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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para

a obtenção do grau de Doutor em Ciências (D.Sc.)

O ALGORITMO LAGRANGIANO HIPERBÓLICO AUMENTADO

Lennin Mallma Ramirez

Março/2022

Orientadores: Nelson Maculan Filho

Adilson Elias Xavier

Programa: Engenharia de Sistemas e Computação

O algoritmo Lagrangiano hiperbólico aumentado (HALA) é introduzido na área de

otimização contínua, para a resolução de problema de programação não linear. As hipóte-

ses de convexidade, de diferenciabilidade e da condição de quali�cação de Slater são con-

sideradas para demonstrar a convergência do HALA. Estudamos também a teoria da

dualidade para o caso da função Lagrangiana hiperbólica aumentada. Finalmente, para

ilustrar o algoritmo, apresentamos alguns experimentos computacionais.
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Abstract of Thesis presented to COPPE/UFRJ as a partial ful�llment of the requirements

for the degree of Doctor of Science (D.Sc.)

THE HYPERBOLIC AUGMENTED LAGRANGIAN ALGORITHM

Lennin Mallma Ramirez

March/2022

Advisors: Nelson Maculan Filho

Adilson Elias Xavier

Department: Systems Engineering and Computer Science

The hyperbolic augmented Lagrangian algorithm (HALA) is introduced in the area

of continuous optimization for solving nonlinear programming problems. Under mild as-

sumptions, such as: convexity, Slater's quali�cation and di�erentiability, the convergence

of the proposed algorithm is proved. We also study the duality theory for the case of the

hyperbolic augmented Lagrangian function. Finally, in order to illustrate the algorithm,

we present some computational experiments.
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Chapter 1

Introduction

We are interested in the nonlinear programming problem subject to inequality con-

straints, as follows:

min {f(x) | x ∈ S} , (1.1)

where S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m} , f and gi, i = 1, ...,m are real-valued

functions de�ned on IRn.

There are a wide variety of methods that solve the problem (1.1), some of them are:

the gradient projection method (see [69]) and the feasible direction methods (see [92]).

For a better idea of these methods, see [53].

On the other hand, methods that also solve the problem (1.1) are for example: the

barrier methods, where the logarithmic barrier function (LBF),

l(x, rk) = f(x)− rk
m∑
i=1

ln(gi(x)), rk > 0, (1.2)

or also the inverse barrier function (IBF),

I(x, rk) = f(x) + rk
m∑
i=1

1

gi(x)
, rk > 0, (1.3)

is used (see [26]). The penalty methods (see [15]) and mixed interior-exterior penalty

method (see [26]) also have an important role to solve the problem (1.1). An interesting

work where di�erent penalty functions are studied computationally and the work of

Birgin et al [12].
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The methodology of the augmented Lagrangians or also called the Lagrange

multiplier methods also solve the problem (1.1). The idea of these methods is

to convert the constrained problem into a sequence of unconstrained problems. In

[11], the advantages of using the multiplier methods over the penalty methods are shown.

When the problem (1.1) has convexity hypothesis, that is, the functions f and

−gi, i = 1, ...,m, are convex, there are a variety of augmented Lagrangian methods

that solve this problem, some of them are:

(1) The augmented Lagrangian corresponding to the class of function ϕ : Kort and

Bertsekas, 1972, see [48]. The subproblem of this augmented Lagrangian algorithm

is as follows: Let ϕ : IR → IR,

min
x∈IRn

{
f(x) +

m∑
i=1

λki ϕϵ (pi(x))

}
, (1.4)

the multipliers are updated as follows

λk+1
i = λki ϕ

′
ϵ

(
pi(x

k)
)
, i = 1, ...,m, (1.5)

where pi(x) = −gi(x), i = 1, ...,m, ϵ > 0, ϕϵ(t) = ϵϕ
(
t
ϵ

)
and ϕ satis�es 5 properties.

For more details see [48].

(2) Proximal Point and Augmented Lagrangian Methods: Rockafellar, 1973, see [67]

and also see Iusem [41]. The subproblem of this augmented Lagrangian algorithm

is as follows:

min
x∈IRn

{
f(x) + rk

m∑
i=1

[(
max

{
0, λki +

hi(x)

2rk

})2

−
(
λki
)2]

+ rk
∥∥x− xk

∥∥2} ,
(1.6)

the multipliers are updated as follows

λk+1
i = max

{
0, λki +

hi(x)

2rk

}
, i = 1, ...,m, (1.7)

where hi(x) = −gi(x), i = 1, ...,m,
{
rk
}
⊂ [r, r̄] for r̄ ≥ r > 0.

(3) The augmented Lagrangian corresponding to the class of function p ∈ PI : Kort and

Bertsekas, 1976, see [50]. The subproblem of this augmented Lagrangian algorithm

is as follows: Let p : IR2 → IR, this function is continuous di�erentiable on IR ×

2



(0,+∞),

min
x∈IRn

{
f(x) + rk

m∑
i=1

p

(
hi(x)

rk
, λi

)}
, (1.8)

the multipliers are updated as follows

λk+1
i = ∇1p

(
hi(x

k)

rk
, λki

)
, i = 1, ...,m, (1.9)

where hi(x) = −gi(x), i = 1, ...,m, rk > 0. The function p satis�es 8 properties.

For more details see [50].

(4) The Quadratic Augmented Lagrangian Method: Rockafellar, 1973, see [67],

Hestenes [37] and Powell [64]. The subproblem of this augmented Lagrangian al-

gorithm is as follows:

xk ∈ argmin
x∈IRn

{
f(x) +

1

2ck

m∑
i=1

max
{
0, λk−1

i + ckpi(x)
}2}

, (1.10)

the multipliers are updated as follows

λki = max
{
0, λk−1

i + ckpi(x
k)
}
, i = 1, ...,m. (1.11)

where pi(x) = −gi(x) ≤ 0, ck > 0.

A solution of the problem (1.1) subject to equality constraints is proposed in [37]

and [64]. Later, the Hestenes-Powell formulation was adapted for the nonlinear

programming problem subject to inequality constraints (see [67]). This adaptation

de�nes an augmented Lagrangian function without continuous second derivatives.

This new formulation is known as Hestenes-Powell-Rockafellar augmented La-

grangian function. This function had a very important role to construct a new

augmented Lagrangian function, which is continuously di�erentiable (see [23]).

On the other hand, in [50] and [46] a twice di�erentiable augmented Lagrangian

function is proposed. Subsequently, a Lagrangian function of class C∞ is studied

in [2] and [62].

(5) The Exponential Multiplier Method: Tseng and Bertsekas, 1997, see [75]. The

subproblem of this augmented Lagrangian algorithm is as follows: Let ψ : IR → IR

3



and ψ(t) = et − 1,

xk+1 ∈ argmin
x∈IRn

{
f(x) +

m∑
i=1

λki
cki
ψ
(
cki hi(x)

)}
, (1.12)

the multipliers are updated as follows

λk+1
i = λki e

cki hi(x
k+1), i = 1, ...,m, (1.13)

where hi(x) = −gi(x) ≤ 0, cki > 0. Tseng and Bertsekas study the exponential

multiplier method proposed by [48].

The authors Tseng and Bertsekas study two rules for choosing the penalty

parameters and guarantentee the convergence in the ergodic sense. Other works,

where the convergence is studied in an ergodic sense, are [41], [44], [47] and [60].

(6) Log-Sigmoid Multiplier Method: Polyak, Griva and Sobieszczanski-Sobieski, 1998,

see [61] and Polyak, 2001, see [62]. The subproblem of this augmented Lagrangian

algorithm is as follows:

xk+1 = argmin
x∈IRn

{
f(x) + 2β−1

m∑
i=1

λi ln
(
1 + e−βgi(x)

)
− 2β−1

(
m∑
i=1

λi

)
ln 2

}
,

(1.14)

the multipliers are updated as follows

λk+1
i =

2λki
1 + eβgi(xk+1)

, i = 1, ...,m, (1.15)

where β > 0.

(7) Nonlinear Rescaling Algorithm: Polyak and Teboulle, 1997, see [60]. The subprob-

lem of this augmented Lagrangian algorithm is as follows: Let ψ be a C2 on the

interval (a,+∞), −∞ ≤ a < 0, where ψ(a) = −∞ and ψ′(a) = +∞.

xk+1 ∈ argmin
x∈IRn

{
f(x)− u−1

m∑
i=1

λkiψ (ugi(x))

}
, (1.16)

4



the multipliers are updated as follows

λk+1
i = λkiψ

′ (ugi(xk+1)
)
, i = 1, ...,m, (1.17)

where u > 0, this function ψ satis�es 6 properties. For more details, see [60].

Roman Polyak ([59]) modi�es functions (1.2) and (1.3) as follows: the modi�ed Frisch

function, F (x, λ, r) : IRn × IRm
+ × IR+ → IR,

F (x, λ, r) = f(x)− 1

r

m∑
i=1

λiln(r gi(x) + 1), (1.18)

and the modi�ed Carroll function, C(x, λ, r) : IRn × IRm
+ × IR+ → IR,

C(x, λ, r) = f(x) +
1

r

m∑
i=1

λi

(
1

(r gi(x) + 1)
− 1

)
. (1.19)

Thus, with the functions (1.18) and (1.19) augmented Lagrangian algorithms are

studied, see [59] and [44]. Finally, other algorithms that solve convex problems are: [70],

[33], [40], [54] and [57].

Hyperbolic Methodology

This methodology has been developed since previous decades, as follows:

• Xavier, 1982: Master's dissertation ([78]), �Penalização Hiperbólica: Um Novo

Método para Resolução de Problemas de Otimização�, advisor: João Lizardo

Rodrigues Hermes de Araujo.

In [78] the hyperbolic penalty algorithm (HPA) is proposed, it is also studied in

[79], [80], [82] and [56].

• Xavier, 1992: Doctoral thesis, �Penalização Hiperbólica� ([81]), advisor: Nelson

Maculan Filho.

The HPA induces a new augmented Lagrangian algorithm, called HALA-1992 (see

[81]). The characteristic of HALA-1992 is that it considers the updating of the

5



penalty parameter. With this characteristic of HALA-1992 and under a set of

assumptions about the problem (1.1), then in that way the �rst ideas are given to

guarantee the convergence of HALA-1992. In other words, convergence was not

guaranteed in this work.

• Xavier, 2010: paper ([84]), �The Hyperbolic Smoothing Clustering Method�.

Some applications of this method are the following works: [83], [5], [86], [7], [89]

and [85].

• Adilson Elias Xavier and Vinicius Layter Xavier, 2019: United States Patent and

Trademark O�ce (USPTO), �Hyperbolic Smoothing Clustering and Minimum Dis-

tance Methods�.

