
ON (IN)TRACTABILITY OF CONNECTION AND CUT PROBLEMS

Alexsander Andrade de Melo

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em

Engenharia de Sistemas e Computação.

Orientadores: Celina Miraglia Herrera de

Figueiredo

Uéverton dos Santos Souza

Ana Shirley Ferreira da Silva

Rio de Janeiro

Julho de 2022

ON (IN)TRACTABILITY OF CONNECTION AND CUT PROBLEMS

Alexsander Andrade de Melo

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientadores: Celina Miraglia Herrera de Figueiredo

Uéverton dos Santos Souza

Ana Shirley Ferreira da Silva

Aprovada por: Profa. Celina Miraglia Herrera de Figueiredo

Prof. Uéverton dos Santos Souza

Profa. Ana Shirley Ferreira da Silva

Prof. Jayme Luiz Szwarcfiter

Prof. Mitre Costa Dourado

Prof. Mateus de Oliveira Oliveira

Profa. Paloma Thomé de Lima

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2022

Melo, Alexsander Andrade de

On (in)tractability of connection and cut

problems/Alexsander Andrade de Melo. – Rio de

Janeiro: UFRJ/COPPE, 2022.

XI, 244 p.: il.; 29, 7cm.

Orientadores: Celina Miraglia Herrera de Figueiredo

Uéverton dos Santos Souza

Ana Shirley Ferreira da Silva

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2022.

Referências Bibliográficas: p. 90 – 100.

1. Computational complexity. 2. Connection

problems. 3. Steiner tree. 4. Cut problems.

5. Maximum cut. 6. Graph classes. 7. Zig-

zag number. I. Figueiredo, Celina Miraglia Herrera de

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

Agradecimentos

Primeiramente, agradeço a Deus por me capacitar, abençoar e sustentar. Agradeço

aos meus pais, Samuel e Wânia, e aos meus irmãos, Priscila e Lucas, por todo apoio

e ensinamentos concedidos ao longo da minha vida. Agradeço também aos meus

demais familiares por sempre desejarem o meu sucesso; em especial, agradeço aos

meus avós por todo incentivo e suporte.

Agradeço imensamente aos meu orientadores: profa. Celina Figueiredo, prof.

Uéverton Souza e profa. Ana Silva, por terem me aceitado como seu orientando, e

por, muito além disso, todos os ensinamentos transmitidos e toda paciência conce-

dida a mim durante a execução deste trabalho. I also would like to thank professor

Michael Fellows for accepting to be my supervisor during my internship at University

of Bergen, and professor Frances Rosamond for receiving me very well in Bergen.

Agradeço aos demais professores que compuseram a banca examinadora deste

trabalho, prof. Jayme Szwarcfiter, prof. Mitre Dourado, prof. Mateus Oliveira

e profa. Paloma Lima. Muito obrigado por se disponibilizarem para avaliar este

trabalho e pelos comentários valiosos.

Agradeço aos meus co-autores, com quem tive o prazer de aprender imensamente:

Ana Silva, Celina Figueiredo, Diana Sasaki, Fabiano Oliveira, Mitre Dourado, Raul

Lopes e Uéverton Souza. Em particular, ao Mateus Oliveira por toda frut́ıfera

colaboração durante, e após, a minha visita à Universidade de Bergen.

Agradeço aos meus amigos da UFRJ. Em especial, Alesom Zorzi, Alexandre

Santiago, Ana Luisa, Caroline Patrão, Edinelço Dalcumune, Dani Castello Branco,

Diana Sasaki, Fernanda Couto, Leando Santiago, Moysés Sampaio e Wanderson

Lomenha. Aos meus amigos da UFRRJ. Em particular, ao Ygor Canalli pela

amizade ao longo dos anos. I also would like to thank Lars Jaffke and Palma Lima

for all support provided while I was visiting Bergen. You made my stay much more

enjoyable. I am also very grateful to the friends that I made in Bergen: Ícaro Malta,

Julian Melo, Jonathan Prieto, Katherine Beltran, and Sandra Macià.

Agradeço aos professores da UFRJ, com os quais tive a honra de ter aula, e aos

demais funcionários pela atenção e prontidão. Aos meus amigos do Cultura Inglesa,

em especial à Marcelle Duarte. Aos meus colegas e amigos da Mendelics.

Por fim, agradeço ao CNPq e à CAPES pelo suporte financeiro.

iv

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

SOBRE A (IN)TRATABILIDADE DE PROBLEMAS DE CONEXÃO E CORTE

Alexsander Andrade de Melo

Julho/2022

Orientadores: Celina Miraglia Herrera de Figueiredo

Uéverton dos Santos Souza

Ana Shirley Ferreira da Silva

Programa: Engenharia de Sistemas e Computação

Problemas de conexão e corte são problemas em grafos que foram amplamente

estudados aos longos dos anos. Informalmente, problemas de conexão visam obter

o menor/maior número de elementos necessários cuja inclusão resulte em um grafo

conexo que satisfaça certas condições, enquanto que problemas de corte visam obter

o menor/maior número de elementos necessários cuja remoção origine um grafo

(desconexo) com mais componentes conexos. Nesta tese, abordamos problemas de

conexão e corte sob a ótica de classes de grafos e complexidade computacional.

Especificamente, analisamos a complexidade do problema Conexão de

terminais (TCP), que pode ser visto como uma generalização do problema clássico

Árvore de Steiner. Propomos diversos resultados de complexidade para o TCP

e para sua variante estrita (S-TCP), quando alguns dos parâmetros de entrada

são fixos, e quando restritos a classes de grafos espećıficas, tais como grafos

split, grafos de caminhos direcionados enraizados e grafos de clique-width limitado.

Concentramo-nos especialmente em resultados que diferenciam a complexidade do

TCP da complexidade do problema da Árvore de Steiner.

Ademais, analisamos a complexidade do problema clássico Corte máximo.

Provamos que o problema é NP-completo em grafos de intervalo de contagem de

intervalos igual a 4. Provamos também que Corte máximo é NP-completo em

grafos de permutação. Este resultado resolve uma pergunta proposta por David S.

Johnson, em Ongoing Guide to NP-completeness, que permanecia em aberto por

diversos anos. Por fim, investigamos a complexidade do problema de computar o

número de zig-zag de grafos direcionados. Provamos que k-zig-zag number está

em NP para todo valor fixo de k, e que 2-zig-zag number é NP-completo.

v

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

ON (IN)TRACTABILITY OF CONNECTION AND CUT PROBLEMS

Alexsander Andrade de Melo

July/2022

Advisors: Celina Miraglia Herrera de Figueiredo

Uéverton dos Santos Souza

Ana Shirley Ferreira da Silva

Department: Systems Engineering and Computer Science

Connection and cut problems are general graph problems widely studied over the

years. Roughly, connection problems aim to obtain a minimum/maximum number

of required elements whose inclusion yields a connected graph satisfying certain

conditions, while cut problems aims to obtain a minimum/maximum number of

required elements whose removal yields a (disconnected) graph with more connected

components. This thesis addresses connection and cut problems from the perspective

of graph classes and computational complexity.

Specifically, we analyse the computational complexity of Terminal

connection (TCP), which can be seen as a generalisation of the classical Steiner

tree problem. We propose several complexity results for TCP and for its strict

variant (S-TCP), when some of the input parameters are fixed, and they are

restricted to specific graph classes, such as split graphs, rooted directed path

graphs, and graphs of bounded clique-width. We mainly concentrate on results

that differentiate the complexity of TCP from the complexity of Steiner tree.

