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Redes Neurais Profundas (RNP) emergiram como uma importante solução para
problemas complexos de diversas áreas, tais como visão computacional, processa-
mento de linguagem natural e sistemas de recomendação. Um sistema ideal baseado
em RNP deveria, de forma precisa, realizar predições e classificações utilizando-se de
entradas quaisquer mas sem interferência do ambiente externo. Contudo, os sistemas
baseados em RNP são suscetíveis a falhas devido às questões de confiabilidade e se-
gurança. Esta tese se propõe avaliar diversos modelos RPN em condições adversas,
como falhas do tipo bit-flip devido a fenômenos transitórios ou permanentes. Esta
tese também propõe uma técnica de detecção de falhas baseada em codificação AN,
focada em aceleradores de RNPs, empregados em sistemas críticos de segurança.
Devido aos altos padrões exigidos, microarquiteturas empregadas em tais sistemas
devem ser capazes de detectar mais de 99% de falhas em seu sistema. Além da alta
robustez proporcionada pela detecção baseada em codificação AN, a solução pos-
sui implementação não custosa, principalmente quando aplicado em conjunto com
a solução inovadora de quantização baseada em códigos AN. Em questões de segu-
rança, os métodos de ofuscação de RNPs baseados em treinamento proporcionam
uma excelente proteção aos dados sensíveis, como os pesos. Contudo, tais técnicas
possuem falhas nas quais informações importantes são vazadas, como a distribuição
das classes resultante das classificações. Além disso, soluções de ofuscação têm de
ser escaláveis, a fim de proteger todo o portfólio dos provedores de modelos. A téc-
nica de ofuscação baseada em trocas provê uma solução robusta, segura e escalável
para a proteção dos pesos das RNPs, evitando assim o acesso illegal aos dados.
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Deep neural networks (DNNs) have emerged as crucial methods for solving com-
plex problems in various domains, including computer vision, natural language pro-
cessing, and recommendation systems. An ideal DNN-based system should accu-
rately make predictions or classifications based on some input data with no inter-
ference from the external environment. However, DNN-based systems are suscep-
tible to failures due to reliability and security issues. This thesis evaluates many
compressed DNN models under faulty conditions like bit-flips due to transient or
permanent faults. Then, an AN-based detection scheme targeting DNN accelera-
tors deployed into safety-critical systems is proposed. Due to the high compliance
standards, microarchitectures employed in this type of system must provide a detec-
tion capability of 99% of faults. Also, the AN-based detection offers a lightweight
solution, particularly when incorporated with the novel AN code-aware quantiza-
tion technique proposed in this thesis. Training-based obfuscation techniques have
been successfully employed to protect DNN models from illegal access to sensitive
data, such as the parameters. However, crucial information such as the output class
distribution can be leaked to attackers, indicating that the target model has been
compromised. Additionally, an obfuscation scheme must provide a scalable way to
protect the model providers’ portfolios. The novel swap-based obfuscation scheme
provides a robust obfuscation of the DNN model parameters through a scalable and
secure solution, avoiding any illegal access and use of the model by non-authorized
entities.
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Chapter 1

Introduction

Contemporary society is living in the artificial intelligence (AI) era, where Machine
learning (ML), broadly embraced by transportation, financial, health care, and space
exploration systems, has established itself and will co-exist ubiquitously. Steadily,
safety-critical systems incorporate ML to perform additional tasks or even entirely
replace the need for human interaction, increasing the degree of safety, integrity,
and security demanded. Typical examples are fully autonomous driving cars, where
the vehicle performs the driving task under any condition, with no human interfer-
ence. Such tasks should be accomplished flawlessly, and the system should not be
susceptible to any errors or attacks. Therefore, the ML system designs should ac-
count for dependability and security, with either hardware or software-based layers
of protection, avoiding frequent and severe failures at an acceptable level.

The concept of a dependable and secure computing system is built on five fun-
damental pillars [12]:

• Availability relates to the system’s readiness from the start of operability to
any random time of request/use.

• Reliability comprehends the ability of the system to preserve its correctness
during its execution, either facing errors or attacks.

• Safety can be defined as a condition of stability without catastrophic results
to the user or ecosystem during its execution.

• Integrity relates to the ability to avoid improper external interference and
keep its data and execution truthfulness.

• Maintainability relates to the easiness of maintenance and the ability to
improve its reliability with past experiences.

• Confidentiality comprehends the capability of keeping its data safe under
unauthorized access of known and unknown entities.
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Over the past decades, researchers and companies have been working on new
technologies to encompass these pillars in every system development stage, rang-
ing from chip manufacturing to software development and deployment. For every
new technology generation, new obstacles are added and must be overcome with
novel ideas and designs (or evolving the old ones). For example, with the advance-
ment of semiconductor device fabrication, shrinking of feature sizes, and billions of
transistors, microprocessors are more prone to errors due to frequency, voltage, and
temperature variations than in earlier generations [13]. Datacenter fleets, composed
of a massive number of servers, are equipped with different technologies and un-
der different “life periods”, leading to constant and complex monitoring, testing, and
fault-tolerant routines at scale [13, 14]. Additionally, it is impractical to cover all the
possible points of failure during post-fab testing by manufacturers fully, leading to
further discovery of vulnerabilities and ways to exploit them [15–17]. Therefore, the
demand for novel dependability and security ideas is a constant and vital component
in the system design lifecycle.

According to Avižienis et al. [12], the means to attain dependability and security
in a computer system is comprised of four categories:

• Fault prevention: The system should prevent the manifestation or injection
of faults.

• Fault tolerance: After acknowledging the existence of faults, the system
should avoid failures and deliver an acceptable level of service.

• Fault removal: The system should reduce the rate and severity of faults
under its manifestation.

• Fault forecasting: The system should estimate the current number of faults,
future rates, and consequences.

While fault 1 prevention and tolerance aim to provide a trustworthy system,
fault removal, and forecasting ensure that the former ones will meet the required
specifications.

Fault prevention and fault tolerance can be applied to ML systems with various
techniques and at different system layers. However, each layer will have distinct
requirements and constraints, such as degree of protection, exposure, computation
capacity, area, and energy costs. Figure 1.1 depicts high-level blocks presented in
the computation stack of an autonomous car system, ranging from physical sensors
(lower level) to the software application (higher level). Each block relies on the
adjacent ones, trusting that the data received is error-free or not malicious. Hence,

1The formal definition of faults, errors, and failures will be clarified in Chapter 2.
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Figure 1.1: Example of a computation stack of a system. Each layer has distinct
requirements and constraints, such as degree of protection, exposure, computation
capacity, area, and energy costs. The Microarchitecture layer is the primary focus
of this thesis.

the design effort to achieve good dependability and security levels must consider a
per-block approach and be cost-proportional at each layer, not over-investing in a
few of them and leaving the remaining blocks unprotected.

This inherent communication between blocks can be exploited to create and sup-
port co-design solutions, where two or more blocks cooperate to achieve protection.
For example, by constraining the application layer to run integer-only calculations
under a specific set of values, the microarchitecture can perform a fast and robust
error detection mechanism through modular arithmetic [18].

To ensure a secure ML system design, confidentiality can be achieved with
hardware-assisted trusted computing solutions, such as a Trusted Execution Envi-
ronment (TEE) [19]. Malicious human-made faults can be introduced in the ML
system to exploit vulnerabilities and give an intruder access to confidential informa-
tion or even full-system control. TEE creates a walled garden ecosystem, isolating
and ensuring that the data-in-use is protected. Still, attacks and vulnerabilities of
some commercial TEE have been identified and exploited [20]. Therefore, additional
layers of protection are of significant importance to safely deliver and run ML models
on end devices.

Provably-secure cryptographic techniques could be applied to deal with this prob-
lem by encrypting the model’s data and preventing unauthorized party accesses its
information without a proper secret key. However, the encryption and decryption
process would incur a high overhead, limiting the response latency and increas-
ing the energy and area costs necessary to implement such schemes. Currently,
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the mainstream cryptographic method is homomorphic encryption (HE) applied to
privacy-preserving of ML models, where all the required calculation is performed
over encrypted data, with no need to decrypt it [21]. Yet, this solution makes the
system at least an order of magnitude slower [22]. Therefore, applying cryptographic
techniques over ML is still challenging, demanding a complex computational infras-
tructure.

On the other hand, non-cryptographic techniques can provide some degree of pro-
tection while not degrading the overall system behavior. Obfuscation has emerged
as an appealing non-cryptographic approach to prevent model piracy attacks. The
original model would not be released publicly but instead a disguised version. How-
ever, whoever had access to the obfuscated model, even a non-authorized user, would
still be able to run it with no consequences.

Furthermore, the obfuscation approach was extended to protect from model ex-
filtration over end-user devices [7, 23–25]. This approach differs from the original
one because whoever possesses the obfuscated model can only run it properly with
a secret key and specific device. The “locked” model behaves erroneously depending
on the key provided and the device, applying penalties to the final accuracy when
used by non-legitimate users. Thus, this lightweight solution guarantees the model
confidentiality and provides an additional authenticity layer to the system.

Once the model is deployed safely in the system, there is no guarantee that it will
run correctly, with no interference of natural faults. These faults can originate either
externally or internally by natural phenomena due to manufacturing defects [26, 27],
extreme operating conditions such as voltage and temperature variations [28, 29] or
even cosmic radiation [30]. Once active, a fault produces an error in the system
that can be propagated, further generating a system failure. At worst, errors will
be latent, propagating undetected through the system layers and generating wrong
output results. The unpredictable consequences of silent data error (SDE) over a
safety-critical ML system can range from a noisy prediction to a life-threatening
output, such as the unintended acceleration of a car.

Computational error is a subset of errors that can threaten the system’s reli-
ability through the erroneous execution of computational units. Unlike errors in
communication channels and storage systems such as network, main memory, and
disks, these corrupt execution errors (CEEs) are hard to track and detect [13]. For
instance, standard code-based techniques applied to storage and networking subsys-
tems are impractical to implement over arithmetic units due to their per-instruction
cost and complexity. Instead, lightweight arithmetic error codes should be explored
to detect such errors [31].

Designing a reliable system that encompasses fault tolerance is an exercise in
choosing appropriate redundancy strategies. Redundancy is the property of having
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additional resources (e.g., data) other than the ones minimally needed for the task
completeness [18]. Redundancy can be applied in various ways, such as duplicating
or triplicating the resource (e.g., dual or triple modular redundancy) or adding
extra bits to data to verify its correctness further (e.g., coding). Arithmetic error
codes, such as AN code, compose the set of coding techniques that can check the
correctness of a set of arithmetic operations by encoding the original operands. The
arithmetic operation result over the encoded operands should yield the same result
as encoding the result of the original operation (i.e., operands without encoding).
For example, in AN code [18, 31], the encode function consist of multiplying the
operands by a constant A. Considering the multiplication operation over encoded
integer operands, the outcome must be a multiple of A. Although arithmetic error
codes provide greatly fault coverage [32], it still incurs a high overhead when applied
to ML applications with billions of parameters and operations to be checked.

To summarize, Obfuscation and AN codes are effective methods to improve the
security and reliability of systems within constrained resources. Moreover, both
techniques can be applied at different system layers or even co-design within mul-
tiple layers. Although both mechanisms have been explored, there is still room,
especially for ML systems, for improvements and novel ideas to reduce its cost of
implementation while keeping the same degrees of security and reliability.

1.1 Contribution

This thesis proposes novel techniques and improvements over the state-of-the-art
related to model obfuscation and error detection on deep neural networks microar-
chitectures. Additionally, a custom open-source DNN fault injection framework was
created and shared through a GitHub repository during the research development.
The main contributions are listed below:

• Extensive reliability analysis of compressed DNN models under the presence
of transient faults. It is demonstrated that compression, in the mean of data
quantization and model pruning, can dramatically increase the system’s overall
resiliency under a faulty condition (e.g., cosmic radiation).

• TorchFI, a custom DNN fault injection framework created on top of the classic
and highly adopted DNN framework PyTorch. TorchFI can simulate transient,
permanent, and intermittent faults over computational units and memory sub-
systems.

• Custom DNN error detection based on arithmetic error codes (AN code) that
can detect more than 99% of errors over DNN MAC units. When coupled with
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a word-masking error correction scheme, the technique allows the DNN system
to operate with no accuracy loss, even under high bit error rate scenarios.

• Novel AN code-aware quantization process that enhances the custom DNN er-
ror detection by removing the necessity of pre-multiplying one of the operands
(e.g., input features or model parameters) by a constant A; further reducing
the cost of an HW detection scheme through a co-design scheme (HW and SW
error detection cooperation).

• Novel lightweight DNN model obfuscation technique that does not require a
specialized training process to protect the model’s IP while providing oblivious
output class distribution.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the per-
tinent concepts related to Neural Networks, Reliability, and Security, required to
understand the remaining Chapters fully. Chapter 3 presents TorchFI, the custom
DNN fault injection simulation framework used during the reliability experiments.
In Chapter 4, an extensive analysis of compressed DNN models under faulty condi-
tions shows that data quantization and pruning significantly improve the system’s
overall reliability. Chapter 5 proposes AN code as a low-cost HW error detection
scheme for DNNs microarchitectures. Further, in Chapter 6, the error detection
scheme proposed in Chapter 5 is enhanced by a novel AN code-aware quantization
process, removing pre-processing steps and reducing the detection costs. Chapter 7
introduces a novel obfuscation technique to protect the DNN from model IP theft
attacks. Finally, Chapter 8 concludes this thesis by summarizing and discussing
possible ideas for future work. Appendix A lists the accepted publications during
the development of this thesis.
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Chapter 2

Background

This chapter provides the relevant background information to better understand the
addressed subjects in this thesis. The main topics are Neural Networks, Reliability,
and Security of computer systems.

2.1 Neural Networks

Neural Networks are a set of machine learning algorithms where a computer is
trained to perform some tasks by analyzing a collection of data (e.g., training sam-
ples). Its history goes back to the 1940s with Warren McCulloch and Walter Pitts’s
work [33], where they propose that artificial neurons with a binary threshold (step-
function) were analogous to logical expressions. This would allow the creation of
Boolean circuits by connecting a set of artificial neurons with each other. Inspired
by the biological architecture and behavior of the brain, they modeled a neural sys-
tem where each neuron is composed of soma (body, dendrites, and nucleus) and an
axon. The neuron connections (i.e., synapses) are through the soma (dendrites) of
one neuron and the axon of another one (Figure 2.1 - left). Each neuron would
have its threshold to determine if an excitation generates a pulse or not. This pulse
would be propagated from the soma to the axon and then received by all neuron’s
dendrites connected to the axon’s terminals (Figure 2.1 - left). Depending on the
placement, connections, thresholds, and inputs, the network would output a specific
result analogously to a logical circuit.

Although the work proposed by McCulloch and Pitts was a vital contribution
to the current neural networks’ state-of-the-art scenario, it had limitations due to
its simplicity. At the end of the 1940s, Donald Hebb [34] proposed what would be
entitled Hebb’s rule. The rule states that a connection between two neurons gets
stronger when one repeatedly or persistently activates the other nearby. Hence, if
neuron A axon constantly activates the neuron B axon, a growth process would
occur, strengthening the connection between A and B and making the activation of
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Figure 2.1: Example of a biological neuron on the left and an artificial neuron on
the right.

neuron B by A more effective. Hebb’s rule changed how neuron connections should
be weighted and defined the fundamental procedures for the learning and memory
process.

In the late 50s, the idea of a perceptron was introduced and demonstrated by
Frank Rosenblatt [35]. It combined the McCulloch and Pitts neuron definition
enhanced with Hebb’s rule, enabling adjustable weighted inputs and thresholds (i.e.,
activation functions) in a single layer fashion (Figure 2.1 - right). The promising
advancement of Rosenblatt’s work made perceptrons capable of learning linearly
separable patterns (i.e., linear classifier) but had many limitations that were further
proved by Marvin Minsky and Seymour Papert [36]. Until then, research in the area
was limited, and neural networks became dormant up to the 80s. Finally, the concept
of neural networks was coined due to the placement and connections of artificial
neurons. Inputs were connected to artificial neurons that were further connected to
another set of artificial neurons. The multilayer concept (Figure 2.2) enabled neural
networks to solve more challenging problems, surpassing the limitations pointed
out by Minsky and Papert on Rosenblatt perceptrons. However, the growth in the
number of nodes and layers of the network had its implications. The networks were
now too complex to be solved in current state-of-the-art computer architectures.

Since the 80s, research works in neural networks have advanced, becoming a
mainstream area over the past decade. The compute capability of current hardware,
the amount of data, and the increasing interest and application of neural networks in
the industry such as the internet, automotive, agricultural, manufacturing, defense,
space exploration, etc., have enabled exponential growth and evolution of machine
learning-based technology. The following sections will bring up a few definitions
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Figure 2.2: Example of a multilayer perceptron with two hidden layers.

that will be crucial for a better understanding of the thesis. Notwithstanding, neural
networks are a vast area in constant growth, and the content in this section will not
be sufficient for a complete understanding of the area.

Figure 2.3: Example of a general six-layer deep neural network. Inputs are images
that are processed by the layers. The network output is a list of probabilities of
each class being classified.

2.1.1 Types of NN Architectures

The brain-inspired neural network research area has dramatically evolved since the
invention of Perceptron by Rosenblatt in the 50s. New neural network architectures
are proposed now and then to tackle various tasks such as computer vision, natural
language processing, and recommendation systems with the highest accuracy they
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can achieve. Fjodor & Stephan’s [37, 38] neural network zoo figure 1 shows some
well-known architectures.

Feed-Forward Networks (FFN) are networks where the inputs flow through
the hidden layer up to the output. Thus, there are no cycles in the network. As
mentioned earlier, Perceptrons are an example of FFNs. Although they are com-
posed of single (hidden) layers, the data flows through the network without any
loopback.

Convolutional Neural Networks (CNN) are a specialization of FNNs, where
the hidden layers are composed of convolutional operations over the data. This type
of network is commonly applied to computer vision tasks since its functionality
resembles the visual cortex behavior. Convolution operations extract features from
the input images through several filters (Figure 2.4). These filters are small trainable
weight matrices trained to extract and identify some patterns.

Figure 2.4: Example of a six-layer deep convolutional neural network. Convolutional
layers act as feature extractors, extracting low and high-level features from the input
images. The fully connected layers then use that information to classify the input.
The output is a list of probabilities of each class that compose the classification pool
of the network.

Due to the cardinality of different neural network architectures and areas in which
they are employed, this work is constrained to Convolutional Neural Networks for
Computer Vision problems. Therefore, the reliability and security assessment of the
remaining NN architectures is out of the scope of this work.

Before diving into the details of Convolution Neural Networks, the machine learn-
ing concepts of supervised learning and backpropagation must be introduced.

1https://www.asimovinstitute.org/neural-network-zoo/

10

https://www.asimovinstitute.org/neural-network-zoo/


Supervised Learning

Supervised Learning is a subcategory of machine learning algorithms in which the
training step of the learning system demands a set of labeled data. The algorithm can
be seen as an optimization problem where the main objective is to find a function
that better fits the input data (e.g., image) to the output (e.g., class) based on
previous examples. The training set is composed of pairs of input and output,
where the output is the ground-truth label of the input. For example, in an image
classification task, the input can be seen as pictures of animals and the output as
the name of each animal (e.g., dog, cat, bird, etc.) defined as classes. During the
training phase, as inputs flow through, the network must provide a way to measure
how good or bad its prediction was. This is done by employing a loss function (i.e.,
cost function) that will map to a real number (loss) the scores achieved by each
class in the classification set with that specific input. Then, the loss is fed back
through the network so that each neuron can regularize its weights (i.e., update).
This process is commonly known as Backpropagation.

Backpropagation

Backpropagation is the algorithm that computes the gradient of the cost function
(loss) with respect to the network’s weights. Backpropagation is part of the training
phase and takes advantage of gradient methods to efficiently perform weight updates.
The update is accomplished through the means of the chain rule in a recursive
way. Figure 2.5 shows how the computation of the gradients is performed using
the backpropagation algorithm. Backpropagation makes the learning process of big
networks feasible in terms of memory space and computation time.

Figure 2.5: Example of the backward propagation of k over part of the computational
graph. By recursively applying the chain rule, the gradients (in red) are computed
starting from the end up to the beginning of the graph.
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2.1.2 Convolution Neural Networks

Feed-Forward Networks are the base framework for several architectures. Convo-
lutional Neural Networks compose one of its branches, created to handle images
as inputs. CNNs are state-of-the-art for image classification, object detection, and
segmentation tasks. Their architecture comprises (mostly) convolutional, pooling,
and fully connected layers. The following sections will briefly describe the image
classification problem and the concept of CNNs base layers.