• Lennin Mallma-Ramirez, Nelson Maculan, Adilson Elias Xavier and Vinicius Layter

Xavier, 2022: preprint, �Convergence Analysis of the Hyperbolic Augmented La-

grangian Algorithm�.

�HALA

E vai entrando na Otimização Matemática�

In this occasion, unlike HALA-1992, we consider the �xed penalty parameter and we

also consider the convexity assumption. So, we propose in this work a new algorithm,

which henceforth we will call HALA.

The main contribution of our work is to have guaranteed a basic existence result and

the convergence of HALA. In order for us to guarantee the convergence of the algorithm

proposed in this work, we use the following classic assumptions, which are widely used

in the literature, such as the Slater constraint quali�cation and convexity. Some works

that consider these assumptions are [2], [9] and [60]. On the other hand, currently

di�erent algorithms consider convexity assumptions, see: [28], [29], [72], [51], [21] and

[39]. Therefore, after about 30 years we guarantee an existence result and a convergence

result for HALA.

The thesis is organized as follows: In Chapter 2 we present some basic results, we

also present HPA and some of its properties. In Chapter 3 we present the hyperbolic

6



augmented Lagrangian function and the HALA. We also study some characteristics of

this algorithm. We guarantee the convergence of the HALA and computational results

are illustrated. In Chapter 4 The duality theory is studied for the case of the augmented

hyperbolic Lagrangian function. In Chapter 5 we give some conclusions of our work. In

Chapter 6 we propose some future work.

7



Chapter 2

Preliminaries

Throughout this thesis we are interested in studying the following optimization problem

(P ) x∗ ∈ X∗ = argmin{f(x) | x ∈ S},

where

S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m},

is the convex feasible set of the problem (P) and where the function f : IRn → IR is

convex, gi : IRn → IR, i = 1, ...,m, are concave functions, we assume that f, gi are

continuously di�erentiable. Thus (P) is a convex optimization problem. So (P) will be

called as the primal problem. We consider the following assumptions.

C1. The optimal set X∗ is nonempty, closed, bounded and, consequently, com-

pact.

C2. Slater constraint quali�cation holds, i.e., there exists x̂ ∈ S which satis�es

gi(x̂) > 0, i = 1, ...,m.

A consequence of C1 (see the Theorem 24 and Corollary 20 of [26]) is that the

level set {x ∈ S | f(x) ≤ β} remains bounded for any value β. The C2 assumption

guarantees that the interior of S set is nonempty. The condition C1 also imply the exis-

tence of a �nite vector x∗ and a number f ∗ such that f(x∗) = f ∗ = infS f(x) = minS f(x).

8



The Lagrangian function of the problem (P) is L : IRn × IRm
+ → IR, de�ned as

L(x, λ) = f(x)−
m∑
i=1

λigi(x), (2.1)

where, λi ≥ 0, i = 1, ...,m, are called dual variables or Lagrange multipliers. Since

the problem (P) is convex, we know that due to assumption C2, the following results

will occur: there exists λ∗ = (λ∗1, ..., λ
∗
m), such that, the Karush-Kuhn-Tucker (KKT)

conditions hold true, i.e.,

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗i∇gi(x∗) = 0, (2.2)

λ∗i gi(x
∗) = 0, i = 1, ...,m, (2.3)

gi(x
∗) ≥ 0, i = 1, ...,m, (2.4)

λ∗i ≥ 0, i = 1, ...,m. (2.5)

Moreover, the set of optimal Lagrange multipliers λ∗ is denoted by

Λ∗ =

{
λ ∈ IRm

+ | ∇f(x∗)−
m∑
i=1

λi∇gi(x∗) = 0, x∗ ∈ X∗

}
,

it is known that Λ∗ is a bounded set (and hence compact set) due to C2. The dual

function Φ : IRm
+ → IR, is de�ned as follows

Φ(λ) = inf
x∈IRn

L(x, λ), (2.6)

and the dual problem consists of �nding

(D) λ ∈ Λ∗ = argmax{Φ(λ) | λ ∈ IRm
+}.

2.1 Hyperbolic Penalty

The hyperbolic penalty is meant to solve the problem (P). The penalty method adopts

the hyperbolic penalty function (HPF)

P (y, λ, τ) = −λy +
√
(λy)2 + τ 2, (2.7)

9



Figure 2.1: Hyperbolic Penalty

where P : (−∞,+∞)× IR+ × IR++ → IR, see Fig. 2.1

Remark 2.1.1 Let, λ ≥ 0, y ≥ 0 and τ > 0. Since we are 0 < τ 2, we can obtain the

following inequalities,

(λy)2 < (λy)2 + τ 2,

|λy| <
√
(λy)2 + τ 2,

−
√

(λy)2 + τ 2 < λy <
√

(λy)2 + τ 2,

− λy −
√

(λy)2 + τ 2 < 0 < −λy +
√

(λy)2 + τ 2. (2.8)

From (2.8), we get that, P (y, λ, τ) > 0.

Remark 2.1.2 The HPF is originally proposed in [78] and studied in [82]. In these

studies, the following properties are important for HPF:

(a) P (y, λ, τ) is asymptotically tangent to the straight lines r1(y) = −2λy and r2(y) = 0

for τ > 0.

(b) � P (y, λ, 0) = 0, for y ≥ 0.

� P (y, λ, 0) = −2λy, for y < 0.

Due to the properties (a) and (b) the HPF is equivalent to a smoothing of the penalty

studied by Zangwill, in [90].
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In particular we only use the following properties of the HPF (which are also studied in

[78]):

P0) P (y, λ, τ) is k−times continuously di�erentiable for any positive integer k for τ > 0.

P1) P (y, λ, τ) is convex function of y, i.e.,

∇2
yyP (y, λ, τ) =

λ2τ 2

((λy)2 + τ 2)
3
2

> 0,

for τ > 0 and λ > 0.

P2) P (y, λ, τ) is strictly decreasing function of y, i.e.,

∇yP (y, λ, τ) = −λ

(
1− λy√

(λy)2 + τ 2

)
< 0,

for τ > 0 and λ > 0.

P3) P (0, λ, τ) = τ, for τ > 0 and λ ≥ 0.

11



Chapter 3

Hyperbolic Augmented Lagrangian

We de�ne the Hyperbolic Augmented Lagrangian Function (HALF) of problem (P) by

LH : IRn × IRm
++ × IR++ → IR,

LH(x, λ, τ) = f(x) +
m∑
i=1

P (gi(x), λi, τ)

= f(x) +
m∑
i=1

(
−λigi(x) +

√
(λigi(x))

2 + τ 2
)
, (3.1)

where τ > 0 is the penalty parameter. Note that this function belongs to class C∞ if the

involved functions f(x) and gi(x), i = 1, ...,m, are too. On the other hand, a variation

of (3.1) is proposed and studied in the work of [17] and [65].

By comparing (2.1) and (3.1), we see that the function LH may be put in the form

LH(x, λ, τ) = L(x, λ) +
m∑
i=1

√
(λigi(x))2 + τ 2. (3.2)

Analysis of expression (3.2) allows us to see that the modi�ed objective function

associated with the hyperbolic penalty may be decomposed as the sum of the Lagrangian

function along with a summation of terms containing squares of the products between the

values of the constraints and their corresponding multipliers (complementary slacks). We

are aware that at any optimal point (x∗, λ∗) we must have λ∗i gi(x
∗) = 0, i = 1, ...,m, and

therefore at this point the summation takes on a minimum value equal to
∑m

i=1 τ = mτ.

From this point of view the summation in expression (3.2) may be interpreted as a

penalty for the noncompliance with the condition of complementarity of the slacks

which is added to the Lagrangian function. In the composition of the modi�ed objective

12



function, when we attempt to minimize this portion, we will automatically be seeking

the optimal solution where equalities λ∗i gi(x
∗) = 0, i = 1, ...,m prevail.

Now, let us consider the following assumption:

C3. For every τ > 0 and λ > 0. Also for every l <∞, the level set

M = {x ∈ IRn | LH(x, λ, τ) ≤ l} ,

is bounded.

Remark 3.0.1 We know that the function P is convex by P1). Now the assumption C3

is veri�ed if in particular the function f is strongly convex in x. That way LH will also

be strongly convex in x. Other works that also use the strong convexity assumptions are:

[2], [47], [10], [73], [68], [45], [71], [73] and [87]. See also [30].

We present the HALA to solve the nonlinear problem (P).

3.1 Algorithm HALA

Step 1. Let k := 0 (initialization).

Take initial values λ0 = (λ01, ..., λ
0
m) ∈ IRm

++, τ ∈ IR++.

Step 2. Solve the unconstrained minimization problem (primal update):

xk+1 ∈ argmin
x∈IRn LH(x, λ

k, τ)

= argmin
x∈IRn

{
f(x) +

m∑
i=1

(
−λki gi(x) +

√(
λki gi(x)

)2
+ τ 2

)}
.

Step 3. Updating of Lagrange multipliers (dual update):

λk+1
i = λki

(
1− λki gi(x

k+1)√
(λki gi(x

k+1))2 + τ 2

)
, i = 1, ...,m. (3.3)

Step 4. If the pair (xk+1, λk+1) satis�es the stopping criteria: Then Stop.

Step 5. k := k + 1. Go to Step 2.

13



HALA considers an initial vector λ0 > 0 and τ > 0. Note that HALA assumes a

�xed value for the penalty parameter τ. Considering a �xed penalty parameter can also

be observed in the following studies [44], [48], [49] and [67]. With this information, the

HALA generate the primal sequence in Step 2 and the multiplier estimates in Step 3.

In Step 4, we can consider di�erent stopping criteria. For example, we can consider

some of the following criteria studied in [16]:

− min
i=1,...,m

gi(x
k) < β and

∣∣f(xk)− f(xk−1)
∣∣

1 + |f(xk−1)|
< 10−2β,

or

max

{
− min

i=1,...,m
gi(x

k),

∑m
i=1 λ

k
i

∣∣gi(xk)∣∣
1 + ∥xk∥2

,

∥∥∇f(xk)−∑m
i=1 λ

k
i∇gi(xk)

∥∥
∞

1 + ∥xk∥2

}
< β,

where β > 0.

Notice that HALA is based in the exact unconstrained minimization of the HALF. In

[50] an exact unconstrained minimization of the augmented Lagrangian is also discussed,

also see [9].