Additionally, we analyse the computational complexity of the classical MaxCut

problem. We propose the first complexity classification for the problem with respect

to interval graphs of bounded interval count, by proving that it remains NP-complete

on interval graphs of interval count 4. We also prove that MaxCut is NP-complete

on permutation graphs, settling a long-standing open question from Ongoing Guide

to NP-completeness by David S. Johnson. Finally, we investigate the complexity

of computing the zig-zag number of a directed graph, which is a directed width

measure defined over cuts of a graph. We prove that k-zig-zag number is in NP

for every fixed k, and that 2-zig-zag number is already an NP-complete problem.

vi

Contents

List of Figures ix

1 Introduction 1

1.1 An Overview of the Selected Problems 3

1.1.1 Connection Problems . 4

1.1.2 Maximum Cut . 5

1.1.3 Zig-Zag Number . 6

1.2 Preliminaries . 7

2 Connection Problems 12

2.1 Connection Tree . 13

2.2 Separating Graph Classes . 15

2.2.1 Split Graphs . 16

2.2.2 Rooted Directed Path Graphs 25

2.3 Graphs of Bounded Clique-Width . 30

2.3.1 Parameterization by clique-width 31

2.3.2 Cographs . 33

2.4 Concluding Remarks . 38

3 Maximum Cut 40

3.1 Basic Definitions . 41

3.2 Grained Gadgets . 42

3.3 Adhikary et al.’s Reduction . 45

3.4 Interval Graphs of Bounded Interval Count 46

3.4.1 Reduction Graph . 47

3.4.2 Maximum Cut of the Reduction Graph 49

3.4.3 Bounding the Interval Count 57

3.5 Permutation Graphs . 60

3.5.1 Reduction Graph . 61

3.5.2 Maximum Cut of the Reduction Graph 62

3.6 Concluding Remarks . 65

vii

4 Zig-Zag Number 68

4.1 The Zig-Zag Number of a Directed Graph 69

4.2 NP-Membership for Fixed k . 70

4.2.1 Compatible Subcut Sequence 71

4.2.2 Compatibility Graph . 72

4.3 NP-Hardness . 79

4.4 Concluding Remarks . 84

5 Conclusion 88

References 90

A Manuscript: Revising Johnson’s Table for the 21st Century 101

B Manuscript: A Multivariate Analysis of the Strict Terminal Con-

nection Problem 119

C Manuscript: The Strict Terminal Connection Problem on Chordal

Bipartite Graphs 140

D Manuscript: On the Computational Difficulty of the Terminal Con-

nection Problem 150

E Manuscript: Maximum Cut on Interval Graphs of Interval Count

Four is NP-complete 177

F Manuscript: MaxCut on Permutation Graphs is NP-complete 203

G Manuscript: Computing the Zig-Zag Number of Directed Graphs 217

H Abstracts of Additional Works 238

viii

List of Figures

2.1 A graph G, a terminal set W (blue squares), and connection trees

of G for W , each with a distinct number of linkers (red circles) and

routers (solid black circles). Indeed, T1 has 2 linkers and 1 router;

T2 has 1 linker and 3 routers; T4 has 3 linkers and 3 routers; and T4

has 2 linkers and 4 routers. In particular, note that T3 and T4 are

strict connection trees, i.e. their leaf sets coincide with W 14

2.2 (a) A graph G and a terminal set W (blue squares) such that, for

every r ≥ 0 and for ` = 1, (G,W, `, r) is a no-instance of TCP, since

every connection tree of G for W has at least 2 linkers. (b) A tree

subgraph T of G such that W ⊆ V (T) but leaves(T) 6⊆ W , which

contains exactly one non-terminal vertex of degree 2 and exactly one

non-terminal vertex of degree at least 3. 14

2.3 Strict connection tree of G for W obtained from a matching M2 in

H2 that saturates all vertices belonging to X2. 20

2.4 Split graph G′〈K,S ′〉 of the instance g(I) of S-TCP described in Con-

struction 2.1, obtained from a split graph G〈K,S〉 of an instance I

of TCP, with W ∩K 6= ∅. 22

2.5 Gadget Hr for r ≥ 1, described in Construction 2.2. 28

2.6 A graph G and the graph G′ obtained from G (and r = 0) as described

in Construction 2.3. 28

2.7 Cwd-expression described in (2.1). Beside some nodes, it is illustrated

the graph resulting from the corresponding operation. 32

2.8 Cwd-expression described in (2.2). Beside some nodes, it is illustrated

the graph resulting from the corresponding operation. 33

2.9 Graph F , with S = {u1, . . . , u|S|} and α(ul) = Hl for each l ∈ [|S|]. . . 37

3.1 Interval representation and a permutation model of an (x, y)-grained

gadget, respectively. 43

ix

3.2 Vertex u ∈ V (G) \ V (H) (a) covering H, (b) weakly intersecting H,

and (c) strongly intersecting H. The set K ′ ∪K ′′ is a clique and the

set S ′∪S ′′ is a stable set. A line between sets, or between u and some

set, means that all the edges occur. 43

3.3 Example of Adhikary et al.’s interval modelM, obtained from a graph

with edges e1 = v1v2, e2 = v1vn, and em = v2vn. 45

3.4 (a) A cubic graph G, and (b) a chain of nested intervals in the modelM. 46

3.5 (a) Forbidden induced subgraph X34 for comparability graphs cf. [47].

(b) X34 as an induced subgraph in Adhikary et al.’s construction. . . 47

3.6 General structure of our interval model. In this example, the complete

graph on 4 vertices, K4, is given as the input cubic graph. 47

3.7 An (n,m)-escalator. The shaded rectangles represent the vertex

(p, q)-grained gadgets Hj
1, . . . ,Hj

n and Hj+1
1 , . . . ,Hj+1

n 48

3.8 Interval model M(G). The shaded rectangle on the top represents

the edge (p′, q′)-grained gadget Ej. 48

3.9 General idea of locally well-behaved cuts of GM(G). Each part of the

cut is represented by a distinct colour. For instance, considering a cut

[A,B] and the part A represented by the colour green, we have in this

case that the grained gadgets Hj
1, Hj

i′ and Ej are A-partitioned, while

Hj
i and Hj

n are B-partitioned. Note that, since Hj
i′ is A-partitioned,

{C1
j , C

2
j } ⊆ B and Ej is A-partitioned as well. 50

3.10 A cut [A,B] of GM(G) in which the gadgets of a vertex vi ∈ V (G)

alternate. Each colour represents a part of the cut. 51

3.11 (a) Hj
i is A-partitioned, Hj+1

i is B-partitioned, but Lli ∈ A for some

l ∈ {2j − 1, 2j}. (b) Hj
i and Hj+1

i are both A-partitioned. The green

colour represents the part A, while the blue colour represents the part

B. 53

3.12 The closed intervals in S1 ∪
⋃4
i=1H2

i of a graph on 4 vertices. In this

example, we consider e1 to be equal to v3v4. Each colour represents a

different interval size. The short intervals are represented by the dots

located inside the open interval. Vertical lines mark the endpoints of

the intervals in S1, while the green vertical line marks the beginning

of the intervals in S2. 58

3.13 Graph Hk for k ≥ 2. 59

3.14 Vertex and edge grained gadgets, and incidence vertices related to an

edge ej = vivi′ , with i < i′, in our permutation model {Π,Π′}. 62

3.15 Existence of a C4 = (a, b, c, d) as an induced subgraph in our permu-

tation graph. 66

x

4.1 Directed graph G, bijection π : V (G) → {1 . . . , 5}, where i < j

iff ui <π uj, and directed paths P1 and P2 (in bold), such that

zn(G, π, P1) = 1 and zn(G, π, P2) = 2, respectively. 69

4.2 A compatibility graph. 73

4.3 Example of a compatible subcut sequence: γ′ = (S ′1, . . . , S
′
11), where

S ′1 = ∅, S ′2 = {e1}, S ′3 = {e1, e2, e3}, S ′4 = {e1, e2, e3, e4, e5}, S ′5 =

{e1, e2, e5}, S ′6 = {e1, e2}, S ′7 = {e1, e2, e6}, S ′8 = {e6}, S ′9 = ∅, S ′10 =

∅, and S ′11 = {e7}. 74

4.4 Connectedness rules. (Red) dotted lines represent non-edges, (black)

thicker lines represent non-mandatory edges, and (blue) normal style

lines represent mandatory edges. 78

4.5 Directed graph GI obtained from the instance I = (X, C) of PNAE

3SAT where X = {x1, x2, x3, x4} and C = {C1 = {x1, x2, x3}, C2 =

{x2, x3, x4}}. 80

4.6 Case in which the clause Cj = {xl1 , xl2 , xl3} has exactly one true

literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}. . . 82

4.7 Case in which the clause Cj = {xl1 , xl2 , xl3} has exactly one false

literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}. . . 82

4.8 An example of a bijection π, such that Cj and Cj′ are clauses con-

taining the literal xi, and V (H̃j) <π V (Hi) <π V (H̃j). In this case,

zn(GI , π) ≥ 3. 83

4.9 (a) and (c) α(xl1) = α(xl2) = α(xl3) = true. (b) and (d) α(xl1) =

α(xl2) = α(xl3) = false. (a) and (b) vpj <π v
q
j <π v

r
j . (c) and (d)

vpj >π v
q
j >π v

r
j . 84

4.10 (a) Example of directed graph G that is not directed acyclic and

has zig-zag number 1. (b) Example of directed graph G that does

not contain directed cycles of length at least 3 and yet has zig-zag

number 2. 85

4.11 (a) Example of directed graph G, with zn(G) = 2, whose addition of a

universal vertex u does not increase the zig-zag number. (b) Example

of directed graph G, with zn(G) = 2, whose addition of a universal

vertex u increases the zig-zag number in more than one unit. (For

readability, some edges incident to the universal vertex u are omitted.) 86

xi

Chapter 1

Introduction

The theory of computational complexity is the branch of computer science that stud-

ies the classification of problems according to the level of hardness of being solved by

a generic model of computation cf. [104]. A major change in the field occurred in the

seventies with the introduction of NP-completeness theory by Cook [25], and with the

subsequent results due to Karp, classifying 21 notable problems as NP-complete [86].