Image Classification Problem

The image classification problem is a simple computer vision task with extensive
real-world applicability. Given an input image, the task consists of identifying its
content (e.g., object, person, etc.). Through supervised learning, the model should
learn with the support of training pairs. Each pair is composed of one image and one
label. Each label is part of the classification set, being unique identifiers or names
of the classes. The training images are previously annotated so that the algorithm
can check if the prediction matches the ground truth. The main objective is to
classify correctly as many images as possible. Models are ranked via an accuracy
metric, which is a percentual calculated by the number of correct predictions over
the total. The standard way to evaluate models is through their top-1 and top-5
accuracies. Since the output of a model is the probability distribution of N scores,
each representing a class of the training set, the top-1 accuracy consists of the correct
predictions of the classes. In other words, the prediction with the highest probability
was the ground truth class. The top-5 accuracy is calculated by considering the
highest probability and the remaining top four ones. If the ground truth class lies
in the top five probabilities by the model, the prediction will be counted as correct.

2.1.3 Use Case Architectures

Since there are numerous CNN models, the model family concept is employed. A
family is a set of model variants that derivate from the same backbone. This back-
bone implements a specific characteristic or technique that enhances the CNN accu-
racy for some task over a particular dataset. Usually, families derive from older ones
by enabling new features and achieving higher accuracies in the same or different
datasets. One example of a feature could be the capacity of adding more layers
(more than fifty) with no loss degradation. The variants differ in the number of
layers, neurons per layer, and other hyperparameters such as learning rate and the
number of epochs. The rule of thumb is to identify each model with its family name
followed by the number of hidden layers (e.g., ResNet50). The following sections
will describe four model families employed as use cases during the development of
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this thesis. The models are LeNet, AlexNet, VGG, and ResNet. They range from
small and proof-of-concept networks to deep and state-of-the-art ones.

LeNet

LeNet is a family of small-size convolution neural networks developed by LeCun et
al. [39, 40] and designed for handwritten digits classification tasks. The five-layers
deep LeNet (a.k.a. LeNet-5) was primarily deployed to identify zip code numbers
from the US Postal Service and successfully achieved the task. Still, the model and
its variations are used for experimentations, and proof of concept with databases
like MNIST (handwritten digits database) [39] 2.

AlexNet

AlexNet is a single model family composed of eight hidden layers, five convolutions
followed by three fully connected ones [8]. The AlexNet model was introduced in
the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) with a
disruptive architecture with high accuracy, and that was able to run over GPUs.
In 2015, the eight-layers deep AlexNet model won the ILSVRC, beating Microsoft
Research Asia’s CNN with 100 layers. Since then, AlexNet is still used as a mid-size
validation network.

VGG

VGG is a family of very deep convolutional networks [9]. The name stands for
the time who won the 2014 ILSVRC on the classification and localization tasks.
The family is composed of 16 and 19-layers deep networks. VGG’s networks were
considered deep at its creation due to their number of layers and their massive
number of parameters (e.g., 138M for VGG16).

ResNet

ResNet is a family of models created for a specific purpose: to enable deeper architec-
tures [10]. Before ResNet, deeper models (bigger than the 22-layer deep GoogleNet
[41]) struggled to sustain their accuracy during training time due to the vanishing
gradient problem. As the gradient backpropagates from the final layers to the early
layers, the repeated number of multiplications by small numbers makes the gradient
infinitely small. A deeper network means a better approximation of the function
(to fit the data) [42]—still, more layers to backpropagate, resulting in the vanishing

2http://yann.lecun.com/exdb/mnist/
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gradient over early-stage layers. ResNet was proposed with a simple but ground-
breaking idea to avoid the vanishing of the gradient. ResNet stands for residual
network, and the core idea is to add an “identity shortcut connection” that bypasses
some layers. This concept works because the network should be able to approximate
an identity function. If ones bypass the set of hidden layers by a shortcut that con-
nects the input to the output, the network will still move towards an approximate
function that fits the data. The vanishing gradient problem is then solved (or mit-
igated) through the identities shortcuts that flow the gradients backward, hopping
some layers and avoiding multiplications that would eventually cause the gradient
to be 0 (or extremely close to it). Currently, state-of-the-art ResNet models can
achieve up to 152-layers deep, and its smallest model has 18 layers.

2.1.4 Use Case Datasets

MNIST

The handwritten digits dataset MNIST has 60,000 training samples and 10,000
validation samples. The images are small-size grayscale ones with 28x28 pixel size
box representing values ranging from 0 to 9 (ten classes in total).

CIFAR10

The CIFAR-10 dataset comprises 60,000 small-size color images with 32x32 pixel
box and a total of ten classes. Each class represents an object, such as cats, dogs,
ships and trucks. The training set consists of 50,000 images and the validation set
of 10,000.

ImagetNet

The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset is
composed by millions of color images. The training set has ≈ 1.2 million samples
and the validation set has 50,000 images. The dataset has a 1,000 unique classes
and images with 224x224 pixels.

2.1.5 Compute Optimization Techniques

Neural network applications demand massive computation and memory space. Even
small models, such as LeNet, with a couple of layers, can require millions of floating-
point operations (FLOPs) and megabytes of data (e.g., weights) to be stored and
loaded from memory [3]. Compute optimization techniques can be applied to make
deep neural networks feasible to run in resource-constrained devices. Techniques
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such as quantization and pruning reduce the memory footprint and energy neces-
sary to compute such applications and, most importantly, without affecting their
final accuracy. The following sections will detail some state-of-the-art quantization
techniques and network pruning.

Quantization

The quantization concept arises from the signal processing area where continuous
infinite values are mapped into a smaller set of discrete finite values. The same
idea is applied to ML data quantization, where the data represented in a higher
precision data type is mapped to a lower precision data type, as exemplified in
Figure 2.6. A straightforward quantization process (Equation 2.1) can be achieved
by applying a scaling factor (sW ) to the input data(Wfloat). The scaling factor will
act as a mapping function that will transfer the input data to a new output space
as exemplified by the unsigned 8-bit integer quantization in Equation 2.2.

Wfloat ≈ sW ∗Wint (2.1)

W =

(
0.57 0.0

1.0 0.81

)
≈ 1

255

(
145 0

255 207

)
(2.2)

Figure 2.6: Example of a signed 8-bits symetric quantization (i.e., zero-centered)
over 32-bit floating-point data.

The IEEE 754 single-precision floating-point (FP32) is the standard data type
adopted for activations and weights during a neural network’s training and inference
phases. Although FP32 provides a wide range and good precision (Figure 2.8), the
amount of energy dissipated to compute and transfer the data from the main memory
to the floating-point unit limits the potential use of neural networks over constrained
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resources (e.g., smartphones). Additionally, floating-point units demand a far more
extensive area when compared to integer ones, limiting the feature space of the chip
design.

Figure 2.7, adapted from Sze’s tutorial slides on DNN Model and Hardware
Co-Design [1] and data collected from Horowitz [2], depicts the amount of energy
necessary to transfer or compute each data type. Data movement dominates the en-
ergy cost, especially when transferring 32-bit data from the main memory (DRAM).
In the arithmetic operations spectrum, floating-point data adds up energy cost on
top of integers and demands a higher circuit area. By moving from 32-bit to 8-bit
data types, the costs in energy and area decrease by orders of magnitude. Therefore,
quantization can be the inflection point to enable state-of-the-art deep neural net-
works on low resources devices by reducing the area necessary for the circuitry and
the amount of energy needed to compute and transfer the data from the memory to
compute units.

Since Krizhevsky’s publication of AlexNet [8], several research works around data
quantization for neural networks have been proposed. Although the quantization
process incurs an approximation of the data, CNNs showed prominent resiliency to
low-precision quantization, such as 8-bit integer (INT8), maintaining the same final
accuracy as original FP32 versions. Additionally, the industry has proposed and
adopted novel and application-aware data types as new standards. For example,
Google’s Brain-Float (BF16) is a 16-bits data type proposed primarily for neural
network applications. BF16 takes advantage of the wide range of FP32 by having
the same amount of bits dedicated to the exponent part (8 bits) but with lower
precision than the IEEE 754 FP16 (7 bits), as detailed in Figure 2.8. This makes the
training of DNNs in a lower precision feasible without hurting the weight’s update
during the backpropagation algorithm. Major hardware vendors have adopted BF16
as a standard for training DNNs and incorporated it in their new Instruction Set
Architectures (ISAs) [43, 44].

Quantization can either be symmetric or asymmetric. In the symmetric quan-
tization, the zero in the mapping space is fixed over the zero of the original space
(Figure 2.9 – left plot). Asymmetric quantization offers more flexibility by including
an extra variable (zero-point) in the scaling factor equation. The zero-point (z) vari-
able shifts the grid and changes where the zero value will be placed in the mapping
space (Figure 2.9 – right plot), allowing a better fit of a different set of distributions.

When applied to neural networks, quantization can be achieved through two main
classes of algorithms, Post-Training Quantization (PTQ) and Quantization-Aware
Training (QAT). But before diving into PTQ and QAT details, such quantization
classes’ development and testing process should be clarified.

Quantized neural networks are developed and tested through the support of
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Figure 2.7: Example of the amount of energy necessary to transfer or compute each
data type. The diagram was adapted from Sze’s tutorial slides on DNN Model
and Hardware Co-Design [1] and data collected from Horowitz [2]. Reproduction
authorized by the authors.

Figure 2.8: Example of different data types widely adopted in the Machine Learning
area. The diagram was adapted from Sze’s tutorial slides on DNN Model and
Hardware Co-Design [1]. Reproduction authorized by the authors.

simulations. The layer’s operations are performed in FP32, but data is pre-processed
before and after each computational block. This back-and-forward (FP32 → INT8
→ FP32) step allows the network to simulate the effects of error approximation.
Figure 2.10 details a simulation of an asymmetric quantization process between two
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Figure 2.9: Example of differences between symmetric or asymmetric quantizations.
Asymmetric quantization shifts the grid by setting a new zero-point (z) differently
from the original one, providing more flexibility to fit the data distribution.

convolutional layers. Considering s as the scaling factor, zp as the zero-point, b
the number of bits to quantize, and W the weight matrix, the quantization blocks
perform the Equation 2.3 operation followed by Equation 2.4 to scale back the output
to a floating-point matrix. This process approximates the behavior of the network
running on actual hardware that provides support with the desired data type.

Wint = clip

(
round

(
Wfloat

s

)
+ z,min = 0,max = 2b − 1

)
(2.3)

Ŵfloat = s (Wint − z) (2.4)

Post-Training Quantization is a class of quantization algorithms that take
a pre-trained network model in a single-precision floating-point format and convert
it into a quantized model (fixed-point or integer format). The process does not
require any retraining of the model and only a few calibrations (or even none) of the
quantization functions to be applied (Equation 2.3). Weights are quantized before
the network execution, but input activations demand on-the-fly computation.

Quantization parameters, such as scaling factor and zero-point, can be tunned by
providing a few input samples in a non-mandatory calibration phase. The clipping
parameters (qmin and qmax) and the rounding algorithm of Equation 2.3 should
be carefully set and are strongly tied to the level of granularity at which the quan-
tization function is applied. A naïve level of granularity can consider the whole
network data, but that will lead to a high uncorrelation with the weight distribu-
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Figure 2.10: Example of how quantized neural networks can be simulated over
standard hardware. These steps allow the network to mimic the effects of error
approximations that arise from quantization functions.

tions presented in each layer. Common approaches are layer-wise, tensor-wise, and
channel-wise quantization, where the quantization functions will be crafted consid-
ering the distribution of each layer, tensor, or even more profound, the distributions
of each weight’s channels inside the tensor’s layers. By carefully picking the right
granularity and the parameters, the amount of error incurred by the clipping and
rounding functions will be minimized (or balanced), leading to lower degradation of
the model’s accuracy.

Although PTQ provides a “plug-and-play” capability, it presents poor accuracy
when the number of bits (quantization levels) is low. The current state-of-the-art
PTQ algorithms can handle up to INT8 data types with marginal accuracy degra-
dation [45]. Still, PTQ is largely adopted due to its near-zero cost for quantizing
the network.

As the name suggests, Quantization-Aware Training involves the model’s
training pipeline to achieve enhanced quantization functions. This fact implies a
more challenging task: handling the backward propagation of the gradients through
the quantization blocks, especially the rounding function (no meaningful deriva-
tive). The QAT research area can be subdivided into approximation-based, and
optimization-based techniques [6]. The approximation-based method tries to solve
the issue by applying a straight-through estimator (STE). The STE replaces the
zero rounding derivatives with an identity function. Moreover, approximation-based
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techniques provide the means to learn Equation 2.3 parameters, such as scaling fac-
tor (s) and quantization levels (qmin, and qmax), finding the optimal balance between
rounding and clipping error [46–48]. However, the STE ends up leading to the gra-
dient mismatch problem since the approximation of the values during the forward
pass differs from the one applied in the backward pass, incurring a noisy training
phase [49].

The optimization-based techniques alleviate the gradient approximation problem
by employing soft quantizers [6, 49, 50]. The soft quantizers are learnable differen-
tiable non-linear functions that can be applied to any data of the network (weights
and activations). The functions are optimized through several finetune epochs by
minimizing the ideal and the soft quantization function gap. This is a similar pro-
cess to the training of the network weight, but now the targets are parameters of
the quantization function.

Both approximation-based and optimization-based techniques can achieve reli-
able accuracies under ultra-low quantization levels (e.g., 1 to 4-bit). However, QAT
implies a heavy training process and demands a deep knowledge of the networks to
better adjust its parameters.

Pruning

In the 1980s, Le Cun et al. [51] proposed an iterative process to reduce the size
of neural networks by removing irrelevant weights. The weights were classified and
sorted through sensitivity analysis (i.e., second derivative) based on their impact on
the training error. The technique entitled pruning had as main objectives to achieve
a better generalization and improve the speed of learning/classification. However,
the pruning idea ended to be much more beneficial than the original proposal. Re-
moving unnecessary weights can drastically reduce the amount of space needed in
memory within the constant increase of the current state-of-the-art deep neural net-
works. Additionally, the cost of transferring the data back and forward from the
DRAM to the SRAM and then the compute units is reduced, saving a valuable
resource for resource-constrained devices: energy.

Han’s work [3, 52] followed up the pruning idea by addressing the sensitivity
analysis to define better how the thresholds should be set. A per-layer empirical
study was performed, and the findings show that smaller thresholds must be ap-
plied to the most sensitive layers (e.g., the first convolutional layer). Therefore,
a correlation between layer sensitiveness and pruning rate should be considered.
Through an iterative pruning process over pre-trained networks (Figure 2.11), the
authors reduced AlexNet and VGG16 parameters by a factor of 9x and 13x, respec-
tively. These results account for more than 80% of parameters pruned and, more
importantly, without accuracy degradation on both models.
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Figure 2.11: Steps of an iterative pruning process. Dense models are transformed
into sparse ones by removing non-relevant nodes and connectivities (i.e., weights).

The pruning results were further enhanced by combining it with quantization
[52] and by applying an Automated Gradual Pruning (AGP) [53] which removes
most of the weights at the initial iterations and gradually reduces the pruning rate
over time.

2.2 Reliability

Reliability is one of the six fundamental pillars to building dependable and secure
computer systems. It comprehends the ability of the system to preserve its correct
execution under a faulty condition or attack scenario. Fault-tolerant systems can
manage these circumstances by acknowledging that the system has encountered
errors and still operates with no failures and an acceptable quality of service. The
system must provide ways to detect, mitigate, and, if possible, correct the errors that
manifest from permanent, transient, and intermittent faults. This fault-tolerance
can be achieved through redundancy. Extra hardware, software, data, or use of
time can be added to the system to overcome such faulty scenarios and increase the
system’s overall reliability. This section reviews basic definitions of faults, errors, and
failures and means to detect, correct, and mitigate them. Additionally, techniques
to simulate faulty scenarios and some historical evidence of such faults and errors
in computer systems are described below.
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2.2.1 Terminology

First, a few terminologies should be defined beforehand since some terms are used
interchangeably and are not absolute [12, 54].

Figure 2.12: Example of a computational layer stack of an autonomous driving
system.

• Faults are caused by internal or external factors that manifest in the hardware
component or software modules. They can arise from chip manufacturing
defects, extreme operational conditions, software bugs, or even natural phe-
nomena that interact with the electronic device. Examples of events that cause
faults are radiation-induced (e.g., cosmic rays and alpha particles), metal and
oxide failures (e.g., electromigration and gate oxide wearout), voltage, and
temperature variation. Faults can assume two types of modes during the sys-
tem’s execution. When active, the fault has manifested as an error in the
system. However, this fault manifestation (i.e., error) will only be user-visible
if it reaches the highest level of systems abstraction layers (e.g., the Applica-
tion layer in the autonomous driving system depicted in Figure ??). Moreover,
many faults do not manifest as errors and remain dormant during the whole
execution of the application.

• Errors are consequences of faults in the system. Whenever a fault is trig-
gered, moving from dormant to active, it manifests as an error. As defined by
Mukherjee [54], the definition of error is strongly tied to the notion of scope.
If an active fault occurs in a specific scope, it will become an error in that
scope. If the fault is masked or tolerated, it may not appear in an outer scope
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as an error. Also, faults detected within the scope will become an error in
that scope. Outer scopes will be affected by errors in inner scopes only if the
error is not corrected within the inner scope. Therefore, once a fault becomes
an error and the error is not corrected, it can propagate through the outer
scopes and become a user-visible error. Consider the following example pro-
vided by Mukherjee [54]. Suppose a fault occurs in the memory subsystem,
such as a bit-flip in the most significant bit. This fault will eventually be-
come a user-visible error if active (i.e., memory location read by the system).
Consequently, the scope of the error will be the whole system, since it has
been propagated to the last possible level (e.g., user application). However,
if the memory subsystem is protected by some redundancy scheme, such as
error-correcting code (ECC), the error will be contained and will not propa-
gate. Therefore, the error is considered to have occurred within the scope of
the ECC logic. For the remaining scopes outside this logic, the error will be
deemed to be tolerated.

• Failures mean that the system cannot deliver the expected quality of services,
such as correctness or performance. They are considered particular cases of
errors. When errors propagate, reaching the utmost boundaries of the system
and becoming user-visible, they can lead to system failures. An example of
failure could be a multiple bit-flip in the memory subsystem that stores a
database. This data corruption can lead to unexpected behavior (e.g., wrong
information delivered) of the database system and the services that depend on
its data.

2.2.2 Types of Faults

Faults (and errors) can be classified into three types. Permanent, transient, and
intermittent. They are classified into each type due to the nature of manifestation.

• Permanent types of faults or errors constantly occur until the replacement
or correctness of the component. Device wear-out (e.g., Oxide wear-out) or
manufacturing defects that are not detectable during testing exemplify how
permanent faults and errors manifest. Permanent errors are also called hard
errors due to the physical nature of the issue.

• Transient or soft errors have non-deterministic occurrences in terms of time
and location. They typically manifest into single or multiple bitflips or gate
malfunction in the system at a random place. Transient types commonly
manifest due to external factors like alpha particles or neutron strikes.
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• Intermittent types tend to occur repeatedly but with periods of no manifes-
tation. They could be considered indicators that will evolve into a permanent
behavior. They can harm the hardware by generating errors that last one
or more clock cycles [55, 56]. Due to its non-deterministic activation nature,
intermittent types of faults and errors are hard to diagnose. Unlike transient,
intermittent types tend to occur repeatedly in bursts at the same location.

2.2.3 Source of Faults

Faults can manifest due to several factors that can be either internally or externally
to the system. The following will describe a few of them directly related to each
type of fault over semiconductor devices, such as Radiation-induced, Operational
conditions, and Hardware wear-out.

Radiation-induced

Radiation-induced transient faults compose the extensive list of possible
source/threats to any system that runs over a semiconductor device. These faults
are introduced into the silicon via two potential particles sources. The first one
arises internally due to radioactive impurities used in the chip packaging process
[57]. The second occurs externally, via the terrestrial atmosphere, in the form of
cosmic rays (i.e., terrestrial cosmic rays). These faults are considered “soft” or “tran-
sient” due to their spontaneous nature. Unlike “hard” ones, which are permanent,
typically arise from materials wear-out and forcing the device replacement, soft ones
are nonrecurring, at a random location, and can result in single or multiple bit flips.