3.2 Study of the HALA

By C3, hence there exists xk+1 ∈ IRn such that

LH(x
k+1, λk, τ) = min

x∈IRnLH(x, λ
k, τ),

thus ∇xLH(x
k+1, λk, τ) = 0 holds, i.e.,

∇f(xk+1)−
m∑
i=1

λki

(
1− λki gi(x

k+1)√
(λki gi(x

k+1))2 + τ 2

)
∇gi(xk+1) = 0, (3.4)

substituting (3.3) in (3.4), we have

∇xLH(x
k+1, λk, τ) = ∇f(xk+1)−

m∑
i=1

λk+1
i ∇gi(xk+1) = ∇xL(x

k+1, λk+1) = 0, (3.5)

for any τ > 0.
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We observe that xk+1 and λk+1 satisfy ∇xL(x
k+1, λk+1) = 0, shows that xk+1 is the

minimizer of L(x, λk+1) (i.e., xk+1 attains the minimum in (2.6)), i.e.,

Φ(λk+1) = L(xk+1, λk+1) = min
x∈IRn

L(x, λk+1) and λk+1 ∈ IRm
++,

thus, it follows that

Φ(λk+1) = f(xk+1)−
m∑
i=1

λk+1
i gi(x

k+1). (3.6)

From (3.6) we obtain

−g(xk+1) =
(
−g1(xk+1), · · · ,−gm(xk+1)

)T ∈ ∂Φ(λk+1),

where ∂Φ(λk+1) is the subdi�erential of Φ(λ) at λ = λk+1.

In the following remark, we analyze what happens with Lagrange multipliers (iteration

(3.3)) depending on the type of restriction we have. First, for x ∈ IRn, we de�ne the

following sets of indices

I0 = {i ∈ {1, ...,m} | gi(x) = 0} ,

I− = {i ∈ {1, ...,m} | gi(x) < 0}

and

I+ = {i ∈ {1, ...,m} | gi(x) > 0} ,

such that I0 ∩ I+ = ∅, I0 ∩ I− = ∅, I+ ∩ I− = ∅ and I0 ∪ I+ ∪ I− = {1, ...,m} .

Remark 3.2.1 Let {λk} be a sequence generated by HALA such that λki > 0, i = 1, ...,m

and let τ > 0 �xed. Let us consider the following cases:

(c1) If i ∈ I0, then we have at the k-th iteration gi(x
k+1) = 0, then by (3.3), we get,

λk+1
i = λki . We also obtain:

(
λki − λk+1

i

)
gi(x

k+1) = 0, ∀i ∈ I0.

(c2) If i ∈ I+, then we have at the k-th iteration gi(x
k+1) > 0.

So we can get,

λki gi(x
k+1) > 0,
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λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

> 0,

1 > 1− λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

,

λki > λki

1− λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

 , (3.7)

then by (3.3) in (3.7), we get, λki > λk+1
i . We also obtain:

(
λki − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I+.

(c3) If i ∈ I−, then we have at the k-th iteration gi(x
k+1) < 0.

So we can get,

λki gi(x
k+1) < 0,

λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

< 0,

1 < 1− λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

,

λki < λki

1− λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

 , (3.8)

then by (3.3) in (3.8), we get, λki < λk+1
i . We also obtain:

(
λki − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I−.

Of the three previous cases, we can note that we have the following

(
λki − λk+1

i

)
gi(x

k+1) ≥ 0, i = 1, ...,m.

In the following result, we will demonstrate the positivity of the updated Lagrange

multipliers.
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Proposition 3.2.1 Let
{
λk = (λk1, ..., λ

k
m) | k = 1, 2, ...

}
⊂ IRm. If

λk ∈ IRm
++ then λk+1 ∈ IRm

++, i = 1, ...,m.

Proof. Let τ > 0 be �xed. Since we have 0 < τ 2, we can obtain the following

(
λki gi(x

k+1)
)2
<
(
λki gi(x

k+1)
)2

+ τ 2, i = 1, ...,m,

so, ∣∣λki gi(xk+1)
∣∣ <√(λki gi(xk+1)

)2
+ τ 2, i = 1, ...,m,

thus,

−
√(

λki gi(x
k+1)

)2
+ τ 2 < λki gi(x

k+1) <

√(
λki gi(x

k+1)
)2

+ τ 2, i = 1, ...,m,

from this, we can get

−1 <
λki gi(x

k+1)√(
λki gi(x

k+1)
)2

+ τ 2
< 1, i = 1, ...,m,

from the latter it follows that

0 < λki

1− λki gi(x
k+1)√(

λki gi(x
k+1)

)2
+ τ 2

 < 2λki , i = 1, ...,m, (3.9)

then from the expression above and by (3.3), we get that, λk+1
i > 0, i = 1, ...,m.

Remark 3.2.2 From inequality (3.9), we can see that iteration (3.3) has the following

characteristic

0 < λk+1
i < 2λki , i = 1, ...,m. (3.10)

Remark 3.2.3 From C3 and Proposition 3.2.1, we obtain that HALA is well de�ned.

Theorem 3.2.1 Let {λk} be a sequence generated by HALA. The sequence {Φ(λk)} is

monotone nondecreasing for all k ∈ IN.

Proof. From the concavity of Φ(·) and since −g(xk+1) ∈ ∂Φ(λk+1), we obtain

Φ(λ)− Φ(λk+1) ≤
(
−g(xk+1)

) (
λ− λk+1

)
, (3.11)
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now by rewriting (3.11) and considering λ = λk, we obtain

Φ(λk+1)− Φ(λk) ≥
(
g(xk+1)

) (
λk − λk+1

)
, (3.12)

writing again (3.12), so we have the expression

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

(
gi(x

k+1)
) (
λki − λk+1

i

)
. (3.13)

On the other hand, we can rewrite (3.3), as follows,

λki − λk+1
i =

(
λki
)2
gi(x

k+1)√(
λki gi(x

k+1)
)2

+ τ 2
, i = 1, ...,m, (3.14)

this expression (3.14) is replaced on the right side of inequality (3.13), we get

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

 (
λki gi(x

k+1)
)2√(

λki gi(x
k+1)

)2
+ τ 2

 ≥ 0, (3.15)

so, we have,

Φ(λk+1) ≥ Φ(λk).

Proposition 3.2.2 The sequence of dual objective function values {Φ(λk)} is bounded

and monotone nondecreasing, hence it converges.

Proof. By Theorem 3.2.1 we obtain Φ(λk+1) ≥ Φ(λk), then {Φ(λk)} is nondecreasing

sequence for all k ∈ IN and considering the weak duality theorem, we obtain Φ(λk) ≤
Φ(λk+1) ≤ f ∗, ∀k, i.e., {Φ(λk)} is bounded from above by the optimal value. Then

{Φ(λk)} is convergent.

Proposition 3.2.3 The sequence {λk} generated by the HALA is bounded.

Proof. From C2 we know that Λ∗ is nonempty and compact. So, one level set of Φ(·)
is compact. Then, all of these level sets are compact, see Corollary 8.7.1 of [66]. By

Proposition 3.2.2 we obtain in particular λk ∈ Γ = {λ ∈ IRm
+ | Φ(λ0) ≤ Φ(λ)} for all

k ∈ IN and hence {λk} is a bounded sequence.

We present a preliminary result which will be used to guarantee the complementarity

condition in our algorithm.
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Lemma 3.2.1 Let d > 0 and a sequence {ak} ⊂ IR+. If

lim
k→∞

(
ak/
√
ak + d

)
= 0 then lim

k→∞
ak = 0.

Proof. By the hypothesis, for ϵ ∈ (0, 1) �xed, there exists k0 ∈ IN, such that∣∣∣∣ ak√
ak + d

∣∣∣∣ < ϵ, ∀k ≥ k0,

−ϵ < ak√
ak + d

< ϵ, ∀k ≥ k0,

0 <
ak√
ak + d

+ ϵ < 2ϵ, ∀k ≥ k0. (3.16)

On the other hand, we know that 0 < ϵ, then

ak√
ak + d

<
ak√
ak + d

+ ϵ, (3.17)

now, we replace (3.17) in (3.16), then we get

ak√
ak + d

<
ak√
ak + d

+ ϵ < 2ϵ,

so, from the inequality above we have

ak

2
√
ak + d

< ϵ, ∀k ≥ k0. (3.18)

Also, on the other hand, we know that
(√

ak + d− 1
)2

≥ 0, then

ak + d+ 1 ≥ 2
√
ak + d, ∀k ≥ k0,

so,
1

ak + d+ 1
≤ 1

2
√
ak + d

, ∀k ≥ k0,

from (3.18) and from the previous inequality, we obtain the following

ak

ak + d+ 1
≤ ak

2
√
ak + d

< ϵ, ∀k ≥ k0, (3.19)
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then of (3.19), we get
ak

ak + d+ 1
≤ ϵ, ∀k ≥ k0,

ak ≤ akϵ+ ϵ (d+ 1) , ∀k ≥ k0,

ak − akϵ ≤ ϵ (d+ 1) , ∀k ≥ k0,

ak (1− ϵ) ≤ ϵ (d+ 1) , ∀k ≥ k0,

thus, ak ≤
(

ϵ(d+1)
1−ϵ

)
, ∀k ≥ k0 which implies that limk→∞ ak = 0.

Theorem 3.2.2 Let the sequences {xk} and {λk} be generated by HALA. Then

lim
k→∞

(
λki gi(x

k)
)
= 0, i = 1, ...,m. (3.20)

Proof. Let be τ > 0 �xed. Since Φ(·) is concave we have the expression (3.15).

We are going to verify that the series in (3.15) is convergent; (3.15) gives by summation

0 ≤
∞∑
k=1

m∑
i=1

 (
λki gi(x

k+1)
)2√(

λki gi(x
k+1)

)2
+ τ 2

 ≤
∞∑
k=1

(
Φ(λk+1)− Φ(λk)

)
,

we notice that
∑∞

k=1

(
Φ(λk+1)− Φ(λk)

)
is a convergent series (i.e., the partial sum is

bounded above), it follows

0 ≤
∞∑
k=1

m∑
i=1

 (
λki gi(x

k+1)
)2√(

λki gi(x
k+1)

)2
+ τ 2

 ≤ lim
k→∞

(
Φ(λk)− Φ(λ1)

)
≤ f ∗ − Φ(λ1) <∞,

therefore, for the test of comparison, we obtain

lim
k→∞

m∑
i=1

 (
λki gi(x

k+1)
)2√(

λki gi(x
k+1)

)2
+ τ 2

 = 0. (3.21)

We note each term in the summation of (3.21) is nonnegative, thus

lim
k→∞

 (
λki gi(x

k+1)
)2√(

λki gi(x
k+1)

)2
+ τ 2

 = 0, i = 1, ...,m, (3.22)

in (3.22), we can apply the Lemma 3.2.1 with ak =
(
λki gi(x

k+1)
)2

and d = τ 2 and thus
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we obtain limk→∞
(
λki gi(x

k+1)
)2

= 0, i = 1, ...,m, so,

lim
k→∞

(
λki gi(x

k+1)
)
= 0, i = 1, ...,m. (3.23)

Because Φ(·) is a concave function and by Remark 3.2.1 we get

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

(
gi(x

k+1)
) (
λki − λk+1

i

)
≥ 0, (3.24)

and by Proposition 3.2.2 we know that {Φ(λk)} is convergent, so, it follows

limk→∞
{
Φ(λk+1)− Φ(λk)

}
= 0, and so from (3.24) we obtain

lim
k→∞

m∑
i=1

(
gi(x

k+1)
) (
λki − λk+1

i

)
= 0, (3.25)

now since
(
gi(x

k+1)
) (
λki − λk+1

i

)
≥ 0 (by Remark 3.2.1), of (3.25) and (3.23), it follows

that

lim
k→∞

(
λk+1
i gi(x

k+1)
)
= 0, i = 1, ...,m. (3.26)

3.3 Convergence Result

In this section, we are going to consider the following assumption.