The 1979 book Computers and Intractability, A Guide to the Theory of NP-

completeness by Michael R. Garey and David S. Johnson [66] is regarded by the

computational complexity community as the single most important book. One of

its distinguishing features is an appendix with a thorough list of 300 NP-complete

problems, organised into 13 categories according to subject matter. In particular,

we highlight the category Network design, which contains several classical prob-

lems on graphs, such as Disjoint paths, Network flow, Steiner tree, and Maximum

cut. From 1981 until 2007, David S. Johnson continuously updated the book in 26

columns, entitled The NP-completeness Column: An Ongoing Guide. The sixteenth

column [83], Graph restrictions and their effect, presents a summary table contain-

ing 30 graph classes disposed as rows and 11 problems disposed as columns. This

edition of ongoing guide focus on NP-complete problems on graphs, emphasising how

the restrictions on the input graphs affect the complexity of the selected problems.

Another breakthrough in computational complexity was the introduction of the

theory of parameterized complexity by Downey and Fellows [54] in the late eighties.

Informally, in this theory, instead of analysing the complexity of a problem only

in terms of the size of the input instances, dependence on one or more parameters

is additionally taken into account cf. [31]. This is motivated by the fact that, for

many natural problems, only a small range of possible values for such parameters

is of practical significance cf. [53]. Thus, the fundamental idea of parameterized

complexity is restricting the (apparently inevitable) combinatorial explosion to solve

these problems to certain fixed parameters, which in practice do not depend on the

input size and can actually assume only small values.

1

In [34] (see Appendix A for more details), we proposed an updated version of the

summary table presented in [83], with the same graph classes and problems, where

several entries that were open in [83] have then been classified into polynomial-time

solvable or NP-complete. Two examples are the entries corresponding to MaxCut

on interval graphs [1] and to Steiner tree on undirected path graphs [34], both

proved to be NP-complete. Moreover, we revised the original table according to the

granularity provided by the theory of parameterized complexity.

In this thesis, two groups of problems on graphs are considered from the per-

spective of classical and parameterized computational complexity, when restrictions

on the input graphs are imposed. These groups concern connection and cut prob-

lems. More specifically, we investigate the computational complexity of the so-called

Terminal connection problem (TCP), and of its strict variant (S-TCP), when

restricted to specific graph classes and when some of the input parameters are fixed.

We mainly focus on graph classes that distinguish the complexity of TCP from the

complexity of Steiner tree, which is a closely and very famous related prob-

lem appearing in [83]. Regarding cut problems, we investigate the computational

complexity of the MaxCut problem on interval graphs of bounded interval count,

and on permutation graphs, filling an open entry from [34, 83]. We also study the

problem of computing the zig-zag number of a directed graph, which is a parameter

defined over cuts of a graph.

This thesis consists of five chapters, followed by eight appendixes. The remainder

of Chapter 1 is organised as follows: in Section 1.1, we provide a short overview of

the problems studied; in Section 1.2, we establish the notation and terminology used

throughout this text. We refer to the first appendix for more details on David S.

Johnson’s ongoing guide.

� Appendix A. Manuscript: Celina M. H. de Figueiredo, Alexsander A. de Melo,

Diana Sasaki, Ana Silva. Revising Johnson’s Table for the 21st Century.

Accepted for publication in Discrete Applied Mathematics [34].

Chapter 2 comprises the results regarding connection problems. This chapter cor-

responds to the following appendixes.

� Appendix B. Manuscript: Alexsander A. de Melo, Celina M. H. de Figueiredo,

Uéverton S. Souza. A Multivariate Analysis of the Strict Terminal Connection

Problem. Published in Journal of Computer and System Sciences (2020) [96].

� Appendix C. Manuscript: Alexsander A. de Melo, Celina M. H. de Figueiredo,

Uéverton S. Souza. The Strict Terminal Connection Problem on Chordal

Bipartite Graphs. Published in Matemática Contemporânea (2021) [38].

2

https://doi.org/10.1016/j.dam.2021.05.021
https://doi.org/10.1016/j.jcss.2020.02.001
https://doi.org/10.1016/j.jcss.2020.02.001
http://doi.org/10.21711/231766362021/rmc4814
http://doi.org/10.21711/231766362021/rmc4814

� Appendix D. Manuscript: Alexsander A. de Melo, Celina M. H. de Figueiredo,

Uéverton S. Souza. On the Computational Difficulty of the Terminal Connec-

tion Problem. Presented in the 47th International Conference on Current

Trends in Theory and Practice of Computer Science (SOFSEM 2021) [41],

and submitted in March 2022 to RAIRO - Theoretical Informatics and Appli-

cations.

Chapter 3 consists of the results for the Maxcut problem, which are contained

with the complete proofs in the following appendixes.

� Appendix E. Manuscript: Celina M. H. de Figueiredo, Alexsander A. de Melo,

Fabiano de Oliveira, Ana Silva. Maximum Cut on Interval Graphs of Interval

Count Four is NP-complete. Presented in the 46th International Symposium

on Mathematical Foundations of Computer Science (MFCS 2021) [35], and

submitted in December 2021 to Discrete & Computational Geometry.

� Appendix F. Manuscript: Celina M. H. de Figueiredo, Alexsander A. de

Melo, Fabiano de Oliveira, Ana Silva. MaxCut on Permutation Graphs is

NP-complete. Submitted in March 2022 to Journal of Graph Theory [36].

Chapter 4 is devoted to the problem of computing the zig-zag number of a directed

graph. The results presented in this chapter are contained in the following appendix.

� Appendix G. Manuscript: Mitre C. Dourado, Celina M. H. de Figueiredo,

Alexsander A. de Melo, Mateus de Oliveira Oliveira, Uéverton S. Souza. Com-

puting the Zig-Zag Number of Directed Graphs . Published in Discrete Applied

Mathematics 312 (2022) [50].

Chapter 5 consists of the conclusions of this work, and a selection of the main open

questions motivated by the research. Last but not least, Appendix H consists of one-

page abstracts of five additional works published during the doctoral studies. The

first abstract corresponds to the work developed during the Master’s thesis [39], but

presented and fully published during the doctorate. The second abstract corresponds

to current work recently presented [37]. The remaining three abstracts register and

acknowledge the very fruitful visit to the University of Bergen [42–44].

For readability, we present only a sketch of the proof for some of the proposed

results. In those cases, we explicitly refer the reader to the respective appendix

containing the complete proof.

1.1 An Overview of the Selected Problems

In this section, we provide an overview of the problems addressed in this thesis.

3

https://doi.org/10.1007/978-3-030-67731-2_20
https://doi.org/10.1007/978-3-030-67731-2_20
https://doi.org/10.4230/LIPIcs.MFCS.2021.38
https://doi.org/10.4230/LIPIcs.MFCS.2021.38
https://doi.org/10.1016/j.dam.2021.09.013
https://doi.org/10.1016/j.dam.2021.09.013

1.1.1 Connection Problems

One of the most important connection problems is the classical Steiner tree

problem, which not surprisingly is used to model several natural applications [21, 77,

88, 112]. Given a graph G and a terminal set W ⊆ V (G), the objective of Steiner

tree is to find a tree subgraph containing W that has the minimum possible number

of non-terminal vertices. Steiner tree is one of the 21 problems proved to be NP-

hard by Karp [86], and it has been investigated from distinct classes of algorithmic

paradigms, such as structural graph classes [24, 33, 34, 65, 99, 115], approximation

algorithms [14, 17, 22, 87], and parameterized complexity [8, 31, 32, 37, 56, 100].

In particular, Steiner tree was proved to be NP-complete on planar graphs [65]

and on undirected path graphs [34]; on the other hand, it is known to be polynomial-

time solvable on strongly chordal graphs [115]. Regarding parameterized complexity,

the problem is in FPT when parameterized by the number of terminal vertices [56],

while it is W[2]-hard when parameterized by the maximum number of non-terminal

vertices allowed to be in the sought tree [97]. We refer to [34] for a detailed overview

of the complexity of Steiner tree restricted to particular graph classes.

In this thesis, we study the variant of Steiner tree called Terminal connec-

tion problem (or TCP, for short). Given a graph G and a terminal set W ⊆ V (G),

the objective of TCP is to find a tree subgraph containing W , whose leaves belong

to W , and that has a bounded number of non-terminal vertices of degree exactly 2,

called linkers, and a bounded number of non-terminal vertices of degree at least 3,

called routers. We remark that, while in Steiner tree the non-terminal vertices

are not distinguishable among themselves, in TCP such vertices are partitioned into

linkers and routers, according to their degree in the tree. Thus, by bounding the

number of linkers by a non-negative integer ` and the number of routers by a non-

negative r, the complexity analysis of the problem may vary considerably according

to the values of ` and r, if compared to Steiner tree. Indeed, as we show in

Chapter 2, there are graph classes on which TCP is polynomial-time solvable if r is

fixed (and ` is arbitrary), whereas Steiner tree is NP-complete, and vice-versa.