Alpha particles (a.k.a. alpha radiation or alpha rays) are emitted through a
radioactive decay process that arises from the nucleus of radioactive components.
When an alpha particle is sufficiently energetic and ionized, it can penetrate the die
surface, creating electron-hole pairs in the substrate. If this alpha particle hits the
right place (i.e., storage well), the electron-hole pairs will cause a bit-flip. The first
report of this kind of fault was reported in 1978 by Intel Corporation [57]. Intel
observed an unusual behavior of its 16K DRAM, where bit-flips were occurring with
no apparent cause. Intel’s May and Woods further investigated the problem and
found that it was due to the ceramic packing of their chips. The packing modules,
manufactured in a new plant constructed upstream of Colorado’s Green River, got
contaminated. Unluckily, the manufacturing plant was built near an old uranium
mine, where the radioactive atoms end up being transported from and through the
river. Even a slight trace of uranium and thorium in the packaging material was
enough to produce alpha particle strikes, causing bit-flips into random locations of
the memory chip [54]. During Alpha-Flux experiments, May and Woods found a
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strong correlation between the chip’s error rate (i.e., number of bitflips) and the
intensity of alpha particles the chip is exposed to.

Furthermore, IBM Corporation suffered from the same source of transient faults.
Over a year of production (1986-1987), IBM chips were contaminated by radioactive
materials coming from a chemical plant, far from IBM’s manufacturing plant, but
part of the manufacturing chain of the chips. The bottles that stored acid used
during the chip manufacturing were the source of contamination. The chemical
plant used radioactive material to clean the bottles that were used then by IBM
[54].

Unlike alpha particles, neutron strikes are consequences of external interference
arising from space. Cosmic rays are high-energy radiation particles, possibly as
a result of supernovas and black holes [58], that penetrate the earth’s atmosphere.
However, as they make their way to the earth’s surface, these particles end up collid-
ing with air molecules, creating new particles. These new particles are then broken
into other particles, such as Neutrons, Protons, Electrons, etc. This “shower” effect
of several particles strikes the earth’s surface and, consequently, hits semiconductor
devices [59]. Like alpha particles, when the neutrons are highly energized, they in-
teract with the semiconductor material, generating sufficient bursts of electron-hole
pairs to interfere in the electronic circuit components (i.e., soft faults). Also, it has
been observed that the atmospheric neutron flux varies enormously due to altitude,
magnetic latitude, time of day, solar cycle, etc. [59], increasing the effort necessary
to detect, protect, and mitigate from such faults not only at sea level systems(e.g.,
supercomputers) but also in high altitudes systems (e.g., aircraft) [60]. The first
report of failures in space-borne digital systems due to cosmic ray interaction was
reported by Binder, Smith, and Holman in 1975 [61]. The unexpected triggering
of flip-flop circuits caused anomalies in the communication system of a satellite.
Further, in 1979, Ziegler and Lanford decided to investigate the occurrences of “soft
fails” due to cosmic rays. After discovering by Intel Corporation that soft faults
arose from alpha particles in their packing system, Ziegler and Lanford suspected
that cosmic-ray particles at sea level could impact computer memory devices. IBM
Corporation validated the data and confirmed the occurrence of soft errors in com-
puter chips due to cosmic rays [62].

Hardware Wear-out

Permanent faults that affect semiconductor devices can be classified into two types:
extrinsic and intrinsic. Extrinsic types arise due to manufacturing defects, and they
manifest and affect the hardware component at the early stages of the component’s
life. Detection of such defects is done through several tests in the fabrication pipeline,
such as burn-in. The technique’s name reflects the process where chips are exposed
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to high temperatures and voltages. The ones that present traces of permanent
defects are discarded and considered part of the infant mortality phase.

Figure 2.13: Example of a bathtub-curve showing the expected error rate of a hard-
ware component over time.

In contrast, intrinsic faults arise over time, with hardware degradation, due to
several factors ranging from the age of the component to environmental factors (e.g.,
ambient temperature) to which the device has been exposed over its useful lifetime.
In their end-of-life phase, the materials that compose the silicon device begin to
wear-out, leading to transistors malfunction and a permanent faulty behavior of
the chip. The bathtub-curve depicted in Figure 2.13 captures how the error rate of
extrinsic and intrinsic faults are related over the lifetime period of a semiconductor
device.

Hardware wear-out can manifest through several intrinsic fault models, such as
metal or gate oxide failures [54, 63]. One example of metal failure mode is the
Electromigration mechanism 2.14 caused by the electron flux that flows through the
metal lines and is deteriorated under high temperatures. Electrons flow through
the metal lines and collide with the metal atoms that can eventually be displaced.
Within sufficient momentum, the metal atoms are dislocated, creating a void in the
metal line and becoming part of an extrusion area (Figure 2.14). A closed circuit
is created if the amount of metal atoms displaced over time is enough to make the
extrusion area connect an adjacent line. Additionally, an open circuit can be formed
if the number of displaced atoms is sufficient so that the void is greater than the
metal line area. Over CMOS gates, this behavior leads to stuck-at types of faults,
where the transistor results will be stuck at 1 or 0.
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Figure 2.14: Example of an electromigration mechanism caused by the high electron
flux that flows through the metal lines. The metal atoms are dislocated within
sufficient momentum, creating a void in the metal line and becoming part of an
extrusion area.

Figure 2.15: Examples of open (top) and closed (bottom) circuits that were caused
by significant extrusion and void areas, respectively.

Gate oxide failures are also a form of transistor wear-out. CMOS transistors
(Figure 2.16 are composed of:

• Gate: control terminal of the transistor.

• Source and Drain: terminals where electrons are provided and collected,
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respectively.

• Substrate: crystalline conductor between source and drain.

• Gate Oxide: thin, non-crystalline, amorphous silicon dioxide that insulates
the gate from the source, drain, and substrate.

Figure 2.16: Example of a CMOS transistor.

Depending on the type of the transistor (nMOS or pMOS), the substrate is
composed of a low concentration of negative (nMOS) or positive (pMOS) charges.
The source and drains are areas with a high concentration of negative (nMOS) or
positive (pMOS) charges. Considering an nMOS transistor, when a ground charge
is applied to the gate, the negative charges will be repelled (Figure 2.17 – bottom
plot), acting as an open circuit and avoiding electron flow from source to drain. The
substrate charges will be attracted by positive voltage (V+) to the gate, creating
a closed circuit, enabling electron flow from the drain to the source. Seamlessly, a
pMOS transistor will allow the electron flow with the ground applied to the gate
and disable with positive voltage as detailed in Figure 2.17 (top plot).

The gate oxide performs the crucial task of insulating the gate from the substrate,
source, and drain. Also, the thickness of this layer dictates the switching speed of
the CMOS transistor (on to of or vice-versa) [54]. High-performance chip designers
decrease the supply voltage, demanding ultra-thin gate oxide layers to maintain
overall power consumption in every new technology generation. This leads the gate
oxide to a potential point of failure in a transistor.

When the maximum operating frequency is somehow affected, a Hot Carrier
Injection (HCI) [64] can occur, affecting its transistors. HCI happens when the
VDS (voltage drain-source) is exceptionally high, causing the income electrons from
the source to arrive at the drain at high velocity and with high kinetic energy.
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Figure 2.17: Examples of pMOS and nMOS transistors where the substrate is com-
posed of a low concentration of positive (pMOS) and negative (nMOS) charges.
When a ground charge (GND) is applied to the gate, the negative charges will be
repelled (bottom plot), acting as an open circuit and avoiding electron flow from
source to drain. The closed-circuit occurs when a positive voltage is applied to the
gate, enabling electron flow from the drain to the source. The reverse happens with
the pMOS (top plot).

By striking the atoms in the drain-substrate interface, the hot-carrier phenomenon
can cause electrons-hole pairs, making some carriers bounce back to the substrate,
causing an increase in substrate current. In the worst scenario, some carries can
go through the gate oxide, degrading the insulation layer or even reaching the gate
(Figure 2.18). HCI can lead to instability (intermittent fault) or even degradation
(permanent fault) of the transistors in the silicon chip.

Operating Conditions

Intrinsic faults can also arise due to operating conditions such as voltage and temper-
ature fluctuations or due to crosstalk and switching noise interference [63]. Dynamic
voltage and frequency scaling (DVFS) is a feature that enables the dynamic adjust-
ment of voltage and frequency of CPUs. It allows the overvolting and undervolting
of the system depending on the circumstances. Overvolting allows a higher operat-
ing frequency of the CPU, enabling it to operate in high-performance mode. On the
other hand, undevolting reduces the CPU voltage, decreasing its power consump-
tion and saving the system’s energy. DVFS feature contributes a lot in systems
where energy is a significant constraint (e.g., laptops, smartphones). However, such
a technique can lead to reliability degradation of the system. Overvolting increases
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Figure 2.18: Example of Hot Carrier Injection (HCI), when voltage drain-source is
exceptionally high. Electrons from the source arrive at the drain at high velocity and
with high kinetic energy, striking the atoms in the drain-substrate interface. HCI
can cause an increase in substrate current and also degrade the insulation layer.

the amount of heat dissipation, increasing the temperature over the CPU die. Yet,
working on operating frequency limits or surpassing them can trigger further reliabil-
ity issues. Hot-carrier injection and electromigration behavior directly correlates to
operating conditions such as temperature and voltage, and intermittent faults might
manifest as early advice of the component’s possible end-of-life stage (wear-out).

2.2.4 Types of Redundancy

Reliability can be achieved in the form of redundancy through several techniques,
ranging from low-level (i.e., extra hardware components) to high-level (i.e., redun-
dant multithreading) ones. Designing a resilient system is an exercise in choosing
appropriate redundancy strategies constrained by cost and performance require-
ments. The following sections will describe a few strategies that compose the four
base redundancy classes: Hardware, Software, Information, and Time redundancy.

Hardware Redundancy

Hardware redundancy is provided by incorporating extra computing units into the
design to detect and mitigate the effects of a failed component. For example, having
two adders instead of one will allow error detection on add operation scope. Adding a
third adder will enable detection plus correction through a voting system. The adder
example can be seen as a form of static redundancy, where the goal is immediate
detection or correction. Suppose a processor can perform two simultaneous add
operations. Instead of providing extra resources for each operation, they may also
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be shared and activated on-demand. For example, with just four adders, where
a pair of adders perform identical add, we can detect some errors. We may then
marshal one of the adders from the neighboring pair and re-do the computation for
correction. This is a form of dynamic hardware redundancy.

Dual Modular Redundancy and Triple Modular Redundancy are static redun-
dancy strategies where a unit block is duplicated and triplicated to achieve detection
and correction (respectively ) of faults that may arise in the unit. However, addi-
tional features can be added to DMR or TMR to achieve dynamic redundancy.

A commercial example of dynamic DMR in the scope of microprocessors is IBM’s
S/390 G5 design [65]. The microprocessor design was composed of several dupli-
cated units (mirrors) that could either be used to achieve a high-performance (e.g.,
parallel execution) or an ultra-reliable execution. When deployed in mission-critical
applications, the system could be dynamically set to provide redundant execution
and ensure data integrity and continuous availability as additional features.

Recently, Tesla [66] disclosed information regarding their new hardware respon-
sible for the full self-driving capability. The hardware comprises dual redundant
SOCs and power supplies as a safety and security feature. Both SOCs receive over-
lapping data from external sensors, such as camera, radar, GPS, ultrasonic, and
wheel ticks. The system gets this external information, compute and compares the
results, validates, and finally performs the action. One should note that this exam-
ple shows several levels of redundancy beyond DMR since the information provided
to the application level (running on both SOCs) is also redundant due to the data
overlapping.

Software Redundancy

Software Redundancy focuses on detecting and correcting errors at a higher level
by using additional software components. Redundant multithreading (RMT) is an
example of software redundancy [67]. Two or more threads of the same program are
launched simultaneously with identical input data, and their outputs are compared
for error detection and correction. Examples of RMT usage can be seen in the
Operating System code, where it often activates RMT over critical sections of code
[68].

Information Redundancy

Information redundancy is introduced by embedding extra information into the data
that will be processed, transferred, or stored in the system. The additional informa-
tion can be added through several means, such as coding. Coding-based techniques
transform the original data through an encoding process. Encoding adds extra bits
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of information to the data, creating a codeword. After the codeword is processed,
transferred, or read, the decoding step transforms the codeword back to its original
format, without the extra bits. If errors have affected the codeword for some reason,
the decoding process will be able to detect and, sometimes, correct them. Codes
can be divided into two types: separable and non-separable. Separable codes pro-
vide distinct places where the original and redundant data will be stored in the bit
space. Therefore, encoding and decoding separable codewords are straightforward
processes. Non-separable codes, on the other hand, merge the original and redun-
dant data, demanding more elaborate encoding and decoding processes. Several
coding techniques can provide efficient error detection, and correction capabilities
to the system (e.g., Parity, Berger, and Cyclic codes) [18]. However, this thesis will
limit the scope to the class of arithmetic error codes, more specifically, the AN Code.

Arithmetic Error Codes are a group of codes preserved during the execution of a
set of arithmetic operations. These error codes are of particular interest since they
can detect errors in arithmetic units, presenting as a low-cost alternative to DMR
or TMR techniques. Given X and Y as input operands, X̂ and Ŷ their respectively
encoded version, and · the arithmetic operation. If f (Equation 2.5) is an arithmetic
error code with respect to ·, the statement in Equation 2.6 must hold true.

f : x→ x̂ (2.5)

X̂ � Ŷ = (X · Y ) (2.6)

AN code composes the non-separable group of Arithmetic Error Codes. AN code
works by simply encoding the data with the support of a constant A. Therefore, the
f of AN code can be considered as seen Equation 2.7 and the set of operations as
Equation 2.8

f (X) = A ∗X (2.7)

· ∈ {+,−, ∗} (2.8)

Consider the example of AN code usage on verifying the correct execution of an
add unit. The operation performed is an addition (· = +) and the operands are 4

and 21. By considering A = 3, the codewords are 12 and 63, respectively. Adding up
the encoded operands, the result is 75. To check if the operation has been performed
correctly, the system must check if the result of the encoded operands is a multiple of
A. This can be done by applying a modular operation to the output 75 mod 3 = 0

(75 is a multiple of 3 – correct result).
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When applying AN code, the value of A must be carefully picked since all results
multiples of A are considered error-free. Hence, if a fault changes one of the operands
or the final result to a multiple of A, the error will go through the system undetected.
Numbers with few multiples are the best choice in this case. Therefore, prime
numbers are good candidates for A. To further enhance the choice of A, one must
decide on a subset of prime numbers, the Mersenne. Mersenne prime numbers are
prime numbers of the form 2n − 1 for some integer n. Their impact lies in the
fact that this form of number greatly simplifies the remainder calculation in the
checking system. The modulo operation can now be performed over binary chunks
of the resulting data.

Time Redundancy

Time redundancy is provided in the meaning of re-computation. Unlike the hard-
ware version, time redundancy does not require duplicated circuitry to perform the
system’s check. Detection is performed by re-doing the exact computation over
the same component but at a different time. This strategy is excellent for dealing
with transient faults over the system component but lacks in detecting permanent
or intermittent faults due to their periodicity. Recomputing with shifted operands
(RESO) [69] is an example of time redundancy in both the arithmetic and logic
operations. In RESO, the input operands (3 and 5 in Equation 2.9) are shifted to
the left by one bit during the checking step (Equations 2.10 and 2.11). Then, the
operation is performed twice, between the shifted operands and non-shifted ones
(Equations 2.12 and 2.13). Both results should match and then be shifted to the
right by one bit (Equation 2.14). If both shift-free and shifted operation results
match (Equations 2.9 and 2.14), the execution is considered fault-free.

3× 5 = 15 (2.9)

310 → 0112 ⇒ 610 → 1102 (2.10)

510 → 1012 ⇒ 1010 → 10102 (2.11)

6× 5 = 30 (2.12)

3× 10 = 30 (2.13)

3010 → 111102 ⇒ 1510 → 111112 (2.14)

Time redundancy can be combined with self-checking design as proposed by
Nicolaidis [70]. The delay-sampling idea leverages the lightweight implementation
of self-checking designs by monitoring its output. Focusing on transient faults, the
proposed idea samples the data twice but adds some delay between each sample. Due
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to the transient nature of the faults, the technique can detect them in one sample
and correct the output by considering the next (or previous) faulty-free sample.

2.2.5 Assessment Methodologies

When it comes to reliability, one must provide ways to simulate and understand the
behavior of faults that may come from various sources and evaluate the potential
detection and correction techniques. However, over such a complex computing sys-
tem with so many layers, the assessment task reaches a different level of intricacy.
Some assessment methodologies can simulate or even reproduce faults in a realistic
matter. Still, each method will provide pros and cons, ranging from close to real but
with little information on the propagation pattern to simplistic fault models with a
practical and fast-paced deployment. Fault injection simulation and physical neu-
tron beam are two traditional methodologies to evaluate the reliability of computing
systems.

Fault Injection Simulation

Fault Injection Simulation is a technique to assess the dependability of a system
under empirical and parametrized experiments through the support of deliberate
fault injections [71]. The system behavior is observed to provide insight into criti-
cal sections that are more prone to generate errors and demand higher protection.
Moreover, fault injection (FI) also enables the evaluation of potential fault-tolerant
techniques in a fast-paced fashion. Fault injection can be achieved with the sup-
port of software-based simulation tools. Single or multi-bit flips are performed over
the execution of a program or system to simulate faults on a software or hardware
component. This injection of bit flips can be modeled through the support of pa-
rameters such as periodicity, amount, and location of bit flips. Fault injection can
also be performed over different system levels, enabling the design assessment to
varying stages of the development. Examples of FI levels are architecture, microar-
chitecture, register transfer, and even the software level. The higher level the FI is
applied, the faster the analysis can be performed. On the other hand, the lower the
level of FI, the more accurate (i.e., realistic) the result is [72]. FI can be performed
at the software level through compilation-based or runtime-based simulators [73–
77]. Compilation-based approaches have the advantage of knowing the program’s
structure beforehand but have no data regarding the dynamic state of the program.
On the other hand, Runtime-based simulators benefit from accessing the dynamic
state of the program.
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Physical Neutron Beam

Physical Neutron Beam [78] is an established assessment methodology that aims
to reproduce the behavior of radiation effects on electronic devices. Neutron beans
applied directly to the hardware component can mimic the impact of neutron fluxes
originating from cosmic rays’ strikes at the atmosphere. Although this methodology
is the closest to what would be seen in a real scenario, there is no information about
the spatial and temporal location of the fault. Faults manifestation will only be
observed in the output of the functions or when the system crashes [78]. Additionally,
neutron beams are limited to transient faults only, needing extra techniques to
evaluate the component under intermittent and permanent faults. Finally, this
technique cannot be applied during the development phase, requiring physical access
to the device (e.g., demands tape out of the chip).

35



Chapter 3

TorchFI: DNN Fault Injection
Framework

As mentioned previously in Chapter 2.2.5, fault injection in a system to assess its
reliability can be performed in various ways. One is physical exposure of the de-
vice to neutron beans, mimicking the natural radiation-induced type of fault. This
technique provides a close-to-real kind of analysis, injecting faults through all phys-
ical hardware resources of the device with realistic and proportional probabilities.
However, this technique incurs some limitations, such as injection of transient-only
types of faults, since the effect will last for a short period and restricted cause-effect
information [18, 78]. This impacts the experiment’s ability to identify which part of
the system is most vulnerable since the effect of a fault will only be observed when
system functionality is compromised. Moreover, the physical injection technique
demands access to the target hardware device, limiting the assessment of silicon
prototypes during the design chain.

On the opposite side, software-based fault injection models provide a flexible,
fast, and low-cost way to evaluate the reliability of the target system. It can be
performed through simulators that work over different abstraction layers, such as
Register Transfer Level (RTL), Microarchitecture, Architecture, and Software. The
highest the abstraction layer, the lower the accuracy (and levels of detail) of the
results. However, the execution time is reduced by up to 2 orders of magnitude
when moving from a lower to an upper layer [78].

Since Deep Neural Networks are compute-intensive workloads, it is impracti-
cal to perform fault injections over the low-level abstraction layers, such as RTL,
Microarchitecture, and Architecture, to gather statistically significant data. For ex-
ample, the 16 layers deep VGG model [9] has 138.4 Mega parameters and requires
15.5 Giga MAC operations to run a single inference (single image classification).
Consequently, to run a complete evaluation of the model under faulty conditions,
the simulator would have to cover the whole ImageNet [11] validation dataset, which
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comprises 50,000 images in total. Therefore, a custom DNN software fault injection
simulator is the most reasonable choice for this task since it can run at native silicon
speed.

