
EMBEDDING OF BIPARTITE GRAPHS VIA GRAPH NEURAL NETWORKS

WITH APPLICATION TO USER-ITEM RECOMMENDATIONS

Lucas Lopes Rolim

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: Daniel Ratton Figueiredo

Jefferson Elbert Simões

Rio de Janeiro

Abril de 2022

EMBEDDING OF BIPARTITE GRAPHS VIA GRAPH NEURAL NETWORKS

WITH APPLICATION TO USER-ITEM RECOMMENDATIONS

Lucas Lopes Rolim

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E

COMPUTAÇÃO.

Orientadores: Daniel Ratton Figueiredo

Jefferson Elbert Simões

Aprovada por: Prof. Daniel Ratton Figueiredo

Prof. Jefferson Elbert Simões

Profa. Aline Marins Paes Carvalho

Profa. Priscila Machado Vieira Lima

RIO DE JANEIRO, RJ – BRASIL

ABRIL DE 2022

Lopes Rolim, Lucas

Embedding of bipartite graphs via graph

neural networks with application to user-item

recommendations/Lucas Lopes Rolim. – Rio de Janeiro:

UFRJ/COPPE, 2022.

XI, 56 p.: il.; 29, 7cm.

Orientadores: Daniel Ratton Figueiredo

Jefferson Elbert Simões

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2022.

Referências Bibliográficas: p. 52 – 56.

1. Graph Convolutional Network. 2. Graph

Embedding. 3. Recommendation Systems. I. Ratton

Figueiredo, Daniel et al. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

Ao meu pai, que personificou o

sentido mais puro de engenharia

ao ser um ávido e inquieto

criador e elaborador de todo tipo

de projetos durante toda a sua

vida.

iv

Agradecimentos

Agradeço aos meus pais, Raquel e Altair, pelo apoio incondicional durante toda

a minha vida e por abrirem mão de tudo que lhes era posśıvel para me dar cada

vez mais oportunidades de me tornar um ser humano melhor e independente. O

fato de acreditarem tanto em mim nunca me fez sequer parar para pensar se algo é

imposśıvel.

Agradeço a minha famı́lia e amigos, por sempre estarem do meu lado e serem

fonte de inspiração. Algumas pessoas argumentam que somos o produto de nossas

pessoas mais próximas e, nesse sentido, tenho orgulho de ser um pouco de tantas

pessoas incŕıveis.

Ao povo brasileiro e a Universidade Federal do Rio de Janeiro, por me propor-

cionarem um ensino de excelência desde minha graduação e democratizarem o ensino

de qualidade no Brasil. A educação transforma e, sem dúvida, os últimos sete anos

na UFRJ transformaram minha vida e a da minha famı́lia.

Agradeço também aos meus orientadores, Daniel e Jefferson, pela paciência e

dedicação em me acompanharem nesta jornada do mestrado. Sem o apoio e com-

preensão deles certamente esse projeto não seria posśıvel.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

EMBEDDING OF BIPARTITE GRAPHS VIA GRAPH NEURAL NETWORKS

WITH APPLICATION TO USER-ITEM RECOMMENDATIONS

Lucas Lopes Rolim

Abril/2022

Orientadores: Daniel Ratton Figueiredo

Jefferson Elbert Simões

Programa: Engenharia de Sistemas e Computação

Grafos codificam a estrutura definida por uma relação entre um conjunto de

objetos, representando uma informação importante para analisar problemas onde a

estrutura e caracteŕısticas associadas aos objetos fazem parte do fenômeno que se de-

seja entender ou prever. Uma classe de problemas na qual a utilização da estrutura é

fundamental é o desenvolvimento de sistemas de recomendação, como recomendação

de produtos para usuários em sistemas de comércio eletrônico. Nesses sistemas,

uma rede bipartida pode ser constrúıda na qual os objetos representam os usuários

e itens e as arestas relações como compra, visualização ou afins. A representação

de redes e objetos em espaço vetorial vem sendo utilizada com sucesso em muitas

aplicações, incluindo no contexto de sistemas de recomendação. Entretanto, a maior

parte das técnicas empregadas em sistemas de recomendação utilizam metodologias

que consideram apenas atributos estruturais ou intŕınsecos dos vértices e arestas,

de maneira apartada. Essa dissertação propõe uma metodologia de representação

para redes bipartidas utilizando redes neurais de grafos que é capaz de sintetizar a

estrutura da rede e os atributos dos vértices. A arquitetura de rede neural de grafos

proposta tem como objetivo representar vértices no espaço vetorial de maneira a

maximizar a distância entre vértices de diferentes grupos e minimizar a distância

entre membros do mesmo grupo. Ainda, métricas e metodologias para avaliação do

desempenho de modelos de redes neurais de grafos na tarefa de clusterização em rede

bipartidas são propostas. A arquitetura proposta é avaliada em diferentes cenários

e seus resultados são discutidos, bem como suas vantagens e limitações encontradas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

EMBEDDING OF BIPARTITE GRAPHS VIA GRAPH NEURAL NETWORKS

WITH APPLICATION TO USER-ITEM RECOMMENDATIONS

Lucas Lopes Rolim

April/2022

Advisors: Daniel Ratton Figueiredo

Jefferson Elbert Simões

Department: Systems Engineering and Computer Science

Graphs encode the structure defined by a relationship between a set of objects,

representing important information to analyze problems where the structure and

characteristics associated with the objects are part of the phenomenon to be un-

derstood or predicted. A class of problems in which the use of the structure is

fundamental is recommender systems, such as product recommendations for users

in e-commerce systems. In these systems, a bipartite network can be constructed

by defining vertices to represent users/items and edges to represent relationships

such as purchase or visualization. The representation of graphs (vertices) in vec-

tor space has been successfully used in many applications, including in the context

of recommender systems. However, most of the techniques used in recommender

systems use methodologies that consider only structural or intrinsic attributes of

vertices and edges separately. This dissertation proposes a representation method-

ology for bipartite networks using a graph neural network capable of synthesizing

the network structure and the attributes of the vertices. The proposed graph neu-

ral network architecture aims to represent vertices in vector space to maximize the

distance between vertices of different groups and minimize the distance between

members of the same group. Also, metrics and methodologies for evaluating the

performance of graph neural network models in the task of clustering in a bipartite

network are proposed. The proposed architecture is evaluated in different scenarios,

and its results, advantages, and limitations are discussed.

vii

Contents

List of Figures x

1 Introduction 1

1.1 Contributions . 4

1.2 Structure . 4

2 Background and related works 6

2.1 Graph and node embedding . 6

2.2 Structural node embeddings . 7

2.3 Graph Neural Networks Embeedings 9

2.3.1 Message passing . 11

2.3.2 Aggregation . 11

2.3.3 Update . 12

2.3.4 Graph Neural Network implementations 12

2.4 Recommendations using GNN . 15

2.4.1 Recomendation systems . 15

2.4.2 Graph Neural Network for recommendation problems 17

3 Proposed framework 21

3.1 General considerations . 21

3.2 GNN componenents . 22

3.3 Implementation . 25

4 Methodology and evaluation 30

4.1 Stochastic Block Model . 30

4.2 Node attribute generation . 31

4.3 Evaluation metrics . 33

4.3.1 t-SNE . 34

4.3.2 Purity Score . 35

4.4 Experiments and results . 36

4.4.1 Number of epochs . 37

4.4.2 Group size . 42

viii

4.4.3 Network connectivity . 44

4.5 Limitations of the model . 48

5 Conclusion and Future work 50

5.1 Future work . 51

References 52

ix

List of Figures

1.1 Zachary’s Karate Club graph . 1

2.1 Graph embedding function. 6

2.2 Example of word2vec using CBOW. 8

2.3 Example of graph embeddings inspired by word2vec. 8

2.4 GNN’s building blocks . 9

2.5 Convolutional GNN, attentional GNN, and message passing GNN. . . 10

2.6 Example of max pooling operation 14

2.7 GraphSAGE results . 14

2.8 Matrices used in collaborative filtering to perform recommendations. . 16

2.9 PinSage results compared to other Pinterest recommendation models. 19

2.10 GNN model developed by Uber Eats to perform recommendations. . . 20

3.1 Diagram of the proposed GNN architecture and its components. . . . 23

3.2 Sampling strategy adopted to create mini-batches. 25

3.3 Code implementation for the proposed custom convolutional layer. . . 27

3.4 Code implementation for the heterogeneous node layer (user and items). 28

3.5 Code implementation for the loss of the proposed framework. 28

3.6 Code implementation of sampling strategy to select positive examples. 29

4.1 Overview of classes relationship using SBM to network formation. . . 31

4.2 Generation of the initial embedding (h0) step by step. 32

4.3 Comparison of initial embedding (h0) using different scaling parameters. 33

4.4 Proposed methodology to perform experiments and evaluate results. . 34

4.5 Illustration of the nearest neighbor for calculating the purity score. . 36

4.6 Evolution of item embedding over the epochs. 38

4.7 Evolution of user embedding over the epochs. 38

4.8 Evolution of purity distributions (histogram) over epochs. 40

4.9 Purity score distribution for item and users, stratified by group. . . . 41

4.10 Boxplots of the purity score for each group of users and items before

and after training . 42

4.11 GNN result for a network with 1024 nodes and four groups. 43

x

4.12 GNN result for a network with 10024 nodes and four groups. 44

4.13 Evolution of node embeddings over the epochs for two different edge

probabilities (item) . 46

4.14 Evolution of node embeddings over the epochs for two different edge

probabilities (user) . 47

4.15 Example of a limitation of the framework. 49

xi

Chapter 1

Introduction

Graphs are mathematical abstractions to represent relationships and frequently use

pairwise associations of real systems, such as protein interactions and social ties.

In addition, graphs are composed of entities represented by nodes and connected

by edges representing relationships. For example, Figure 1.1 represents the social

network (edges represent social interactions) for members of a karate club where

structural patterns emerge indicating the existence of groups within the club (iden-

tified with different colors). The graph also reveals two nodes with many interactions

(node 0 and node 33), which correspond to two club leaders.

Figure 1.1: Zachary’s Karate Club graph representing members’ interactions outside
the club, used by Wayne W. Zachary [1] to study social networks. Figure extracted
from [2].

Representing relational data as graphs is especially useful when structure and its

emerging properties are inherent and fundamental parts of the task to be solved or

the problem to be studied. For example, the understanding of social interactions is

enhanced by representing the social behavior as rules that create connections (edges)

1

between individuals (nodes) in order to apply techniques from Social Network Anal-

ysis [3]. For example, the drug discovery process is accelerated by decomposing

the possible components in nodes and simulating relationships in a graph of pro-

tein interactions [4]. Indeed, almost all problems where the structure induced by

the relationships is essential can use graphs for a better understanding or a better

solution of a problem.

Besides their practical applications, graphs are also an important branch of math-

ematics and the foundation for at least two knowledge areas: graph theory and

complex systems. The abstractions and mechanisms defined in graphs provide a

theoretical base for developing research and formal study of the properties and be-

havior of many systems. Problems such as graph coloring (coloring a graph so that

no two adjacent vertices have the same color) and routing (go from point A to point

B with the condition of visiting a set of intermediate points) are examples of areas

where graph provides the mathematical foundation for the development of a vast

collection of research and applications.