TCP was introduced by Dourado et al. [52], and it was proved to be polynomial-

time solvable when the parameters ` and r are both fixed [52], and to be NP-complete

even if either ` ≥ 0 or r ≥ 0 is fixed [52]. In addition to TCP, Dourado et al. [51]

proposed its strict variant, called Strict terminal connection problem (or, S-

TCP for short), which has the same input and objective of TCP apart from requiring

that the leaf set of the sought tree coincides with the input terminal set. S-TCP

was also proved to be polynomial-time solvable if ` and r are both fixed [51], and

to be NP-complete if ` is fixed. Nevertheless, the complexity of the problem with r

fixed remains an open question. This was addressed in the master’s thesis [39] and

4

in [40].

In addition to TCP and S-TCP, several other variants of Steiner tree have

been studied over the years, such as Full Steiner tree [79, 80, 92], Group

Steiner tree [49, 76], and Directed Steiner tree [76, 85]. Another variant

that has been investigated is the one in which the number of branching nodes in

the sought tree T , i.e. vertices (which not necessarily are non-terminal) of degree

at least 3 in T , is bounded. In [68, 113, 114], the authors considered the undi-

rected and directed cases of this variant, for which they devised approximation and

parameterized tractable algorithms, besides providing some intractability results.

1.1.2 Maximum Cut

A cut is a partition [A,B] of the vertex set of a graph G into two disjoint parts

A,B ⊆ V (G). Given a graph, the objective of the MaxCut problem is to obtain

a cut [A,B] that has the maximum number of crossing edges, i.e. edges with an

endpoint in A and the other endpoint in B. The decision version of MaxCut is a

classical NP-complete problem [67], and it is known to remain NP-complete on split

graphs [10], undirected path graphs [10], and on comparability graphs [106]. On the

other hand, the problem is polynomial-time solvable on planar graphs [75] and on

split unit interval graphs [9]. Additionally, the problem is known to be in FPT on

general graphs [93]. Despite being widely studied, only recently the restriction of

MaxCut to interval graphs has been settled to be hard [1].

An interval model is a family of closed intervals of the real line. A graph is an

interval graph if there exists an interval model, for which each interval corresponds

to a vertex of the graph, such that distinct vertices are adjacent in the graph if

and only if the corresponding intervals intersect. The notion of interval count of

an interval graph was introduced in the eighties, and it is defined as the smallest

number of interval lengths used by an interval model of the graph cf. [90]. Interval

graphs having interval count 1 are called unit interval. Understanding the interval

count, besides being an interesting and challenging problem by itself, can be also

of value for the investigation of problems that are hard for general interval graphs,

and easy for unit interval graphs (e.g. geodetic number [20, 57], optimal linear

arrangement [23, 82], sum coloring [94, 101]). Surprisingly enough, the recognition

of interval graphs with interval count k is open, even for k = 2 [19, 48].

In the same way as MaxCut on interval graphs has evaded being solved for

so long, the community has been puzzled by the restriction to unit interval graphs.

As a matter of fact, two attempts at solving it in polynomial time were proposed

in [11, 15], but they were both disproved closely later [9, 89]. In this thesis, we

provide the first classification that bounds the interval count, namely, we prove that

5

MaxCut is NP-complete when restricted to interval graphs of interval count 4.

In addition, we also prove that MaxCut is NP-complete on permutation graphs,

which is the class of graphs that are both comparability and co-comparability [105].

This result answers a long-standing open question from [83].

1.1.3 Zig-Zag Number

A significant factor for the thriving of the theory of parameterized complexity was

the introduction of width measures defined upon the structure of graphs, such as

tree-width, cut-width and clique-width. This owns to the fact that many problems

that are hard on general graphs can be solved efficiently when parameterized by such

measures. However, most of these measures disregard edge direction. For instance,

directed acyclic graphs (DAGs) in general have unbounded width with respect to

any of the measures mentioned above, whereas several problems on directed graphs

become tractable when restricted to DAGs by using straightforward algorithms. For

instance, Directed Hamiltonian path can be solved in linear time on DAGs with

a depth-first search algorithm.

Building on this observation, Johnson, Robertson, Seymour and Thomas [84]

initiated a quest for the development of width measures that explicitly take the

direction of edges into account. In particular, they defined in [84] the notion of

directed tree-width and showed that some linkage problems that are NP-hard on

general directed graphs can be solved in polynomial-time on directed graphs of

constant directed tree-width. Additionally, a directed analogous notion of path-

width was defined around the same time cf. [2]. This motivated the development

of many other measures for directed graphs that focus on distinct algorithmic or

structural properties [6, 7, 64, 78, 107, 109].

A general algorithmic framework for directed width measures was developed

in [45] with the definition of zig-zag number of a directed graph, and subsequently

generalized in [46] with the definition of tree-zig-zag. More specifically, it was shown

in [45] that if G is a class of directed graphs expressible by a monadic-second order

logic formula ϕ and there is a positive integer p such that each directed graph in G
can be cast as a union of p directed paths, then, given a decomposition of a directed

graph G of zig-zag number at most k, one can count in time f(ϕ, p, k) · |G|O(p·k)

the number of subgraphs of G isomorphic to some member of G. Since directed

path decompositions of width d can be efficiently converted into decompositions of

zig-zag number O (d) cf. [45], the mentioned counting problem can also be solved

in time f(ϕ, p, d) · |G|O(p·d) on directed graphs of directed path-width at most d.

This result was generalized in [46] to its respective counterpart for directed graphs

of tree-zig-zag number at most k and of directed tree-width at most d.

6

An interesting aspect of zig-zag number and tree-zig-zag number is the fact that,

besides being algorithmically relevant measures, they can be regarded as graph in-

variants, defined over cuts of a graph, with challenging theoretical open problems by

themselves, from the perspectives of computational complexity and graph theory.

In fact, many complexity questions with respect to computing zig-zag number and

tree-zig-zag number of a directed graph remain open. In this thesis, we prove that

k-zig-zag number, the problem of deciding whether a directed graph G has zig-

zag number at most k, can be solved non-deterministically in time |G|O(k), implying

that this problem lies in NP for each fixed k. While the respective statement is

almost trivial with respect to most of natural decision problems, our proof settling

k-zig-zag number in NP turned out to be an interesting quest. This is due to the

fact that the definition of zig-zag number, formally given in Chapter 4, involves the

alternation of an existential and a universal quantifiers. Thus, a naive application of

the definition would only lead to a ΣP
2 -upper bound for the problem. To circumvent

this, and settle the problem in NP, our proof may be regarded as a way of redefin-

ing the property of a directed graph having zig-zag number at most k in a purely

existential fashion. Additionally, we prove that 2-zig-zag number is an NP-hard

problem.

1.2 Preliminaries

In this section, we present the basic definitions and terminology of graph theory

that are used throughout this thesis. For any missing definition, we refer to the

book [12]. The definitions and terminology of computational complexity used are

the usual and are not explicitly presented. We refer to the books [31, 55, 66] for

background on this subject.

Throughout this text, consider [n] = {1, . . . , n} for every positive integer n.

Moreover, for every set V on n elements and every bijection π : V → [n], we let

<π⊆ V × V be the linear order associated with π such that, for each two elements

u, v ∈ V , u <π v if and only if π(u) < π(v). Analogously, we let >π⊆ V × V be

the linear order such that, for each two elements u, v ∈ V , u >π v if and only if

π(u) > π(v). If V = {u1, . . . , un} and π(ui) = i for each i ∈ [n], then we may write

π = (u1, . . . , un) to explicitly denote π; in this case, we also refer to π as an ordering

of V . Let X, Y ⊆ V be two non-empty sets. We write X <π Y to denote that

u <π v for each u ∈ X and each v ∈ Y . We define X >π Y similarly. In addition,

for any non-empty set X ⊆ V , we write minπX to denote the unique element u ∈ X
such that {u} <π X \ {u}. We define maxπX similarly. When π is clear in the

context, we may simply write < and > to refer to <π and >π, respectively.