3.1 Back-end

As a design choice, the popular deep learning platform PyTorch [79] was selected
to compose the fault injection framework stack base. PyTorch enables the DNN
models to run over GPUs and CPUs through its optimized tensor library, allow-
ing fast prototyping and execution. Moreover, the PyTorch environment comprises
TorchVision, a library package containing datasets, popular model architectures,
and, most importantly, pre-trained models for computer vision tasks (e.g., image
classification).

3.2 Computational Graph

The PyTorch main component is the computational graph. This graph is dynami-
cally created during the execution of the program. Every node of the graph consists
of a function to be executed over an input data/tensor (i.e., NN layers). These
functions can range from naive math operations, such as addition, multiplication,
and subtraction, to complex ones over n-dimensional tensors, such as convolution,
linear transformation, and cross-entropy loss. The graph’s edges represent the de-
pendency between nodes and the data flow. To create, train, and test a neural
network in PyTorch, the user makes use of the extensive Python API that abstracts
the “heavy-work”, been only required from the user the DNN architecture specifica-
tion (i.e., layers and its inputs), the dataset images, handle by custom data loaders
classes and information of which backend will be used (e.g., GPU). Figure 3.1 shows
an example of PyTorch computational graph (left panel) and the required code to
implement it (right panel).

3.3 Front-end

TorchFI [77] composes the upper part of the fault injection framework stack. It
leverages the whole infrastructure provided by PyTorch to enable high-level fault
injections in the computational graph. Users can orchestrate the injection through
predefined flags, for example, selecting which nodes (i.e., layers) from the graph will
be affected by the fault. The fault location also can be refined, allowing the user
to choose lower layer structures, such as channel, filter, and weight, in the case of a
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Figure 3.1: LeNet-4 example of PyTorch computational graph (left panel) and the
required code to implement it (right panel).

convolution layer. Additionally, the injections can simulate faults in arithmetic units
and buffers. In the former case, faults are applied inside the call for convolution and
linear operations. The latter refers to fault injections in the layer tensors, such as
activations and parameters (i.e., weights). This flexibility provides users an easy
way to analyze different types of fault models and error propagation with a minimal
overhead of coding and execution time.

3.4 Dynamic Runtime Patching

Figure 3.2 shows the code necessary to prepare the current model for fault injections.
The user must instantiate the FI class presented in TorchFI’s package passing as
arguments the model that will be equipped with fault injection capability, the layer
id where the fault will appear, the position where the bit-flip will occur, and where
it will be placed, buffers (e.g., activations and weights) or arithmetic unit. The
only mandatory parameters are the model and the location where the fault will be
placed. If not set, the remaining ones will be randomly defined at run-time.

After instantiating the FI object, the user must invoke the traverseModel
method. This method will execute a dynamic runtime patching (aka, monkey patch)
that will traverse the whole computation graph of the model, replacing the layer’s
object with custom FI-enabled ones. These customs FI-enabled layers will act as
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Figure 3.2: FI object instantiation. FI prepare the original model for fault injections
by traversing the model and replacing the original layer’s objects with TorchFI’s
ones. FI can be fully parameterized to achieve the expected fault injection campaign.

wrappers to the old objects, adding the fault injection capability through new meth-
ods and additional fields to track and analyze the fault propagation (Figure 3.3).
Whenever the forward method is invoked (Figure 3.3), the custom fault injection
methods will be called to check if a fault should or not be injected and its specifica-
tions (i.e., structure location, bit position, etc.).

Figure 3.3: PyTorch vs TorchFI code. TorchFI specialized classes wraps PyTorch’s
conv2d and linear (i.e., fully connected) classes, adding fault injection capability
over the forward passes.

TorchFI logs several pieces of information regarding each fault injection round,
such as golden and faulty values (i.e., faulty-free and disturbed data), layer and
tensor location (channel and filter ids), as well as its impact on the final scores on
the classifier and the model’s accuracy (top1 and top5 predicted classes). This can
be further extended to track and store additional information regarding the fault
injection campaign.

3.5 Fault Models

TorchFI covers both transient and intermittent fault models. For transient faults,
single bit-flip are injected during every faulty round. Due to the transient and ran-
domness characteristics of soft errors, each execution of the faulty model may differ
from the other. However, TorchFI’s flexible parametrization can enforce a deter-
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ministic fault injection campaign over the target model, allowing reproducibility of
the experiments.

Unlike transient faults, errors produced by intermittent tend to occur in bursts
and repeatedly at the same location. Hence, TorchFI was designed to perform mul-
tiple bit-flips either. Often over the same structure, reproducing the same behavior
of multi-clock-cycle faults. Moreover, due to its non-deterministic activation nature,
intermittent faults are injected at a random time and location.

3.6 Current Limitations

Since almost 99% of operations of a CNN arise from Convolutional and Fully Con-
nected layers [80], TorchFI’s fault injection model is restricted to these two types of
layers. This can further be extended to support an additional set of layers and net-
works, such as Recurrent layers (e.g., RNN, LSTM, and GRU), Transformer layers
(e.g., Encoder and Decoder), and Sparse layers (e.g., Embedding and Embedding
Bags).

TorchFI was in constant improvement during this thesis development. In its
first version, TorchFI leveraged part of Intel’s Nervana Distiller [81] package for
post-training quantization since PyTorch did not have native quantization support
at that time. The latest version of TorchFI leverages the recently implemented post-
training quantization of PyTorch. The variety of quantization techniques is limited
compared to the ones offered by Distiller, but it provides better code stability and
maintainability.

TorchFI is limited to inference phase-only. Therefore, fault injection campaigns
are only possible in the forward pass, not in the backward pass. This design decision
arises because the training of a DNN model is typically done once while the inference
is re-executed several times. Thus, the training phase is out of the scope of this work.

Finally, TorchFI is a high-level fault injection framework that operates at the
application level. It provides a fast way to analyze the impact of faults over DNNs
and understand its implications of error propagation in the application result. How-
ever, this type of fault modeling might not capture the exact behavior of a low-level
injection (e.g., register-level injections). Yet, recent studies have shown that high-
level fault injections results are prominent and can be used to study the implications
of errors at a system-level [75, 82] at orders of magnitude faster.

3.7 Relate Work

Reliability analysis of DNN accelerators has received extensive attention over the
past years. Most of the prior works are related to the reliability of DNN models
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concerning faults occurring on buffers, where weights and activation values are stored
during computation. The fault injections simulations are mainly performed through
software-based frameworks built on top of popular open-source DNN platforms.

PyTorchFI [75] provides a runtime perturbation of DNNs through fault injection
campaigns. Like TorchFI, it also leverages the PyTorch stack as the back-end to
deliver an easy-to-use API. PyTorchFI differs because it does not apply a dynamic
runtime patching to the computational graph, reducing the final code’s interference
and execution time overhead. Instead, it takes advantage of PyTorch’s hook function
to inject the perturbations during the execution of the forward method, removing
the necessity of a graph instrumentation phase.

TensorFI [76] was designed to operate on top of TensorFlow [83]. Since Tensor-
Flow uses a compilation-based approach to build its computational graph, in-place
fault injection is impossible. Instead, TensorFI works in a “two-phase injector” by
first duplicating TensorFlow’s generated dataflow graph (i.e., computational graph)
fully. Then, it replaces the original operators with new ones and places them in the
replica. These new operators are fault-injection enabled and controllable by external
configuration files. During the execution of the original dataflow graph operators,
the copies emulate their behavior but are capable of injecting faults.

TorchFI provides a lightweight and easy-to-configure way to perform fault in-
jection campaigns. Unlike PyTorchFI, which has a more mature and plug-and-play
design, TorchFI requires an instrumentation phase over the layers where faults will
be injected. Yet, it does not duplicate any instance of the computational graph as
seen on TensorFI.

Although some reliability works have been published during the development of
this thesis, none of those open-source frameworks mentioned above were available
at that time (first commit on GitHub in December of 2018). Therefore, the demand
for a fast and flexible tool such as TorchFI was latent.
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Chapter 4

Reliability Evaluation of Compressed
Deep Learning Models

Deep neural networks (DNNs) have been established as state-of-the-art models for
several tasks, such as object detection, image classification, machine translation,
and fraud detection. Some of these tasks are currently being performed by DNNs in
safety-critical autonomous systems (e.g., self-driving cars), increasing the demand
for reliability.

Understanding the behavior of such applications under threatening conditions
is of paramount importance. Faults 2.2.1 can cause perturbations over the model’s
behavior, significantly affecting the final prediction. Its propagation can result in
classification error, putting at safety at risk. Therefore, an extensive analysis con-
sidering several different variable conditions can significantly contribute to a better
understanding of DNN’s reliability.

Silent data corruption (SDC) composes the list of possible threats to any system
that runs over a semiconductor device. SDCs are faults that manifest as errors,
corrupting the output data of an arithmetic unit or storage system. It is named
“silent” due to its undetectable characteristic. Transient faults (Section 2.2.2), such
as from alpha particles or neutron strikes, are the most typical source of SDCs.
The soft error caused by these radiation-induced events can go undetected since
they occur at a random location and time. Therefore, the assessment of DNNs
facing SDC is crucial to understand how the application will behave and adequately
estimate the reliability requirements of DNN-oriented microarchitectures.

DNNs have achieved unprecedented accuracy results over several types of tasks.
However, the model size, memory footprint, and computational complexity required
by these networks make them hard to be deployed on limited resource devices (e.g.,
smartphones, small single-board computers, etc.). This has led to a surge of research
focusing on model compression methods.

The main goal of model compression techniques is to reduce the amount of
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Figure 4.1: Iterative pruning process proposed by [3]. Weights and connections are
removed based on their relevance on the final classification accuracy.

space required to store the model and the amount of computation and bandwidth
demanded to process and transfer from the main memory to the processing element.
The space reduction can be achieved by removing unnecessary (i.e., redundant)
nodes from the neural network. The pruning technique (Section 2.1.5) can remove
up to 90% of the weights of a network by applying an iterative process that measures
the importance of each weight to the output. Weights that are not capable of
achieving the minimum threshold are removed from the networks (Figure 4.1). Data
quantization (Section 2.1.5) is a compression technique that aims to reduce the
computation cost and the bandwidth requirements of a neural network. By reducing
the number of bits necessary to represent the numbers, consequently decreasing the
available range and precision, the area and space requirements in a chip design are
dramatically lowered (Figure 4.2). DNNs were found to be remarkably resilient to
data quantization, enabling lower-precision configurations (e.g., INT 8-bits) with
marginal or no accuracy loss.

Although some research has been performed on the reliability assessment of
DNNs, especially over fixed-point quantized ones, there are a few questions to be
answered. Since pruning removes unnecessary nodes and reduces the amount of
weight redundancy of the network, how does a pruned model behave under a faulty
condition? Do fewer nodes relate directly to a higher exposure of the relevant
weights? Does the model get more susceptible to miss classification with the most
relevant nodes exposed? Since the gap between quantization levels is lower (e.g., INT
16-bits to INT 8-bits), is the impact of a bit-flip more significant. Does quantization
act as a contention mechanism, avoiding data overflow due to error propagation
(e.g., no bit-flip over exponent part)?
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Figure 4.2: Signed 8-bits symetric quantization (i.e., zero-centered) of 32-bit floating-
point data.

The following sections aim to answer these questions by providing sufficient em-
pirical analysis to support them.

4.1 Evaluation Methodology

The fault model and metrics used to perform the reliability evaluation of DNNs are
described in the following sections.

4.1.1 Fault Model

The reliability evaluation methodology applied in this section simulates transient
faults over the datapath components of deep learning-oriented hardware devices.
The simulation is achieved by injecting single bit flips on random live values stored
in latches or registers. The units above are mapped in a high-level DNN framework,
and faults are injected with the support of TorchFI (Chapter 3). The code snippet
in Figure 4.3 describes at a high level how the injection is performed over the inputs
of a two-dimensional convolutional layer. Faults can either affect input features or
the weights of a neural network. However, due to the size of random space, the fault
model is restricted to weight buffers only, making the analysis more meaningful.
Moreover, unlike the input features, weights are held over the buffers for a long time
and reused in other inference iterations over several different input images, being
more likely to experience transient faults.
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Figure 4.3: High level code of how injections are performed over the inputs of
a two-dimensional convolutional layer. FIConv2d wraps the original object from
PyTorch’s original Conv2d class and adds fault injection capability on the top of it
(in the forward method).

4.1.2 Metrics

As the faults are injected, they will eventually propagate through the layers, gen-
erating SDCs that can or cannot lead to misclassification. Therefore, a metric to
estimate the probability of an SDC occurring should be accounted for. Unlike general
programs, where a bit-by-bit checking can be performed over the result to evaluate
the occurrence of an SDC, neural networks output a set of scores associated with
each class. The scores are further transformed in a probability distribution where
the prediction accuracy consists of the ground truth class probability. The network
output is correct if the ground truth class has the highest probability. This metric is
named top-1 accuracy. The top-5 accuracy is calculated by considering the highest
probability and the remaining top four ones. If the ground truth class lies in the
top five probabilities, the prediction will be counted as correct; otherwise, misclas-
sification. If an SDC occurs, it might affect both the top-1 and top-5 accuracies,
the former being a much more harmful form of SDC. Li et al.[84] introduced new
metrics to measure the impact of SDCs over DNNs that we partially follow in this
work as:

• SDC@1: The highest probability class differs from the top one of a fault-free
execution.

• SDC@5: The highest probability class is not in the top five probabilities of a
faulty-free.

Finally, to evaluate the overall resilience of the DNNs, an SDC probability is
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calculated. Through the execution of multiple faulty runs and a single faulty-free
(golden) run, the SDC@1 and SDC@5 probabilities (P ) are calculated by Equa-
tion 4.1, where goldeni and faultyi are the output of fault-free and faulty runs,
respectively, and N is the number of input samples evaluated over each dataset.

P =

∑N
i=1(goldeni 6= faultyi)

N
(4.1)

4.2 Experimental Analysis and Results

A set of empirical experiments were performed to understand and evaluate the im-
pact of transient faults over compressed DNNs. The experiments were divided into
three categories, one to assess the effect of low-precision quantization, such as inte-
gers with 16 and 8 bits, one to determine the impact of pruning over a diverse group
of rates, and the last one to assess the reliability of both, quantization and pruning,
together. Each experiment round consists of 50,000 inferences over the ImageNet
validation dataset [11]. Since the faults were randomly injected, the SDC’s proba-
bilities are presented as averages of five rounds (50,000 inference runs each) . For
each group of experiments, there is a faulty-free golden run used as the baseline.

The analysis was performed on a layer-wise fashion and overall fashion. The
layer-wise manner outputs a fine-grained impact of the transient faults since the
location is restricted to the weights of a single layer. The overall approach considers
the whole network as a single unit so that faults can affect any network layer.

The symmetric post-training quantization technique was performed for the quan-
tization analysis of the weights and activations. Since, during the development time,
the PyTorch framework did not support native quantization, the Intel’s Nervana
Distiller package [81] was incorporated into TorchFI. Weights and activations were
either quantized from single-precision floating-point 32-bit numbers to 8-bit or 16-
bit integers (both in signed formats). Therefore, no retraining was required, and
marginal to no drop in the model’s accuracy (< 0.5% drop).

The pruned models 1 were obtained by applying the Automated Gradual Pruning
(AGP) method introduced by Zhu and Gupta [53]. The AGP follows the idea
proposed by Han et al.[52] but enhances it by gradually decreasing the pruning rate
over iterations. It relies on the assumption that initially, more weights are susceptible
to be pruned, and the rate decreases as you keep iterating (i.e., pruning).

The following sections will detail the models, datasets, the experimental setup,
and the results of each experimental category.

1Pre-trained pruned models were obtained with the support of Distiller [81] and provided by
DeGirum (https://github.com/DeGirum/pruned-models).
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4.2.1 Models and Datasets

The DNN models used during the reliability analysis is listed in Table 4.1. AlexNet,
ResNet18, and ResNet50 are considered mid-size and large-size models with 8, 18,
and 50 convolutional and fully connected layers.

AlexNet achieves a top-1 accuracy of 56.52% without any compression technique
(FP-32 data type). By pruning 88.31% of its weights, the model increases its original
accuracy by 0.09%. Note that the increase in the model’s accuracy is expected
since pruning involves retraining. Quantization into a 16-bit integer also incurs
an accuracy increase, but the model presents a marginal degradation when going
for an 8-bit integer (0.53%). On the other hand, by applying both pruning and
quantization, AlexNet can sustain the same accuracy with 16-bits and a reduced
drop in accuracy with 8-bits (0.17%).

ResNet18 achieves a top-1 accuracy of 69.76% with no pruning and FP32b data
type. With 59.92% of sparsity, the pruned version achieves even higher accuracy
and only a tiny degradation when INT8b quantization is applied.

In ResNet50, three pruned versions are provided. The original model with no
compression achieves a top-1 accuracy of 76.13%. The pruned models present some
degradation, but no more than 0.51%, with 70.66%, 83.37%, and 84.57% of pruning
rates. Quantization incurs a marginal degradation of less than 1%.

The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) vali-
dation set was employed as the dataset. It consists of 50,000 images separated into
1,000 categories (i.e., classes). The images are cropped to 224x224x3 size and input
into the network. Each model was pre-trained over 1̃.2 million images (training set).

4.2.2 Experimental Setup

The experiments were performed over thousands of machines of the Intel Vlab Clus-
ter. Each machine was equipped with an Intel(R) Xeon(R) Platinum 8280 CPU @
2.70GHz with 112-cores each. The fault injection tool TorchFI v0.1 (Chapter 3) and
the DNN framework PyTorch v1.3.1 [79] were employed to run the simulations.

4.2.3 Quantization Impact

Faults injected at different locations over different data types can generate distinct
propagations. Therefore, the injection campaigns are restricted to specific areas
of the network in the first round of experiments. Over a layer-by-layer fashion,
depicted in Figure 4.4, faults are injected, exposing which layers are more prone
to deliver misprediction caused by SDC. Without any contributions of quantization
(fp32 lines), the network shows a higher probability of SDCs in the first set of layers.
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Table 4.1: Models top-1 and top-5 accuracy under compression. Pruning (P) drops
the top-1 accuracy by less than 1%. Quantization (Q) only incurs a 0.5% drop on
accuracy.

Model
Optimizations

Data
Type

Pruning
Rate Top-1 acc. Top-5 acc.

A
le
xN

et

Original (O) fp32 - 56.52% 79.07%
Pruned (P) fp32 88.31% 56.61% 79.36%
O + Q int16 - 56.61% 79.36%
P + Q int16 88.31% 56.52% 79.08%
O + Q int8 - 55.99% 78.87%
P + Q int8 88.31% 56.35% 79.04%

R
es
N
et
18

Original fp32 - 69.76% 89.08%
Pruned fp32 59.92% 69.87% 89.16%
O + Q int16 - 69.76% 89.08%
P + Q int16 59.92% 69.88% 89.16%
O + Q int8 - 69.33% 88.91%
P + Q int8 59.92% 69.54% 89.06%

R
es
N
et
50

Original fp32 - 76.13% 92.86%
Pruned fp32 70.66% 75.94% 92.96%
Pruned fp32 83.37% 75.76% 92.92%
Pruned fp32 84.57% 75.52% 92.72%
O + Q int16 - 76.13% 92.86%
P + Q int16 70.66% 75.93% 92.96%
P + Q int16 83.37% 75.76% 92.92%
P + Q int16 84.57% 75.52% 92.72%
O + Q int8 - 75.75% 92.73%
P + Q int8 70.66% 75.63% 92.80%
P + Q int8 83.37% 75.53% 92.69%
P + Q int8 84.57% 75.11% 92.52%

These results are aligned with the pruning behavior detailed by Han et al.[3], where
the first set of layers are more sensitive to higher pruning rates compared to the
remaining ones. This issue arises because the first layers are closer to the raw input
data, and any disturbance during the feature extraction will significantly impact the
remaining ones.