C4. The whole sequence {xk} is convergent to x̄, where x̄ is assumed a feasible

point, i.e., gi(x̄) ≥ 0, i = 1, ...,m.

Similar to assumption C4 can also be seen in Hartman [34], Nguyen and Strodiot [55],

[14], [27] and [24]. Finally, we ensure that the subsequence generated by the algorithm

HALA converges to a KKT point, but not necessarily the entire sequence.

Theorem 3.3.1 The convex problem (P) satis�es C1, C2, C3 and C4. Let sequences

{xk} and {λk} generated by HALA. Then any limit point of a subsequence {xk} and {λk}
are an optimal solution-Lagrange multiplier pair for the problem (P).

Proof. Let be τ > 0 �xed. By C3 follows the boundedness of the sequence {xk},
and also we know that the sequence {λk} of the Lagrange multipliers generated by the

HALA is bounded, see Proposition 3.2.3. Henceforth, we can consider the following

convergent subsequences limk→∞ xk = x̄ and limk→∞ λk = λ̄ with k ∈ K1 ⊂ IN.
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Now by C4, we have limk→∞ gi(x
k) = gi(x̄) ≥ 0, i = 1, ...,m. From Proposition 3.2.1

we obtain,

lim
k→∞

λki = λ̄i ≥ 0, i = 1, ...,m. (3.27)

Passsing the limit in (3.20), we have

lim
k→∞

(
λki gi(x

k)
)
= λ̄igi(x̄) = 0, ∀i = 1, ...,m. (3.28)

Moreover, passing the limit in (3.5), we obtain

∇xL(x̄, λ̄) = ∇f(x̄)−
m∑
i=1

λ̄i∇gi(x̄) = 0.

Thus (x̄, λ̄) satis�es (2.2) − (2.5) for all i = 1, ...,m, hence (x̄, λ̄) is a KKT point.

Thus x̄ is optimal for the problem (P) and λ̄ is a Lagrange multiplier.

3.4 Computational Illustration

The computationally illustrate presented below were obtained with a preliminary For-

tran implementation for the HALA. The program were compiled by the GNU Fortran

compiler version 4:7.4.0-1ubuntu2.3. The numerical Experiments are conducted on a

Notebook with operating system Ubuntu 18.04.5, CPU i7-3632QM and 8GB RAM. The

unconstrained minimization tasks were carried out by means of a Quasi-Newton algo-

rithm employing the BFGS updating formula, with the function VA13 from HSL library

[35]. The algorithm stop when the solution is viable (feasible) an the absolute value of

the di�erence of the two consecutives solutions
∣∣xk − xk−1

∣∣ is less than 10−7.

3.4.1 Test Problems

In this section we show �ve test problems.

Example 3.4.1

min
x∈IR3

f(x) = 2x21 + 3x22 + x23

s.t. g1(x) = x21 + x22 + x23 − 8 ≤ 0,

g2(x) = 4x21 − 32x1 + 36x22 − 144x2 + 9x23 − 18x3 + 181 ≤ 0.
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Starting with x0 = (1.5, 1.5, 1) and f(x0) = 12.2500000000. The minimum value is

f(x∗) = 11.3792836271 at the optimal solution

x∗ = (1.3958680939, 1.5256305407, 0.7069246891).

Example 3.4.2 Problem 43 (Rosen-Suzuki) of [38].

min
x∈IR4

f(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 8− x21 − x22 − x23 − x24 − x1 + x2 − x3 + x4 ≥ 0,

g2(x) = 10− x21 − 2x22 − x23 − 2x24 + x1 + x4 ≥ 0,

g3(x) = 5− 2x21 − x22 − x23 − 2x1 + x2 + x4 ≥ 0.

Starting with x0 = (0, 0, 0, 0) and f(x0) = 0. The minimum value is f(x∗) = −44 at the

optimal solution x∗ = (0, 1, 2,−1).

Example 3.4.3 Problem 11 of [38].

min
x∈IR2

f(x) = (x1 − 5)2 + x22 − 25

s.t. g1(x) = −x21 + x2 ≥ 0.

Starting with x0 = (4.9, 0.1) (not feasible) and f(x0) = −24.98. The minimum value is

f(x∗) = −8.498464223.

Example 3.4.4 See, Remark 4.2, of [62].

min
x∈IR

f(x) = 3x

s.t. g1(x) = x ≥ 0.

Starting with λ0 = 1. The optimal solution is X∗ = {0} and Λ∗ = {3} .

23



Example 3.4.5

min
x∈IR4

f(x) = −6x1 − 3x2 − 2x3 − x4

s.t. g1(x) = x1 ≥ 0,

g2(x) = x2 ≥ 0,

g3(x) = x3 ≥ 0,

g4(x) = x4 ≥ 0,

g5(x) = −x1 + 1 ≥ 0,

g6(x) = −x2 + 1 ≥ 0,

g7(x) = −x3 + 1 ≥ 0,

g8(x) = −x4 + 1 ≥ 0,

g9(x) = −3x1 − 2x2 − 3x3 − 3x4 + 6 ≥ 0.

Starting with x0 = (0.1, 0.1, 0.5, 0.5) and f(x0) = −0.240000000E + 01. The minimum

value is f(x∗) = −0.966666667E + 01 at the optimal solution x∗ = (0.100000000E +

01, 0.100000000E + 01, 0.333333332E + 00, 0.621067930E − 09).

Example 3.4.6 See, pag. 84 of [25].

min
x∈IR

f(x) = 0x

s.t. g1(x) = x ≥ 0.

Example 3.4.7 See, pag. 30 of [42].

min
x∈IR

f(x) = 1

s.t. g1(x) = 1− ex ≥ 0.

3.4.2 Results

Tables 3.1-3.11 summarize the computational results for these �ve problems. For

each test problem we present two tables. The �rst table contains information about the

primal sequence and the second table contains information about the dual sequence.

Examples 3.4.1 and 3.4.5 are proposed by us. In Tables 3.1-3.11, we can see the feasible
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starting points considered.

For each table, k is the number of iterations, τ is the penalty parameter, λ

is the Lagrange multiplier, x is the primal variable, f(x) is the objective value,

gi(x) are the constraints of each example, LH(x, λ, τ) is the value of the HALF and

via = viable = feasible where, in each iteration, the obtained point can be viable, then

its value is “0 = yes” or the point can be inviable, then the value is “1 = not”.

In Tables 3.1, 3.3, 3.5, 3.7 and 3.9, we reports the optimal solutions, the value of

the objective function and the value of the HALF found by our proposed algorithm.

For Problems 3.4.1, 3.4.2, 3.4.3, 3.4.4 and 3.4.5 our algorithm converges to the exact

solution within the precision of the computer.

In Tables 3.2, 3.4, 3.6, 3.8, 3.10 and 3.11 we reports the behavior of the multipliers,

this issue is studied in Subsection 3.2 of this work. In particular, in Table 3.2 and Table

3.4 we clearly observe that λk+1
i = 2λki , this happens when the solution is not viable and

the value of τ is small. In these tables, we can also see the active constraints, for each

proposed example. In Table 3.4 our active constraints are g1(x) and g3(x) as suggested

in di�erent papers, in particular see [50].

In the Example 3.4.3 when we consider the infeasible starting point (4.9, 0.1)

suggested by [38] our algorithm converges to the optimal solution in 7 iterations. When

we consider the initial viable point (1, 2) suggested by us, our algorithm converges in 5

iterations, see Table 3.5. In the Example 3.4.4 when we used the initial value λ0 = 1

used by [62] with τ = 1 we observe that our algorithm does not converge. But our

algorithm converge when λ0 = 10 and τ = 1, then the results obtained by HALA are

presented in Tables 3.7-3.8. In Problem 3.4.5, we can notice that the primal and dual

sequence always remains in the viable region, see Tables 3.9-3.11.

In the Example 3.4.6, we consider the following initial parameters: x0 = 1, λ0 = 1

and τ = 1. In this way our algorithm HALA converges to the primal solution and a La-

grange multiplier, see Tables 3.12 -3.13. On the other hand, the augmented Lagrangian

algorithm studied by Eckstein also studies the same problem, but to guarantee the

convergence of the Lagrange multipliers, he needs a condition on the gradient of the

augmented Lagrangian function, for more details of this example see [25].
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Table 3.1: Example 3.4.1 with τ = 0.10E − 04

k x1 x2 x3 f(x) LH(x, λ, τ) via

0 1.5000000000 1.5000000000 1.0000000000 12.2500000000 12.2500000 0
1 0.1538461538 0.3870967742 0.1525423729 0.5201381914 2.9858922 1
2 0.2962962963 0.6486486486 0.2647058823 1.5078874026 5.0869781 1
3 0.5517241379 0.9795918367 0.4186046511 3.6628294023 7.8299588 1
4 0.9696969696 1.3150684931 0.5901639344 7.4171333201 10.4781607 1
5 1.3958664938 1.5256298991 0.7069243209 11.3792683000 11.3793010 1
6 1.3958680939 1.5256305407 0.7069246891 11.3792836271 11.3793036 0
7 1.3958680939 1.5256305407 0.7069246891 11.3792836271 11.3793036 0

Table 3.2: Example 3.4.1 with τ = 0.10E − 04
g1(x) g2(x)

k via λ1 via λ2

0 0 0.0100000 0 0.0100000
1 0 0.0000000 1 0.0200000
2 0 0.0000000 1 0.0400000
3 0 0.0000000 1 0.0800000
4 0 0.0000000 1 0.1600000
5 0 0.0000000 1 0.2680100
6 0 0.0000000 0 0.2680103
7 0 0.0000000 0 0.2680107

In the Example 3.4.7, we consider the following initial parameters: x0 = −2, λ0 = 1

and τ = 1. In this way our algorithm HALA converges to the primal solution and a

Lagrange multiplier, see Tables 3.14-3.15. On the other hand, using the generalized

augmented Lagrangian method (GALB), convergence is not guaranteed for this example.