Graphs. A directed graph is an ordered pair G = (V (G), E(G)) such that V (G)

7

is a non-empty finite set of elements, called vertices, and E(G) is a set of ordered

pairs, called edges, of distinct vertices, i.e. E(G) ⊆ {(u, v) ∈ V (G)×V (G) : u 6= v}.
The notion of undirected graphs is defined analogously: An undirected graph (or,

simply graph) is an ordered pair G = (V (G), E(G)) consisting of a non-empty finite

set V (G) of elements, called vertices, and a set E(G) of unordered pairs, called edges,

of distinct vertices, i.e. E(G) ⊆ {{u, v} : u, v ∈ V (G), u 6= v}.
We remark that, without loss of generality, undirected graphs can be regarded

as a particular case of directed graphs, where the edge set must be a symmetric

relation. In other words, for any two distinct vertices u, v ∈ V (G), (u, v) is an edge

of an undirected graph G if and only if (v, u) also is an edge of G. In this case,

we actually consider the pairs (u, v) and (v, u) as being the single (undirected) edge

{u, v} of G; and, for simplicity of notation, we write uv to denote {u, v}. Based

on that, all the definitions and notation described next for directed graphs can be

immediately extended to undirected graphs as well, whenever it makes sense.

Let G be a directed graph. We let |G| denote the number of vertices of G.

Additionally, when G is clear in the context, we may simply write n and m to

denote the number of vertices and the number of edges of G, respectively. We say

that G is trivial if |G| = 1; otherwise, we say that G is a non-trivial graph.

Adjacency. If e = (u, v) ∈ E(G), then we say that u and v are the endpoints

of e, and that they are incident to e in G. In this case, we also say that e is an

in-edge of v and an out-edge of u in G, and that u is an in-neighbour of v, and v is

an out-neighbour of u in G. More generally, if {(u, v), (v, u)} ∩ E(G) 6= ∅, then we

simply say that u and v are neighbours and are adjacent in G.

For every vertex v ∈ V (G), we write

N−G (v) = {u ∈ V (G) : (u, v) ∈ E(G)}, N+
G (v) = {u ∈ V (G) : (v, u) ∈ E(G)},

NG(v) = N−G (v)∪N+
G (v), and NG[v] = NG(v)∪{v} to denote the in-neighbourhood,

the out-neighbourhood, the neighbourhood, and the closed neighbourhood of v in G,

respectively. For every subset V ′ ⊆ V (G), we let NG(V ′) =
⋃
v∈V ′ NG(v). The sets

N−G (V ′), N+
G (V ′), and NG[V ′] are defined analogously.

We write d−G(v) = |N−G (v)|, d+
G(v) = |N+

G (v)|, and dG(v) = |NG(v)| to denote

the in-degree, the out-degree, and the degree of v in G, respectively. The maximum

degree of G, denoted by ∆(G) is defined as the integer maxv∈V ′ dG(v).

A vertex v is an isolated vertex of G if NG(v) = ∅; on the other hand, v is a

universal vertex of G if N−G (v) ∪ {v} = N+
G (v) ∪ {v} = V (G). A pendant vertex of

G is a vertex of degree exactly 1 in G.

Two vertices u and v are said to be true twins in G if NG[u] = NG[v]; and they

are said to be false twins in G if NG(u) = NG(v).

8

Clique and Stable Set. A subset K ⊆ V (G) is called a clique of a graph G

if every two distinct vertices belonging to K are adjacent in G, i.e. K ⊆ NG[v] for

every v ∈ K. On the other hand, a subset S ⊆ V (G) is called a stable set of G if no

two vertices belonging to S are adjacent in G, i.e. S ∩NG(v) = ∅ for every v ∈ S.

A graph is called complete if its vertex set is a maximal clique. A graph is called

bipartite if its vertex set can be partitioned into two disjoint stable sets. A graph is

called a split graph if its vertex set can be partitioned into a clique and a stable set.

Let X and Y be two disjoint subsets of V (G). We say that X is complete to Y

if every vertex in X is adjacent to every vertex in Y , and that X is anti-complete

to Y if there are no edges between the vertices in X and the vertices in Y .

Matching. Two distinct edges of a directed graph are said to be adjacent if

they share an endpoint. A matching of G is a set of pairwise non-adjacent edges of

G. Given a matching M of G, we say that M saturates a vertex of G if this vertex

is an endpoint of an edge in M .

Cut and Cut-Set. We let EG(X, Y) denote the set of edges of G between X

and Y , i.e. the edges with an endpoint in X and the other endpoint in Y . In

particular, for every proper subset X ⊂ V (G), we may simply write EG(X) to

denote EG(X, V (G) \X).

A cut of G is a partition of V (G) into two parts X, Y ⊆ V (G), denoted by

[X, Y]. For every cut [X, Y] of G, the edge set EG(X, Y) is called the cut-set of G

associated with [X, Y]. For every two vertices u, v ∈ V (G), we say that u and v are

in a same part of a cut [X, Y] if either {u, v} ⊆ X or {u, v} ⊆ Y ; otherwise, we say

that u and v are in opposite parts of [X, Y].

Subgraphs. A directed graph H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). In this case, we also say that G contains H.

A subgraph H of G is said to be spanning if V (H) = V (G).

Given a non-empty subset V ′ ⊆ V (G), the subgraph of G induced by V ′, denoted

by G[V ′], is the subgraph H of G such that V (H) = V ′ and, for every two vertices

u, v ∈ V (H), it holds that (u, v) ∈ E(H) if and only if (u, v) ∈ E(G). An induced

subgraph of G is a directed graph H such that, for some V ′ ⊆ V (G), H is the induced

subgraph of G induced by V ′. For every proper subset V ′ ⊂ V (G), we denote by

G − V ′ the directed graph obtained from G by removing the vertices belonging to

V ′ and their incident edges, i.e. G− V ′ is the subgraph of G induced by V (G) \ V ′.
The notion of subgraphs induced by edges can be defined analogously. Given

a subset E ′ ⊆ E(G), the subgraph of G induced by E ′, denoted by G[E ′], is the

subgraph H of G such that E(H) = E ′ and, for every v ∈ V (G), it holds that

v ∈ V (H) if and only if v is an endpoint of an edge in E ′. For every E ′ ⊆ E(G), we

let G−E ′ denote the directed graph obtained from G by removing the edges in E ′,

9

i.e. G− E ′ is the directed graph with vertex set V (G) and edge set E(G) \ E ′.
Paths, Cycles and Trees. An undirected path (or, simply path) of G is a

sequence P = (v1, . . . , vq) of distinct vertices of G, such that {(vi, vi+1), (vi+1, vi)} ∩
E(G) 6= ∅ for every i ∈ [q − 1], where q ≥ 1. In this case, we say that P is a path

between v1 and vq. Such a sequence is called a directed path from v1 to vq if, for

every i ∈ [q − 1], (vi, vi+1) ∈ E(G). An undirected cycle (or, simple cycle) of G is

a sequence (v1, . . . , vq) of vertices of G, such that (v1, . . . , vq) is a path of G and

{(vq, v1), (v1, vq)} ∩ E(G) 6= ∅. Analogously, a directed cycle of G is an undirected

cycle (v1, . . . , vq) such that (v1, . . . , vq) is a directed path of G and (vq, v1) ∈ E(G).

The length of a path (of a cycle) is the number of distinct vertices belong-

ing to it. The distance from a vertex u to a vertex v in a graph (resp. directed

graph) G, denoted by distG(u, v), is defined as the minimum length among all paths

(resp. directed paths) in G from u to v. If there is no such a path, then we define

distG(u, v) = ∞. For every vertex u ∈ V (G) and every subset V ′ ⊆ V (G), we let

distG(u, V) = minv∈V ′ distG(u, v).

We say that a directed graph G is a path/directed path/cycle/directed cycle

if there exists a linear order of its vertices (v1, . . . , vn) which is a path/directed

path/cycle/directed cycle of G, respectively. A graph is said to be acyclic (resp.

directed acyclic) if it does not contain any undirected cycle (resp. directed cycle).

A weakly connected component of G is a maximal subgraph H of G such that, for

every two vertices u, v ∈ V (H), there is an undirected path in H between u and v.

A connected component of G is a maximal subgraph H of G such that, for every

two vertices u, v ∈ V (H), there is a directed path in H from u to v, or from v to u.

Then, we say that a directed graph is connected (resp. weakly connected) if it is the

only connected (resp. weakly connected) component of itself.

A forest is a directed graph that is acyclic. A tree is a weakly connected forest.

A vertex is called a leaf of a tree T if its degree in T is equal to 1. The leaf set of a

tree T , denoted by leaves(T), is defined as the set of all leaves of T .

A rooted directed tree is a tree T that contains a vertex r reaching every other

vertex, i.e. for every v ∈ V (T) \ {r}, there is a directed path in T from r to v; in

this case, we say that r is the root of Tand that T is rooted at r.