The model benefits greatly by considering quantization. Integer data type with
16 bits can reduce the SDC probability by 27x, keeping it below 1%, even for the
first set of layers. On the other hand, integer data type with 8-bits incurs a higher
SDC rate for the first set of layers, and the rate reduces as it goes deeper into the
network. This behavior can be better understood by looking at the second exper-
iment scenario, which targets the bit position where the state is changed (Figure
4.5). Faults now flip the same bit position but at a random place in the network.
Figure 4.5 shows that the majority of misclassification for the FP 32bits occurs when
the bit-flip hits the most significant bit, overshooting the weight value, causing a
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Figure 4.4: Impact analysis of transient fault over the layers with different levels of
quantization.

cascade of close-to-maximum range numbers flowing in the network. When moving
to integer format, this overshooting behavior is contained. INT 16-bits suffer more
changes over the sign bit, followed by the higher-order ones. However, the ranges
observed in the network are controlled by the quantization range, and overshoot is
mitigated. Moving to INT 8-bits, the number of levels is reduced by half, and the
bit-flips over any position can almost provide equally disturbance.

Overall, integer-only quantization can act as a mitigation technique by reducing
the maximum and minimum ranges that fault can affect the data (up to 27x SDC
reduction). However, due to the low number of quantization levels, INT 8-bits
provides instability and has a higher probability of delivering misclassification when
hit in the first set of layers.

4.2.4 Pruning Impact

Pruning compacts the model by removing non-relevant weights while keeping the
baseline accuracy. In a real-world scenario, the sparsity created by pruning would
save memory space, bandwidth, and compute cycles. However, pruning can act as
a double-edged sword from a reliability point of view. Since only relevant weights
would be stored and computed, the most critical ones would be more exposed to
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Figure 4.5: Error rate of each bit position when hit by a fault. Floating-point 32-bit
plot is truncated for a better visualization.

faults, but at the same time, the space exposed (in memory) and the time required
to run the network would decrease substantially. Therefore, these facts should be
considered when performing the reliability assessment of pruned models. Changes
over the fault rate are needed, and some upper and lower bounds estimations should
be provided.

First, the experiments measure the SDC probability of a pruned model under the
same amount of faults applied in a non-pruned one (100% faults). This explains how
the network behaves with relevant-only nodes exposed to faults by not considering
the computational benefits of pruning. Second, the number of faults injected is
reduced based on the model’s sparsity (70% pruned weights = 30% faults applied).
This roughly approximates the pruned results to a real-world scenario, where the
model would run faster (fewer clock cycles required) and consume less memory
(save area) when compared to a non-pruned model. Finally, an upper and lower
bound estimation of the gains in reliability considering the memory and computation
reduction (SDC Est. Reduction) is provided by Equations 4.2 and 4.3, respectively.

upper bound =
sdc_rate

param_reduc
(4.2)
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lower bound =
sdc_rate

param_reduc ∗ comp_reduc
(4.3)

Figure 4.6: Impact analysis of transient fault over the layers in a dense and 70%
sparse model with floating-point 32-bit data type. Fault compensation (30% faults)
fits in the lower and upper bounds of estimated reduction calculated using the
performance gains of pruning.

Figure 4.7: Impact analysis of transient fault over the layers in a dense and 70%
sparse model quantized to integer with 16 bits. Fault compensation (30% faults)
fits in the lower and upper bounds of estimated reduction calculated using the
performance gains of pruning.

Figures 4.6, 4.7, and 4.8 show both scenarios in a layer-wise fashion, where the
number of faults injected does not consider the benefits of pruning and where it is
considered (fewer faults are applied). By applying the same rate of faults as for non-
pruned models (100% faults), the compressed version behaves poorly, especially over
the quantized versions. This observed trend is mainly due to the higher exposure of
critical nodes and less redundancy provided by pruning. When faults hit the nodes
of a pruned model, there is a higher probability that an SDC will occur, generating
a misclassification.

Figures 4.6, 4.7, and 4.8 also provide the estimate SDC reduction, with lower and
upper bound defined by Equations 4.2 and 4.3, respectively. This rough estimation
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Figure 4.8: Impact analysis of transient fault over the layers in a dense and 70%
sparse model quantized to integer with 8 bits. Fault compensation (30% faults) fits in
the lower and upper bounds of estimated reduction calculated using the performance
gains of pruning.

Table 4.2: Parameter and computation reduction rates for the ResNet50 model
over different sparsity levels. GMACs stands for Giga Multiply and Accumulate
operations. Source: https://github.com/DeGirum/pruned-models.

ResNet50
Model

Number of GMACS
(Compute Reduction)

Number of Parameters
(Parameter Reduction)

Dense 4.089 (1.00x) 25.5M (1.00x)
Pruned 70.66% 1.846 (2.21x) 7.48M (3.41x)
Pruned 83.37% 1.143 (3.58x) 4.24M (6.01x)
Pruned 84.57% 0.714 (5.73x) 3.93M (6.48x)

considers the parameter reduction rate and the computation reduction rate (Giga
MACs) depicted in Table 4.2 for ResNet50 model. By reducing the number of
faults injected over a pruned model and compensating it w.r.t. the percentage of
parameter reduction, the SDC probabilities decrease and fit into the estimated SDC
reduction area provided by the upper and lower bounds. Therefore, over a real-
world scenario and hardware capable of performing high-performance computation
over sparse DNNs, the SDC rates would fall closer to the lower bounds, providing
substantial reliability gains.

4.2.5 Overall Impact

By combining both compression techniques, the results provide noticeable gains
in the overall reliability of models. Figures 4.9, 4.10, and 4.11 gives an overview
of the potential gains on the SDC rate when combining pruning and quantization
for AlexNet, ResNet18, and ResNet50, respectively. Note that the results consider
a non-layer-wise approach, and the numbers reflect the average SDC with faults
injected at a random location.

The reliability improvements of INT16 bits quantization compared to the FP32
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data type can reach up to 27.4x. When combined with high pruning rates (85%
sparsity), the model compression techniques can deliver up to 108.7x SDC reduction
compared to the non-pruned FP32 baseline.

Figure 4.9: Overview of the overall error reduction provided by model compression
techniques on AlexNet compared to the dense version (Original).

Figure 4.10: Overview of the overall error reduction provided by model compression
techniques on ResNet18 compared to the dense version (Original).

Figure 4.11: Overview of the overall error reduction provided by model compression
techniques on ResNet50 compared to the dense version (Original).
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4.3 Concluding Remarks

Model compression techniques can significantly benefit the deployment of deep neu-
ral networks over resources constrained devices by reducing the space, bandwidth,
and computation requirements. However, the reliability implications of such com-
pression techniques must be evaluated to provide enough guarantees that DNNs
applications will keep delivering the expected classification outputs. Quantization
improves the overall reliability of the network by containing potential overshoots
on parameter values due to the high range offered by the 32-bit floating-point data
type. The empirical fault injection experiments show that integer-only quantization
with 16 or 8 bits is beneficial to the application resilience by adding a 27.4x SDC
reduction, avoiding a higher misclassification rate. However, aggressive quantization
with fewer levels, such as provided by 8-bit integers, should be prudently applied
since it can increase the SDC rate (22.5x) compared to 16-bits.

Pruning solely can decrease the system’s reliability when not accompanied by
performance improvements. The hardware must provide ways to deal with sparsity
over DNNs, by avoiding storing and fetching zero values and computing them. Over-
all, the performance gains offered by pruning can improve the system’s reliability
by up to 9x. Both techniques, pruning, and quantization, combined, can deliver up
to 108.7x more reliability.

4.4 Related Work

Reliability analysis of deep neural networks applications and hardware is an active
area of research. Most of the works focus on transient types of faults, but the
absolute majority rely on small and non-pruned (dense) models using single or half
floating-point precision, or even some fixed-point variations [84–88]. Reagen et al.[86,
89] proposed the analysis of compressed models but considered a different fault
model. The assessment of DNN models was performed through the injection of
multiple bit-flips to understand at which rate a model begins to degrade its accuracy.
The first work [89] considers pruned but tiny models with up to 5 layers. The second
work [86] performs the assessment of more prominent models (e.g., ResNet50) but
does not consider pruned models and only evaluates fixed-point quantization. Li et
al.[84] performs an extensive investigation on the impact of transient faults over deep
learning neural network (DNN) accelerators. However, the quantization considered
in their work is fixed-point, and no pruning is taken into account.
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Chapter 5

Lightweight Error-Resiliency
Mechanism for Deep Neural
Networks

Deep Neural Networks (DNNs) have been successful in many areas by delivering
state-of-the-art accuracy results [90–92]. This success has attracted considerable
attention, especially from major tech companies, pushing DNN deployment targets
to the limits. Safety-critical systems, such as autonomous cars, are one of the many
targets for DNNs. This type of system demands high dependability standards in
order to be considered safe for end-users. Therefore, performing a resilient execution
of DNNs is of paramount importance.

To achieve the best performance (e.g., execution latency) at the lowest cost (e.g.,
energy and area), several companies have reported the development of a custom
set of hardware and sensors (e.g., cameras, processors, and radars) specialized for
DNN applications applied to autonomous car systems [93–95]. However, achieving
resilient application execution over such components demands some expenses. In
other words, there is no free lunch. Ones must trade area and energy to imple-
ment reliability techniques over the HW components. Additionally, such systems
must detect 99% of the faults in any component and not exceed 10 Failures-in-Time
(FIT) – i.e., 10 errors in 109 hours of operation. Fully autonomous cars fit into the
Automotive Safety Integrity Level D (ASIL-D) risk classification – the highest clas-
sification level available in the ISO26262 [96] standard for road vehicles’ functional
safety. Hence, DNN-based hardware targeting such systems must be low-cost and
provide at least 99% fault coverage.
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5.1 Arithmetic Error Codes

Deep Neural Networks layers, such as convolution and fully connected layers, com-
prise mainly multiply-and-accumulate (MAC) operations. Since more than 90% of
the overall computation is spent on these two layers, maintaining MAC units’ cor-
rect execution heavily impacts the system’s reliability. Therefore, adding a fault
detection scheme targeting MAC units is imperative.

Coding techniques stand out as good candidates for fault detection. By adding
up some redundancy over the data, a fault can be easily detected and, in some cases,
corrected. Since the potential fault source is the MAC units, the arithmetic error
codes would be a suitable coding technique choice. Arithmetic error codes are a
group of codes that can be preserved during the execution of a set of arithmetic
operations, such as multiply-and-accumulate ones. Moreover, these codes are of
particular interest since they can detect errors at a low cost.

Consider the following as an example of arithmetic error codes. X and Y are
input operands of the arithmetic operation ·. X̂ and Ŷ the input operands encoded
version, respectively. Then, f (Equation 5.1) can be considered as an arithmetic
error code with respect to · only and if only the statement in Equation 5.2 holds
true. Thus, f over X and Y must yield the same result as the operation over X̂ and
Ŷ .

f : x→ x̂ (5.1)

X̂ � Ŷ = (X · Y ) (5.2)

5.1.1 AN Code

The most straightforward way to apply an arithmetic error code is through AN code.
AN code is a non-separable type of coding that works by simply encoding the data
with the support of a constant A. One input operand of an arithmetic operation is
multiplied by the constant A before the actual computation (Equation 5.3). After
the result between both operands is computed (Equation 5.4), the output correctness
can be verified by checking its modulo A (Equation 5.5). If the outputmodA differs
from zero, the result is not divisible by A and, therefore, wrong (i.e., corrupted).

xc = A ∗ x with A > 1 (5.3)

outputc = xc ~ yc (5.4)

outputc mod A = 0 (5.5)
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This simple arithmetic coding redundancy scheme provides error detection that
is hardware agnostic. Its efficiency only depends entirely on the choice of A [97].
For example, A = 2 yields the least expensive encoding scheme but does not offer
the best coverage since 2 has many multiples. Errors that modify the result by a
multiple of 2 will go undetected. Hence, A should be carefully selected, not only by
its detection capability but also by the cost of implementation.

Another characteristic of AN-codes that make them a good fit for fault-tolerant
DNNs is the low-cost implementation factor. The checking algorithm (Equation
5.5), which only consists of applying modulo to the output, can be significantly
simplified by choosing a value of A with the form of A = 2p − 1, for some integer p.
This number format enables a parallel calculation of modulo A over chunks of p bits
them adding them up [18, 32]. In addition to the low cost, A = 2p − 1 numbers are
a particular case of prime numbers. By picking p as a Mersenne exponent number1,
the resulting A will also be prime, enhancing the error coverage provided by the
coding strategy. Since a prime number has only two factors (divisible by itself and
one), only errors that modify the result by these two factors can go undetected.

5.2 Error Resilient DNN

The structural and functional properties of DNNs are exploited to implement the
AN code detection scheme. As mentioned earlier, more than 90% of the overall
computation is spent over two types of layers: convolutional and fully connected.
The operations performed in these two layers are depicted in Figure 5.1 and its
mathematical form in Equation 5.6. Inputs are multiplied by the weights and then
accumulated in a partial sum fashion. This base MAC operation is the heart of every
DNN accelerator and can straightforwardly implement AN code. By multiplying
any of the operands (input features or weights) by a pre-defined A, the resulting
partial sum must yield a multiple of A (Section 5.1.1). Therefore, any output of
a convolutional or fully connected layer (before bias addition) can be checked by a
modulo A operation over its output tensors.

partial_sumc =
n∑

i=1

inputci × wi (5.6)

partial_sumc = A×
n∑

i=1

inputi × wi (5.7)

A variety of inference DNN hardware platforms has been developed over the
past years. Each design comprises specific features to take full advantage of DNNs

1https://oeis.org/A000043
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Figure 5.1: Encoding of the input data (aj) by pre-multiplying it by A.

specificities to achieve the best performance and energy consumption. These de-
signs can be divided into two main classes of architecture: temporal and spatial.
Temporal architectures (e.g., CPU and GPU) follow the idea of a unique centralized
control that will trigger several processing elements (PE) to perform a task. PEs
access the data from a register/cache array to perform the task in parallel. This
parallelism is achieved using single-instruction multiple-data (SIMD) and single-
instruction multiple-threads (SIMT), both implemented in CPUs and GPUs, re-
spectively. A spatial architecture follows a different design paradigm. PEs are
independent units with their control and small register/cache. PEs can communi-
cate and exchange data/tasks through a specific type of topology. The parallelism
is achieved through the mean of data dependency. As the data flows into the PEs,
tasks that do not have any input dependency can be triggered.

For the sake of simplicity, consider the Eyeriss DNN accelerator [4, 98] as a
spatial architecture example. Figure 5.2 presents a reduced version of Eyeriss, which
originally consists of a 14x12 grid connected to a global buffer, where input feature
map and weights are fetched from. A single PE comprises a control unit, local
buffer, and the MAC unit. Weights and input features arrive at FIFO buffers and
are multiplied and accumulated. Figure 5.2 example consider quantized inputs with
16-bits and outputs with 32-bits. By considering the simplified representation of a
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Figure 5.2: DNN system architecture composed by mesh of PE, each one with a
multiply-and-accumulate (MAC) unit [4, 5].

Figure 5.3: PE architecture with the proposed detection scheme (detailed in purple).
The path in red shows the control signal for word-masking correction.

PE in Figure 5.2, AN code checking system can be implemented on top of it. Assume
that one of the PE inputs is pre-multiplied by A, the outcome of the ADD operation
can be redirected to a checking system that applies modulo A before storing back
the result into the ps buffer. Figure 5.3 depicts the same PE but now with an AN
code checking system on it.

5.3 Fault Model

The fault model in this work considers the cases where errors arise due to inter-
mittent faults (Section 2.2.2). This type of fault occurs repeatedly but with some
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periods of no manifestation. When manifest, intermittent faults can generate errors
that last for a single or several clock cycles [55, 56]. Due to its non-deterministic
activation nature, intermittent types of faults are hard to detect and tend to occur
in bursts at the same location. The appearance of such faults is an indication of
early-stage device wear out [99, 100].

This work considers the particular case of intermittent faults over MAC units of
a DNN accelerator. The fault model simulation consists of random bit-level fault
injections (FI) over the MAC operations. Since the hardware component can be
affected by bursts of faults, the FI simulations comprise different bit error rates
(BER) campaigns, following a uniformly random distribution pattern. Moreover,
fault injections are restricted to convolutional and fully connected layers only during
the inference phase of a DNN.

5.4 Premises and Scopes

This work targets 16-bit capable MAC units of DNN accelerators, but the proposed
detection scheme can be extended to any integer-only inference engine. In this case,
the inputs and weights are expected to be integers with 16 bits. To implement
AN code over such MAC units, quantization with a lower number of levels must
be applied to make sufficient room over the data for the encoding step. Thus,
the networks used in the experiment section were quantized using an 11-bits post-
training quantization (i.e., no re-training necessary) scheme instead of 16-bits. By
following this approach, input features and weights have 5 bits of “free space” left.
The extra room not only allows the encoding with a constant A equal to 7 or 31 (3
or 5 bits, respectively) but also enables the scheme to leverage the current 16-bits
circuit without hurting the baseline accuracy, as illustrated in Table 5.1.

The encoding can be applied over both input features and weights. However, in-
put features (i.e., activations) are up to 50× less sensitive to faults when compared
with weights [86] since they are not kept for a long time in memory. Therefore,
considering only the encoding of the inputs avoids extra costs and reduces the prob-
ability of a fault changing the encoded value. Furthermore, previous works have
shown that weights can have additional layers of protection at a zero or marginal
cost [89, 101, 102].

Note that the additional overheads of the proposed work rely on:

• Pre-multiply the input data, which can be done offline or as soon as the input
is received in a real-time system.

• Detection logic inside each MAC unit, which can be performed with chunk-
based modulo operation.
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5.5 Experimental Analysis and Results

A set of empirical experiments were performed to evaluate the effectiveness of the
proposed AN-based error detection scheme under the presence of intermittent faults.
The experiments were divided into error coverage, the impact of A, and error mitiga-
tion. The main objective of the first one is to understand how efficient the detection
capability can be under different fault rates. Additionally, the experiments will show
how good can be the AN coverage for a different set of possible error values. The
output of this experiment will define if the proposed scheme is compliant with the
ISO26262 [96].

The second category of experiments shows the impact of choosing a different
set of A’s other than 7 and 31. A group of prime numbers is selected, and their
fault coverage and impact on the model’s accuracy are analyzed. The result of this
experiment is essential to show the trade-off of choosing a Mersenne prime number,
which leads to a simple HW implementation, over a pure prime number, with a
more costly HW.

Finally, the word masking technique is evaluated to mitigate the impact of a
detected error. As errors are detected, the checking system sets the output to zero.
This idea is inspired by [89], where weights that are affected by faults (i.e., errors) are
set to zero. The results of these experiments are compared to an Oracle solution,
where detected faults are “corrected”. This analysis shows the effectiveness of a
simple and inexpensive solution for error mitigation over DNN MAC units.

The following sections will detail the models, datasets, the experimental setup,
and the results of each experimental category.

5.5.1 Models and Datasets

The DNN models used during the AN-based experiments are listed in Table 5.1.
LeNet-4 and ConvNet are considered small-size models with 4 and 5 convolutional
and fully connected layers. AlexNet, VGG16, ResNet18, and ResNet50 are consid-
ered mid-size and big-size models with 8, 16, 18, and 50 convolutional and fully
connected layers.

Each model presented in Table 5.1 is quantized with 16 and 11 bits through
a post-training quantization method (i.e., no re-training needed) provided by the
Intel’s Nervana Distiller [81] package. Quantization incurs into a marginal decrease
in the top-1 accuracy (less than 0.05%).

This set of models was selected due to their variety of the number of layers,
weights, and MAC operations performed. Models such as ResNet18 and ResNet50
perform a high number of MAC operations but have few parameters compared
to AlexNet and VGG16. Although VGG16 comprises only 16 layers, the massive
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number of parameters (i.e., weights) and MAC operations make it an interesting
case to be analyzed. A set of small models was also selected to understand better
the behavior of the proposed detection scheme under faulty conditions. LeNet-4
is the smallest in terms of the number of layers but comprises a good number of
parameters and MAC operations. It also achieves the highest top-1 accuracy among
all the models. ConvNet has more layers than LeNet-4 but is the smallest in terms
of the number of parameters and MAC operations performed.

The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) vali-
dation set was employed as an inference dataset for AlexNet, VGG16, ResNet18,
and ResNet50 models. The ILSVRC consists of 50,000 images with 1,000 unique
classes. All the networks were pre-trained over ≈ 1.2 million images (training set)
of 224x224x3 size. Therefore, the images are cropped before being input into the
network.

The handwritten digits dataset MNIST was used to evaluate the LeNet-4 model.
The model was pre-trained with 60,000 training samples and evaluated over 10,000
samples. The inputs are small-size grayscale images (28x28 pixel box) with values
ranging from 0 to 9.