Now, considering the generalized doubly augmented Lagrangian method (is based on

proximal point methods), convergence is guaranteed for this example. For more details

of this example see [42].
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Table 3.3: Example 3.4.2 with τ = 0.10E − 05

k x1 x2 x3 x4 f(x) LH(x, λ, τ) via

0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0
1 2.3074726 2.3204238 5.0921913 -3.2752419 -79.7053622 -77.0243381 1
2 2.2312597 2.2670664 4.9403997 -3.0011307 -79.3079453 -74.4427220 1
3 1.9829192 2.0720262 4.6755395 -2.7161503 -78.1500359 -69.9582510 1
4 1.6153987 1.7745712 4.2248525 -2.1925613 -74.7549829 -63.0318244 1
5 1.0327825 1.2993558 3.5507600 -1.4755845 -66.4076345 -54.3478952 1
6 0.5301862 0.8883313 2.5995884 -0.8980092 -52.5776378 -47.4647475 1
7 0.1198347 1.0617978 2.1622807 -0.9736842 -46.6910951 -44.2047663 1
8 0.0000002 1.0000001 2.0000001 -0.9999997 -44.0000009 -43.9999972 1
9 0.0000000 1.0000000 2.0000000 -1.0000000 -44.0000000 -43.9999970 0
10 0.0000000 1.0000000 2.0000000 -1.0000000 -44.0000000 -43.9999970 0

Table 3.4: Example 3.4.2 with τ = 0.10E − 05
g1(x) g2(x) g3(x)

k via λ1 via λ2 via λ3

0 0 0.0100000 0 0.0100000 0 0.0100000
1 1 0.0200000 1 0.0200000 1 0.0200000
2 1 0.0400000 1 0.0400000 1 0.0400000
3 1 0.0800000 1 0.0800000 1 0.0800000
4 1 0.1600000 1 0.1600000 1 0.1600000
5 1 0.3200000 1 0.3200000 1 0.3200000
6 1 0.6400000 1 0.6400000 1 0.6400000
7 1 1.2800000 0 0.0000000 1 1.2800000
8 0 1.0000009 0 0.0000000 1 1.9999986
9 0 1.0000000 0 0.0000000 0 2.0000000
10 0 0.9999991 0 0.0000000 0 2.0000014

Table 3.5: Example 3.4.3 with τ = 0.10E − 01

k x1 x2 f(x) LH(x, λ, τ) via

0 0.100000000E+01 0.200000000E+01 -0.500000000E+01 -0.499995000E+01 0
1 0.166667546E+01 0.999992090E+00 -0.128889633E+02 -0.933330521E+01 1
2 0.123552039E+01 0.152343892E+01 -0.850782714E+01 -0.848994743E+01 1
3 0.123477347E+01 0.152466288E+01 -0.849847226E+01 -0.848846423E+01 1
4 0.123477247E+01 0.152466328E+01 -0.849846350E+01 -0.848846422E+01 0
5 0.123477247E+01 0.152466328E+01 -0.849846350E+01 -0.848846422E+01 0
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Table 3.6: Example 3.4.3 with τ = 0.10E − 01
g1(x)

k via λ1

0 0 0.100000000E+01
1 1 0.199998418E+01
2 1 0.304687788E+01
3 1 0.304932575E+01
4 0 0.304910476E+01
5 0 0.304888381E+01

Table 3.7: Example 3.4.4 with τ = 0.10E + 01

k x f(x) LH(x, λ, τ) via

0 0.100000000E+01 0.300000000E+01 0.304987562E+01 0
1 0.980196015E-01 0.294058804E+00 0.714142843E+00 0
2 0.177847483E-07 0.533542449E-07 0.100000000E+01 0
3 0.177847483E-07 0.533542449E-07 0.100000000E+01 0

Table 3.8: Example 3.4.4 with τ = 0.10E + 01
g1(x)

k via λ1

0 0 0.100000000E+02
1 0 0.300000016E+01
2 0 0.300000000E+01
3 0 0.299999984E+01
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Table 3.9: Example 3.4.5 with τ = 0.10E + 00

k
x
1

x
2

x
3

x
4

f
(x
)

L
H
(x
,λ

,τ
)

v
ia

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
0

0
.1
0
0
0
0
0
0
0
0
E
+
0
0

0
.5
0
0
0
0
0
0
0
0
E
+
0
0

0
.5
0
0
0
0
0
0
0
0
E
+
0
0

-0
.2
4
0
0
0
0
0
0
0
E
+
0
1

-0
.2
3
9
9
8
4
6
8
9
E
+
0
1

0

1
0
.9
9
8
9
0
0
3
8
0
E
+
0
0

0
.9
9
8
2
8
7
2
4
4
E
+
0
0

0
.3
3
2
4
4
6
8
2
2
E
+
0
0

0
.2
2
1
6
1
9
6
7
0
E
-0
2

-0
.9
6
5
5
3
7
3
8
5
E
+
0
1

-0
.9
6
4
3
7
9
9
5
4
E
+
0
1

0

2
0
.9
9
9
3
5
0
5
5
5
E
+
0
0

0
.9
9
8
8
4
2
9
7
6
E
+
0
0

0
.3
3
3
0
9
5
0
7
9
E
+
0
0

0
.1
5
8
9
6
7
1
8
9
E
-0
2

-0
.9
6
6
0
4
1
2
0
9
E
+
0
1

-0
.8
7
6
6
7
7
2
3
6
E
+
0
1

0

3
0
.1
0
0
0
0
0
0
0
0
E
+
0
1

0
.1
0
0
0
0
0
0
0
0
E
+
0
1

0
.3
3
3
3
3
3
3
3
2
E
+
0
0

0
.6
2
1
0
6
7
9
3
0
E
-0
9

-0
.9
6
6
6
6
6
6
6
7
E
+
0
1

-0
.8
7
6
6
7
0
4
2
7
E
+
0
1

0

4
0
.1
0
0
0
0
0
0
0
0
E
+
0
1

0
.1
0
0
0
0
0
0
0
0
E
+
0
1

0
.3
3
3
3
3
3
3
3
2
E
+
0
0

0
.6
2
1
0
6
7
9
3
0
E
-0
9

-0
.9
6
6
6
6
6
6
6
7
E
+
0
1

-0
.8
7
6
6
7
0
4
2
7
E
+
0
1

0
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Table 3.10: Example 3.4.5 with τ = 0.10E + 00

g 1
(x
)

g 2
(x
)

g 3
(x
)

g 4
(x
)

g 5
(x
)

k
v
ia

λ
1

v
ia

λ
2

v
ia

λ
3

v
ia

λ
4

v
ia

λ
5

0
0

0
.1
0
0
0
0
0
0
0
0
E
+
0
4

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
4

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
4

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
4

0
0
.1
0
0
0
0
0
0
0
0
E
+
0
4

1
0

0
.5
0
1
1
0
1
4
2
7
E
-0
5

0
0
.5
0
1
7
1
7
1
5
7
E
-0
5

0
0
.4
5
2
4
0
3
1
3
2
E
-0
4

0
0
.1
0
1
6
4
6
1
2
8
E
+
0
1

0
0
.4
1
0
9
6
1
6
3
5
E
+
0
1

2
0

0
.5
0
1
0
7
6
3
3
3
E
-0
5

0
0
.5
0
1
6
9
2
0
1
4
E
-0
5

0
0
.4
5
2
3
3
4
9
5
8
E
-0
4

0
0
.1
0
0
0
0
3
9
0
4
E
+
0
1

0
0
.3
9
9
9
9
7
1
0
0
E
+
0
1

3
0

0
.5
0
1
0
5
1
2
2
5
E
-0
5

0
0
.5
0
1
6
6
6
8
4
4
E
-0
5

0
0
.4
5
2
2
6
6
7
5
5
E
-0
4

0
0
.1
0
0
0
0
3
9
0
3
E
+
0
1

0
0
.3
9
9
9
9
7
1
0
0
E
+
0
1

4
0

0
.5
0
1
0
2
6
1
2
0
E
-0
5

0
0
.5
0
1
6
4
1
6
7
7
E
-0
5

0
0
.4
5
2
1
9
8
5
7
3
E
-0
4

0
0
.1
0
0
0
0
3
9
0
2
E
+
0
1

0
0
.3
9
9
9
9
7
1
0
1
E
+
0
1
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Table 3.11: Example 3.4.5, continuation of Table 3.10 with τ = 0.10E + 00

g 6
(x
)

g 7
(x
)

g 8
(x
)

g 9
(x
)

k
vi
a

λ
6

vi
a

λ
7

vi
a

λ
8

vi
a

λ
9

0
0

0.
10
00
00
00
0E

+
04

0
0.
10
00
00
00
0E

+
04

0
0.
10
00
00
00
0E

+
04

0
0.
10
00
00
00
0E

+
04

1
0

0.
17
00
08
38
3E

+
01

0
0.
11
22
01
39
6E

-0
4

0
0.
50
22
23
58
5E

-0
5

0
0.
66
76
05
63
2E

+
00

2
0

0.
16
66
64
90
1E

+
01

0
0.
11
21
93
00
0E

-0
4

0
0.
50
21
98
40
2E

-0
5

0
0.
66
66
78
00
5E

+
00

3
0

0.
16
66
64
90
1E

+
01

0
0.
11
21
84
60
9E

-0
4

0
0.
50
21
73
18
2E

-0
5

0
0.
66
66
78
00
3E

+
00

4
0

0.
16
66
64
90
1E

+
01

0
0.
11
21
76
21
8E

-0
4

0
0.
50
21
47
96
4E

-0
5

0
0.
66
66
78
00
1E

+
00
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Table 3.12: Example 3.4.6 with τ = 0.10E + 01

k x f(x) LH(x, λ, τ) via

0 0.100000000E+01 0.000000000E+00 0.414213562E+00 0
1 0.454823513E+08 0.000000000E+00 0.745058060E-08 0
2 0.536830181E+24 0.000000000E+00 0.745058060E-08 0
3 0.536830181E+24 0.000000000E+00 0.999999993E+00 0

Table 3.13: Example 3.4.6 with τ = 0.10E + 01
g1(x)

k via λ1

0 0 0.100000000E+01
1 0 0.111022302E-15
2 0 0.123259516E-31
3 0 0.123259516E-31

Table 3.14: Example 3.4.7 with τ = 0.10E + 01

k x f(x) LH(x, λ, τ) via

0 -0.200000000E+01 0.100000000E+01 0.145732056E+01 0
1 -0.374299419E+02 0.100000000E+01 0.141421356E+01 0
2 -0.374299419E+02 0.100000000E+01 0.174911755E+01 0

Table 3.15: Example 3.4.7 with τ = 0.10E + 01
g1(x)

k via λ1

0 0 0.100000000E+01
1 0 0.292893219E+00
2 0 0.210565435E+00
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Chapter 4

Duality Theory for the Hyperbolic

Augmented Lagrangian

In this section we are interested in developing the duality theory for HALF in the

Euclidean space.