For many years, e-commerce vendors like Amazon and Uber Eats have been us-

ing machine learning models with graphs to recommend products to their users or

find users with similar interests. In 2003, Amazon pioneered the use of graphs for

product recommendation using the collaborative filtering model, which massively

increased sales [5, 6]. Since then, e-commerce vendors have been collecting massive

data about user-product interactions and extracting value from these representa-

tions. Machine learning and statistical models augmented with graph representa-

tions proved to generate better results and were incorporated as an essential part of

modern recommendation systems.

Modern recommendation systems focus on using statistical and mathematical

methods to provide personalized and relevant user recommendations based on con-

text and user estimated interests. For example, the recommendation system of a

restaurant platform may recommend a dish to a user, while the recommendation sys-

tem of a media platform may recommend a news article. Recommendations are a

fundamental ingredient of all large-scale (and medium-scale) online services, directly

related to user satisfaction and revenue.

A famous case of recommendation system development was the Netflix com-

petition organized in 2006 that paid 1 million dollars to the team that improved

the recommendations of relevant movies to users based on their history of watched

movies on the platform [7]. The winning team used a combination of KNN, SVD,

and ensembles to solve the problem [8], indicating the potential for specialized and

personalized models.

Another common cases for the usage of recommendation systems are content

discovery and customer relationship management (CRM) enhancement. Companies

2

like Youtube, with billions of items in their catalog, use recommendation systems to

help users navigate and retrieve relevant and personalized content without much ef-

fort or time [9]. Industry leaders such as Salesforce embed recommendation systems

in their services to improve communication with customers and the sales process

[10]. In confluence with many other use cases, such as decision-making support and

content personalization, recommendation systems have been representing billions of

additional revenue for online companies in the last decade.

Despite the importance of the structure of interactions, almost all classic recom-

mendation systems consider the structure and user/product features as two separate

pieces of information until recent times. Models such as collaborative filtering con-

sider just the user-products iterations, while content-based models consider just

entity attributes and ignore structure. Models that join these two aspects represent

novel research opportunities.

Graph neural network (GNN) is an alternative to existing graph representation

methods that consider just graph structure for representing nodes in the vector

space. In particular, GNN is a framework that blends features of entities with

graph structure while learning a representation for entities. The graph convolutional

network technique proposed by Kipf in 2016 applies a process called message passing

to aggregate neighborhood information, which was inspired by convolutional neural

networks that had great success in computer vision [11]. Since then, companies like

Uber Eats, Pinterest, LinkedIn, and Twitter have incorporated GNN models into

their recommendation systems and achieved significant improvements, resulting in

a new state-of-the-art for the field of recommendations.

Pinterest was a pioneer in using GNN for recommendation and improved users’

experience navigating their service by developing a GNN model named PinSage to

provide recommendations using a bipartite graph [12]. Twitter and other social

network companies leverage GNN models to successfully identify fake accounts and

bot behavior. Further, researchers are also using GNN for tasks beyond the recom-

mendation scope, such as traffic prediction [13] and molecule classification [14].

The goal of this dissertation is to investigate existing GNN models and propose

a simplified GNN model that can be applied in the context of recommendations

for bipartite graphs of user-item interactions (a common e-commerce scenario). A

second goal is to propose a framework for model evaluation and benchmarking of

GNN models that is agnostic to datasets and can provide many different scenarios

with tunable parameters such as network structures and initial node embedding.

In particular, the lack of a theoretical framework to evaluate GNN models in a

controlled environment is a current limitation of the field.

3

1.1 Contributions

This work main contributions are:

• Formulate a novel node embedding model for bipartite graphs using graph

neural networks. The proposed model generates separate embeddings for each

type of node (users and items) but leverages the network structure and node

attributes, better exploring the trade-offs among performance, model complex-

ity, and model size.

• Propose a metric (purity score) for evaluating GNN models that generate

representations that are used in recommendation tasks.

• Propose a methodology for generating synthetical networks to evaluate GNN

models in different scenarios. The methodology seeks to reduce the lack of

reproducibility in machine learning experiments for recommendations and iso-

late the influence of specific datasets.

• Conduct empirical evaluation of the proposed GNN model and its results under

different scenarios. The results indicate that the proposed model can generate

excellent results with relatively little training complexity.

1.2 Structure

The remainder of the text is organized as follows:

• Chapter 2 presents a review of the literature on graph embeddings, recommen-

dation systems, and their applications. The most prominent types of graph

embeddings, fundamental aspects of graph neural networks, and the current

state of research for GNN models are discussed. Moreover, the behavior and

relevance of recommendation systems is also discussed, such as how researchers

and practitioners implement GNN models to perform recommendations in the

industry

• Chapter 3 presents the proposed framework, its similarities and differences in

comparison to other GNN models, and the technical approach to implement

the framework efficiently

• Chapter 4 describes the proposed methodology for generating synthetical net-

works for evaluating GNN model as well as the evaluation metrics used. The

proposed model is submitted to different scenarios to evaluate its robustness to

network structure, node attributes, or node communities. Results are reported

as a function of node type and training effort.

4

• Chapter 5 draws conclusions regarding the proposed model and points to pos-

sibilities for future works

5

Chapter 2

Background and related works

This section will shed light on state-of-the-art approaches to perform recommenda-

tions in data represented by graphs. Section 2.1 presents the concept of structural

embeddings and how this methodology emerged as a better solution to prominent

methods for graph embeddings based on Laplacian regularization. Section 2.3 elab-

orates the building blocks behind Graph Neural Networks (GNN), a framework

that iteratively aggregates feature information from local graph neighborhoods us-

ing neural networks. Section 2.4 presents some traditional approaches to recommen-

dation systems and then explains the way modern Graph Neural Networks (GNN)

recommendations systems work and how they consistently outperform traditional

techniques.

2.1 Graph and node embedding

Figure 2.1: Example of a graph embedding function f that takes a graph (Karate
Club Network) as input and returns node representations in two-dimensional space.

Graph embedding, as shown in Figure 2.1, is the task of representing graphs

and nodes in a vector space in order to use this representation to perform tasks like

6

recommendation or classification. First, we will introduce structural graph embed-

dings methods and how they use a multi-step pipeline composed of random walk

simulation and semi-supervised training to create graph representations. Then, we

will shed light on the core ideas behind graph neural networks and how it itera-

tively aggregates feature information from local graph neighborhoods using neural

networks to learn representation for nodes.

In this work, the following notations will be adopted:

• G for an arbitrary graph;

• V and E for the set of nodes and edges in the graph G;

• U and I two sets of nodes in the graph G (usually related to users and items);

• n and m for the number of nodes and edges in the graph G;

• h for node embeddings, where h(v) is a embedding in a vector space for node

v.

2.2 Structural node embeddings

The term structural embedding refers to the set of methods that use structural

information from a graph to create representations that preserve the sense of node

similarity according to the node’s neighborhood or structural role. Most of these

works are inspired by the word2vec algorithm [15], vastly used in natural language

processing (NLP) to represent words and phrases in low-dimensional vector spaces.

In word2vec, the model learns to predict a word given its nearby words within

a window of context. Word2vec loops through all words in a sentence using it as

input for training a classifier to predict a target word given a context neighborhood,

considering the hypothesis that similar words are in similar words contexts. A

trained word2vec model with continuous bag of words (CBOW) gets a context of

words before and after a target spot and predicts the most likely word to fill this

spot. The algorithm optimizes the likelihood objective using stochastic gradient

descent (SGD) with negative sampling, enhancing word vector representations to

maximize the predictor performance. Words in similar contexts will have similar

low-dimension embeddings. An illustration is shown on Figure 2.2.

In most structural algorithms for node embedding, the notion of words is replaced

by node identifiers, and sequences of nodes are generated to replace sentences. The

embedding process is represented in Figure 2.3.

One of the most adopted graph embeddings approach inspired on word2vec is

node2vec [16], which is an improvement of the also well-known Deepwalk algorithm

7

Figure 2.2: Word embedding using word2vec and CBOW, with a window size of 2
and an arbitrary projection layer. Context words are in blue and target words are
in red. Note that projection layers are usually neural networks that learn how to
aggregate nearby words to predict the target.

Figure 2.3: Embedding generation in graph embedding structural algorithms, using
a mechanism analogous to word2vec (CBOW).

[17]. In node2vec, a set of biased random walks is performed for every node in

order to generate a sequence of nodes of an arbitrary length L. The model also has

parameters that fine-tune the importance of structural and community similarity

among nodes, that approximate the biased random walk to the behavior of a BFS

or DFS graph traversal.

Another prominent algorithm based on word2vec is struc2vec [18]. The struc2vec

algorithm focuses on identifying structural identity of nodes and uses a multigraph

and dynamic time warping (DTW) on degree sequences to measure structural sim-

ilarities between nodes. These distance measures are used to build a multilayer

weighted graph where random walks are used to generate sequences of nodes.

Both node2vec and struc2vec use a model similar to CBOW to predict the miss-

ing node within the node sequences iteratively and update a general weights matrix.

One disadvantage of these methods is the lack of consideration of node features,

which can play a significant role in node similarity in some contexts.

Finally, even with their limitations, structural embeddings techniques are vastly

8

and successfully used in various contexts, from biogenetics to social networks analysis

[19].

2.3 Graph Neural Networks Embeedings

According to the definition of Kipf [20], a Graph neural network (GNN) is a model

to learn a signal on a graph G which takes as input a feature description hi,∀i and

a description of the graph structure in matrix form and produces node-level output

Z. Equation 2.1 defines a general form for the model and its building blocks.

The process to generate Z is composed of a series of iterations stacking layers

and/or epochs to compute a final embedding hz. At iteration k + 1, for each node

v ∈ V the node representation is calculated by:

hk+1
u = σ(hku,Θ(hkv ,∀ ∈ N (u)))), (2.1)

Here, hku is the embedding of node u at the iteration k; Θ is the aggregation func-

tion that joins information from node’s u neighborhood; and σ is what is known as

update function, responsible for transforming the result of the aggregation function

and the current embedding representation of node u into a new embedding for node

u. The idea behind this is illustrated in Figure 2.4.

Figure 2.4: GNN’s building blocks illustrated for iteraction k and u = 5.

Graph neural networks are a generalization of most of the current deep learning

architectures. Approaches like deep convolutional networks (DCN) and recurrent

neural network (RNN) can be represented as GNN architectures with the addition

of structure information. In particular, it can be argued that DCN is a particular

case of GNN for grid graphs (images’ pixels) and RNN is a particular case of GNN

for line graphs.

9

Beyond the geometric generalization, the key idea of GNN models is to generate

representations that depend on both graph structure and node feature. Therefore,

combining nodes’ structural position and features is a key advantage if comparing

GNN models with structural embeddings techniques that generate low-dimension

embeddings using just network structure to generate a unique embedding vector for

each node.