ConvNet is a custom-made mid-size model trained over the CIFAR-10 dataset.
It consists of two convolutional layers followed by three fully connected ones. The
CIFAR-10 dataset comprises 60,000 small-size color images (32x32 pixel box) with
ten classes. The model is pre-trained over 50,000 images and evaluated over the
remaining 10,000 ones.

5.5.2 Experimental Setup

The experiments were performed with the support of TorchFI (Section 3), the cus-
tom fault injection framework built on top of PyTorch v.1.3.1. The fault injection
campaigns were done over several machines of the Intel Vlab cluster, with each
machine equipped with an Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz with
112-cores. To simulate the proposed detection mechanism, TorchFI was modified
to enable full access to the layer’s multiply-and-accumulate operations.

5.5.3 Error Detection

The proposed AN-based detection scheme is expected to cover most errors. However,
faults that change the output into multiples of A might go undetected. Figure 5.4
presents the fault coverage results considering bit error rates (BER) ranging from
10−4 to 10−1. For each model, the simulations are performed by setting the A
value to 7 or 31. For a better data visualization, the plots are restricted to the
first 100 batches out of 157 in total for MNIST and CIFAR-10 and 782 in total for
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Table 5.1: Summary of the six DNN models that compose the benchmark set.
Accuracy is measured based on top-1 error. Quantization only incurs less than
0.05% drop on accuracy. Number of weights and MACs are displayed in mega (M)
and giga (G) units.

Data Type Top-1 acc. # Weights # MACs Dataset

L
eN

et
-4 fp32 99.14%

int16 99.14% 1.2M 36.2M MNIST

int11 99.14%

C
on

vN
et fp32 67.88%

int16 67.92% 62K 658K CIFAR-10

int11 67.91%

A
le
xN

et fp32 56.52%

int16 56.61% 61M 724M ImageNet

int11 56.49%

V
G
G
16 fp32 71.59%

int16 71.59% 138.4M 15.5G ImageNet

int11 71.58%

R
es
N
et
18 fp32 69.76%

int16 69.76% 11.7M 1.8G ImageNet

int11 69.72%

R
es
N
et
50 fp32 76.13%

int16 76.13% 25.5M 3.9G ImageNet

int11 76.10%
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ImageNet. Each data point (batch) in the figure comprises 64 image inferences, and
the remaining batches provide similar results. Although all the simulations were
performed with BER starting from 10−6, these results in Figure 5.4 display mid to
extreme cases only (BERs from 10−4 to 10−1).

The minimum fault coverage is 99.6% for both As up to 10−3 BER scenarios.
As the BER increases, the gap between the As gets more significant, but the mean
keeps around 99.6% and 99.3% when A is equal to 31 and 7, respectively. There are
sporadic cases where the coverage gets below 99%, mainly over the small-size models.
These results indicate that even using a small encoding value such as A = 7 over
extreme (and unusual) BER of 10−1, the proposed AN-based detection mechanism
can deliver a fault coverage of ≥ 99% overall, complying with industry standards
such as ASIL-D defined by the ISO 26262 [96]. Additionally, the proposed technique
can achieve a near-perfect detection rate of 100% with very low variance for both A
under small (and more realistic) BERs.

5.5.4 Impact of A’s Choice

The choice of A directly impacts the effectiveness of the proposed AN-based detec-
tion scheme. A must be a value with the smallest number of factors possible to avoid
aliasing. Aliasing is defined as when a fault affects the data such that the resulting
faulty value is multiple of A. More factors (i.e., multiples) mean a higher probability
of aliasing occurrence, reducing the coverage effectiveness. Primes are numbers that
cannot be composed by the product of two smaller numbers. This fact dramatically
reduces the aliasing probability, making primes a good fit for A. Picking a big prime
number seems to be the best choice for the encoding step. However, big numbers
mean a higher demand for “free” space in the data required by the encoding bits. It
also incurs a higher cost for the checking system to compute the modulo A. There-
fore, a trade-off between coverage effectiveness and implementation cost must be
considered.

Figure 5.5 shows the impact of different choices for A (primes and 2p−1 numbers)
over the fault coverage for AlexNet, ResNet18, and ResNet50 models under the BER
10−1 scenario. Although A = 29 provides the highest fault coverage, A = 31 differs
by only 0.3%. However, due to its binary nature, the implementation of Mersenne
prime numbers with the format 2p−1 is less costly than a number equals to 29 [18]
(Section 2.2.4).

By looking at Figure 5.5, the decision seems to be straightforward; picking 31 is
the best choice over any other one due to its cost of implementation. The trade of
0.3% of coverage for a reduced cost (i.e., area and energy) seems to pay off. However,
that slight difference in the fault coverage can have huge implications for the model’s
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Figure 5.4: Fault Coverage of the proposed mechanism with modulo-7 and modulo-
31 configurations. Each batch id point is composed by 64 image inferences. We
restricted it to the first set of 100 batches out of 157 total for MNIST and CIFAR-
10, and 782 total for ImageNet due to space constraints.
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Figure 5.5: Impact of different A’s on the fault coverage for AlexNet, ResNet18, and
ResNet50 over BER 10−1.

accuracy. Assuming the detected faults can be corrected, the overall impact of 0.3%
reaches almost 20% on the classification error for all the three models as Figure
5.6 shows. However, this big difference is only observed under extreme
conditions such as BER 10−1. The difference is almost negligible for every
BER under 10−2. Therefore, A = 31 stands as the best choice, delivering the best
trade-off between fault coverage and implementation cost.
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Figure 5.6: Impact of different A’s on the accuracy for AlexNet, ResNet18, and
ResNet50.

5.5.5 Error Mitigation

As observed in the previous analysis, a small fraction of undetected errors can impact
the model’s accuracy, especially over extreme BERs. Figure 5.4 shows that the
proposed detection scheme can achieve more than 99% fault coverage. However,
how does 1% of undetected errors translate over each model’s final accuracy?

To address this question, a set of error mitigation experiments were performed.
The experiments considered three scenarios:

• No Detection (faulty): MAC units have no detection and protection mecha-
nisms. Faults are injected, and the resulting errors are not contained and will
flow throughout the whole execution of the network.

• Word Masking (zero): Faults are injected, and once errors are detected, the
corrupted outputs are set to zero. This approach is in line with the idea
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proposed by Reagen et al.[89], where corrupted weights are set to zero.

• Oracle: Once errors are detected, the corrupted outputs are set to their cor-
rect/expected values. Only undetected errors due to aliasing will be responsi-
ble for any drop in the overall accuracy during this scenario.

Figure 5.7: Relative classification error over different bit error rates (BER) with
no error detection, the proposed detection mechanism coupled with word masking
correction scheme, and an oracle for LeNet-4, ConvNet, and AlexNet models.

Figures 5.7 and 5.8 present the relative classification error for each DNN
model. The BERs ranges from 10−6 to 10−1 and A is set to 7 and 31. The No
Detection scenario drastically increases the classification error of all the models by
more than 50% with a BER of 10−6 and reaches 100% with 10−1 BER. In this case,
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Figure 5.8: Relative classification error over different bit error rates (BER) with
no error detection, the proposed detection mechanism coupled with word masking
correction scheme, and an oracle for VGG16, ResNet18, and ResNet50 models.

faults go through the whole network undetected, causing silent data corruption over
several inferences, causing the overall accuracy of the networks to plummet.

When the AN-base detection is activated, and the Word Masking technique is
applied, the classification is pushed back close to its original baseline, with up to
0.3% difference. The same results are promising since it almost reaches the Oracle
version, with a slight increase of 0.75% for 10−1 BER scenario. The Oracle version
is considered the best scenario, where a correction scheme is under operation, and
only aliasing can hurt the model’s accuracy.

For both, Oracle and Word Masking version, the classification error only starts
to increase by 10−3 BER and 10−2 BER for A equal to 7 and 31, respectively.
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These results encompass the direct impact of the almost 1% undetected error due
to aliasing, presented in Figure 5.4.

5.6 Concluding Remarks

Safety-critical systems demand high dependability standards. The components must
follow a variety of high-grade criteria to be considered safe for end-users. Such types
of systems that rely on DNNs accelerators must provide ways to ensure the reliable
execution of their applications while delivering high-performance execution at low
costs (i.e., area and energy). Therefore, the need for a lightweight solution targeting
such systems is of great importance.

The AN-based detection scheme proposed in this work can greatly improve the
reliability of DNN accelerators employed in safety-critical systems. The solution
provides a lightweight high coverage error detection capability and provides means
to mitigate them, sustaining high accuracy results from all the tested models. The
detection solution achieves a minimum fault coverage of 99.6% for both As up to 10−3

BER. Through the Word Masking technique, the proposed solution can preserve the
MAC units’ correct execution without compromising the original model accuracy
even at unusually high bit error rates (up to 10−2 BER with A = 31). Therefore,
the solution is compliant with the highest classification risk level (ASIL-D) of the
ISO26262 [96] standard for road vehicles’ functional safety.

5.7 Related Work

Hardware reliability is a significant concern among the research and industry com-
munity. Over the past years, research on hardware reliability focused on DNN
accelerators has received considerable attention. Part of the research is related
to the reliability assessment of DNN models regarding faults over register/latches
that store weights and input activations. An extensive assessment study of silent
data corruption over DNN models and fault propagation of soft errors has been
performed by Li et al.[84]. Their research explores a different set of possible fixed-
point quantization over many models. Reagen et al.[86] further enhance the analysis
by performing an assessment study of DNNs in the presence of permanent faults.
Faults are injected with different bit error rates (BER) over the weights and input
activations. Their findings show that deeper models are more prone to experience
a more significant loss in accuracy under higher BER. Additionally, they showed
that weights were much more sensitive to faults than the input activations for most
models they experiment with.
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Some attention has been given to fault mitigation solutions over DNNs. The
majority focus on solutions to reduce faults over memory units or their propagation
effects. Reagen et al.[89] employed the Razor double-sampling technique coupled
with the Word Masking technique, where the corrupted data is moved towards zero.
By applying both, Razor double-sampling and the Word Masking techniques, the
authors were able to decrease the SRAM supply voltage while keeping the same
baseline accuracy of the DNN models. Li et al.[84] proposed a Selective Latch Hard-
ening mechanism, which, combined with three well-known hardening techniques, can
mitigate the propagation of transient faults in hardware. Qin et al.[103] proposed
a single-bit fault detection technique, where a redundant check-bit is appended to
the data. This check-bit is generated in a way that modulo 2 of the sums of the bits
must yield zero. After detecting the error, the Word Masking technique, like the
one proposed in [89], would be applied. Azizimazreah et al. [102] proposed a novel
SRAM cell architecture. The Zero-Biased MNU-Aware cell consists of redundant
storage cores capable of recovering any node cells that have corrupted soft errors on
the DNN accelerators. On the software side, Koppula et al.[104] proposed an iter-
ative and progressive error injection retraining process to boost the DNN model’s
tolerance against errors. The models would learn these error patterns through a
noise classification training step, avoiding drops in the classification accuracy.

Guan et al. [101] introduced a novel in-place zero-space memory ECC. Through
an innovative and enhanced training step entitled Weight-distribution Oriented
Training (WOT), the existing non-informative bits in DNN’s parameters are lever-
aged to store check bits for an SEC-DED (64, 57, 1) code. In an 8-bit type of model,
the technique group seven consecutive weights out of eight that do not require the
full 8-bit range and leverages the seven non-informative bits for ECC. However, the
current technique requires a regularization step so that the spatial distribution of
full range weights appears only at specific places.

Targeting DNNs arithmetic units, few prior works have proposed innovative de-
signs for error-resiliency. Zhang et al.[105] proposed a novel fault-aware technique
for systolic array-based DNN accelerators, which consists of removing faulty MAC
units from the systolic grid. This removal step is performed by zeroing out all the
weights mapped to the target MAC unit. This approach requires the retraining of
the networks considering the new topology (without faulty MACs) and placement.
Gambardella et al. [106] proposed a selective channel replication. The technique
consists of applying triple-modular redundancy (TMR) over critical channels of the
model’s network. Through a profiling step, channels are ranked, and the ones more
prone to impact the classification accuracy in the presence of faults are triplicated.
On the coding side, Feinberg et al.[107] proposed an extended version of the ABN
correction codes by focusing on a particular type of DNN accelerator, the memris-
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tive ones. The proposed solution maps all the possible syndromes into a table that
can be further queried for an efficient correction scheme of single and multiple bit
errors.
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Chapter 6

Hardware and Software Co-Design
for Resilient Deep Learning
Accelerators

The AN-based detection scheme proposed in Chapter 5 has proven to enable error
detection at a meager cost. The solution provides a lightweight, high coverage error
detection capability by encoding the network’s inputs with a pre-defined value A.
The 16-bit integer-only networks are quantized to 11-bits, making enough room for
the encoding data. Detection is performed over the filter granularity by applying a
fast and parallel modulo A over each outcome of a MAC operation. Only results
that are multiples of A are considered error-free—the word masking technique zeros
out the remaining ones (deemed faulty), avoiding further error propagation.

Although the proposed AN-based detection scheme achieves high detection stan-
dards at a low cost, it employs severe pre-step restrictions to be deployable. First,
the encoding step, where the inputs are pre-multiplied by A, adds an overhead. Sec-
ond, the network must be quantized up to 11 bits to leave sufficient room for the
encoding data to be attached. Yet would it be possible to remove the pre-processing
step through a software and hardware co-design effort?

The work proposed in this chapter aims to reduce the encoding overhead de-
manded by the AN-based detection scheme. The model parameters would be
adapted, enabling AN-based detection hardware with no further changes needed
during the model deployment. The software and hardware co-design approach would
adjust the weights based on the deployed AN-based hardware restrictions through
a custom DNN quantization aware training process, resulting in an error-checking
capability involving practically no overhead.
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6.1 AN Code-Aware Quantization

Quantization-Aware Training (QaT) is a challenging task that involves the model’s
training pipeline to achieve enhanced quantization functions. Differently from the
Post-Training Quantization (PTQ) employed in Chapters 4 and 5, the QaT must
handle the backward propagation of the gradients through quantization blocks in
the model network.

y = α

(
n∑

i=1

siλ (βx− bi)− o

)
(6.1)

Optimization-based QaT techniques handle the backward propagation problem
by employing soft quantizers [6, 49, 50] over the model network. The soft quantizers
are learnable differentiable non-linear functions that can be applied to any data of
the model (weights and activations). The functions are optimized through several
finetune epochs by minimizing the ideal result and the soft quantization function
gap. This is a similar process to the training of the network weight, but now the
targets are parameters of the quantization function (Equation 6.1).

Figure 6.1: Steps for learning a quantization function [6].

The ideal quantization function will be trained/learned during an iterative fine-
tuning process with the support of a continuous relaxation method, as illustrated in
Figure 6.1, removing the need for a full quantization-aware network training. Since
the quantization levels can be pre-determined, a constraint allowing only levels which
are multiples of A can be added. If all weights are multiples of A, detecting errors
becomes a straightforward task by implementing a modulo A checking circuit in the
system.
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σ (Tx) =
1

1 + exp(−Tx)
(6.2)

The proposed AN code-aware quantization process is based on the Quantization
Networks method proposed by Yang et al.[6]. The method consists of several unit
step functions with dedicated learnable parameters. Equation 6.1 shows how the
step function λ correlates to its learnable parameters β (overall scale factor) and bi
(bias of ith step) and the remaining variables such as n (number of steps or quantiza-
tion levels), o (global offset), and si (local scale factor). With the ideal parameters,
the input data x is then quantized to an integer value y. Furthermore, the quan-
tization process is enhanced with a continuous relaxation method, by employing a
temperature factor T to the step function that increases w.r.t. the training epoch.
By considering the Sigmoid function as λ, the temperature factor is employed as seen
in Equation 6.2 and Equation 6.1 is updated to Equation 6.3.

y = α

(
n∑

i=1

siσ (T (βx− bi))− o

)
(6.3)

y ⊂ Θ⇔ y mod(A) = 0 (6.4)

The method proposed in [6] is modified so that the quantization levels are re-
stricted to multiples of A only. Thus, y must satisfy the relation present in Equation
6.4. Moreover, the number of quantization levels n is reduced since the number of
possible values that satisfy the Equation 6.4 does not comprise the full range of
integer values. For example, by choosing A = 7, the number of quantization levels
and their values with 4, 5, 6, and 7 bits are depicted in Table 6.1.

Table 6.1: Comparison between original quantization levels and AN-based one with
A = 7 and 4, 5, and 6 bits.

# bits Number of
Quantization Levels Possible Values

O
ri
gi
na

l

4 15 [-7, -6, ···, -1, 0, 1, ···, 6, 7]

5 31 [-15, -14, ···, -1, 0, 1, ···, 14, 15]
6 63 [-31, -30, ···, -1, 0, 1, ···, 30, 31]

A
N
-B

as
ed 4 3 [-7, 0, 7]

5 5 [-14, -7, 0, 7, 14]
6 9 [-28, -21, -14, -7, 0, 7, 14, 21, 28]
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6.2 Experimental Analysis and Results

A set of empirical experiments were performed to evaluate the effectiveness of the
proposed AN code-aware quantization process. The experiments consist of training
soft quantization functions over a set of pre-trained models. The soft quantization
functions are trained considering a subset of A ∈ {3, 7, 31} and the number of bits
b ∈ {4, 5, 6, 7, 8}. The main objective is to evaluate if the models are capable of
converging and reaching the baseline accuracy, where the model has been trained
with no quantization (32-bit floating-point data type).

After reaching full convergence and achieving near-optimal soft quantization
functions, the model would be attached to a PTQ step to quantize the incoming
inputs to n-bits integers (where n ∈ b). This process would enforce that all the data
flowing into the MAC units of the DNN hardware are n-bits integers only, allowing
the AN-based detection scheme to work as expected.

6.2.1 Models and Datasets

The DNNmodels used during the AN code-aware quantization experiments are listed
in Table 6.2. LeNet-5 is a small-size model with 5 convolutional and fully connected
layers. ResNet18, ResNet20, ResNet34, and ResNet50 are considered mid-size and
big-size models with 18, 20, 34, and 50 convolutional and fully connected layers.

The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) valida-
tion set was employed as an inference dataset for ResNet18, ResNet34, and ResNet50
models. The ILSVRC consists of 50,000 images with 1,000 unique classes. All the
networks were pre-trained over ≈ 1.2 million images (training set) of 224x224x3 size.

The handwritten digits dataset MNIST was used to evaluate the LeNet-5 model.
The model was pre-trained with 60,000 training samples and evaluated over 10,000
samples. The inputs are small-size grayscale images (28x28 pixel box) with values
ranging from 0 to 9.

ResNet20 model was trained over the CIFAR-10 dataset that comprises 60,000
small-size color images (32x32 pixel box) with ten classes. The model is pre-trained
over 50,000 images and evaluated over the remaining 10,000 ones.

6.2.2 Experimental Setup

The experiments were performed with the support of the PyTorch framework version
1.6 on a workstation equipped with dual Intel(R) Xeon(R) Gold 6246 CPUs @
3.30GHz, 256GB RAM, and two NVIDIA Quadro RTX 8000 GPUs. The code
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Table 6.2: Summary of the five DNN models that compose the experiment set.
Accuracy is measured based on top-1 error and considers the original model baseline
trained with 32-bit floating-point data type.

Data Type Top-1 acc. Dataset

LeNet-5 fp32 98.75% MNIST

ResNet20 fp32 91.94% CIFAR-10

ResNet18 fp32 69.76% ImageNet

ResNet34 fp32 73.31% ImageNet

ResNet50 fp32 76.13% ImageNet

repositories in 1 and 2 were leveraged to perform the AN code-aware quantization
process.

6.2.3 Effectiveness Analysis

The AN code-aware quantization process involves numerous training trials of each
model with different configurations. Hyperparameters, such as learning rate, number
of epochs, weight decay steps, temperature, and optimization algorithms, must be
finetuned to achieve near-optimal results. Therefore, the experiment starts with
proof-of-concept models such as LeNet-5 over the MNIST dataset and ResNet20
over the CIFAR10 dataset. After evaluating the best configuration results over the
proof-of-concept models, they are used as baseline metrics over the remaining (and
bigger) models.

Figure 6.2: Parameter distributions of Baseline (left) and Quantized (middle), and
the soft quantization mapping function (right) of the ResNet-20’s fourth layer with
A = 3 and 4 bits.