The main result of this section is guarantee the strong duality for HALF for the convex

case. In this way we assure a solution to the primal and dual problems. With these results,

we can also note that HALF has properties similar to Log-sigmoid Lagrangian function

(LSLF), see [62]; modi�ed Frisch function (MFF) and Modi�ed Carroll function (MCF),

these last two functions are studied in [59].

Proposition 4.0.1 Let us assume that if f(x) and all gi(x) ∈ C2 and that f(x) is strictly

convex, then LH(x, λ, τ) is strictly convex in IRn for any �xed λ > 0 and τ > 0.

Proof. We only need to prove that the Hessiana of LH is de�ned positive. Let are

λ = (λ1, ..., λm) > 0 and τ > 0 �xed. The Hessian of LH(x, λ, τ) is

∇2
xxLH(x, λ, τ) = ∇2

xxf(x)−
m∑
i=1

λi∇2
xxgi(x)

+
m∑
i=1

(
(λi)

2√
(λigi(x))2 + τ 2

− (λi)
4g2i (x)

((λigi(x))2 + τ 2)
3
2

)
∇xgi(x)∇xg

T
i (x)

+
m∑
i=1

(λi)
2gi(x)√

(λigi(x))2 + τ 2
∇2

xxgi(x). (4.1)
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In (4.1), the ∇2
xxgi(x) is factored, so, we can rewrite (4.1), as follows

∇2
xxLH(x, λ, τ) = ∇2

xxf(x)−
m∑
i=1

λi

(
1− λigi(x)√

(λigi(x))2 + τ 2

)
∇2

xxgi(x)

+
m∑
i=1

(
(λi)

2√
(λigi(x))2 + τ 2

− (λi)
4g2i (x)

((λigi(x))2 + τ 2)
3
2

)
∇xgi(x)∇xg

T
i (x). (4.2)

On the other hand, since we have τ 2 > 0, we can get

(λigi(x))
2 + τ 2 > (λigi(x))

2 , (4.3)

now we multiply by λ2i in (4.3), so it follows that

(
(λigi(x))

2 + τ 2
)
λ2i > λ4i g

2
i (x),

the above inequality, we can rewrite it as

(
(λigi(x))

2 + τ 2
) 3

2(
(λigi(x))

2 + τ 2
) 1

2

λ2i > λ4i g
2
i (x),

so,
λ2i(

(λigi(x))
2 + τ 2

) 1
2

>
λ4i g

2
i (x)(

(λigi(x))
2 + τ 2

) 3
2

,

thus, it follows
λ2i(

(λigi(x))
2 + τ 2

) 1
2

− λ4i g
2
i (x)(

(λigi(x))
2 + τ 2

) 3
2

> 0. (4.4)

We replace (4.4) in (4.2) and since −λi
(
1− λigi(x)√

(λigi(x))2+τ2

)
< 0, (by P2) in (4.2), we

get that, ∇2
xxLH(x, λ, τ) > 0, for λ > 0 and τ > 0 �xed.

Recall that strict convexity implies convexity.

Remark 4.0.1 From C3 and Proposition 4.0.1 for any λ > 0 and any τ > 0 there exists

a unique minimizer

x̌ = x̌(λ, τ) = argmin {LH(x, λ, τ) | x ∈ IRn}

for problem (P) with the assumption C1.
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4.1 Duality

In this section, we adapt the classic results already existing in the literature: Chapter

9 of [58] and Section 7 of [59] for our HALF. The following result is also veri�ed by MFF

and MCF, see [59].

Proposition 4.1.1 Consider the convex problem (P). Assume the assumption C2 it

hold. Then x∗ ∈ S is a solution of problem (P) for any τ > 0 if and only if:

(i) There exists a vector λ∗ ≥ 0 such that

λ∗i gi(x
∗) = 0, i = 1, ...,m and LH(x, λ

∗, τ) ≥ LH(x
∗, λ∗, τ), ∀x ∈ IRn. (4.5)

(ii) The pair (x∗, λ∗) is a saddle point of LH , that is,

LH(x, λ
∗, τ) ≥ LH(x

∗, λ∗, τ) ≥ LH(x
∗, λ, τ), ∀x ∈ IRn, ∀λ ∈ IRm

+ . (4.6)

Proof. (⇒) Let any τ > 0 �xed. Assume x∗ is a solution for convex problem (P)

satisfying the assumption C2. Then system

f(x)− f(x∗) < 0,

−gi(x) < 0, i = 1, ...,m,

has no solution in IRn. Hence, by the Proper Separation Theorem (see, Theorem 2.26

(iv) of Dhara and Dutta [20]), there exists a vector (λ̃, λ̂) ̸= (0, 0) ∈ IR× IRm such that

λ̃ (f(x)− f(x∗))−
m∑
i=1

λ̂igi(x) ≥ 0,

for all x ∈ IRn. We rewrite the inequality above as

λ̃ (f(x)− f(x∗)) ≥
m∑
i=1

λ̂igi(x), (4.7)

for all x ∈ IRn. Now, we follow an analysis similar to Theorem 4.2 of [20], so by C2, we

have that there exists λ∗i =
λ̂i

λ̃
, i = 1, ...,m, with λ̃ > 0. Then, by (4.7) we have

f(x)− f(x∗) ≥
m∑
i=1

λ∗i gi(x), (4.8)
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for all x ∈ IRn. In particular, (4.8) holds for x = x∗. So we get

0 ≥
m∑
i=1

λ∗i gi(x
∗). (4.9)

On the other hand, since, gi(x∗) ≥ 0 and λ∗i ≥ 0 for i = 1, ...,m, then by (4.9) we

obtain

λ∗i gi(x
∗) = 0, i = 1, ...,m, (4.10)

so we have the �rst part of (4.5).

Now, we are interested in proving the second part of (4.5). From (4.10) and (4.8), we

have

f(x∗)−
m∑
i=1

λ∗i gi(x
∗) = f(x∗) ≤ f(x)−

m∑
i=1

λ∗i gi(x), (4.11)

for all x ∈ IRn. Now, since we have (4.10), also, we can obtain

(λ∗i gi(x
∗))2 + τ 2 ≤ (λ∗i gi(x))

2 + τ 2, i = 1, ...,m,

so, we have the following

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2 ≤
m∑
i=1

√
(λ∗i gi(x))

2 + τ 2, (4.12)

adding the expressions (4.11) and (4.12), we get

LH(x, λ
∗, τ) ≥ LH(x

∗, λ∗, τ), ∀x ∈ IRn, (4.13)

in this way, we �nish the proof of (4.5).

We are interested in verifying item (ii) now. But, �rst we will prove that

LH(x
∗, λ∗, τ) = f(x∗) +mτ. Indeed, by de�nition of LH , we have

LH(x
∗, λ∗, τ) = f(x∗)−

m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2, (4.14)

considering (4.10); (4.14) becomes

LH(x
∗, λ∗, τ) = f(x∗) +mτ. (4.15)
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On the other hand, as x∗ is feasible, i.e.,

gi(x
∗) ≥ 0, i = 1, ...,m. (4.16)

By applying the property P2 of HPF in (4.16), we obtain

P (gi(x
∗), λi, τ) ≤ P (0, λi, τ), i = 1, ...,m. (4.17)

By applying property P3, on the right side of expression (4.17), we will obtain

P (gi(x
∗), λi, τ) ≤ τ, for λi ≥ 0, i = 1, ...,m. (4.18)

By performing the sum of 1 to m in (4.18) it follows

m∑
i=1

P (gi(x
∗), λi, τ) ≤

m∑
i=1

τ = mτ.

Adding f(x∗) to both sides of the expression, we obtain

f(x∗) +
m∑
i=1

P (gi(x
∗), λi, τ) ≤ f(x∗) +mτ. (4.19)

By de�nition of LH , (4.19) becomes

LH(x
∗, λ, τ) ≤ f(x∗) +mτ. (4.20)

Now, by (4.20) and (4.15) we have

LH(x
∗, λ, τ) ≤ f(x∗) +mτ = LH(x

∗, λ∗, τ). (4.21)

Finally, from (4.13) and (4.21), there is λ∗ ≥ 0 such that the primal-dual solution

(x∗, λ∗) is a saddle point of LH , ∀x ∈ IRn and τ > 0.

(⇐) We assume that (x∗, λ∗) is a saddle point of LH , so (4.6) is hold. Then, for

all x ∈ IRn, λ ∈ IRm
+ and for any τ > 0 �xed, we have

f(x∗)−
m∑
i=1

λigi(x
∗) +

m∑
i=1

√
(λigi(x∗))

2 + τ 2 = LH(x
∗, λ, τ)
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≤ LH(x
∗, λ∗, τ) = f(x∗)−

m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2. (4.22)

From (4.22), we obtain

−
m∑
i=1

λigi(x
∗) +

m∑
i=1

√
(λigi(x∗))

2 + τ 2

≤ −
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2, (4.23)

for all λi ≥ 0, i = 1, ...,m.

This relation (4.23) is possible only if gi(x∗) ≥ 0. Since, if this relation is violated

(i.e., gi(x
∗) < 0) for some index i, we can choose λi su�ciently large such that (4.23)

becames false. So, x∗ is feasible for problem (P).