According to Bronstein [21], the vast majority of works based on GNN are de-

rived from three flavors of GNN layers, which are: convolutional, attentional, and

message passing. The difference among these GNN flavors is the strategy used to

aggregate neighborhoods. In the convolutional flavor [11], the one-hop neighbor-

hood is aggregated using the normalized sum of the node features of neighbors. In

the attentional flavor [22], the interactions are implicit, and the neighborhood is ag-

gregated according to learned attention coefficients α. Finally, the message passing

flavor amounts to computing arbitrary vectors across edges.

Note that the three flavors of GNN, represented in Figure 2.5, have a containment

relationship, where convolution ⊆ attention ⊆ message passing. The attentional

GNNs can represent convolutional GNNs using a lookup table with αu,v = cu,v,

where α is the attention between nodes u and v and w is the weight between the

same nodes. Also, we can represent both attentional and convolutional models as

particular cases of message passing where the messages are only the node features

multiplied by some vector mu,v

Figure 2.5: Both convolutional and attentional architectures aggregate the neigh-
bor’s representations vectors Xi to generate new node representations. The convo-
lutional GNN architecture aggregates the node’s neighborhood according to edge
weights c, while attentional architecture uses learned aggregator weights α. On the
other hand, the message-passing architecture aggregates arbitrary vectors generated
by each neighbor. Image extracted from [21].

Since the message passing approach is more general is worth we focus on describ-

ing its general characteristics and limitations.

10

2.3.1 Message passing

The intuition behind GNN message passing is that, at each iteration, every node

will aggregate information from its local neighborhood and generate an embedding

with information that mixes the node’s initial embedding and graph structural in-

formation. After k iterations of GNN message passing, the embeddings for each

node encode information about features in their k-hop neighborhood. The informa-

tion in the message is arbitrary, but it is usually the embedding of the node with

some transformation. The neighbors keep these messages in a so-called mail-box

and further aggregate them using some arbitrary aggregation function that will be

described in sections 2.3.2 and 2.3.3.

It is worth noting that the mail-box is an abstraction for retaining messages

before aggregation and not part of the theory behind GNNs. In practice, different

strategies can be implemented to retain messages, according to the target technology

or usage.

2.3.2 Aggregation

The aggregation function dictates how to merge the information from the node’s

neighborhood in a single vector representation, which will be combined with the

node’s embedding in the update step. The aggregation mechanism is the core of

GNNs and one of the most explored in the literature, mainly because it is possible

to perform different convolution operations. In the aggregation step, the aggregation

function Θ receives information from a set of neighborsN and returns a single vector

H that better encodes all the neighborhood characteristics. This function can vary

from simple operations like sum and average to complex aggregations like using

neural networks to aggregate the inputs.

Note that Θ is fundamentally a set function, which means it should be permuta-

tion invariant. Permutation invariant functions do not depend on the order of their

inputs. In the GNN case, the invariant property relates to the order of rows and

columns in the adjacency matrix, which is determined by the node identifiers. This

property is crucial because there is no natural order in a node’s neighborhood, and

the same graph can have different node ids depending on the graph initialization.

Although, as we will see in the following sections, most works use simples aggrega-

tions and order permutation strategies, works like [23] and [24] achieved good results

applying a canonical order to neighbors and using functions that consider order like

LSTM.

Finally, this is the most important building block of a GNN because, in the

most relevant GNN implementations, the parameters of the aggregation function

are trained, not the initial vector representation of the nodes. Training the parame-

11

ters of the aggregation function makes GNN much more computational effective and

also inductive, instead of transductive. The idea is training aggregations that elimi-

nate the necessity of having the full graph Laplacian in each iteration. As argued by

Hamilton [25], the most significant advantage of inductive learning is efficiently gen-

erating representations for nodes unseen during training. In transductive methods,

model retraining is needed for new nodes, which can be computationally infeasible,

especially on a large industrial scale. In the inductive method, as the aggregation

weights are learned, no retraining is needed unless in cases of data drift.

2.3.3 Update

The update function commonly consists of simple operations like a sum or average

between the node’s representation hku and the aggregated neighbors’ representations

Θ(hkv), followed by a non-linear function σ. A common issue when designing these

functions is known as over-smoothing, which occurs when after several GNN iter-

ations, the representations of all the nodes become very similar. The smoothing

occurs because the neighbors’ influence subjugated the node’s initial representation.

To address over-smoothing and optimize the update step, works like [26] and [27] try

to apply analogies to usual deep learning methods like skip connections and gated

connections.

The update step is where the aggregated information from the node neighbor-

hood is combined with the node information. This step is optional, once it is possible

to add self-loops in the graph and mix the node information during the aggregation

step, but this leads worst results [28] and severely narrows how to prioritize the node

information over the neighborhood information.

The vector representation resulting from the update step is used in the next

iteration in the message-passing step.

2.3.4 Graph Neural Network implementations

The first prominent and vastly explored neural network implementation on graphs

was the Graph Convolutional Network model, proposed by Kipft [20]. The model was

proposed to address the scalability limitations of other models at the time [29, 30],

which requires learning node degree-specific weight matrices and does not scale to

large graphs. As an alternative, the graph convolutional network was introduced

as a model that uses a single weight matrix per layer and deals with different node

degrees by applying normalizations in the adjacency matrix.

The original model proposed by Kift consider a multilayer graph convolutional

network (GCN) with the following layer-wise propagation rule (in matrix notation):

12

H(l+1) = σ(D−
1
2AD−

1
2H(l)W (l)) (2.2)

Here, A is the adjacency matrix of the undirect graph G with added self-

connections, D =
∑
Aij, W

(l) is a layer trainable weight matrix, σ is a non linear

function, and H(l) is the matrix representing node representations at layer l. A neu-

ral network model is constructed by stacking multiple convolutional layers of this

kind and adding activations functions like softmax to perform tasks such as node

classification and link prediction.

It is possible to draw a parallel between the GCN model and the GNN building

blocks previously described: message passing works gathering node representations

from all neighbors; the aggregation is the product of the normalized adjacency ma-

trix by the node representations; the update is handled by a ReLU and multiplication

by a trainable weight matrix.

The results of GCN models outperform state-of-the-art structural embedding

approaches by a significant factor, mainly because of the capacity to merge structural

and node information [20].

Furthermore, Hamilton et al. proposed GraphSAGE [25] to extend GCN to the

task of inductive unsupervised learning through to the use of trainable neighbor-

hood aggregation functions beyond simple convolutions. As in GCN, the Graph-

SAGE model was proposed to solve scalability problems faced when considering the

representation of nodes unseen in training. Unlike GCN, GraphSAGE is inductive,

which means it does not need to train using all the nodes in the graph to gener-

ate representations for nodes unseen in training. Hence, the inductive capability is

essential for high-throughput, production machine learning systems, which operate

on graphs and constantly encounter unseen nodes.

Instead of training a distinct embedding vector for each node, GraphSAGE trains

the parameters of a set of aggregator functions that learn to aggregate feature in-

formation from a node’s local neighborhood. Each aggregation function aggregates

information from a different number of hops away from the node. GraphSAGE au-

thors considered a series of aggregation functions, and the max polling aggregation

was shown as the one with the best performance.

Pooling is an operation vastly used in convolutional neural networks (CNN) to

help reduce over-fitting and reduce the computational cost by reducing the number

of parameters to learn. As illustrated in Figure 2.6, the main idea behind a pooling

operation is to aggregate features and reduce the resolution but retaining maps,

especially in the case of images. Max pooling is done by applying a max filter to

(usually) non-overlapping subregions of the initial representation. In GNN max

pooling aggregation strategy, each neighbor’s vector is independently fed through a

13

fully connected neural network; following this transformation, an elementwise max

polling operation is applied to aggregate information across the neighbor set.

Figure 2.6: Max pooling operation reducing feature map from a grid of features
(e.g., image) from 4x4 to 2x2.

Equation 2.3 represent a max pooling operation, where Θpool
k represents the max

pooling aggregation at layer k; σ is a non-linear function; Wk is the trainable weight

matrix at layer k; N (v) is a set of neighboors for a target node v; and b is a bias

parameter.

Θpool
k = max(

{
σ(Wkh

k
u + b),∀u ∈ N (v))

}
) (2.3)

As with GCN, it is possible to draw a parallel between the GraphSAGE model

and the building blocks described: gathering the representations from a fixed number

of uniformly sampled neighbors serves as the massage passing mechanism; max-

polling implements a trainable aggregation strategy; the update is performed by a

combination of a ReLU and a linear function in the concatenation of the current

node embedding and the neighborhood aggregation.

GraphSAGE outperforms not only structural embedding models but also the

GCN approach, as shown in the Figure 2.7, taken from [25].

Figure 2.7: GraphSAGE results. Table taken from [25]
.

14

2.4 Recommendations using GNN

This section presents the concept of recommendation systems and how GNN meth-

ods can be implemented to excel in this task.

2.4.1 Recomendation systems

Recommendation systems are a fundamental building block of the modern informa-

tion society, with applications ranging from drug discovery to item recommendation

in e-commerce. These systems primarily work indicating the most well-fitted an-

swer for a given query, where the fitting function can represent similarity or affinity

concerning the topic and the agent making the query. The query can vary from

information about a user to specific information about an item from inventory. Rec-

ommendations systems are often used to identify similar users or items or even to

determine affinities between these two entities.

In addition, these systems receive two different kinds of feedbacks in order to

improve their recommendations: explicit feedback, when users specify how much

they liked a particular answer, and implicit feedback, when a user interacts with an

item. In the e-commerce scenario, for example, these feedbacks are mostly product

purchases and visualizations, respectively.

Content-Based and Collaborative Filtering are the most traditional and explored

methodologies for recommendation systems. In content-based recommendations, the

system uses manually defined features to place entities in a vector space according to

some function. The search for similar entities in the vector space is then performed

using metrics for distance in the Euclidean space, such as dot product or cosine sim-

ilarity. However, the most significant drawbacks of content-based recommendation

systems are that the model can only make recommendations based on the user’s

existing interests and that results highly depend on manually defined features, and

thus much domain knowledge.

On the other hand, the collaborative filtering approach utilizes the user-item

interaction to build a matrix of implicit feedback. To address some limitations of

content-based filtering, collaborative filtering uses similarities between users and

items simultaneously to provide recommendations. Thus, collaborative filtering

models can recommend an item to a user based on the interests of a similar user.

This methodology has the advantage of not requiring explicit domain knowledge

but has the drawback of a more prominent cold-start. In summary, the cold-start

problem means if an item is not seen during training the system cannot create an

embedding for this item, and thus cannot generate answers with this item.

In collaborative filtering, the user-item interaction sparse matrix is an interaction

graph. To train the model, practitioners commonly use the technique of matrix

15

factorization, which consists of using the matrix of users embeddings U ∈ Rm×d

and the matrix of items V ∈ Rn×d to learn UV T such that it approximates the

interaction matrix A. The most common approaches are single value decomposition

(SVD) or weighted matrix factorization (WMF). Once decomposed, we can use the

latent factors of the matrix to generate recommendations.