Disjoint Union and Join. Let G1, . . . , Gk be k ≥ 2 graphs, with mutually

disjoint vertex sets. The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ · · · ⊕Gk, is

the graph H with vertex set V (H) = V (G1) ∪ · · · ∪ V (Gk) and edge set E(H) =

E(G1) ∪ · · · ∪ E(Gk). We note that, for each i ∈ [k], Gi is a connected component

of G1 ⊕ · · · ⊕Gk. The join of G1, . . . , Gk, denoted by G1 ∧ · · · ∧Gk, is the graph H

with vertex set V (H) = V (G1 ⊕ · · · ⊕Gk) and edge set

E(H) = E(G1 ⊕ · · · ⊕Gk) ∪ {uv : u ∈ V (Gi), v ∈ V (Gj), i, j ∈ [k], i 6= j}.

10

We note that G1 ∧ · · · ∧Gk is a connected graph, such that, for each pair i, j ∈ [k]

with i 6= j, V (Gi) is complete to V (Gj).

11

Chapter 2

Connection Problems

In this chapter, we analyse the computational complexity of the network design

problem called Terminal connection, and of its strict variant, called Strict

terminal connection.

Network design problems are generally combinatorial questions of great practical

and theoretical interest, related to several real-world applications. One of the most

fundamental and well-known problems in this field is Steiner tree, proved to be

NP-hard by Karp in his seminal paper [86]. Since then, Steiner tree has been

extensively studied from the perspective of graph classes [24, 33, 34, 65, 99, 115] and

computational complexity [8, 32, 56, 100], being one of the eleven problems selected

by David S. Johnson to appear in the Ongoing Guide to NP-completeness [83].

Motivated by applications in information security, network routing and telecom-

munications, Dourado et al. [52] introduced recently the Terminal connection

problem (TCP), which can be seen as a generalisation of Steiner tree, and proved

that on general graphs TCP is NP-complete. We investigate the complexity of TCP

and of its strict variant, S-TCP, when restricted to specific graph classes and some

of the input parameters are fixed. In particular, we mainly give emphasis on results

that separate the complexity of TCP from the complexity of Steiner tree.

This chapter is organised as follows. In Section 2.1, we define the notion of con-

nection tree of a graph, which is the main object of study in this chapter. Based on

that, we formally define the Steiner tree, Terminal connection and Strict

terminal connection problems, and then we present how these problems are

related to each other. In Section 2.2, we prove that the classes of split graphs and

rooted directed path graphs separates the complexity of TCP from the complexity

of Steiner tree. Additionally, in Section 2.3, we investigate the complexity of

TCP on graphs of bounded clique-width. More specifically, we prove that, when

parameterized by clique-width, TCP is W[1]-hard while Steiner tree is known

to be in FPT [4]. On the other hand, agreeing with the complexity of Steiner

tree [24, 99], we prove in Section 2.3.2 that TCP is polynomial-time solvable on

12

cographs (i.e. graphs of clique-width at most 2). Finally, in Section 2.4, we present

the concluding remarks of this chapter, focusing on the open questions.

2.1 Connection Tree

Let G be a graph and W ⊆ V (G) be a non-empty set. A connection tree T of G

for W is a tree subgraph of G such that leaves(T) ⊆ W ⊆ V (T), where leaves(T)

denotes the leaf set of T .

The Steiner tree problem has as input a connected graph G, a non-empty

terminal set W ⊆ V (G), and a non-negative integer k, and it asks whether there

exists a connected subgraph T of G such that W ⊆ V (T) and |V (T) \ W | ≤ k.

Note that, if such a connected subgraph exists, then it admits a spanning tree with

at most k vertices not in W . Thus, Steiner tree can be alternatively defined in

terms of connection tree, as described next.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and

a non-negative integer k.

Question: Is there a connection tree T of G for W such that |V (T)\W | ≤ k?

Steiner Tree

In a connection tree T for W , the vertices belonging to W are called terminal,

and the vertices belonging to V (T) \W are called non-terminal and are classified

into two types according to their respective degrees in T , namely (see Figure 2.1):

the non-terminal vertices of degree exactly 2 in T are called linkers and the non-

terminal vertices of degree at least 3 in T are called routers. Thus, the vertex set of

every connection tree can be partitioned into terminal vertices, linkers and routers.

For each connection tree T , we let L(T) denote the linker set of T and R(T) denote

the router set of T . Next, we formally define the Terminal connection problem.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and

two non-negative integers ` and r.

Question: Is there a connection tree T of G for W such that |L(T)| ≤ ` and

|R(T)| ≤ r?

Terminal Connection (TCP)

Dourado et al. [52] introduced TCP and proved that the problem is polynomial-

time solvable (more specifically, that it is in XP) when the parameters ` and r are

both fixed, whereas it is NP-complete even if exactly one of the parameters ` ≥ 0 or

r ≥ 0 is fixed. We extended this result by proving that TCP remains NP-complete

13

(a) Graph G and terminal set W

(b) T1 (c) T2 (d) T3 (e) T4

Figure 2.1: A graph G, a terminal set W (blue squares), and connection trees of G
for W , each with a distinct number of linkers (red circles) and routers (solid black
circles). Indeed, T1 has 2 linkers and 1 router; T2 has 1 linker and 3 routers; T4 has 3
linkers and 3 routers; and T4 has 2 linkers and 4 routers. In particular, note that T3

and T4 are strict connection trees, i.e. their leaf sets coincide with W .

on graphs of maximum degree 3 even if either ` or r is fixed [39, 41] (for more details,

see Section 4 in Appendix D).

It is worth mentioning that, regarding Steiner tree, the constraints on T

being a tree and its leaf set being a subset of W can be omitted without loss of

generality from the definition of the problem, since every minimal solution T for a

given instance of Steiner tree is necessarily a connection tree for W . However,

this does not apply to TCP: neither constraint can be ignored. In fact, as a result

of the number of non-terminal vertices with degree 2 being bounded, there exist

instances (G,W, `, r) that would be considered yes-instances of TCP even though

all connected subgraphs of G containing the vertices in W , and with at most ` non-

terminal vertices of degree 2 and at most r non-terminal vertices of degree at least 3,

have cycles or non-terminal vertices that are leaves (see Figure 2.2 for an example).

(a) Graph G and terminal set W (b) Tree subgraph T of G

Figure 2.2: (a) A graph G and a terminal set W (blue squares) such that, for every
r ≥ 0 and for ` = 1, (G,W, `, r) is a no-instance of TCP, since every connection tree
of G for W has at least 2 linkers. (b) A tree subgraph T of G such that W ⊆ V (T)
but leaves(T) 6⊆ W , which contains exactly one non-terminal vertex of degree 2 and
exactly one non-terminal vertex of degree at least 3.

A connection tree T for a terminal set W is called strict if its leaf set coincides

with W , i.e. leaves(T) = W (see Figure 2.1). The Strict terminal connection

problem has the same input and the same question as TCP except for requiring a

14

strict connection tree, instead of a regular connection tree, with a bounded number

of linkers and a bounded number of routers.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and

two non-negative integers ` and r.

Question: Is there exist a strict connection tree T of G for W , i.e. a con-

nection tree T with leaves(T) = W , such that |L(T)| ≤ ` and

|R(T)| ≤ r?

Strict Terminal Connection (S-TCP)

Similarly to TCP, Dourado et al. [51] introduced S-TCP, and proved that S-TCP

is polynomial-time solvable when the parameters ` ≥ 0 and r ≥ 0 are both fixed,

while it is still NP-complete if ` ≥ 0 is fixed. As for fixing r, except for the case

r ∈ {0, 1}, which was shown to be polynomial-time solvable [39, 95], the complexity

of S-TCP for fixed r ≥ 2 has remained open. It is also worth mentioning that, just

as TCP can be seen as a generalization of Steiner tree, as we show next, S-TCP

can be seen as a generalization of Full Steiner tree (also called Terminal

Steiner tree), which is a widely studied variant of Steiner tree [80, 91, 92].

2.2 Separating Graph Classes

An important remark about TCP and Steiner tree is the fact that TCP can

be seen as a generalisation of Steiner tree, in the sense that every instance of

Steiner tree can be described as an equivalent disjunction of instances of TCP.

Indeed, there is a Turing reduction from Steiner tree to TCP, namely:

(G,W, k) is a yes-instance of Steiner tree if and only if (G,W, `, r) is a yes-

instance of TCP for some pair `, r ∈ {0, . . . , k} such that `+ r = k. An interesting

aspect of this Turing reduction is the fact that it preserves the structure of the in-

put graph. Consequently, if TCP is polynomial-time solvable on some graph class G,

then so is Steiner tree. Analogously, if Steiner tree is NP-complete on some

graph class G, then TCP cannot be solved in polynomial-time on G, unless P=NP.

Nevertheless, if either ` ≥ 0 or r ≥ 0 is fixed, then possibly TCP is polynomial-time

solvable on G, while Steiner tree remains NP-complete on G. In addition, there

might exist a graph class G on which Steiner tree is polynomial-time solvable

whereas TCP remains NP-complete.