We will prove the complementarity condition of (4.5). So again, by (4.23), and since

that λi ≥ 0, i = 1, ...,m, in particular taking λi = 0, i = 1, ...,m, in (4.23), we obtain

m∑
i=1

τ ≤ −
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2,

m∑
i=1

τ +
m∑
i=1

λ∗i gi(x
∗) ≤

m∑
i=1

√
(λ∗i gi(x

∗))2 + τ 2,

thus, it follows that

m∑
i=1

(λ∗i gi(x
∗) + τ)2 ≤

m∑
i=1

(
(λ∗i gi(x

∗))2 + τ 2
)
,

follows that

m∑
i=1

(
(λ∗i gi(x

∗))2 + τ 2 + 2τλ∗i gi(x
∗)
)
≤

m∑
i=1

(
(λ∗i gi(x

∗))2 + τ 2
)
,

so,
m∑
i=1

λ∗i gi(x
∗) ≤ 0,
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and since λ∗i ≥ 0 and gi(x∗) ≥ 0, i = 1, ...,m, it must be true

λ∗i gi(x
∗) = 0, i = 1, ...,m. (4.24)

By (4.24) and de�nition of LH , we obtain

LH(x
∗, λ∗, τ) = f(x∗) +mτ. (4.25)

From de�nition of saddle point, we know that LH(x, λ
∗, τ) ≥ LH(x

∗, λ∗, τ), by (4.25)

and by de�nition of LH , we can write

f(x∗) +mτ = LH(x
∗, λ∗, τ) ≤ LH(x, λ

∗, τ) = f(x) +
m∑
i=1

P (gi(x), λ
∗
i , τ). (4.26)

On the other hand, once again considering property P2 of HPF, for any feasible point

x, i.e., gi(x) ≥ 0, i = 1, ...m, we will carry out a work similar to that of (4.16)-(4.19),

thus, we can obtain

f(x) +
m∑
i=1

P (gi(x), λ
∗
i , τ) ≤ f(x) +mτ, (4.27)

now, we replace (4.27) in (4.26), then follow

f(x∗) + τm ≤ f(x) + τm,

from this last inequality, we obtain f(x∗) ≤ f(x), whenever x is feasible. Therefore, x∗

is a global optimal solution of (P).

Let's consider the following de�nitions. Let

Fτ (x) = sup
λ≥0

LH(x, λ, τ).

Then Fτ (x) = f(x) + mτ, if gi(x) ≥ 0, i = 1, ...,m and Fτ (x) = ∞, otherwise.

Therefore, we can consider the following problem

x∗ = argmin {Fτ (x) | x ∈ IRn} , (4.28)

that is the problem (P) reduces to solving (4.28).
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Let

ϕτ (λ) = inf
x∈IRn

LH(x, λ, τ)

(possibly ϕτ (λ) = −∞ for some λ) and consider the following dual problem of (P),

that consisting of �nding

λ∗ = argmax {ϕτ (λ) | λ ≥ 0} . (4.29)

In the following result, we are going to verify the weak duality.

Proposition 4.1.2 Let x be a feasible solution to problem (P) and let λ be a feasible

solution to problem (4.29). Then

ϕτ (λ) ≤ Fτ (x) = f(x) +mτ, ∀x ∈ S, ∀ λ ∈ IRm
+ .

Proof. For any feasible x and λ, we then we can get the weak duality. Indeed, by the

de�nition of ϕτ , we have

ϕτ (λ) = inf
w∈IRn

LH(w, λ, τ) = inf
w∈IRn

{
f(w) +

m∑
i=1

P (gi(w), λi, τ)

}

≤ inf
w∈S

{
f(w) +

m∑
i=1

P (gi(w), λi, τ)

}

= f(x) +
m∑
i=1

P (gi(x), λi, τ). (4.30)

Since we know that x is feasible, we have gi(x) ≥ 0, i = 1, ...,m, immediately then,

for the property P2 of the HPF, we get the following expressions

P (gi(x), λi, τ) ≤ P (0, λi, τ), i = 1, ...,m,

we rewrite the expression above, as follows

m∑
i=1

P (gi(x), λi, τ) ≤
m∑
i=1

P (0, λi, τ),

now, we apply property P3, on the right side of the previous inequality

m∑
i=1

P (gi(x), λi, τ) ≤
m∑
i=1

τ = mτ,
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we add f(x), to both sides of the inequality above

f(x) +
m∑
i=1

P (gi(x), λi, τ) ≤ f(x) +mτ, (4.31)

we replace (4.31) in (4.30), so

ϕτ (λ) ≤ f(x) +mτ, ∀x ∈ S, ∀λ ∈ IRm
+ . (4.32)

If x̂ and λ̂ are feasible solutions of the primal and dual problems and Fτ (x̂) = ϕτ (λ̂),

then x̂ = x∗ and λ̂ = λ∗. From Remark 4.0.1, with the smoothness of f(x) and gi(x), i =

1, ...,m, we ensure the smoothness for the dual function ϕτ (λ).

Theorem 4.1.1 The problem (P) is considered. The assumption C2 is veri�ed. Then

the existence of a solution of problem (P) implies that the problem (4.29) has a solution

and

ϕτ (λ
∗) = f(x∗) +mτ, for any τ > 0. (4.33)

Proof. Let x∗ be a solution of problem (P). By C2, we get λ∗ ≥ 0, such that (4.5) is

veri�ed. So we have

ϕτ (λ
∗) = min

x∈IRn
LH(x, λ

∗, τ) = LH(x
∗, λ∗, τ)

≥ LH(x
∗, λ, τ) ≥ min

x∈IRn
LH(x, λ, τ) = ϕτ (λ), ∀λ ≥ 0.

Therefore ϕτ (λ
∗) = max

{
ϕτ (λ) | λ ∈ IRm

+

}
, in this way λ∗ ∈ IRm

+ is a solution of the

dual problem and since we have LH(x
∗, λ∗, τ) = f(x∗) +mτ, so (4.33) hold.

Proposition 4.1.3 Suppose that (4.33) holds, for the viable points x∗ and λ∗, then x∗

is a solution of the problem (P) and λ∗ is a solution of the dual problem (4.29).

Proof. Let gi(x∗) ≥ 0, i = 1, ...,m, with x∗ ∈ S, λ∗i ≥ 0, i = 1, ...,m and (4.33) with

τ > 0 �xed. Then for (4.32) where x and λ are viable, we can obtain the following

f(x) +mτ ≥ ϕτ (λ
∗) = f(x∗) +mτ ≥ ϕτ (λ),

that is, x∗ is solution of the problem (P) and λ∗ is solution of (4.29), which corresponds
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the validity of the strong duality.

4.2 Computational Illustration

We use HALA to guarantee the theory proposed in this work. The program were

compiled by the GNU Fortran compiler version 4:7.4.0-1ubuntu2.3. The numerical

Experiments are conducted on a Notebook with operating system Ubuntu 18.04.5, CPU

i7-3632QM and 8GB RAM. The unconstrained minimization tasks were carried out

by means of a Quasi-Newton algorithm employing the BFGS updating formula, with

the function VA13 from HSL library [35]. The algorithm stop when the solution is

viable (feasible) an the absolute value of the di�erence of the two consecutive solutions∣∣xk − xk−1
∣∣ is less than 1.D − 5.

We are going to take advantage of this section to make some comparisons of our

algorithm HALA (see Table 4.14) with respect to the following algorithms:

Alg1=[22] which is an truncated Newton method;

Alg2=[32] which is a primal-dual interior point method;

Alg3=[76] which is an interior-point algorithm;

Alg4= [63] which is a QP-free method;

Alg5=[6] which is a primal-dual feasible interior-point method;

Alg6=[88] which is a feasible sequential linear equation algorithm;

Alg7=[77] which is an inexact �rst-order method;

Alg8=[36] which is a feasible direction interior-point technique;

Alg9=[1] which is an interior point algorithm.
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4.2.1 Test Problems

With the following examples proposed in the book [38], we are going to verify the

strong duality. On the other hand, in each example, the value of m means the total

number of restrictions. Also, in all the examples starting points are considered, so that

assumption C2 is veri�ed.

Example 4.2.1 Problem 1 (HS1).

min
x∈IR2

f(x) = 100(x2 − x21)
2 + (1− x1)

2

s.t. g1(x) = x2 + 1.5 ≥ 0.

Starting with x0 = (−2, 1) (feasible), f(x0) = 909 and m = 1. The minimum value is

f(x∗) = 0 at the optimal solution x∗ = (1, 1).

Example 4.2.2 Problem 30 (HS30).

min
x∈IR3

f(x) = x21 + x22 + x23

s.t. g1(x) = x21 + x22 − 1 ≥ 0,

g2(x) = x1 − 1 ≥ 0,

g3(x) = 10− x1 ≥ 0,

g4(x) = x2 + 10 ≥ 0,

g5(x) = 10− x2 ≥ 0,

g6(x) = x3 + 10 ≥ 0,

g7(x) = 10− x3 ≥ 0.

Starting with x0 = (1, 1, 1) (feasible), f(x0) = 3 and m = 7. The minimum value is

f(x∗) = 1 at the optimal solution x∗ = (1, 0, 0).
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Example 4.2.3 Problem 66 (HS66).

min
x∈IR3

f(x) = 0.2x3 − 0.8x1

s.t. g1(x) = x2 − ex1 ≥ 0,

g2(x) = x3 − ex2 ≥ 0,

g3(x) = x1 ≥ 0,

g4(x) = x2 ≥ 0,

g5(x) = x3 ≥ 0,

g6(x) = 100− x1 ≥ 0,

g7(x) = 100− x2 ≥ 0,

g8(x) = 10− x3 ≥ 0.

Starting with x0 = (0, 1.05, 2.9) (feasible), f(x0) = 0.58 and m = 8. The minimum value

is f(x∗) = 0.5181632741 at the optimal solution

x∗ = (0.1841264879, 1.202167873, 3.327322322).

Example 4.2.4 Problem 76 (HS76).

min
x∈IR4

f(x) = x21 + 0.5x22 + x23 + 0.5x24 − x1x3 + x3x4 − x1 − 3x2 + x3 − x4

s.t. g1(x) = 5− x1 − 2x2 − x3 − x4 ≥ 0,

g2(x) = 4− 3x1 − x2 − 2x3 + x4 ≥ 0,

g3(x) = x2 + 4x3 − 1.5 ≥ 0,

g4(x) = x1 ≥ 0,

g5(x) = x2 ≥ 0,

g6(x) = x3 ≥ 0,

g7(x) = x4 ≥ 0.

Starting with x0 = (0.5, 0.5, 0.5, 0.5) (feasible), f(x0) = −1.25 and m = 7. The minimum

value is f(x∗) = −4.681818181 at the optimal solution

x∗ = (0.2727273, 2.090909,−0.26E − 10, 0.5454545).

44



Example 4.2.5 Problem 100 (HS100).

min
x∈IR7

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65

+7x26 + x47 − 4x6x7 − 10x6 − 8x7

s.t. g1(x) = 127− 2x21 − 3x42 − x3 − 4x24 − 5x5 ≥ 0,

g2(x) = 282− 7x1 − 3x2 − 10x23 − x4 + x5 ≥ 0,

g3(x) = 196− 23x1 − x22 − 6x26 + 8x7 ≥ 0,

g4(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7 ≥ 0.

Starting with x0 = (1, 2, 0, 4, 0, 1, 1) (feasible), f(x0) = 714 and m = 4.