Figures 6.3, 6.4, and 6.5 show the learning curves for LeNet-5 model with A equal
3, 7 and 31, respectively. For each A configuration, a different set quantization levels
is tested, considering the total number of bits b. All the configurations converge at

1https://github.com/aliyun/alibabacloud-quantization-networks
2https://github.com/linkinpark213/quantization-networks-cifar10
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the end of 200 epochs, reaching the top 1 baseline accuracy of the model. The models
are update the model by the adaptive learning rate optimization Adam [108]. The
initial learning rate is set to 1e−3 and decayed by 0.1 at epoch 20 with Temperature
set to 5.

Figure 6.3: Learning curves for LeNet-5 with A = 3 and different levels of quanti-
zation defined by b bits

Figure 6.4: Learning curves for LeNet-5 with A = 7 and different levels of quanti-
zation defined by b bits

For the second proof-of-concept experiment, the ResNet20 model is trained over
the CIFAR10 dataset with the same set of configurations for A and b. The stochastic
gradient descent (SGD) algorithm [109] updates all the model configurations with
momentum set to 0.9 and weight decay to 5e−4. The learning rates are initialized
to 1e−1 and decay by 0.1 at epochs 4, 100, and 150. The model is trained for 200
epochs in total.

Figures 6.6, 6.7, and 6.8 show the resulting learning curves for ResNet20. All
the models converge well but only configurations with A equal 3 and 7 can reach
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Figure 6.5: Learning curves for LeNet-5 with A = 31 and different levels of quanti-
zation defined by b bits.

near-baseline accuracies (≤ 1%). ResNet20 with A = 31 reaches up to 88.99% out
of 91.94%. Still, the results are very promising.

Figure 6.6: Learning curves for ResNet20 with A = 3 and different levels of quanti-
zation defined by b bits.

Table 6.3 summarizes the best results of experiments considering the whole set
of models and configurations. Except for ResNet50, all the models achieved near-
baseline accuracies with ≤ 1% of difference. ResNet50 with A = 7 and b = 4 felt
a little behind the baseline (1.72%) but still achieved reasonable results because all
the weights are constrained to only 3 levels of quantization ([−7, 0, 7]).

Note that higher accuracies are possible to achieve, but due to the hyperparam-
eter search space, time, and the computational cost to run such experiments, this
task is out of the scope of this work.

79



Figure 6.7: Learning curves for ResNet20 with A = 7 and different levels of quanti-
zation defined by b bits.

Figure 6.8: Learning curves for ResNet20 with A = 31 and different levels of quan-
tization defined by b bits.

Table 6.3: Best top-1 accuracy results with AN code-aware quantization process
over the bechmark set.

Model A b Baseline Acc. Quantized Acc.

LeNet-5 3 5 98.75% 98.76%
7 4 98.75% 98.74%

ResNet20 3 6 91.94% 91.43%
7 6 91.94% 91.17%

ResNet18 3 5 69.76% 69.84%
7 4 69.76% 68.00%

ResNet34 3 4 73.31% 72.35%
ResNet50 7 4 76.13% 74.41%
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6.3 Concluding Remarks

The AN-based detection scheme provides robust error detection at a small cost.
However, this technique demands severe pre-step restrictions in order to be a de-
ployable feature. By removing these restrictions through a software and hardware
co-design method, the AN error-detection capability would incur practically no over-
head over the system. By AN code-aware quantization process with the support
of a continuous relaxation method, the weights of a model are constrained to in-
tegers multiples of A only. Removing the pre-encoding step of the previous AN
detection scheme and drastically reducing its overhead. Empirical experiments with
well-known models show that the proposed AN code-aware quantization scheme
converges for all the models. For most scenarios, the quantized models can achieve
near-optimal accuracies with ≤ 1% of difference from the 32-bit floating-point base-
line model, and up to 1.72% variance. This novel technique enhances the AN-based
detection scheme, making it feasible for real-world deployment.
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Chapter 7

Preventing DNN Model IP Theft via
Hardware Obfuscation

Deep Neural Networks (DNNs) have attracted considerable attention due to state-
of-the-art (SOTA) accuracy in tasks such as image processing (e.g., classification,
object detection, tracking, etc.), recommendation, and natural language processing
(NLP) [110–113]. However, achieving such levels of accuracy and robustness over
DNN models demands a huge effort. This expensive endeavor ranges from the
amount of training data provided to the expertise in the domain required by who is
training the model. Therefore, DNN models are considered and treated as valuable
storehouses of intellectual properties (IP) and must be protected against attacks.

The process of training a deep learning model using the supervised learning
method starts from the data collection. More data can roughly translate to a better
generalization and robustness of the final model. Data should be carefully curated
and manually labeled to provide the best and most precise input for the models. The
labeling process incurs a significant amount of human work and access to curated
data is a privilege of few in the era where data is a new commodity.

Additionally, a considerable amount of high-performance computing resources
coupled with human domain expertise is crucial. SOTA models are typically huge
in terms of the number of layers and parameters and the computing resources needed
to run these models over a big training set are substantial. The domain expertise
comes into action to craft the model and understand its behavior during the training
phase. Hyperparameter fine-tuning process is a hard task and must be performed
by highly skilled people to avoid future costs (unnecessary resource usage due to
exploratory parameter space) and achieve the highest accuracy within the model.

In 2016, Tramèr et al.[114] presented a model extraction attack at the USENIX
security conference. The attack consists of cloning DNN models through simple
access to service levels API provided by cloud-based Machine-Learning-as-a-Service
(MLaaS) companies such as Amazon AWS and BigML. Without any prior knowledge
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of the model’s parameters or training data, the adversary was able to steal the model
and use it privately. This type of attack is known as model stealing or model piracy
attack.

The model stealing/piracy attack scenario gets even worst when the cloud-based
provider allows the model (trained over the cloud) to be downloaded to an edge
device (e.g., smartphone) for further usage (e.g., face recognition). Through phys-
ical access, attackers can steal the model’s architecture and its hyperparameters,
allowing a near-perfect clone of the original model to be trained [23].

In brief, accurate DNN models are expensive to develop and hold valuable infor-
mation. As intellectual properties, protecting such models against stealing/piracy
attacks is of paramount importance. Both hardware and software layers must pro-
vide ways to secure such IP.

7.1 Neural Model Obfuscation

Neural model obfuscation is a protection scheme that adds a security layer on top
of the original neural network model to protect it against structure and parameter
piracy. The security layer locks the model such that only authorized users can
achieve the expected high prediction accuracy. On the other hand, non-authorized
users would be unable to unlock the model, resulting in significant penalties over the
model’s accuracy. The obfuscation can be performed over various techniques that
can range from key-dependent training processes to full cryptographic encryption
schemes.

Xu et al.[23] proposed the first neural model obfuscation technique in 2018.
The main idea is to achieve structural obfuscation through a joint training process
where the original network would act as a “teacher” to a smaller “student” model.
The Teacher-Student approach achieves an effective structural obfuscation but still
leaves the “student” model unprotected. Non-legitimate users who access it can still
run the model without penalties (e.g., accuracy drop) 1.

Abhishek et al.[7] proposed a novel key-dependent training obfuscation technique
that protects the model by employing an enhanced backpropagation algorithm dur-
ing the model’s training phase. The method consists of a random set of selected
neuron nodes that are locked. A key is generated and associated with the selected
nodes, which only provide the correct results with the given right key. Unautho-
rized parties, which do not possess the valid key, are not able to unlock the neuron
nodes, and the model behaves poorly during the prediction (i.e., low accuracy). A

1Although the Teacher-Student approach does not provide the necessary protection of the model
from non-authorized users, it has been important for model compression area. Neural Architectural
Search (NAS) techniques employ a Teacher-Student approach to create a reduced version of the
model with the same top1 and top5 accuracies.
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hardware root-of-trust is demanded to enable such a protection scheme to act as a
trusted key source.

Secure cryptographic techniques, such as Homomorphic encryption [115], can
also be employed as a protection layer over the models. These techniques consist of
fully encrypting the models before delivering them to the end-users. Only authorized
users would be able to decrypt them or execute the encrypted model. However, these
techniques incur significant overheads since models must be decrypted on-the-fly
while loaded from memory to the execution unit or run over the encrypted space to
assure that no side-channel attack would occur.

The neural model obfuscation proposed in this work does not prevent the attacker
from stealing the model, but it avoids the expected behavior of the model without
a proper key. In other words, non-authorized access to the model will degrade its
accuracy, making the stolen data useless. This work restricts the attack model to
a man-at-the-end (MATE) attack type. In this scenario, the attacker has complete
control with physical access to the edge device and can run DNN models over its
Neural Processing Unit (NPU) [116]. End-user devices securely acquire the models
through trusted parties, entitled Model Providers. By reverse-engineering the end-
user device, the attacker can access the whole model, such as its topology and
parameters, but not the mapping key (more details in Section 7.2).

Figure 7.1: Output class distribution of HPNN framwork’s key-dependent backprop-
agation [7] using LeNet-4 model over MNIST dataset.

The attacker’s primary goal is to steal the model and reuse it privately, adding
to its portfolio or for illegal distribution. Therefore, the model obfuscation tech-
nique must provide layers of security to avoid the expected use of such models by
non-authorized parties. Moreover, information leakage, presented in other obfus-
cation techniques [7] (Figure 7.1), must be contained by the proposed obfuscation
technique, avoiding revealing that the stolen model has been locked.
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7.2 Swap-based Model Obfuscation

Training-based techniques can achieve robust obfuscation over DNN model param-
eters. However, the training process incurs a costly (e.g., energy and computation
resources) and time-consuming step to guarantee an additional layer of security.
By adopting such techniques, model providers must re-train their entire portfolio
of DNN models from scratch for each unique key generated, turning training-based
approaches not scalable.

Additionally, empirical analysis (Figure 7.1) show that key-depended backprop-
agation algorithm [7] leaks crucial information that could indicate that the target
model has been locked. The attacker can infer if the model was compromised by
running an output class distribution analysis. Figure 7.1 shows a strong disturbance
over the LeNet-4 model output distribution after applying the HPNN framework’s
key-dependent backpropagation algorithm [7]. The main objective of the proposed
model obfuscation is to preserve as much as possible the original output distribution
though making the classification as erroneous as possible for non-authorized users
(i.e., wrong keys).

The proposed swap-based model obfuscation idea focuses on the basic building
block of every deep convolutional neural network: the convolutional filters. As shown
in Figure 7.2 and described in Section 2.1.2, DNNs can be seen as a stack of layers,
with each layer holding a set of learnable weights (a.k.a parameters). The weights
are spread over filters on convolutional layers, responsible for extracting the low and
high-level features from the input image. They are the heart of convolutional-based
DNNs, and their weights have local and global relevance over each input image
provided during the training phase. Filters must have a fixed placement and a fixed
sequence of execution (defined by the layers) to provide an accurate classification
during the inference phase. Therefore, having the model data (i.e., architecture and
weights) on hand does not guarantee that the model will perform as expected.

The proposed swap-based model obfuscation takes advantage of the unique fil-
ter placement to deliver a strong and lightweight model obfuscation technique. It
consists of three possible approaches that provide different obfuscation effectiveness
and impact on the outputs class distribution. The three approaches entitled (a)
full filter swaps, (b) row/column swaps, and (c) hybrid swaps, are depicted in Fig-
ure 7.2.B. The full filter swap consists of swapping entire pairs of filters within the
same layer. The row/column approach works at fine-grain scope by swapping rows
or columns of different filters within the same layer. The last is a mix of filters
and rows/columns swaps, creating a hybrid approach. The proposed technique can
achieve high entropy by iterating the swap process over the whole set of layers. The
incorrect placement within a layer will generate noise classification that will increase
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Figure 7.2: (A) Convolutional Neural Network layer’s structure. (B) Model obfus-
cation techniques (filter, row, column and hybrid swaps).

further as the swaps occur in the remaining layers. This noise directly impacts the
model’s classification accuracy and is dictated by which swap-based approach is
applied over the layers and the number of swaps.

The proposed swap-based obfuscation scheme can be further divided into two
modes: stealth and full-defense. The stealth mode provides obfuscation but consid-
ers the impact of the swap noise over the final class distribution. The final accuracy
penalty might not be as substantial as the full-defense mode. Still, it minimizes the
information leakage, covering any traces that the model has been compromised by
preserving the output class distribution. The full-defense mode ignores the extra
information that a non-authorized user can obtain and locks the model by dropping
its accuracy by significant percentages. This high level of protection has the side ef-
fect of producing similar disturbance over the output class distribution as seen with
the training-based schemes. The final decision of which obfuscation mode should be
applied is tied to the final user objectives (i.e., model providers).
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Figure 7.3: Necessary metadata to be safely delivered to the NPU. The secret key
must be kept safe while the mapping control file can be disclosed without compro-
mising the obfuscation security.

Figure 7.4: Example of secret key and mapping control file relation. Each key
corresponds to a pair of tuples with indexes from the structure to be swapped. An
active bit in the key means that the structures must be swapped.

The metadata required by the swap-base obfuscation is composed of a binary
secret key (e.g., 128-bit key) and the mapping control file. The mapping control file
holds the information on which pairs of structures might be swapped (i.e., tuples of
indices). The binary secret key informs which of these pairs of structures must be
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swapped, where a swap is indicated by an active bit (i.e., 1). Figures 7.3 and 7.4
shows an example of mapping control file, a secret key, and how they are related.

Model providers can randomly generate the secret key during the pre-processing
step of the swap-base obfuscation scheme. Only end-users holding the correct secret
key and the mapping control file associated with it can unlock the model’s inference.
If a potential attacker owns the topology and parameters of the model but not the
metadata, the model will misbehave, resulting in accuracy penalties.

The proposed swap-based obfuscation is not only a robust solution but also
scalable. It only requires a pre-processing step where the swaps are performed, and
the model’s accuracy and output class distribution are evaluated with inference only
passes. The proposed solution avoids re-training the whole model portfolio from
scratch, enabling a straightforward production of obfuscated models with unique
mapping keys for each end-user device.

7.2.1 Hardware Support

State-of-the-art NPUs implement a parallel spatial architecture through the support
of a systolic array-based design where a grid of connected processing elements (PEs)
fetches data from buffers and performs multiply and accumulate (MAC) operations
in a pre-defined sequence. Commercial examples of such NPUs are the Google TPU,
the ARM Ethos, and the Samsung Exynos [117–119].

Through the support of a weight decoder unit, the ARM Ethos [118] chip man-
ages the DMA controller’s weight stream. This unit decompresses the weight on
the fly by reordering, padding, aligning them into blocks, and further storing them
into double-buffered registers that will feed the MAC units. The Samsung Exynos
[119] is equipped with a double data-staging unit (DSU) where the weight stream
decompression process occurs. A dispatcher unit receives the decompressed data
and forwards it to the MAC arrays within their respective feature map data. In the
Google TPU [117], a central unit, called weight fetcher, is responsible for fetching
the weights directly from the DRAM. It reorders the data and feeds the massive
matrix multiplication unit (MxM).

To implement the proposed swap-based obfuscation technique, a custom pre-
loading step is required. The current weight decoders presented in the state-of-the-
art NPUs can be leveraged to perform the necessary steps. First, a dedicated NPU
register must be available to store the binary secret key securely. This key is shared
between layers, and it is a single-time fetch. Second, as the weights are loaded
and decoded, pairs of indices from the mapping control file will also be fetched.
The information on the secret key plus the pairs of indices will dictate how the
weight decoder unit should proceed (i.e., swap or not swap). Without the proper
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binary secret key and the mapping control data, the weight decoder unit will swap
wrong structures, dispatching incorrect weights into the PEs, causing the model to
misbehave. This scheme also creates an walled garden ecosystem, forcing the NPU
to work only with models from verified parties, closing the edge-device platform to
only trusted neural devices (TND). 2

7.2.2 Model Obfuscation Overhead

The swap-based model obfuscation is not an overhead-free technique. As mentioned
earlier, a secret key and a mapping control file must be generated during the pre-
processing step. Swaps are then performed, and the model’s accuracy and output
class distribution are evaluated through a set of inference calls (no backpropagation
required). These steps can be performed iteratively until the outputs meet the model
provider criteria.

The secret key is an n-bit key where each bit represents one swap. The total
of swaps is tied to n and the number of convolutional layers in the network since
layers share the same key. The key should be safely delivered and stored in the
NPU register. The mapping control file is a list of pairs of tuples (i.e., indices) that
are strongly tied to the mapping key. Only part of the tuple pairs is swapped (i.e.,
bit key equals 1). Therefore, the mapping control content can be disclosed with no
harm to the obfuscation scheme.

7.3 Experimental Analysis and Results

A set of empirical experiments were performed to evaluate the effectiveness of the
proposed swap-based obfuscation scheme. First, the obfuscation performance is as-
sessed by analyzing each swap’s technique (filter, row, column, and hybrid swaps)
and their impact on the model accuracy. This composes one of the pre-processing
steps that a model provider must perform. The second part is the information leak-
age analysis, where the perturbation over the output class distribution is quantified.
A new perturbation metric is proposed, and each swap’s technique is evaluated con-
sidering the magnitude of this metric. The third set of experiments performs a
security analysis of the swap-based obfuscation scheme. This analysis simulates two
types of attacks over the obfuscated models. A brute-force attack with random walks
tries to unlock the models through a sequence of bit-flips over randomly generated
initial key. The main objective is to guess the secret key and unlocks the baseline ac-
curacy of the model. The second type is a genetic algorithm (GA) attack. Through

2Design details of Ethos’s weight decoder, Exynos weight decompressor/dispatcher, and TPU
weight fetcher are not publicly available. Therefore, only the design principle is described and not
the detailed implementation.
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the support of a GA-based attack, the attacker will try to predict the secret key. An
initial population of keys will be evaluated through a set of inference calls. Later,
the best ones are selected and passed through a crossover and mutation process,
generating new attacker samples. This iterative process is repeated until the correct
key is found or the maximum iteration is reached. Both attacks are evaluated over
2 million inference trials. Lastly, a security enhancement analysis is provided with
the support of pruning. Pruned models keep only the relevant weights, and the
remaining ones are set to zero. By removing the redundant weights, pruning should
significantly impact the proposed obfuscation technique performance. The brute-
force and genetic algorithm attacks are performed over the pruned and obfuscated
models.

The following sections will detail the models, dataset, the experimental setup,
and the results of each experimental category.

7.3.1 Models and Dataset

To evaluate our proposed model obfuscation technique, we selected three well-known
CNN models with different numbers of layers, filters per layer, and filter sizes (Table
7.1). The models were pre-trained on the ImageNet ILSVRC-2012 dataset [11] for
the image classification task.

Table 7.1: Summary of the three DNN models that compose the benchmark set.
Number of weights is displayed in mega (M) unit.

Model Number of
Convolutional Layers

Filter
Sizes

Number of
Parameters

Top-1
Accuracy

AlexNet 5 [11x11], [5x5], [3x3] 61M 56.52%
ResNet18 17 [3x3], [7x7] 11.7M 69.76%
ResNet50 49 [1x1], [3x3], [7x7] 25.5M 76.13%

7.3.2 Experimental Setup

The experiments were performed with the support of the PyTorch framework version
1.6 on a workstation equipped with dual Intel(R) Xeon(R) Gold 6246 CPUs @
3.30GHz, 256GB RAM, and two NVIDIA Quadro RTX 8000 GPUs.

To simulate the proposed swap-based obfuscation mechanism, random secret keys
and mapping control files holding how filters, rows, or columns should be swapped
must be generated. This step is tightly connected to the model under evaluation
since the random mapping control file generator needs prior knowledge about the
model structure, such as the number of layers, filters per layer, and filter sizes. After
loading the pre-trained model, the structures are swapped based on the mapping
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control file and the secret key. An attacker in possession of the model’s parameters
and structure would be able to run inferences passes but with no indication that the
model has been obfuscated.

7.3.3 Performance Analysis

The first experiment analyzes the performance of each structure swap (filter, row,
and column swap) and their impact on the model accuracy when executed by un-
trusted parties. Three obfuscated model accuracies are compared to the original
unlocked model (Baseline) with different secret key sizes: 32, 64, and 128 bits.

Figure 7.5: Effect of the key sizes for AlexNet, ResNet18 and ResNet50 top 1 accu-
racy under the three proposed model obfuscation techniques.