Equation 2.4 represents the weighted matrix factorization algorithm. It calcu-

lates the sum over observed and unobserved entries, using a hyperparameter w0 to

weight unobserved entries to better handle matrix sparsity and increase algorithm

capacity to generalize [31]. Note that U is the user embedding matrix; V is the item

embedding matrix; E is the set of edges representing interactions between users and

items; A is the weighted adjacency matrix; w0 is a hyperparameter that weights the

two terms so that the objective is not dominated by one or the other.

min
U∈Rm×d,V ∈Rn×d

∑
(i,j)∈E

(Aij − 〈Ui, Vj〉)2 + w0

∑
(i,j)/∈E

(〈Ui, Vj〉)2 (2.4)

The intuition behind the algorithm is shown in Figure 2.8.

Figure 2.8: Matrix A represents the number of interactions for each pair of users
and items; U and V are the matrices that the model will learn to represent users
and items so that their product results in a good approximation of the feedback
matrix A. The figure illustrates the elements involved in the matrix factorization
and collaborative filtering process.

Furthermore, there are plenty of deep learning approaches that try to provide

recommendations at scale. Hidasi et al. [32] propose a session-based recommen-

dation method using recurrent neural network (RNN), where users-item iterations

are treated as input sequences. Youtube uses two neural network models in their

recomendation system to generate search candidates and rank them. The first deep

neural network (DNN) model generates a set of candidates from billions of records

based on the current context, and the second DNN model ranks the candidates using

the user’s historical behaviors [33].

Still, these methodologies cannot efficiently combine an entity’s features and

16

structural roles. While content-based and deep learning approaches are fully focused

on entity features, collaborative filtering uses only structural information from the

user-product interaction graph.

2.4.2 Graph Neural Network for recommendation problems

In recent years, graph neural networks has started to be applied to making recom-

mendations. Most of these implementations are enhancements of the GraphSAGE

algorithm, with the primary motivation of merging structural properties and node

attributes to provide recommendations. As shown in the following examples, re-

searchers and practitioners consistently observe that GNN based models outperform

traditional models like collaborative filtering and content-based recommendations.

GNN methods take advantage of users and items vector representations created

from unstructured data – like images using VGG16 [34] or text using BERT [35] –

to create a new level of personalization in products.

The first large-scale recommendation system based on GNN was Pinterest’s Pin-

Sage [12]. Pinterest is a content discovery application where users interact with

pins, which are visual bookmarks to online content. Users organize these pins into

boards, which contains collections of pins user considers to be thematically related.

In 2018, the Pinterest team developed PinSage as a supervised model for edge re-

gression and node embedding in a bipartite graph between pins and boards. The

generated embeddings are used as input to methods like approximated k-nearest

neighbors to find similar items. Formally, we can formulate the Pinterest problem

as follows:

Considering a bipartite graph consisting of two disjoint sets I containing pins and

C containing boards, where each of the nodes of these sets has attributes xi∀i ∈ I
and yc∀c ∈ C. Also, assuming a set of labeled pairs of items L where the pairs in

the set (i, c) are assumed to be related. The goal of the model is to optimize the

parameters of the model such that output embeddings pairs are closer together.

The primary motivation for Pinterest was that previous models based on GNN

did not scale to large graphs with billions of edges and nodes, mainly because all

these existing methods operate in the full graph Laplacian during training. Tradi-

tional GCN algorithms perform graph convolutions by multiplying feature matrices

by powers of the full graph Laplacian. In contrast, the PinSage algorithm constructs

an optimized computation graph sampling the neighborhood around a node. In gen-

eral, PinSage improves GraphSAGE by removing the limitation of storing the whole

graph in the GPU and implementing engineering tricks like producer-consumer mini-

batches and efficient MapReduce usage to improve performance without changing

the fundamental nature of the original GraphSAGE.

17

From the point of view of the GNN mechanism, PinSage implements two rele-

vant changes on GraphSAGE: importance neighborhood sampling and max-margin

loss. While GraphSAGE randomly samples nodes from the neighborhood, PinSage

makes usage of an importance-based neighborhood sample based on random walks

similar to the Personalized Pagerank strategy [36]. Concretely, the PinSage sam-

plings perform a series of random walks starting at a given reference node u and

counting the L1 normalized number of visits to each of their neighbors. Then, the

top T neighbors are chosen as the neighborhood to be used in the aggregation step.

Furthermore, PinSage utilizes the max-margin loss shown in equation 2.5 for

training the model, where Pn(q) denotes the distribution of negative examples for

item q, and 4 denotes the margin hyper-parameter. These loss functions help to

generate embeddings that incorporate the notion of rank similarity among different

items. Also, the concept of “hard negatives,” is explored by adequately selecting

negative examples that are hard to distinguish from positive examples as a strategy

to accelerate and improve training.

L = Enk∼Pn(q)
max {0, hqhnk

− hqhi +4} (2.5)

Pinterest reported that PinSage considerably outperforms their previous state-

of-the-art model based only on the network structure known as Pixie [37]. A com-

parison of their model results is shown in Figure 2.9.

Another company taking advantage of GNN methods to provide recommenda-

tions on a large scale is Uber Eats [38]. The Uber Eats app serves as a portal to

more than 320,000 restaurant-partners in over 500 cities globally across 36 coun-

tries. They need recommendation systems to generate recommendation carousels

for both restaurant and menu items based on user preferences. Like Pinterest, the

Uber Eats model is primarily an adaptation of GraphSAGE for their use case. Uber

Eats also applies a GNN model to a bipartite graph. However, in their case, the na-

ture and dimensionality of the representation of node type are different. Embedding

from users and items came from different representation models and had different

dimension sizes. Thus, an additional projection layer was added to GraphSAGE to

project input features on input vectors of the same asize depending on the node

type (dishes, users, restaurants). Moreover, they adapted the original GraphSAGE

algorithm to work with weighted networks, as user-dishes interactions are reported

as a critical signal in their business context.

The modified aggregation and update step used by Uber Eats can be summa-

rized in equation 2.6. Note that Wk and Bk are aggregation matrices that must

be trained. Figure 2.10 shows a diagram that summarizes the model. The model

input is a weighted bipartite graph from dishes and users that feeds a GNN layer,

18

Figure 2.9: “The image to the left represents the query item. Each row to the right
corresponds to the top recommendations made by the visual embedding baseline,
annotation embedding baseline, Pixie, and PinSage.”. Extracted from [12].

surrounded by the largest rectangle, which can be indefinitely stacked. For every

layer, nodes receive messages through the massing passing process from a sampled

neighborhood and aggregate the received embeddings h using a function Θ that

Uber Eats defined as a simples average. The neighborhood aggregation and the cur-

rent node embedding are respectively multiplied by matrices Wk and Bk, which are

the model’s trainable parameters and also responsible for putting the heterogeneous

node embeddings to the same embedding dimension. Finally, the embeddings are

summed up and passed for a non-linear function σ set as a ReLU.

hkv = σ

Wk

∑
u∈N(v)

hk−1u

|N (v)|
+Bkh

k−1
v

 ,∀k > 0 (2.6)

Another modification was the loss function. The original loss used in Graph-

SAGE was replaced by a hinge loss that uses hard-to-classify examples to improve

results. Uber Eats researchers used a strategy analogous to Pinterest to choose

training examples, using which they call “low positive” examples, which consist of

weak interaction between user and items.

Finally, Uber Eats also reports that the GNN recommendation approach out-

performs their past models in both offline evaluations using metrics like Mean Re-

ciprocal Rank, Precision@K, and NDCG and online evaluations, using A/B tests

19

Figure 2.10: Schematic representation Uber Eats model and equation 2.6. Uber Eats
defines the aggregation function Theta as the average, the non-linearity function σ
as a ReLU, and the update step as the summing of the aggregated neighborhood and
current vector followed by the non-linearity function. Note that there is a trainable
matrix, generally with different dimensions, for each node type in the bipartite
graph.

with their user base. These two examples clearly indicate that GNN is a promising

framework to build general-purpose recommendations systems, a theme explored in

this thesis.

20

Chapter 3

Proposed framework

This work focuses on constructing node embeddings that can be used to provide

recommendations in heterogeneous and bipartite graphs. This type of graph is

common in many scenarios, such as modeling relationships between different types

of proteins or matching between sellers and providers of goods and services. Also,

applications in the industry for this network type range from drug discovery to

recommendation of products in e-commerces, which will be the case studied in this

work. Given a set of nodes u ∈ U representing the users and i ∈ I representing the

items, we want users who interact with similar items to have embeddings close to

one another, as measured by the Euclidean distance.

3.1 General considerations

Past works have shown that deep networks do not perform well in GNN context [39,

40], which motivates us to design our network composed of just one layer. Instead of

stacking layers, we experiment with varying the epochs and a mini-batching feeding

strategy. For each epoch, we feed the model the entire network but evaluate and

update the loss function nu times using mini-batches of size n
2nu

, sampled uniformly

from the graph nodes.

Algorithm 1 illustrates the dynamic of convolute using all information in the

network while using just a small selection of nodes at each mini-batch to calculate

the loss, reducing the computational cost of backward propagation. To perform

backpropagation PyTorch make use of the autograd strategy [41], which builds a

tree to keep a record of data (tensors) and all executed operations (along with the

resulting new tensors) in a directed acyclic graph (DAG). By reducing the number of

nodes used in the loss calculation, the number of operations performed by PyTorch

in the backend drops quadratically because of sampling and neighbors comparisons

in our proposed GNN framework. On the other hand, as the massage passing and

aggregation of messages consists of few and simple operations, it has less impact on

21

the tree built to perform backpropagation. We found a good trade-off in sampling

nodes to feed the evaluation function (mini-batches) instead of sampling nodes for

message passing (traditional batches in GNN literature). Mini-batches take advan-

tage of pruning the tree used for backward evaluation and release computational

resources that make it possible to perform message passing using the full graph at

each epoch. Over the experiments performed in this work, we found it significantly

reduced model time to convergence.

Algorithm 1 Model training using mini-batches for the evaluation function

ne ← number of epochs
nu ← number of mini-batches
mb size← n

2nu

for epoch in ne do
for mb in nu do

model.forward()
seeds← random.choice(V, mb size) . Select nodes to evaluate in the loss
model.loss(seeds)
model.backward()

end for
end for

The framework is mostly designed to work as a low-parameters and good perfor-

mance tradeoff to similar models that exponentially grow the number of parameters

according to network size. The proposed model aims to keep all the operations

as simple as possible and extract information from the network’s bipartite nature.

Also, we work directly with the heterogeneous node vectors and avoid projecting

them in a single vector space, which could cause information loss. A parallel of the

idea of parameters and size optimization tradeoff behind the proposed framework is

MobileNet [42], a model designed to effectively optimize for accuracy (usually using

cross entropy loss) while being mindful of the restricted resources of the compu-

tational environment. Researchers design MobileNet not to be the best model in

terms of accuracy or training time but to be the best option when a tradeoff be-

tween results and feasibility is necessary, like in on-device or embedded applications.