In this section, we confirm the existence of such complexity separating classes,

by proving that, on split graphs, TCP is polynomial-time solvable if r ≥ 1 is fixed,

whereas Steiner tree is known to be NP-complete [115]. Besides, we prove that

TCP remains NP-complete on rooted directed path graphs even if r ≥ 0 is fixed,

15

whereas Steiner tree is known to be polynomial-time solvable on strongly chordal

graphs [115], which in turn is a superclass of rooted directed path graphs [16, 59].

2.2.1 Split Graphs

We recall that a split graph is a graph whose vertex set can be partitioned into a

clique and a stable set. For simplicity, throughout this section, we write G〈K,S〉 to

refer to a split graph G such that K ∪ S is a partition of the vertex set of G into a

clique K and a stable set S. We show that TCP on split graphs can be solved in

time nO(r) for every r ≥ 1, and that, under complexity assumptions broadly believed

to hold, this time complexity cannot be considerably improved. More specifically,

we prove the theorem below.

Theorem 2.1. The following statements hold for TCP restricted to split graphs:

� For every r ≥ 1, the problem can be solved in time nO(r);

� For any computable functions g and h, the problem cannot be solved in time

g(r) · nh(`), unless FPT = W[2];

� For any computable function g, the problem cannot be solved in time g(r)·no(r),
unless ETH fails;

To prove Theorem 2.1, we first show that S-TCP can be solved in time nO(r)

for every r ≥ 0. In a nutshell, we present an algorithm for S-TCP that enumerates

each possible candidate router set R ⊆ V (G) \W , with |R| ≤ r, and then decides

through matching techniques whether the input split sgraph G admits a connection

tree T for the terminal set W , such that |L(T)| ≤ `, R(T) = R and leaves(T) = W .

Fact 2.1. Let G〈K,S〉 be a split graph and W ⊆ V (G), with |W | ≥ 3. The following

statements hold:

� If K is a subset of W , then G does not admit a strict connection tree for W .

� If W is a proper subset of K, then G admits a strict connection tree T for W

such that |L(T)| = 0 and |R(T)| = 1.

Lemma 2.1. Let G〈K,S〉 be a split graph and W ⊆ V (G), with |W | ≥ 3. Suppose

that K \W 6= ∅ and W ∩ S 6= ∅. If G admits a strict connection tree T ′ for W ,

then there exists a strict connection tree T of G for W such that |L(T)| ≤ |L(T ′)|,
|R(T)| ≤ |R(T ′)|, and R(T) ⊆ K.

Proof. Since S is a stable set of G, NT ′(S) ⊆ K. Moreover, it follows from the

assumptions W ∩ S 6= ∅ and |W | ≥ 3 that T ′ contains a non-terminal vertex

16

in K, otherwise T ′ would no be strict. Let v be such a vertex. Since K is a clique

of G, v ∈ NG(v′) for all v′ ∈ NT ′(S) \ {v}. Then, let T be the graph obtained

from T ′ by removing the router vertices in S and adding the edge vv′ for each

v′ ∈ NT ′(R(T ′) ∩ S). One can verify that T is a strict connection tree of G for W

such that |L(T)| ≤ |L(T ′)|, |R(T)| ≤ |R(T ′)|, and R(T) ⊆ K.

Lemma 2.2. Let G〈K,S〉 be a split graph and W ⊆ V (G), with |W | ≥ 3. Let T ′

be a strict connection tree of G for W such that R(T ′) ⊆ K. There exists a strict

connection tree T of G for W , with |L(T)| ≤ |L(T ′)| and R(T) ⊆ R(T ′), satisfying

the following conditions:

(i) L(T) ⊆ K;

(ii) Each vertex in L(T) is adjacent to exactly one vertex in R(T) and exactly one

vertex w ∈ W , where w ∈ S and w 6∈ NG(R(T));

(iii) T [R(T)] is a path.

Proof. (i). For every vertex u ∈ L(T ′)∩S, if xu and yu are the two distinct neighbours

of u in T ′, then xu, yu ∈ K. Thus, the graph obtained from T ′ by removing all the

vertices in L(T ′) ∩ S and adding all the edges in {xuyu : xu, yu ∈ NT ′(L(T ′) ∩ S)}
is a strict connection tree of G for W with linker set L(T ′) \ S ⊆ K and router set

R(T ′). Thus, for simplicity, we assume hereinafter that L(T ′) ⊆ K.

(ii). Since |W | ≥ 3, for every vertex u ∈ L(T ′), if xu and yu are the two distinct

neighbours of u in T ′, then xu 6∈ W or yu 6∈ W , otherwise T ′ would not be a strict

connection tree for W . Since (L(T ′) ∪ R(T ′)) ∩ S = ∅, it holds that if xu, yu 6∈ W ,

then xu, yu ∈ K. Hence, we can remove u from T ′ and add the edge xuyu. Thus,

suppose that xu ∈ W and yu 6∈ W . If yu ∈ L(T ′), then yu has exactly one neighbour

in T ′ in addition to u. Let z be this second neighbour of yu in T ′. Since |W | ≥ 3 and

we are supposing that xu ∈ W , we have z 6∈ W , which again implies z ∈ K. As a

result, the graph obtained from T ′ by removing yu and adding the edge uz is a strict

connection tree of G for W with linker set L(T ′)\{yu} and router set R(T ′). Suppose

now that yu ∈ R(T ′) but there exists a vertex ρ ∈ R(T ′), possibly ρ = yu, such that

ρxu ∈ E(G). Consequently, the graph H obtained from T ′ by removing u and adding

the edge ρxu is a strict connection tree of G for W such that L(H) = L(T ′) \ {u}
and R(H) = R(T ′) if dT ′(yu) > 3 or ρ = yu, and L(H) = (L(T ′) \ {u}) ∪ {yu}
and R(H) = R(T ′) \ {yu} otherwise. Therefore, by applying successively the steps

described above, it is always possible to obtain a strict connection tree of G for W

satisfying condition (ii).

(iii). If |R(T ′)| ≤ 1, then trivially T ′ satisfies condition (iii). Thus, assume that

|R(T ′)| ≥ 2. Additionally, assume that T ′ satisfies condition (ii). Consequently,

HR = T [R(T ′)] is a tree. Note that, HR contains at least two leaves. Let R∗ be

17

the set defined in the following way: ρ∗ ∈ R∗ if and only if ρ∗ ∈ R(T ′) and there

is at least one terminal vertex w ∈ W such that distT ′(w, ρ
∗) = distT ′(w,R(T ′)),

i.e. the path between w and ρ∗ in T ′ does not contain any other router. Note

that every leaf of HR necessarily belongs to R∗; more specifically, for every leaf ρ∗

of HR, there exist at least two distinct terminal vertices w1
ρ∗ , w

2
ρ∗ ∈ W such that

distT ′(w
i
ρ∗ , ρ

∗) = distT ′(w
i
ρ∗ ,R(T ′)) for i ∈ {1, 2}, otherwise the degree of ρ∗ in T ′

would be less than 3. Let (ρ1, . . . , ρk) be an ordering of the vertices in R∗, where

k = |R∗|, and suppose that ρ1 and ρk are leaves of HR. Then, consider the graph T

with vertex set V (T) = V (T ′) \ (R(T ′) \R∗) and edge set

E(T) = (E(T ′) \ E(HR)) ∪ {ρiρi+1 : i ∈ [k − 1]}.

One can verify that T is a strict connection tree of G for W such that L(T) = L(T ′),

R(T) = R∗ ⊆ R(T ′), and T [R(T)] is a path.

Proposition 2.1. Let G〈K,S〉 be a split graph and W ⊆ V (G), with |W | ≥ 3.

Suppose that K \ W 6= ∅ and W ∩ S 6= ∅. Given two non-negative integers `

and r, we can in time nO(r) obtain a strict connection tree T of G for W such that

|L(T)| ≤ ` and |R(T)| ≤ r, or conclude that such a tree does not exist.

Proof. It is known that, for r ∈ {0, 1}, S-TCP can be solved in polynomial-time on

general graphs cf. [95]. Thus, for simplicity, assume that r ≥ 2 and that G does

not admit a strict connection tree T for W such that |L(T)| ≤ ` and |R(T)| ≤ 1.

Based on Lemmas 2.1 and 2.2, our strategy consists in enumerating all possible

router subsets R ⊆ K \W , with 2 ≤ |R| = k ≤ r, and all possible unordered pairs

{ρ1, ρk} ⊆ R of distinct vertices in order to try to obtain a strict connection T of G

for W such that |L(T)| ≤ `, R(T) = R and T [R(T)] is a path with endpoints ρ1 and

ρk. Hence, let R ⊆ K \W , with 2 ≤ |R| = k ≤ r, and ρ1 and ρk be two distinct

vertices belonging to R.