Figure 7.5 shows that filter swaps have a significant impact on the model’s overall
accuracy, providing the strongest protection. When considering only 32 bits for filter
swaps, the accuracy drops by 21.68%, 16.96%, and 61.64% for AlexNet, ResNet18,
and ResNet50 models. As for row and column swaps, they provide negligible pro-
tection, with an impact of ≤ 2% on the model’s accuracy for up to 64-bit key sizes.
Moving up to a 128-bit key size, rows, and columns swap provides slightly enhanced
protection with a 10% drop in the overall accuracy.

This behavior is expected since in a larger group of weights (e.g., filters), there
is a higher probability of swapping relevant weights with non-relevant ones [51].
Therefore, swapping over the filter level is the best way to achieve high standard
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obfuscation goals.

7.3.4 Information Leakage Analysis

By solely considering accuracy penalties as a metric for evaluating the obfuscation
technique, the defender could go straight and pick filter swap as the best option.
As seen from the performance evaluation results, swapping many filters drastically
impacts the model’s accuracy, resulting in a high level of protection. However, this
level of protection comes at the cost of considerable perturbation in the output class
distribution. This is the side effect of uncontrollable swaps between key structures
that holds many relevant weights. By analyzing the outputs of sequential inferences
runs, a potential attacker can distinguish between an obfuscated and non-obfuscated
model.

Figure 7.6: Impact of model obfuscation techniques over AlexNet output class dis-
tribution.

It is hard to quantify perturbation over the output class distribution without a
proper metric, as can be seen in Figure 7.6. Therefore, a new metric (pr) is pro-
posed in this work. The perturbation is described by Equation 7.1 which considers
an optimal distribution (optimal_counti) for each class in the dataset and a bad dis-
tribution (bad_counti) that arises from an obfuscated model for all available classes
in the dataset (N). A high pr means the proposed obfuscation scheme incurs a high
perturbation over the final distribution.

[!h]pr =

√∑N
i=0(optimal_counti − bad_counti)2

total_count
(7.1)

Figure 7.6 and Table 7.2 show the output class distribution of AlexNet during the
previous model performance experiment in Section 7.3.3. Filter swap obfuscation
clearly incurs high perturbation rates, even for the smallest secret key size (pr >
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Table 7.2: Perturbation rate on models output distribution using different types of
obfuscation mode and key size.

Swap
Location

Perturbation Rate
AlexNet ResNet18 ResNet50

32-bit key 64-bit key 128-bit key 32-bit key 64-bit key 128-bit key 32-bit key 64-bit key 128-bit key
Filter 2.43% 22.28% 31% 1.92% 15.1% 19.3% 52.96% 70.58% 34.97%
Row 0.16% 0.27% 0.43% 0.24% 0.29% 1.67% 0.24% 0.25% 0.53%

Column 0.19% 0.21% 0.44% 0.23% 0.26% 0.49% 0.08% 0.17% 0.28%

22%). Row and column swap obfuscation preserve the distribution (pr < 1.7%),
with a marginal pr increase due to few outliers.

The experiment results have shown that filter swap obfuscation delivers a high
level of protection by drastically dropping the accuracy but harms the output class
distribution and that row/column swaps provide marginal protection while keeping
the class distribution stable. Is there a way to balance these two strategies and gets
the best of both worlds? A fourth structure swap is proposed. The hybrid obfus-
cation scheme merges filter and row/column swaps, where few filters are swapped,
and the remaining key bits are reserved for rows or columns swap.

Figure 7.7: Impact on models accuracy using different types of configurations for
hybrid row (H-Row) and hybrid column (H-Column) modes using 128-bit key.
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Table 7.3: Perturbation rate on models output distribution using different types of
configurations for hybrid row and hybrid column modes using 128-bit key.

# Reserved
Filter Swaps

Perturbation Rate
128-bit key

AlexNet ResNet18 ResNet50
Hybrid Row Hybrid Column Hybrid Row Hybrid Column Hybrid Row Hybrid Column

1 0.56% 0.59% 1.21% 1.47% 0.76% 0.77%
2 0.94% 0.71% 1.26% 1.51% 1.10% 1.01%
4 0.42% 0.51% 10.67% 3.46% 1.47% 1.06%
6 1.30% 1.31% 1.29% 1.34% 0.69% 0.68%
8 0.69% 0.70% 4.24% 0.79% 1.10% 1.90%
10 0.84% 0.90% 1.52% 1.55% 6.78% 7.45%
15 0.87% 0.90% 2.15% 2.27% 2.46% 1.92%
20 1.95% 1.79% 6.1% 5.58% 18.48% 26.41%

Figure 7.7 and Table 7.3 show the impact on the accuracy and output class
distribution of different types of hybrid swap configurations for the three models.
By reserving 20 bits of the secret key for filter swap, the accuracy penalties are
substantial, and the distribution perturbation (pr) achieves an acceptable rate. For
example, Hybrid Row over AlexNet and ResNet18 with 128-bit key reaches 17.73%
and 31.47% of accuracy penalties while keeping pr ≤ 7%. As a baseline for com-
parison, the key-dependent backpropagation algorithm [7] illustrated in Figure 7.1
incurs a pr of 18% over a small four-layers deep network (LeNet-4) evaluated with
a ten-classes dataset (MNIST).

Table 7.4: Summary of the obfuscation results over the DCNN models that compose
the benchmark set [8–10]. Accuracy is measured based on top-1 error on ImageNet
[11] dataset. The results consider an 128-bit key for filters, rows, and columns swaps.
The hybrid mode is composed of 20 filters and 108 rows/columns swaps.

Obfuscated Model
128-bit key

Filter Row Column Hybrid
Row

Hybrid
ColumnModel Original

Accuracy accuracy % drop accuracy % drop accuracy % drop accuracy % drop accuracy % drop
AlexNet 56.52% 0.85% 55.67% 54.45% 2.07% 54.40% 2.12% 38.80% 17.73% 40.54% 15.98%
ResNet18 69.76% 3.84% 65.92% 60.21% 9.55% 66.88% 2.88% 38.29% 31.47% 39.14% 30.64%
ResNet50 76.13% 2.85% 73.28% 71.75% 4.38% 74.77% 1.36% 40.75% 35.38% 32.56% 43.57%

Table 7.4 shows the summary of the swap-base obfuscation results over the three
DNN models under the four proposed structure swap configurations. The hybrid
row and column approaches consider a reserve of 20 bits from the secret key for
filter swaps. With a 128-bit key on AlexNet, ResNet18, and ResNet50, the hybrid
obfuscation can preserve the output distribution (up to 18.48% considering the Hy-
brid Row scheme) and reduce the overall accuracy at acceptable rates (more than
35.38% in best cases), providing the best trade-off between accuracy penalties and
output class perturbation.

Experiments have shown that increasing the filter swap reserved bit keys by
more than twenty increases output class distribution perturbation. This fact occurs
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mainly because the first convolutional layer is more sensitive and less redundant [3],
and a simple additional filter swap over the first layer impacts the model’s overall
accuracy.

The perturbation metric coupled with the accuracy penalties can help Model
Providers to achieve an optimal (or close to optimal) obfuscation scheme. Since
the obfuscation process comprises random selections of filters, rows, and columns,
proper use of an optimization process can deliver even better results than the ones
presented in Table 7.4.

7.3.5 Security Analysis

A significant challenge for any obfuscation technique is to provide a high level of
security, keeping its model misbehaving under unauthorized access of unknown en-
tities. The swap-based obfuscation allows any entity access to the model structure,
parameters, and mapping control list. Even with such an amount of information, a
potential attacker would not be able to achieve the same accuracy as trusted parties
since it does possess the correct secret key. To analyze the security properties of the
proposed approach, two types of attacks on the obfuscated models are simulated in
an effort to discover the correct key.

Brute-Force Attack

The first type of attack is a brute-force mode with random walks. The target model
is obfuscated with the swap-base scheme using a 128-bit key and the filter and
the hybrid structure approach to simulate the brute-force type of attack. Then, an
initial key is randomly generated, resulting in a starting-point accuracy. Considering
the starting-point scenario, the attacker performs random walks over individual bits
of the initial key, flipping one at a time and checking the new accuracy with a
known test set. If the accuracy improves, the attacker keeps that bit and considers
it a hit by removing the index from the random search. If the accuracy drops,
the bit is reverted to its original value, and the random walks are performed over
the remaining indices. This iterative process is repeated until the attack reaches
the target accuracy (i.e., baseline) or after the expiry of some number of iterations
(1 000 in this case). For the obfuscation to be considered secure, the technique must
not allow the attack to reach the target accuracy by random walking over the secret
key. Moreover, a secure obfuscation technique must keep the accuracy far below the
target by considerable margins.

Figure 7.8 shows the success potential of an attacker with brute-force mode over a
128-bit key for each network during 1 000 trials. Each trial corresponds to a random
walk step, where one of the key’s bit is flipped. During each trial, a full prediction
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Figure 7.8: Security analysis of the swap-based obfuscation technique using filter
(Filter-128k) and hybrid row (H-Row-128k) modes with 128-bit key against brute-
force attack.

over the Imagenet validation set is performed. For the three models, the
swap-based obfuscation approach can sustain a substantial accuracy penalty with
the filters swap approach. Considering 20 bits for filter swaps out of 128, the hybrid
row approach maintains the accuracy penalties up to 8.8% for ResNet18.

The attack achieves low accuracies at the initial random walks due to the ran-
domness of the secret key starting point. The accuracy rises to a plateau as the
attack moves forward over the trials. After reaching the plateau, the attack accu-
racies of the remaining trials get stagnant, not exceeding a specific threshold. The
non-uniqueness nature of the swaps causes this effect over the brute-force attacks
with random walks. Structures, such as filters, are first swapped considering all the
available filters/rows/columns within a specific layer. Then, the upcoming swaps
have the remaining structures in the swap pool and the structures from the previ-
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ous swaps, creating a relation between the bit keys. This correlation allows model
providers to determine a specific order in which the bit keys should be flipped to
achieve the correct placement of the structures.

Genetic Algorithm Attack

The second experiment is a genetic algorithm (GA) based type of attack. This
attack consists of applying GA, where the initial genomes population is composed
of possible secret keys to unlock the obfuscated model (Figure 7.9). Each genome is
evaluated through a fitness function that consists of a complete set of predictions
over the whole validation set. Then, the genomes are ranked based on their
accuracy (i.e., fitness function output), which expresses how well and close that
genome got to unlocking the obfuscated model. This process, entitled generation, is
repeated but now considers only the most relevant genomes of the rank. A crossover
function is applied over this new subset by randomly selecting pairs of genomes
and combining their genetic information (secret key bits). The combination process
creates new pairs of genomes denominated offsprings. Then, offsprings are conducted
to a mutation process, where single or multiple bits from their secret key can be
flipped. Finally, the generation process can restart with a new genome population
(i.e., secret key candidates).

Figure 7.9: Steps performed during the Genetic Algorithm attack.

GA is a highly parametrizable algorithm requiring several combinations and ex-
perimental runs to converge appropriately. Population size, number of generations,
crossover function, crossover, and mutation rates are the parameters that must be
fine-tuned to achieve a proper behavior of GA. Moreover, these parameters are
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tightly coupled to the problem. In the GA-based attack, fine-tuning the parame-
ters is not different from the original algorithm. It requires several combinations
and experimental runs until a proper convergence. Yet, the GA-based attack fit-
ness function comprises a thousand DNN model inferences, demanding a humongous
amount of time and computational resources. Therefore, searching for an optimal
set of parameters is out of the scope of this work. During the GA-base attack
experiments, the parameters are set with the following values:

• Genome size: 128

• Population size: 10

• Number of Generations: 200

• Crossover function: Single-point Crossover

• Crossover rate: 0.9

• Mutation rate: 0.5

Figure 7.10 shows the success potential of the GA-based attack on a 128-bit key
for each obfuscated model over 200 generations. Each point in the plot corresponds
to the best top-1 genome accuracy of a generation. Similar to the brute-force attack
with random walks, the three obfuscated models can preserve a substantial accuracy
penalty when employing the swap-based obfuscation over the filter structure. For
the hybrid-row approach with 20 bits reserved for filter swaps, a slight margin of
4% accuracy penalty is sustained over AlexNet after 100 million inference trials 3.

It is essential to highlight that both attacks (brute-force and GA-based) have
considered predictions on the whole validation dataset for simplicity of coding. In
a real-world scenario, a potential attacker would not have this amount of data
available to evaluate each candidate key. Instead, the attacker would have to make
several predictions using an reduced portion of the validation set (< 10%). Thus, the
security experiments consider unusual cases where attackers would possess the same
amount of validation data as the model provider. Finally, the security experiments
demonstrate that seeking monotonic accuracy improvement via random walk or GA-
based algorithms will not disclose the secret key when obfuscating the DNN models
with the proposed approach.

3# trials = 200 generations × 10 genomes × 50,000 images
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Figure 7.10: Security analysis of the swap-based obfuscation technique using filter
(Filter-128k) and hybrid row (H-Row-128k) modes with 128-bit key against GA-
based attack.

7.3.6 Enhancing Security of Swap-based Obfuscation

The security of the swap-based obfuscation technique can be further enhanced by
considering pruned models instead of dense ones. DNN models have natural redun-
dancy, and a considerable portion of its parameters have little or no relevance over
the final accuracy [51]. Pruning [3, 52] is a compression technique that iteratively
removes the redundant parameters of the models based on their impact on the clas-
sification accuracy. It keeps only the relevant weights, making the model extremally
sparse (more details in Section 2.1.5). Since the swap-based obfuscation heavily
relies on the weights structure, pruning should significantly impact the proposed
technique’s performance against brute-force and GA-based attacks.

The security experiments performed in Section 7.3.5 with the brute-force attack
were re-executed but now considering the pruned version of the obfuscated models
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Table 7.5: DNNs top-1 accuracy under model compression. Pruning (P) removes
more than 59% of the parameters by dropping less than 1% on accuracy.

Model Model Type Data Type Pruning Rate Top-1 acc.

AlexNet
Original (D) fp32 - 56.52%
Pruned (P) fp32 88.31% 56.61%

ResNet18
Original fp32 - 69.76%
Pruned fp32 59.92% 69.87%

ResNet50
Original fp32 - 76.13%
Pruned fp32 84.57% 75.52%

Figure 7.11: Security analysis of the swap-based obfuscation scheme over Dense
(D) and Pruned (P) models of AlexNet, ResNet18, and ResNet50 using 64-bit and
128-bit keys against brute-force attack.

in Table 7.5. Figure 7.11 shows the secure potential of 64-bit and 128-bit keys
filters swaps over pruned and dense models. Pruned models outperform the dense
version, especially with a 128-bit key size over ResNet18 and ResNet50. This set
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of experiments indicates that pruning the model before obfuscating it can be a
prominent way to enhance swap-based obfuscation security.

7.4 Concluding Remarks

Training state-of-the-art deep neural networks is an expensive endeavor. It requires
a massive amount of training data that is further hand-labeled, good expertise in
the domain, and a considerable number of high-performance computation resources
to train a model. Due to these factors, DNN models are considered and treated as
valuable storehouses of intellectual properties (IP) and must be protected against
attacks.

Model piracy attacks have become a significant concern over the past years where
attackers are capable of stealing (or cloning) the model for illegal usage or distri-
bution. DNN models are easy targets without proper protection, especially if the
attacker has physical access to the device where the models have been deployed. By
stealing the model’s architecture and its hyperparameters, attackers can achieve a
near-perfect clone of the original model. Therefore, models must be shielded before
being delivered to end-users.

Neural model obfuscation protects the original model against structure and pa-
rameter piracy. It adds a security layer that locks the model such that only autho-
rized parties can achieve the expected behavior. Non-authorized users are unable
to unlock the model, resulting in significant penalties over its accuracy, making the
model useless for illegal use or distribution.

The proposed swap-based obfuscation encompasses a novel, lightweight, scalable
technique that does not require a specialized training process. It conceals the original
model’s internal structure by swapping rows, columns, and full filters based on a
secret key and a mapping control file. The proposed swap-based obfuscation effec-
tiveness is demonstrated across different DNN architectures, with varying numbers
of layers, filters per layer, and filter sizes. Four different structure swapping schemes
are proposed and evaluated, showing that a hybrid approach can provide a stealth
obfuscation by avoiding information leakage by preserving the output class distri-
bution. The filter option provides a full-protection scheme by applying considerable
penalties over the model’s accuracy. Additionally, the proposed obfuscation scheme
shows strong resistance against security attacks such as brute-force and GA-based
ones.
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Chapter 8

Conclusion

Reliability and security solutions applied to computer systems have been widely
explored and still play a critical role, particularly in the artificial intelligence era.
The transistors shrinking to atomic limits and the adoption of machine learning-
based solutions over safety-critical systems have brought the spotlight back to these
research areas. Notably, this thesis explores solutions to enhance the reliability and
security of deep neural network-based microarchitectures.

Compression techniques, such as pruning and quantization, are promising solu-
tions for deploying deep neural networks over resource-constrained devices. However,
it is unknown how such techniques can impact the reliability of DNN-based systems.
This thesis evaluates pruning and quantization over a large set of real-world DNN
models, showing that compression can improve the system’s reliability by reducing
the error propagation over the models. Furthermore, when combining pruning and
quantization solutions, the overall reliability is enhanced by 108.7x.

Safety-critical systems demand high dependability standards. To be considered
safe for end-users, DNN-based automotive systems must provide solutions that can
detect more than 99% of the faults in any component. This thesis proposes a robust,
low-cost AN-based solution to ensure the reliable execution of DNN-based accelera-
tors. The AN-based detection scheme achieves a minimum fault coverage of 99.6%
for up to 10−3 bit error rate (BER) scenario. Moreover, the proposed detection
scheme, coupled with the Word Masking technique, can preserve the correct execu-
tion without compromising the original model accuracy even at unusually high bit
error rates such as 10−2 BER.

The proposed AN-based detection scheme has limitations that can jeopardize its
deployment in real-world applications. This thesis provides a solution that makes
the AN error-detection capability incur practically no overhead over the system
by a software and hardware co-design method. The AN code-aware quantization
technique removes the pre-encoding step of the previous AN detection scheme by
constraining to integers multiples of A only. The AN code-aware quantization can
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achieve near-optimal accuracies with ≤ 1% of difference from the original model.
Because training DNN models requires a humungous effort with high costs, they

are considered and treated as valuable storehouses of intellectual properties (IP).
Therefore, the models must be protected against attacks, such as piracy. Without
proper protection, non-authorized users can steal the DNN model for illegal use or
distribution, resulting in considerable losses for model providers (i.e., ML vendors).
This thesis proposes a lightweight, scalable, and robust technique to protect DNN
models from man-at-the-end (MATE) attack types. By obfuscating the model’s
parameters, the swap-based solution can thwart the illegal use of the model by
significantly decreasing the original model’s accuracy without leaving traces that
the model has been obfuscated.

Steadily, safety-critical systems incorporate DNNs to perform additional tasks or
even entirely replace the need for human interaction, increasing the degree of safety,
integrity, and security demanded. In the future, the AN-based detection solution can
be enhanced by quantizing all the inputs of the networks with the AN code-aware
quantization, making every data that flows into the model easy to be checked. In the
context of security, the swap-based obfuscation can be further enhanced through an
optimization-based technique that will select which structures give the best benefits
in terms of protection and information leakage costs.

8.1 Contribution

This thesis proposes novel techniques and improvements over the state-of-the-art
related to model obfuscation and error detection on deep neural networks microar-
chitectures. Additionally, a custom open-source DNN fault injection framework was
created and shared through a GitHub repository during the research development.
The main contributions are listed below:

• Extensive reliability analysis of compressed DNN models under the presence
of transient faults. It is demonstrated that compression, in the mean of data
quantization and model pruning, can dramatically increase the system’s overall
resiliency under a faulty condition (e.g., cosmic radiation).

• TorchFI, a custom DNN fault injection framework created on top of the classic
and highly adopted DNN framework PyTorch. TorchFI can simulate transient,
permanent, and intermittent faults over computational units and memory sub-
systems.

• Custom DNN error detection based on arithmetic error codes (AN code) that
can detect more than 99% of errors over DNN MAC units. When coupled with
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a word-masking error correction scheme, the technique allows the DNN system
to operate with no accuracy loss, even under high bit error rate scenarios.

• Novel AN code-aware quantization process that enhances the custom DNN er-
ror detection by removing the necessity of pre-multiplying one of the operands
(e.g., input features or model parameters) by a constant A; further reducing
the cost of an HW detection scheme through a co-design scheme (HW and SW
error detection cooperation).

• Novel lightweight DNN model obfuscation technique that does not require a
specialized training process to protect the model’s IP while providing oblivious
output class distribution.
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