MobileNet, as the proposed GNN model, is intended to keep good accuracy results

and minimize the usage of computational resources and inference time if compared

with alternative approaches.

The model schematic is shown in figure 3.1.

3.2 GNN componenents

The proposed framework is built on top of general GNN mechanisms and building

blocks discussed in section 2.3, so we delegate low-level implementation aspects to

22

Figure 3.1: Schematic representation of the proposed framework and its components.
Further details on the section 3.2.

third-party libraries and focus our efforts on the problem’s mathematical formula-

tion. Thus, this section will discuss adaptations to the message passing, aggregation,

and update mechanisms.

A straightforward message passing approach is adopted, where each node receives

a copy of the current embeddings from its direct neighbors. This formulation was

chosen because of its simplicity and suitability for the desired problem since nodes

can have non structural related attributes. The disadvantage of this approach is

scalability, once the model (number of messages passed) scales according to the

number of edges of the network and can becomes infeasible from a computational

perspective. Finally, as we are dealing with heterogeneous bipartite networks, it is

essential to notice that nodes always receive embeddings from their counterparts,

which can have different dimensions and meanings.

As the aggregation strategy, a simple weighted average of all the neighbor’s em-

beddings is adopted, as opposed to a trainable function. Hence, we multiply each

component (current node embedding and neighbors aggregation) by a different train-

able weight matrix in the update step. Then, we sum the two together and apply

a ReLU as a non-linear function. These choices were motivated by the desire to

explore a different approach than using concatenation in the update step or a train-

able aggregation function followed by a simple update rule, as in GraphAGE. Using

separated trainable matrices for each component, we expect to help the network

deal with the possible differences in dimension and embedding meaning caused by

the heterogeneous nature of the bipartite network. Finally, performing a weighted

average instead of an ordinary average in neighbors aggregation contributes to fast

convergence. However, this is not strictly needed once the trainable weight matrices

control the final output of the model.

For the objective function evaluation, a loss function based on triplet loss was

23

adopted, where we chose a set of nodes st as target and compared the dot product

of its embeddings with sp positive examples and sn negative examples, minimizing

equation 3.1. The equation also has a term ∆, which is a soft margin treatment to

avoid all embeddings trivially converging to the same value. Finally, note that the

max component is necessary because most frameworks to implement deep neural

models nowadays deal strictly with positive values to the loss function output.

L =
∑

(t,p)∈E

max (0,−stsp + stsn + ∆) (3.1)

The number of positive examples Sp and negative examples Sn is fixed and set

such the total number of examples S is determined by S = Sp +Sn and Sp = Sn.Let

t be a target node; we perform 10 random biased walks of length 40 starting from t

and taking edge weights as the bias (note the number of steps must be even so that

the walk will finish in the same side of the bipartite graph). The random walks have

restart probability 0.3 and are repeated for every node in the graph, resulting in a

matrix Mn×n where each cell ci,j represents the visits for node vj when the random

walk starts from node vi. Thus, the selected neighbors for node vi are the ones with

the top vi,j values. In addition, to sample negative examples, we uniformly sample

Sn nodes from the network. The process is then repeated at every epoch.

The goal of the loss function is to optimize equation 3.1 and maximize embedding

similarly among highly connected nodes while minimizing embedding similarity for

unrelated nodes. This approach explores the homophily relationship among nodes

in the network, which is the best alternative for simplistic structural network as a

bipartite graph. The general schematic of this mechanism is shown in Figure 3.2.

Furthermore, a significant difference in our approach is in the loss evaluation.

Despite using all nodes and edges in message passing, we do not use all of them

in the evaluation step. At each epoch, nu mini-batches of size n
2nu

are generated

by uniformly sampling nodes from the graph. For each mini-batch, message passing

occurs for all nodes, but only the selected nodes in the mini-batch are used as targets

in the equation 3.1. This approach has the advantage of reducing the amount of

computation needed for backpropagation, given the number of vector operations

that can be reduced.

Finally, the framework adopts a single layer and performs intensive training

across epochs. It has the advantage of generating a much smaller model with few

trainable parameters (weight matrices and their bias). The need for smaller models

is latent and relevant in many scenarios and evident given the emergence of models

like MobileNet for image classification, pruning techniques, and edge computing.

The disadvantage of this choice can be slower convergence in some cases.

24

Figure 3.2: Illustration of the sampling strategy adopted to create mini-batches and
accelerate training. General nodes are represented in blue; nodes selected to mini-
batch in pink; positive examples for a given target node in green; negative examples
for a given target node in red. The first step receives a bipartite graph as input.
The second step selects random nodes uniformly from the graph to compose the
mini-batch. For each node in the mini-batch, the third step performs a selection of
positive and negative examples. The loss function utilizes the results of the third
step as input to compute its results.

3.3 Implementation

The proposed framework was implemented using DGL [43], which is a deep learning

library specially designed to deal with large-scale deep learning operations in the

context of GNN and geometric deep learning. The library relies on battle-proven

frameworks such as PyTorch to deal with general deep learning operations, besides

working a new abstraction layer with optimized sparse matrix operations and ab-

stractions that facilitate managing graph data.

Implementation performance is a common issue and limitation when designing

new frameworks and methodologies for GNN, as the models can scale exponentially

according to the number of layers and the graph size. DGL’s authors identify that

a critical aspect of handling this issue is optimizing sparse matrix operations. To

shed light on the importance of sparse matrix operations in GNN performance, we

can look to the following scenario:

• Given the node feature matrix X ∈ R|V|×d and the adjacency matrix A of

a graph G, the node-wise computation in the graph convolutional network

(GCN) is a sparse-dense matrix multiplication (SpMM) Y = AX;

25

• The most common formulation to implement Graph Attention Networks is

calculating the dot product between source, and destination node features,

which corresponds to a sampled dense-dense matrix multiplication (SDDMM)

operation W = A� (XXT);

• The forward path of a given GNN essentially applies a series of generalized

SpMM (g-SpMM) to derive a stack of node representations [43].

The high importance of sparse matrix operations in GNN justifies that almost

all low level and performance implementations from DGL come from enhancements

in the SpMM and SDMM algorithms implementations when dealing with tensors

and graphs.

Furthermore, DGL provides an intuitive and object-oriented way to deal with

the operations necessary in GNN development. It is possible to use the library to

write a few lines of code and perform complex operations such as design custom

negative sampling strategies, design custom aggregation functions and assign and

transform tensors as node features. These functionalities were vital to accelerating

the development of new and custom extensions for the library necessary to perform

the features needed in the proposed framework.

Last, in general lines and according to the authors, DGL distills the compu-

tational patterns of GNNs into a few user-configurable message-passing primitives

that generalize sparse tensor operations and cover both the forward inference path

and the backward gradient computing graph. In addition, the library identifies and

explores a wide range of parallelization strategies to improve speed and memory

efficiency.

Building blocks implementation

To implement the proposed framework, we use the DGL library abstractions and

customize the GNN building blocks and sampling strategy.

We created a class DGLCustomGraph that encapsulates the graph methods pro-

vided by DGL and combines it with useful methods only available in other libraries

like NetworkX, such as the Stochastic Block Model (SBM) graph generation that

will be discussed in section 4.1. The inputs for this class are the network structure to

be submitted to the GNN model and the number of groups and their sizes both for

users and items. The class initialization adapts the input network to DGL optimized

format for heterogeneous graphs in GPU and implements methods to assign initial

h0 embeddings to network nodes. The result is a DGLGraph class with a bipartite

and weighted graph prepared to feed a GNN model in DGL.

We implement a custom convolution layer class named PongConv to perform the

forward operations needed. The class leverages DGL optimized methods to, for each

26

node in the graph submitted to the convolution, sum the weight of node’s edges and

then divide the edge values by the total sum in order to obtain the weighted average

for neighbor’s embeddings summing the product of normalized edge weights and

neighbor’s embeddings. The update operation is then implemented using a ReLU

summing up the multiplication by the neighbors’ weighted average and the original

node embedding by trainable matrices. Figure 3.3 shows the actual code utilized to

implement the convolution process.

Figure 3.3: Custom convolution layer implemented in DGL. Note that
trainable matrix w and trainable matrix b are the only trainable components of
the model. Methods such as update all and apply edges are DGL optimized ab-
stractions to perform message passing and handle embeddings in nodes’ mailboxes.

The custom convolution (PongConv) is attached to a PyTorch layer using DGL

abstractions, as shown in Figure 3.4, which is fed by another custom class imple-

mented in this work to sample neighborhood according to the process described in

section 3.2. This single layer is used to create a PyTorch model (nn.Module) that

represents the GNN model indeed.

The model learning process makes use of a custom method that implements the

proposed loss function 3.1. The code in Figure 3.5 sample positive and negative

examples, calculate the dot product among the examples, and produce the final

loss score. The sampling of negative examples is implemented using Python built-

in functions to sample random node ids from the graph, while the sampling of

positive examples is presented in Figure 3.6. Note the method to sample positive

27

Figure 3.4: DGL handles heterogeneous graphs by allowing the user to assign dif-
ferent convolutions for each edge type in the graph. Note that edges in DGL have
labels, and we assign them as ‘purchase‘ and ‘purchased-by‘ once we simulate user-
item interaction in the e-commerce context.

examples leverages dgl.sampling.PinSAGESampler class which, according to its

documentation, sample nodes performing a sequence of random walks and ranking

the most recurrent neighbors.

Figure 3.5: Implementation to perform the calculations necessary in the evaluation
function represented in equation 3.1. Sampling methods and similarity among nodes
are modularized methods that can be easily replaced by methods implementing
different strategies.

28

Figure 3.6: Implementation to sample positive examples Sp to use in the evaluation
function.

29

Chapter 4

Methodology and evaluation

This chapter describes the methodology to measure the performance of the proposed

framework of placing nodes in a vector space under different structural and node

feature information.

The methodology leverages experiments using a synthetic bipartite graph that

simulate the e-commerce context, in which a set of users U interact with a set of

items I. The synthetic graph is generated by a non-deterministic model and sim-

ulates purchases made by users to define edges. Moreover, users and items are

assigned synthetic attributes that are used as their initial embeddings h0 to sim-

ulate product and user characteristics and similarities that are present in general

attributes (e.g., image, behavior, text, etc). Finally, hyperparameters of the syn-

thetic bipartite graph and the synthetic node attributes will be leveraged to evaluate

different scenarios and assess the framework’s performance.

Section 4.1 describes a methodology to generate an undirected synthetic bipartite

graph that provides the structural information. Section 4.2 explains the methodol-

ogy to generate initial embeddings h0 for nodes which provides the node information.

Section 4.3 describes the performance metrics and scenarios to measure the perfor-

mance of the model in different experiments. Section 4.4 presents the observed

results and discussion of these findings.

4.1 Stochastic Block Model

Stochastic Block Model (SBM) groups n nodes in k groups, with group labels given

by a map C. The groups can be viewed as communities, and the main goal of

the model is to represent some desired relationship pattern among communities

performing independent and random choices for edges between every node pair.