The minimum value is f(x∗) = 680.6300573 at the optimal solution x∗ =

(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227).

4.2.2 Results

For each table, the letter N indicates the name of the problem, λ is the multi-

plier Lagrange, x is the primal variable, f(x) is the value of the objective function,

gi(x) are the constraints of each problem, LH(·, ·, ·) is the value of the HALF and

via = viable = feasible where, in each iteration, the obtained point can be viable, then

its value is “0 = yes′′ or the point can be inviable, then the value is “1 = not′′ and τ is

the penalty parameter. In all of our examples, we will use τ = 0.10E − 04. We are going

to analyze the Examples.

• Example 4.2.1: The HALA solves this example even though function f is noncon-

vex, see Tables 4.1 and 4.2.

• Example 4.2.2: the function f is strictly convex. From Table 4.3, we can see that

in iteration 2 the Theorem 4.1.1 can be veri�ed, that is, we have the following

f(x∗) +mτ = 1.00000000 + (7)(0.00001) = 1.00007

and

ϕτ (λ
∗) = LH(x

∗, λ∗, τ) = 1.00007,
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then, ϕτ (λ
∗) = f(x∗) + mτ. So, x∗ = (0.100000000E + 01, 0.100000000E + 01) is

the solution of the primal problem and from Table 4.4 and Table 4.5, we can see

the λ∗ is the solution of the dual problem in the iteration 2.

• Example 4.2.3: the function f is linear. From Table 4.6, we can see that in iteration

3 the Theorem 4.1.1 can be veri�ed, that is, we have the following

f(x∗) +mτ = 0.518163274 + (8)(0.00001) = 0.518243274

and

ϕτ (λ
∗) = LH(x

∗, λ∗, τ) = 0.518243274,

then, ϕτ (λ
∗) = f(x∗) +mτ. So, x∗ is the solution of the primal problem and from

Table 4.7 and Table 4.8, we can see the λ∗ is the solution of the dual problem in

the iteration 3.

• Example 4.2.4: the function f is strictly convex. From Table 4.9, we can see that

in iteration 2, the Theorem 4.1.1 can be veri�ed, that is, we have the following

f(x∗) +mτ = −4.68181818 + (7)(0.00001) = −4.68174818

and

ϕτ (λ
∗) = LH(x

∗, λ∗, τ) = −4.68174818,

then, ϕτ (λ
∗) = f(x∗) +mτ. So, x∗ is the solution of the primal problem and from

Table 4.10 and Table 4.11, we can see the λ∗ is the solution of the dual problem in

the iteration 2.

• Example 4.2.5: the function f is convex. From Table 4.2.2, we can see that in

iteration 2, the Theorem 4.1.1 can be veri�ed, that is, we have the following

f(x∗) +mτ = 680.630057 + (4)(0.00001) = 680.630097

and

ϕτ (λ
∗) = LH(x

∗, λ∗, τ) = 680.630097,

then, ϕτ (λ
∗) = f(x∗)+mτ. The optimal value x∗ is reported in the Table 4.2.2 and
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Table 4.1: Example 4.2.1
k x1 x2 f(x) LH(x, λ, τ) via

0 -0.200000000E+01 0.100000000E+01 0.909000000E+03 0.909000000E+03 0
1 0.100000000E+01 0.100000000E+01 0.976202768E-23 0.200017780E-11 0
2 0.100000000E+01 0.100000000E+01 0.976202768E-23 0.999999800E-05 0

Table 4.2: Example 4.2.1
g1(x)

k via λ1

0 0 0.100000000E+02
1 0 0.800470801E-12
2 0 0.800470641E-12

the optimal value λ∗ is reported in the Table 4.12.

In Table 4.14: we can see that HALA is more e�cient in the sense that it uses fewer

iterations with respect to the other algorithms. We can observe in the computational

results that the HALA remains in the viable region in all the examples. On the other

hand, despite being the theory developed in this work on convexity hypothesis, our

algorithm shows in the Example 4.2.1 that it can also solve non-convex problems.

Table 4.3: Example 4.2.2
k x1 x2 x3 f(x) LH(x, λ, τ) via

0 0.100000000E+01 0.100000000E+01 0.100000000E+01 0.300000000E+01 0.300001000E+01 0
1 0.100000179E+01 -0.773363648E-10 -0.477975865E-10 0.100000359E+01 0.100000755E+01 0
2 0.100000000E+01 -0.198472639E-09 0.162237191E-09 0.100000000E+01 0.100007000E+01 0
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Table 4.4: Example 4.2.2
g1(x) g2(x) g3(x)

k via λ1 via λ2 via λ3

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.367214575E+00 0 0.126557312E+01 0 0.610622664E-13
2 0 0.367214283E+00 0 0.126557139E+01 0 0.610622630E-13

Table 4.5: Continuation of Table 4.4
g4(x) g5(x) g6(x) g7(x)

k via λ4 via λ5 via λ6 via λ7

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.499600361E-13 0 0.499600361E-13 0 0.499600361E-13 0 0.499600361E-13
2 0 0.499600336E-13 0 0.499600336E-13 0 0.499600336E-13 0 0.499600336E-13

Table 4.6: Example 4.2.3
k x1 x2 x3 f(x) LH(x, λ, τ) via

0 0.000000000E+00 0.105000000E+01 0.290000000E+01 0.580000000E+00 0.580010000E+00 0
1 0.184125306E+00 0.120216905E+01 0.332733118E+01 0.518165991E+00 0.518168851E+00 0
2 0.184126486E+00 0.120216787E+01 0.332732231E+01 0.518163274E+00 0.518243274E+00 0
3 0.184126486E+00 0.120216787E+01 0.332732231E+01 0.518163274E+00 0.518243274E+00 0

Table 4.7: Example 4.2.3
g1(x) g2(x) g3(x) g4(x)

k via λ1 via λ2 via λ3 via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.665464690E+00 0 0.200000037E+00 0 0.147483137E-09 0 0.345945494E-11
2 0 0.665464311E+00 0 0.199999981E+00 0 0.147482736E-09 0 0.345945351E-11
3 0 0.665463933E+00 0 0.199999924E+00 0 0.147482336E-09 0 0.345945207E-11

Table 4.8: Continuation of Table 4.7
g5(x) g6(x) g7(x) g8(x)

k via λ5 via λ6 via λ7 via λ8

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.450750548E-12 0 0.111022302E-14 0 0.000000000E+00 0 0.113242749E-12
2 0 0.450750480E-12 0 0.111022301E-14 0 0.000000000E+00 0 0.113242740E-12
3 0 0.450750413E-12 0 0.111022300E-14 0 0.000000000E+00 0 0.113242731E-12

Table 4.9: Example 4.2.4
k x1 x2 x3 x4 f(x) LH(x, λ, τ) via

0 0.500000000E+00 0.500000000E+00 0.500000000E+00 0.500000000E+00 -0.125000000E+01 -0.125000000E+01 0
1 0.272727650E+00 0.209090766E+01 0.147253122E-05 0.545452356E+00 -0.468181418E+01 -0.468180958E+01 0
2 0.272727273E+00 0.209090909E+01 0.413220517E-10 0.545454545E+00 -0.468181818E+01 -0.468174818E+01 0

Table 4.10: Example 4.2.4
g1(x) g2(x) g3(x) g4(x)

k via λ1 via λ2 via λ3 via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.454545522E+00 0 0.186739513E-11 0 0.143196566E-10 0 0.672217837E-10
2 0 0.454545455E+00 0 0.186739456E-11 0 0.143196445E-10 0 0.672216605E-10
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Table 4.11: Continuation of Table 4.10
g5(x) g6(x) g7(x)

k via λ5 via λ6 via λ7

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.114352972E-11 0 0.172728506E+01 0 0.168043357E-10
2 0 0.114352972E-11 0 0.172728506E+01 0 0.168043357E-10

Table 4.12: Example 4.2.5
g1(x) g2(x) g3(x) g4(x)

k via λ1 via λ2 via λ3 via λ4

0 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02 0 0.100000000E+02
1 0 0.113971988E+01 0 0.000000000E+00 0 0.000000000E+00 0 0.368614695E+00
2 0 0.113971989E+01 0 0.000000000E+00 0 0.000000000E+00 0 0.368614517E+00
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Table 4.14: Iterations
N HALA Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Alg7 Alg8 Alg9

HS1 2 18 34 32 40 24 36 260 36 27
HS30 2 3 8 11 7 7 10 7 11 10
HS66 3 12 12 13 11 11 23 5 20
HS76 2 28 9 11 10 9 23 7 12
HS100 2 18 10 11 15 9 14 99 13 14
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Chapter 5

Conclusions

• The results presented in this work provide the necessary theoretical framework

for the construction of a new algorithm to which we give the name Hyperbolic

Augmented Lagrangian Algorithm. The convergence of the algorithm proposed

was also demonstrated. In this way, we introduce a new algorithm in the area of

mathematical optimization.

• The HPF belongs to class C∞. Hence, LH(x, λ, τ) will be class C∞ if the involved

functions f(x) and gi(x), i = 1, ...,m, are too. This is an outstanding property

from the computational point of view.

• The smooth behavior of the modi�ed objective function o�ers the possibility to use

the best unconstrained minimization techniques, which use second-order deriva-

tives.
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Chapter 6

Future Work

• Although important theoretical points have been developed, we are far from having

exhausted our studies. In fact, the connections between hyperbolic penalty and the

Lagrangian function extend even further the horizons of new theoretical lines and

practical experimentation to be researched.

• Considering this �rst work that contains results of existence and convergence with

strong assumptions, we consider it a future and natural work to carry out research

considering more relaxed assumptions, to obtain more general results.

• Extend the convergence result of the HALA for the nonconvex problem:

min
x∈IRn

f(x)

s.t. h(x) = 0,

l ≤ x ≤ u

where f : IRn → IR and h : IRn → IRm are continuously di�erentiable functions, l

and u are vectors in IRn corresponding to lower and upper bounds in the variable,

respectively, see [31]. This model is also studied in [3], [52], [19] and [74].

We are also interested in solving the following problem

min f(x)

s.t. gi(x) = 0, i = 1, ...,m < n

hi(x) ≤ 0, j = 1, ..., r

xmin ≤ x ≤ xmax,
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where x ∈ IRn, g e h are continuously di�erentiable, see [8]. This model is also

studied in [13] and [4].

• Solve the nonlinear programmin problem with equality constraints considering the

hyperbolic proximal algorithm

xk+1 ∈ argmin

{
LH(x, λ

k, τ) +
1

2ck
∥∥x− xk

∥∥2} ,
ck > 0 and update λk+1 as in (3.3). A similar idea can be seen at [42], [91] and [43].
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