λ∗
i gi(x

∗))2 + τ2

)
(∇xgi(x

∗))2

−
∑

i∈J(x∗)

(
(λ∗

i )
4(gi(x

∗))2

((λ∗
i gi(x

∗))2 + τ2)
3

2

)
(∇xgi(x

∗))2

−
∑

i/∈J(x∗)

(
(λ∗

i )
4(gi(x

∗))2

((λ∗
i gi(x

∗))2 + τ2)
3

2

)
(∇xgi(x

∗))2

+
∑

i∈J(x∗)

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇2

xxgi(x
∗) +

∑
i/∈J(x∗)

(λ∗
i )

2gi(x
∗)√

(λ∗
i gi(x

∗))2 + τ2
∇2

xxgi(x
∗), (2.32)

we immediately consider (1.5) and (1.6) in (2.32), thus one has

∇2
xxLH(x∗, λ∗, τ) = ∇2

xxL(x
∗, λ∗) +

1

τ

∑
i∈J(x∗)

(∇gi(x
∗)λ∗

i )(∇gi(x
∗)λ∗

i )
T . (2.33)

In (2.33), defining A = ∇2
xxL(x

∗, λ∗) and B = ∇gi(x
∗)λ∗

i , and by assumption A, we
have, yT∇2

xxL(x
∗, λ∗)y > 0 for every y ̸= 0 such that By = 0. Then by Corollary 1.1,

∇2
xxL(x

∗, λ∗) + cBTB,

is positive definite for some scalar c sufficiently large. For our case, we take

1

τ
= c > c∗ =

1

τ̄
,

i.e., there exists τ̄ such that for all τ < τ̄ the HALF, LH(x, λ, τ) is positive definite.
Now combined with (2.31), we have that x∗ is a (strict) local minimizer of LH(x, λ∗, τ̄)
and then the second inequality of (2.25) holds.
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