Further, the SBM assumes that there is a symmetric matrix B ∈ Rk×k, for k � n

and a map C : {1, ..., n} → {1, ..., k} where k is the number of groups in the network

to be simulated, such that: pij = BC(i),C(j) is the edge probability between nodes

30

i and j. Also, worth noting that the popular Erdős–Rényi [44] model to generate

random graphs are a special case of SBM where Pi,j = p∀i, j,
To generate graphs with edges that simulate users’ preferences for types of items,

we use the SBM. Thus, to generate a bipartite graph groups of users and items will

have zero probability among themselves, while pairs of user-item groups will have a

fixed probability.

We design our map C such that groups {1, . . . , t} represents user groups and

groups {t+ 1, . . . , k} represents item groups. Each user group has a non-zero prob-

ability to only two item groups. Moreover, these probabilities are given by ah and

al to represent high and low affinity between users in these groups and items in the

respective group. Thus, the first t rows of B have exactly two non-zero elements.

A general idea of this model is represented in Figure 4.1, in which colors represent

node types (user or item) and geometric shapes represent different groups inside a

node type. Note that groups in the figure may have an arbitrary number of nodes

inside them. Each node pair user-item has a fixed edge probability (0, ah, or al)

that depends on their respective groups. Given the framework parameters, a random

instance of the SBM is generated, and this graph is used to evaluate the performance

of the proposed framework.

Figure 4.1: Overview of classes relationship using SBM to network formation.

4.2 Node attribute generation

As discussed in chapter 2, the ability to handle node attributes is one of the foun-

dations for the success of GNN models. For example, PinSage and its variations use

deep convolutional network architectures such as VGG16 and BERT to embed the

31

item’s images and text to generate an initial vector h0 that is considered the set of

attributes of the node. Alternatively, other works utilize pure structural methods

like node2vec or struct2vec to generate vector h0 as the node attribute. These at-

tributes are used by the GNN to learn higher-level representations that also depend

on the network structure.

Both techniques mentioned are not suitable for an easy and controlled exper-

imentation setup. Given the network generated by SBM, there is no information

such as images and text attached to nodes that could be used to produce attributes

with VGG16 or BERT. On the other hand, structural embeddings like struc2vec

or node2vec limit the capacity to evaluate the GNN once we want to measure the

framework’s capacity to explore both structural and node attribute information. In

particular, we develop a methodology that produces initial attribute values that will

be used as the embeddings that are intuitive and easy to control such as to represent

the signal’s strength and influence in the initial data.

The proposed approach generates initial embeddings with more similarity intra-

group than intergroup, with users and items from the same group having similar

but not equal representations. In addition, the strength of this initial signal will be

dictated by how easily nodes from different groups are clusterized using just the h0

embedding without any structural information. For example, if users of each user

group have a very similar h0 that is very different from all other users, then they

can be easily clusterized using just this information, without using the network.

Figure 4.2: Generation of the initial embedding (h0) step by step. Example with
three groups of nodes, represented by the colors blue, green, and red.

The process for embeddings generation is illustrated in Figure 4.2. First, a vector

of all 1’s and dimension d is generated for every node on the graph. Then, a rotation

of (2π
t

)C(i) is applied to the first two components of the vector of user i. Note that

32

the rotation depends on the user group. This same procedure is applied to items:

rotation (2π
k−t)C(j) for item j. After that, to increase or decrease the strength of

the signal, we scale the rotating components of the vector by a scalar s. Then, we

increment random noise to the generated vectors as a form to add entropy within

groups and make them not trivially separable. A unitary Gaussian noise N (with

zero mean and one standard deviation) is added component-wise to all vectors in

order to generate entropy.

Figure 4.3 (a) shows an example clustering produced by a dimensionality reduc-

tion method using just the initial embeddings. Note that the initial embeddings

provide a signal that cannot be trivially separated according to the node groups.

On the other hand, Figure 4.3 (b) shows the result of h0 when the original scale

parameter s is multiplied by 100. It is possible to note that the scale parameters s

dominate the significance of the initial signal.

(a) Initial embedding (h0) for s = 1 (b) Initial embedding (h0) for s = 100

Figure 4.3: Comparison of initial embedding (h0) using different scaling parameters.

4.3 Evaluation metrics

This section explores the framework behavior for different model parameters and

network configurations. From the network configuration perspective, we are espe-

cially interested in understanding the model scalability when increasing graph size,

the influence of the SBM signal strength among groups, and the influence and im-

portance of the node’s initial embedding h0. For this purpose, we will denote n to

represent the network number of nodes, ah and al to denote the network affinity

among groups in the SBM, and h0 as the initial embedding. All these parameters

will be varied and evaluated through the experiments. Observing these parameters,

we expected to evaluate model speed to convergence and how the number of groups,

epochs, and model results relates among themselves.

33

In order to evaluate the results, two methods are adopted:visual inspection using

t-SNE on the final representation for the nodes and the purity score with respect to

groups of the nearest nodes for every group. This last metric has been introduced

in this work and will be described in section 4.3.2.

Figure 4.4 illustrates the general evaluation process for the experiments. While

the visual inspection provides quick and general insights, the purity score provides

a quantitative comparison among the different results.

Figure 4.4: Proposed methodology to perform experiments and evaluate results.
The evaluation steps provide a visual intuition using t-SNE and quantitative metrics
using purity metrics and distributions.

4.3.1 t-SNE

The t-distributed stochastic neighbor embedding (t-SNE) is a statistical method

for visualizing embedding data in two or three-dimensional space. The algorithm

maximizes the probability of placing similar objects closer and dissimilar objects

far away in the final t-SNE vector space. This method was developed by Geoffrey

Hinton [45] and works minimizing the Kullback–Leibler divergence (KL divergence)

of probability distributions between points in the target embedding spaces (t-SNE

representation) and its degree of similarity (distance in original high-dimensional

data).

Our experiments used t-SNE on the initial embedding h0 (the attributes) and

the final embedding learned by the GNN, which provides a visual inspection about

34

embedding quality in each case. As visual inspection, we check how the algorithm

distinguishes among the different communities and if each group’s nodes’ position in

the plot is in accordance with each group’s low and high affinities. We distinguish

the groups using colors and make a separate plot for each node type (user and item)

in order to visualize them separately.

4.3.2 Purity Score

We developed an evaluation metric named purity score to extract quantitative in-

sights on the framework’s performance, easily stratify the results for different groups

(of user and items) and perform comparisons between different scenarios.

The purity score is a post-calculated model-agnostic metric ranging from 0 to 1

indicating how well a group (community) is placed together in the vector space. It’s

very similar to the traditional purity score used for clustering evaluation [46]. The

main differences between the proposed metric and the existing purity score are that

our metric is supervised (use information about the true label of groups) and more

efficient by using k samples of each group instead of the entire dataset.

To calculate the purity score for a group, we consider the final vector represen-

tation for all nodes in the group, as well as all other nodes of the same type (user

or item). For each node in the group, the closest k neighbors in the vector space

are selected. The ratio between the number of neighbors of the same group and k is

calculated. Note that this ratio indicates the purity around the node, and is equal

to one when all k neighbors are in the same group. The distribution of the purity

score is computed for the group using the purity score of each group member. Last,

the mean or median purity score for the group is computed.

Note that the notion of neighbors here has no direct connection with an edge in

the original graph since it considers only the Euclidean distance of the final repre-

sentation for the nodes in vector space. Furthermore, it is imperative to highlight

the influence of the parameter k once it can artificially reduce the purity score if set

to a value that is close to the number of nodes in the group or be biased if set to

a very small value in cases of highly imbalanced classes. We set k = 100 in all the

experiments, as it is a relatively large number and still considerably lower than the

number of nodes in the groups for most of the experiment scenarios.

An overview is presented in Figure 4.5 where nodes are in three groups (triangle,

square, and circle) and the purity score for node A is calculated, which belongs to

the circle class. We set k = 3 and consider the three closest neighbors of A in the

vector space according to Euclidean distance, which happens to be nodes B, C, and

D. Once node B and C are also in the circle group, and node D belongs to the square

group, the purity for node A is 2
3

= 0.66. To calculate the purity metric for the circle

35

group, we iterate through all nodes belonging to this class and calculate the group’s

average and median purity score.

Figure 4.5: Illustration of the nearest neighbor for calculating the purity score.
Different groups are represented by different shapes (circle, square, and triangle),
the target node is highlighted in red, and the nearest neighbors are highlighted in
blue.

In addition, to determine the k nearest neighbors from each node, we leverage

the Approximate nearest neighbor (ANN) algorithm named Annoy developed by

the Spotify team [47]. In general terms, the algorithm splits the vector space em

geometric regions and then builds an optimized search tree that reduces the com-

putation cost to O(log n) compared to O(n) of the traditional K-nearest neighbors

algorithms.

Another advantage of the purity score analysis is the possibility of using the dis-

tribution for each group and directly comparing different groups to evaluate fairness

and imbalances generated by the framework.

Finally, the purity score is well suited for large-scale networks. Instead of using

all nodes of a group, a random and relatively small subset of the group (e.g., square

root of the group size) can be used to compute the purity score for the group,

allowing for fast computation of the metric. The parameter k can also be tuned to

provide a more efficient metric computation.

4.4 Experiments and results

This section will present a set of experiments and their evaluations according to the

proposed methodology. The framework described in Chapter 3 will be evaluated in

36

different scenarios by considering the output of the model.

Unless explicitly mentioned, the experiments were performed using the following

parameters:

• N(G) = 8192, for network size;

• ngu = ngi = 8, for number of groups of users and items;

• su = 819, and si = 205, for group sizes of users and items;

• ah = 0.8 and al = 0.2, for SBM connectivity probabilities.

All groups of the same type have the same size, and the ratio between user’s

and item’s group sizes is chosen to be approximately 4. The preponderance in the

number of users represents an online environment where many users interact with a

limited set of available items. Also, the different affinities ah and al represents users

with a fuzzy preference for types of items.

Also, the hardware used for the evaluations was a PC with processor Intel®
Core™ i7-9750H CPU @ 2.60GHz × 12, 16GB of memory, and a GeForce RTX 2060

GPU.

Finally, note that the experiments will be performed only once for each case,

instead of the average of multiple results. Deep learning models tend to converge to

the same results over different executions if given enough training time. Moreover,

most deep learning approaches take a considerable amount of time for training.

Both these aspects motivate us to observe single execution results and consider

them enough to derive conclusions.

4.4.1 Number of epochs

In order to perform this experiment, we generated a network using the SBM model

and the approach proposed in section 4.2 to generate initial embeddings (h0). Then,

we observe the changes of each node embedding after each epoch (message passing,

aggregation, and update).

Figures 4.6 and 4.7 show the initial embedding h0 projected in two dimensional

vector space, as well its evolution over epochs. The points represent nodes in the

graph, and the different colors represent different groups. As shown in the figures,

the model generates embeddings for users and items that improve its quality over

the epochs and converges to an embedding where the groups can be clearly identified

in the two dimensional projection of embeddings via t-SNE.

37

(a) Initial item embed-
ding h0

(b) Epoch 5 (c) Epoch 10 (d) Epoch 30

Figure 4.6: Evolution of item embedding over the epochs. (two dimensional projec-
tion via t-SNE)

(a) Initial user embed-
ding h0

(b) Epoch 5 (c) Epoch 10 (d) Epoch 30

Figure 4.7: Evolution of user embedding over the epochs. (two dimensional projec-
tion via t-SNE)

38

The t-SNE visualization gives the qualitative intuition that user and item groups

improve their separation homogeneously over the epochs and assume circular shapes

in the two dimensional vector space at convergence, which is expected given that

the initial h0 signal of a group is a fixed vector summed with Gaussian noise. On

the other hand, it is possible to note that groups of different types (users and items)

separate and become clustered with different velocities. The difference in group

types is caused by the number of nodes that compose each group, being that nodes

with more neighbors tend to adjust faster to the final embedding because they have

a larger average degree and thus receive more messages from their neighborhood

in each iteration of the training phase. Note that initially, using just h0 and no

training, the t-SNE method cannot extract group information, and all users and

items are mixed in a single point cloud.

The purity score shown in Figure 4.8 confirms the visual intuition from t-SNE and

quantifies the difference between groups of items and groups of users as a function

of the epochs. The purity degree at epoch 30 for items is 0.82 using all the 128

dimensions and 0.92 using the two-dimensional embedding generated by t-SNE,

while for users the same metric is 0.92 when using 128 dimensions and 0.99 for the

two-dimensional embedding. Note that the plots show the distribution (histogram)

of the purity across the users or items, indicating that users have a purity score that

is more homogeneous than items (at epoch 30).

Figure 4.9 shows that the distribution of purity is increasing homogeneously in-

side groups of the same type over the epochs, with small perturbations as illustrated

by the difference in purity score of group 1 and the others for items at epoch 30.

These perturbations are related to some caveats of h0 generation and will be dis-

cussed in section 4.5. Nonetheless, the purity of the different groups has a very

similar distribution, indicating the fairness of the model with respect to the groups.

Another important finding is the opportunity for the early-stop techniques when

training the unsupervised GNN model. Early-stop is a common practice in Deep

Learning to find the optimum number of epochs while training and maximize the

trade-off between performance and training time. It works by training the model

until it reaches an expected result or until it no longer improves (minimally) for

a certain number of epochs. As the number of epochs is a crucial parameter and

the purity metrics seem to quantify the quality of model successfully, the proposed

framework has the advantage of being lightweight and suitable for the application

of early stop techniques. This approach, combined with the model being a single

layer, can significantly reduce the training time.

Also, as fairness is an emerging topic for research in data and statistics, we

examine median and percentiles of purity scores for each group of type user and

item. The boxplots in Figure 4.10 compare the purity score for each group before

39

and after training and show no discrepancies among groups. These results indicate

that in the experiment with unbiased h0, the model does not add any bias when

training.

(a) Purity distribution for items at epoch 5.

(b) Purity distribution for items at epoch 30.

(c) Purity distribution for users at epoch 5.

(d) Purity distribution for users at epoch 30.

Figure 4.8: Evolution of purity distributions (histogram) over epochs. The plots (a)
and (b) are represent items while plots (c) and (d) represent users.

40

(a) Purity distribution for groups of items at epoch 30.

(b) Purity distribution for groups of users at epoch 30.

Figure 4.9: Purity distribution for each groups (histogram). (a) represents groups
of items, (b) represents groups of users.

41

Figure 4.10: Boxplots of the purity score for each group of users and items before
and after training (30 epochs).

4.4.2 Group size

This experiment evaluates the results under different network sizes (groups with

different sizes). We perform an increase of ten times in network size, from 1024

nodes to 10024 nodes, and observe the impact in the proposed GNN model. Note

that since every node has edge formation probabilities ah and al with other groups,

the expected number of edges in the bipartite graph grows quadratically according

to the number of nodes.

The model proves to be resilient to changes in the number of nodes, achieving

good embeddings for groups of items and users in both scenarios. Figures 4.11 and

4.12 shows the results for 4 groups of each type for different epochs and group types.

Note that while user embeddings are clearly separated at 30 epochs, item embedding

for the larger network did not separate as clearly.

42

(a) h0 for item embedding. (b) Item embedding after 30 epochs.

(c) h0 for user embedding. (d) User embedding after 30 epochs.

Figure 4.11: GNN result for a network with 1024 nodes and four groups.

43

(a) h0 for item embedding. (b) Item embedding after 30 epochs.

(c) h0 for user embedding. (d) User embedding after 30 epochs.

Figure 4.12: GNN result for a network with 10024 nodes and four groups.

4.4.3 Network connectivity

Network connectivity (network topology) is controlled by the parameters ah and

al and mainly influences the sparsity and community modularity in the network

generated by the SBM model. Decreasing both al or ah makes the network more

sparse while keeping one of these values fixed and decreasing the other increases

modularity. Note that modularity measures the strength of the division of a network

into modules (or groups), which translates into a more clear community structure.

We experiment with different connectivity parameters to evaluate the relevance

of the network structure in the proposed model. Figure 4.14 compares the model at

epoch 10 and 30 when fixing ah = 0.8 and setting al = 0.1 or al = 0.4. Note when al

44

decreases, both user and item groups are more clearly identified, including at epoch

10. As expected, the network topology plays an important role: when more clear

network structural information is available (when ah = 0.8 and al = 0.1) the method

performs better, being more accurate and converging faster.

45

(a) Initial user embedding h0

(b) Epoch 10, with ah = 0.8 and al = 0.1 (c) Epoch 10, with ah = 0.8 and al = 0.4

(d) Epoch 30, with ah = 0.8 and al = 0.1 (e) Epoch 30, with ah = 0.8 and al = 0.4

Figure 4.13: Evolution of node embeddings over the epochs for two different edge
probabilities (0.1 generates more structural information than 0.4).

46

(a) Initial user embedding h0

(b) Epoch 10, with ah = 0.8 and al = 0.1 (c) Epoch 10, with ah = 0.8 and al = 0.4

(d) Epoch 30, with ah = 0.8 and al = 0.1 (e) Epoch 30, with ah = 0.8 and al = 0.4

Figure 4.14: Evolution of node embeddings over the epochs for two different edge
probabilities (0.1 generates more structural information than 0.4).

47

4.5 Limitations of the model

We were able to identify limitations in the proposed framework by executing an

experiment that simulates the case with two groups of each type (user and item),

4096 nodes, and 30 epochs. Figure 4.15 shows the comparison between the initial

embedding (h0) and final embedding for items, which do not present any visible

separation between the groups even after the execution of the model.

The lack of convergence identified in Figure 4.15 is caused by calculation is-

sues that emerge when combining the proposed methodology for initial embedding

generation and the aggregation function adopted. The approach to generate initial

embeddings described in section 4.2 relies on rotations to differentiate among initial

embeddings of different groups, as well on the addition of Gaussian noise to differen-

tiate embeddings within a group. Additionally, the aggregation strategy employed

is based on the average of embeddings received from neighbors in the message pass-

ing step. We note that convergence does not occur when the aggregation of initial

embeddings (average) happens to be similar in most cases.

Note that for the case of two groups the vectors are generated by a rotation

of (2π
t

)C(i), which induces the creation of orthogonal vectors. Combine it with

the fact that the other transformation to different node attributes in our proposed

methodology is the addition of Gaussian noise with average zero. In this scenario,

the average vector of the two different groups is approximately the initial unitary

vector. Thus, embeddings become similar over epochs and increase the difficulty of

differentiating between groups.

This is actually a particularity of the methodology used to generate the initial

embeddings h0 in the case of two groups and a similar group size. However, similar

behavior is expected to occur for the case of any h0 that happens to return similar

averages when aggregated. Howsoever, worth noting the general conclusion that

poorly defined initial embeddings can insert noise in GNN models and lead to results

that are worst than purely structural methods such as node2vec. In the case of real

datasets it can occur when using low-quality strategies to represent node properties

in the vector space. For example, frameworks using poorly tuned pre-trained models

to represent images or texts can incur this problem.

The limitation in the methodology for generating h0 was a conscious decision to

simplify the scope of this work, which can be enhanced using other methodologies,

such as multi-edge GNN training [48]. However, for evaluating the framework ca-

pacity of placing nodes from the same group together in the embeddings space, a

single signal and representation in the form of node attributes should be enough.

48

(a) item embedding using h0. (b) Item embedding after 30 epochs.

Figure 4.15: Comparison between initial and final embeddings in the case of a
network with just two groups of each type and an initital embedding that is not
very informative of the nodes.

49

Chapter 5

Conclusion and Future work

In recent years, a number of approaches for producing vector representations for

nodes and graphs have been developed, each with its own set of characteristics,

strengths, and limitations. The most prominent techniques and their adaptations

and applications in the industry to perform recommendations are discussed in this

dissertation.

This dissertation tackles the problem of developing a recommendation system

that leverages features associated with users and items as well network information

derived from interactions between these two entities. In particular, it proposes a

novel approach to represent nodes of bipartite graphs (users and items) in a vec-

tor space for the purpose of feeding recommendation models. The approach uses a

Graph Neural Network (GNN) to generate a representation for nodes, a method-

ology that has been successfully applied to recommendations systems in different

contexts. In order to more effectively evaluate the proposed approach, a method-

ology to generate synthetic networks with attributes in controlled scenarios is also

devised. This methodology could be used to assess other GNN models that perform

tasks similar to recommendations. These developments add to the literature where

the focus has not been on bipartite graphs and recommendations.

Our formulation presents advantages such as a small number of parameters and

a small model size compared to most models in the literature. Also, the proposed

model is constructed bottom-up using elementary parts, and its implementation uses

state-of-the-art open-source libraries while also covering performance.

The methodology uses the classic Stochastic Block Model (SBM) to generate bi-

partite graphs with community structure. Additionally, an approach is proposed and

described in section 4.2 in order to generate node features that are more strongly

correlated among nodes of the same community and are also used to enable re-

producible evaluations. Synthetic networks can be generated in order to evaluate

different embedding models in different scenarios. The methodology is used in the

empirical evaluation of the proposed approach in a combination of scenarios, such

50

as different numbers of nodes and different connectivity patterns. A metric to ob-

jectively assess the quality of the embedding with respect to node communities is

also introduced.

The evaluation considers a single layer GNN model that generated good results,

with relatively little training effort. Thus, a single layer GNN model was indicated as

a suitable option, especially when facing scarce computational or storage resources.

A discussion and examples concerning the limitations of the methodology are also

provided, indicating that diversity is important (in features and communities).

5.1 Future work

The following is a list of tasks that are worthy of being explored as future work in

the context of this dissertation:

• Gather real data from user-product interactions in e-commerce and evaluate

model performance with respect to its recommendations. In particular, assess

the model in very sparse networks when users have interacted little with the

items and have few attributes.

• Adapt the proposed framework to handle multiple edge types in order to cap-

ture a different kind of user-item interaction (e.g., view an item versus purchase

an item).

• Formulate and evaluate new approaches to generate h0 (the initial attribute)

when generating synthetic data. The initial attribute plays a fundamental role

in the model and can highly bias the final embeddings. While the lack of such

synthetic models has been recognized in the literature, only very recently have

proposals in this direction emerged [49]

• Design and implement different optimizations to the proposed framework such

that it can handle very large graphs (e.g., millions of nodes and edges) while

maintaining low training effort and high accuracy in the embeddings.

51

References

[1] ZACHARY, W. W. “An information flow model for conflict and fission in small

groups”, Journal of anthropological research, v. 33, n. 4, pp. 452–473,

1977.

[2] EVANS, T. “Clique Graphs and Overlapping Communities”, Computing Re-

search Repository - CORR, v. 2010, 09 2010. doi: 10.1088/1742-5468/

2010/12/P12037.

[3] FREEMAN, L. “The development of social network analysis”, A Study in the

Sociology of Science, v. 1, n. 687, pp. 159–167, 2004.

[4] SUN, M., ZHAO, S., GILVARY, C., et al. “Graph convolutional networks for

computational drug development and discovery”, Briefings in bioinfor-

matics, v. 21, n. 3, pp. 919–935, 2020.

[5] LINDEN, G., SMITH, B., YORK, J. “Amazon. com recommendations: Item-

to-item collaborative filtering”, IEEE Internet computing, v. 7, n. 1,

pp. 76–80, 2003.

[6] “The history of Amazon’s recommendation algorithm”. https://www.amazon.

science/the-history-of-amazons-recommendation-algorithm. Ac-

cessed: 2021-12-22.

[7] “Netflix Prize”. https://en.wikipedia.org/wiki/Netflix_Prize. Accessed:

2021-12-22.

[8] KOREN, Y. “The bellkor solution to the netflix grand prize”, Netflix prize

documentation, v. 81, n. 2009, pp. 1–10, 2009.

[9] DAVIDSON, J., LIEBALD, B., LIU, J., et al. “The YouTube video recom-

mendation system”. In: Proceedings of the fourth ACM conference on

Recommender systems, pp. 293–296, 2010.

[10] “Innovate and automate fast with AI across Salesforce.” https://www.

salesforce.com/products/einstein/overview/. Accessed: 2022-03-

27.

52

https://www.amazon.science/the-history-of-amazons-recommendation-algorithm
https://www.amazon.science/the-history-of-amazons-recommendation-algorithm
https://en.wikipedia.org/wiki/Netflix_Prize
https://www.salesforce.com/products/einstein/overview/
https://www.salesforce.com/products/einstein/overview/

[11] KIPF, T. N., WELLING, M. “Semi-Supervised Classification with Graph Con-

volutional Networks”, CoRR, v. abs/1609.02907, 2016. Dispońıvel em:

<http://arxiv.org/abs/1609.02907>.

[12] YING, R., HE, R., CHEN, K., et al. “Graph convolutional neural networks

for web-scale recommender systems”. In: Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pp. 974–983, 2018.

[13] “Traffic prediction with advanced Graph Neural Net-

works”. https://deepmind.com/blog/article/

traffic-prediction-with-advanced-graph-neural-networks.

Accessed: 2022-03-27.

[14] WIEDER, O., KOHLBACHER, S., KUENEMANN, M., et al. “A compact re-

view of molecular property prediction with graph neural networks”, Drug

Discovery Today: Technologies, v. 37, pp. 1–12, 2020.

[15] MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient estimation of word

representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

[16] GROVER, A., LESKOVEC, J. “node2vec: Scalable feature learning for net-

works”. In: Proceedings of the 22nd ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pp. 855–864, 2016.

[17] PEROZZI, B., AL-RFOU, R., SKIENA, S. “Deepwalk: Online learning of social

representations”. In: Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 701–710, 2014.

[18] RIBEIRO, L. F., SAVERESE, P. H., FIGUEIREDO, D. R. “struc2vec: Learn-

ing node representations from structural identity”. In: Proceedings of the

23rd ACM SIGKDD international conference on knowledge discovery and

data mining, pp. 385–394, 2017.

[19] CAI, H., ZHENG, V. W., CHANG, K. C.-C. “A comprehensive survey of graph

embedding: Problems, techniques, and applications”, IEEE Transactions

on Knowledge and Data Engineering, v. 30, n. 9, pp. 1616–1637, 2018.

[20] KIPF, T. N., WELLING, M. “Semi-Supervised Classification with Graph Con-

volutional Networks”, arXiv preprint arXiv:1609.02907, 2016.

[21] BRONSTEIN, M. M., BRUNA, J., COHEN, T., et al. “Geometric Deep Learn-

ing: Grids, Groups, Graphs, Geodesics, and Gauges”. 2021.

53

http://arxiv.org/abs/1609.02907
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

[22] VELIČKOVIĆ, P., CUCURULL, G., CASANOVA, A., et al. “Graph attention

networks”, arXiv preprint arXiv:1710.10903, 2017.

[23] MURPHY, R. L., SRINIVASAN, B., RAO, V., et al. “Janossy pooling: Learn-

ing deep permutation-invariant functions for variable-size inputs”, arXiv

preprint arXiv:1811.01900, 2018.

[24] XU, K., LI, C., TIAN, Y., et al. “Representation learning on graphs with

jumping knowledge networks”. In: International Conference on Machine

Learning, pp. 5453–5462. PMLR, 2018.

[25] HAMILTON, W. L., YING, R., LESKOVEC, J. “Inductive representation

learning on large graphs”. In: Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, pp. 1025–1035, 2017.

[26] PHAM, T., TRAN, T., PHUNG, D., et al. “Column networks for collective

classification”. In: Thirty-first AAAI conference on artificial intelligence,

2017.

[27] SELSAM, D., LAMM, M., BÜNZ, B., et al. “Learning a SAT solver from

single-bit supervision”, arXiv preprint arXiv:1802.03685, 2018.

[28] HAMILTON, W. L. “Graph Representation Learning”, Synthesis Lectures on

Artificial Intelligence and Machine Learning, v. 14, n. 3, pp. 1–159, 2021.

[29] LI, Y., TARLOW, D., BROCKSCHMIDT, M., et al. “Gated graph sequence

neural networks”, arXiv preprint arXiv:1511.05493, 2015.

[30] DUVENAUD, D., MACLAURIN, D., AGUILERA-IPARRAGUIRRE, J., et al.

“Convolutional networks on graphs for learning molecular fingerprints”,

arXiv preprint arXiv:1509.09292, 2015.

[31] GUILLAMET, D., VITRIA, J., SCHIELE, B. “Introducing a weighted non-

negative matrix factorization for image classification”, Pattern Recogni-

tion Letters, v. 24, n. 14, pp. 2447–2454, 2003.

[32] HIDASI, B., KARATZOGLOU, A., BALTRUNAS, L., et al. “Session-

based recommendations with recurrent neural networks”, arXiv preprint

arXiv:1511.06939, 2015.

[33] COVINGTON, P., ADAMS, J., SARGIN, E. “Deep neural networks for

youtube recommendations”. In: Proceedings of the 10th ACM conference

on recommender systems, pp. 191–198, 2016.

54

[34] SIMONYAN, K., ZISSERMAN, A. “Very deep convolutional networks for large-

scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[35] DEVLIN, J., CHANG, M.-W., LEE, K., et al. “Bert: Pre-training of deep

bidirectional transformers for language understanding”, arXiv preprint

arXiv:1810.04805, 2018.

[36] BAHMANI, B., CHOWDHURY, A., GOEL, A. “Fast incremental and person-

alized pagerank”, arXiv preprint arXiv:1006.2880, 2010.

[37] EKSOMBATCHAI, C., JINDAL, P., LIU, J. Z., et al. “Pixie: A system for

recommending 3+ billion items to 200+ million users in real-time”. In:

Proceedings of the 2018 world wide web conference, pp. 1775–1784, 2018.

[38] SARDA, A. J. I. L. A., MOLINO, P. “Food Discovery with Uber Eats: Using

Graph Learning to Power Recommendations”. December 2019. Dispońıvel

em: <https://eng.uber.com/uber-eats-graph-learning/>.

[39] ZHOU, K., DONG, Y., WANG, K., et al. “Understanding and Resolving Per-

formance Degradation in Graph Convolutional Networks”. 2020.

[40] ZHOU, J., CUI, G., HU, S., et al. “Graph neural networks: A review of methods

and applications”, AI Open, v. 1, pp. 57–81, 2020.

[41] PASZKE, A., GROSS, S., MASSA, F., et al. “PyTorch: An Imperative

Style, High-Performance Deep Learning Library”. In: Advances in

Neural Information Processing Systems 32, Curran Associates, Inc., pp.

8024–8035, 2019. Dispońıvel em: <http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf>.

[42] HOWARD, A. G., ZHU, M., CHEN, B., et al. “Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications”, arXiv preprint

arXiv:1704.04861, 2017.

[43] WANG, M., ZHENG, D., YE, Z., et al. “Deep Graph Library: A Graph-Centric,

Highly-Performant Package for Graph Neural Networks”, arXiv preprint

arXiv:1909.01315, 2019.

[44] “Modelo Erdős–Rényi”. https://en.wikipedia.org/wiki/Erd%C5%91s%E2%

80%93R%C3%A9nyi_model. Accessed: 2022-03-27.

[45] HINTON, G., ROWEIS, S. T. “Stochastic neighbor embedding”. In: NIPS,

v. 15, pp. 833–840. Citeseer, 2002.

55

https://eng.uber.com/uber-eats-graph-learning/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

[46] “Evaluation of clustering”. https://nlp.stanford.edu/IR-book/html/

htmledition/evaluation-of-clustering-1.htmle. Accessed: 2021-

12-22.

[47] BERNHARDSSON, E. Annoy: Approximate Nearest Neighbors in

C++/Python, 2018. Dispońıvel em: <https://pypi.org/project/

annoy/>. Python package version 1.13.0.

[48] JIN, B., GAO, C., HE, X., et al. “Multi-behavior recommendation with

graph convolutional networks”. In: Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 659–668, 2020.

[49] PALOWITCH, J., TSITSULIN, A., MAYER, B., et al. “GraphWorld: Fake

Graphs Bring Real Insights for GNNs”. 2022. Dispońıvel em: <https:

//arxiv.org/abs/2203.00112>.

56

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.htmle
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.htmle
https://pypi.org/project/annoy/
https://pypi.org/project/annoy/
https://arxiv.org/abs/2203.00112
https://arxiv.org/abs/2203.00112

	List of Figures
	Introduction
	Contributions
	Structure

	Background and related works
	Graph and node embedding
	Structural node embeddings
	Graph Neural Networks Embeedings
	Message passing
	Aggregation
	Update
	Graph Neural Network implementations

	Recommendations using GNN
	Recomendation systems
	Graph Neural Network for recommendation problems

	Proposed framework
	General considerations
	GNN componenents
	Implementation

	Methodology and evaluation
	Stochastic Block Model
	Node attribute generation
	Evaluation metrics
	t-SNE
	Purity Score

	Experiments and results
	Number of epochs
	Group size
	Network connectivity

	Limitations of the model

	Conclusion and Future work
	Future work

	References