Let WR = W ∩NG(R) and WR = W \WR. Note that, if |WR| > `, then there is

no connection tree of G for W such that |L(T)| ≤ ` and R(T) = R. Thus, assume

|WR| ≤ `. Let H1 be the bipartite graph defined as follows:

V (H1) = X1 ∪ Y1 and E(H1) = {xy ∈ E(G) : x ∈ X1, y ∈ Y1},

where X1 = WR and Y1 = NG(X1) \W . We remark that, since R is a subset of K,

which is a clique, we have that X1 ⊆ S. Thus, since S is a stable set, we additionally

have that Y1 ⊆ K.

Claim 2.1. If X1 6= ∅ and G admits a strict connection tree T for W such that

|L(T)| ≤ ` and R(T) = R, then there exists a matching M1 in H1 that saturates all

vertices belonging to X1.

18

Proof of claim. Assume that T satisfies conditions (i)–(iii) described in Lemma 2.2.

Thus, each linker u ∈ L(T) is adjacent to exactly one vertex in R(T) and exactly

one vertex w ∈ W such that w 6∈ NG(R(T)). As a consequence, the set of terminal

vertices which are adjacent to a linker of T coincides with X1. In addition, since

|W | ≥ 3, each vertex belonging to L(T) is adjacent in T to at most one vertex

belonging to X1. Therefore, the set M1 = {uw ∈ E(T) : u ∈ L(T), w ∈ W} is a

matching in H1 that saturates all vertices belonging to X1. –

Based on Claim 2.1, we assume that X1 = ∅, or that there exists a matching

M1 in H1 that saturates all vertices belonging to X1. Thus, given such a matching

M1 (if any), we let L = ∅ if X1 = ∅, and L = {u ∈ Y1 : uw ∈M1} otherwise. Also,

let ρ1
1, ρ

2
1, ρ

1
k, ρ

2
k be four new auxiliary vertices, not belonging to G. Then, consider

X2 = (R\{ρ1, ρk})∪{ρ1
1, ρ

2
1, ρ

1
k, ρ

2
k} and Y2 = WR∪L. We define H2 as the bipartite

graph with vertex set V (H2) = X2 ∪ Y2 and edge set

E(H2) = {xy ∈ E(G) : x ∈ R \ {ρ1, ρk}, y ∈ Y2}
∪ {ρjiy : ρiy ∈ E(G), y ∈ Y2, i ∈ {1, k}, j ∈ {1, 2}}.

Claim 2.2. G admits a strict connection tree T for W such that |L(T)| ≤ `, R(T) =

R and T [R(T)] is a path with endpoints ρ1 and ρk if and only if there exists a

matching M2 in H2 that saturates all vertices belonging to X2.

Proof of claim. First, suppose that such a tree T exists. Additionally, assume that

T satisfies conditions (i)–(iii) described in Lemma 2.2. Then, |L| = |X1| = |L(T)|.
Let φ : L(T) → L be an arbitrary bijection. Since all routers of T have degree at

least 3, each endpoint of the path T [R(T)] — i.e. the vertices ρ1 and ρk — must

be adjacent to at least two distinct vertices in WR ∪ L(T); thus, for i ∈ {1, k}, let

v1
i , v

2
i ∈ WR∪L(T) be two arbitrary distinct neighbours of ρi in T . Furthermore, we

have that each internal vertex of T [R(T)] must be adjacent to at least one vertex in

WR∪L(T); thus, for i ∈ {2, . . . , k−1}, let vi ∈ WR∪L(T) be an arbitrary neighbour

of ρi in T . Let YM2 = {vji : i ∈ {1, k}, j ∈ {1, 2}} ∪ {vi : i ∈ {2, . . . , k − 1}}. We

remark that YM2 \WR ⊆ L(T). Additionally, note that R and L are both contained

in K, which is a clique. Therefore, one can verify that

M2 = {ρjivji : ρiv
j
i ∈ E(T), vji ∈ YM2 ∩WR, i ∈ {1, k}, j ∈ {1, 2}}

∪ {ρivi ∈ E(T) : vi ∈ YM2 ∩WR, i ∈ {2, . . . , k − 1}}
∪ {ρjiφ(vji) : ρiv

j
i ∈ E(T), vji ∈ YM2 \WR, i ∈ {1, k}, j ∈ {1, 2}}

∪ {ρiφ(vi) : ρivi ∈ E(T), vi ∈ YM2 \WR, i ∈ {2, . . . , k − 1}}

is a matching in H2 that saturates all vertices belonging to X2.

19

Figure 2.3: Strict connection tree of G for W obtained from a matching M2 in H2

that saturates all vertices belonging to X2.

Conversely, suppose that there exists a matching M2 in H2 that saturates all

vertices belonging to X2. Let W ′
R and L′ be the subsets of WR and L, respectively,

composed by the vertices which are not saturated by M2. Also, let ϕ : W ′
R → R be

a mapping such that, for each w ∈ W ′
R, if ϕ(w) = ρ, then w ∈ NG(ρ). Consider the

graph T defined as follows (see Figure 2.3): V (T) = W ∪ L ∪R and

E(T) = M1 ∪ (M2 \ {ρjivi : vi ∈ Y2, i ∈ {1, k}, j ∈ {1, 2}})
∪ {ρivi : ρjivi ∈M2, vi ∈ Y2, i ∈ {1, k}, j ∈ {1, 2}}
∪ {ρ1v : v ∈ L′} ∪ {ϕ(w)w : w ∈ W ′

R} ∪ {ρiρi+1 : i ∈ [k − 1]}.

One can verify that T is a strict connection tree of G for W such that L(T) = L,

R(T) = R and T [R(T)] is a path with endpoints ρ1 and ρk. –

To complete the proof of this proposition, we remark that, based on Lem-

mas 2.1 and 2.2, there exists a strict connection tree of G for W with at most

` linkers and at most r routers if and only if, for some set R ⊆ K \ W , with

2 ≤ |R| = k ≤ r, and some unordered pair {ρ1, ρk} ⊆ R of distinct vertices, there

exists a strict connection tree T of G for W such that |L(T)| ≤ `, R(T) = R and

T [R(T)] is a path with endpoints ρ1 and ρk. Furthermore, based on the previous

claims, we have that, for a given set R ⊆ K \W , with 2 ≤ |R| = k ≤ r, and a given

unordered pair {ρ1, ρk} ⊆ R of distinct vertices, we can obtain a strict connection

tree T of G for W such that |L(T)| ≤ `, R(T) = R and T [R(T)] is a path with end-

points ρ1 and ρk, or conclude that such a tree T does not exist, in time polynomial

in n. Therefore, since all unordered pair {ρ1, ρk} ⊆ R of distinct vertices can be

enumerated in time O (n2) and all subsets R ⊆ K \W , with 2 ≤ |R| ≤ r, can be

enumerated in time nO(r), the total running time of the algorithm is nO(r).

Next lemma immediately follows from Fact 2.1 and Proposition 2.1.

Theorem 2.2. For every r ≥ 0, S-TCP can be solved in time nO(r) on split graphs.

20

Now, we are finally able to prove Theorem 2.1. In what follows, we show that,

for r ≥ 1, TCP is polynomial-time reducible to S-TCP when both are restricted to

split graphs. As an immediate consequence, we obtain that TCP on split graphs can

be solved in time nO(r) for every r ≥ 1. Consider the following auxiliary lemmas.

Lemma 2.3. Let G〈K,S〉 be a split graph and W ⊆ V (G), with |W | ≥ 3. If

W ∩K = ∅ and there is a connection tree T of G for W such that R(T) = ∅, then

there is a connection tree T ′ of G for W such that L(T ′) ⊆ |L(T)| and |R(T ′)| = 1.

Proof. Since |W | ≥ 3 and R(T) = ∅, there exists a terminal vertex w ∈ W whose

degree in T is at least 2. Then, let u and u′ be two distinct neighbours of w in T .

Since W ∩ K = ∅, u, u′ ∈ L(T) ∩ K. Let T ′ be the graph obtained from T by

removing the edge wu′ and adding the edge uu′. Clearly, T ′ is a connection tree of

G for W such that L(T ′) = L(T) \ {u} and R(T ′) = {u}.

Lemma 2.4. Let G〈K,S〉 be a split graph and W ⊆ V (G) be a non-empty set.

Suppose that G admits a connection tree T for W . There exists a connection tree T ′

of G for W , with L(T ′) ⊆ L(T) and |R(T ′)| ≤ |R(T)|, that simultaneously satisfies

the following conditions:

(i) L(T ′) ∪ R(T ′) ⊆ K;

(ii) If (R(T) ∪W) ∩K 6= ∅, then every vertex in W ∩ S is a leaf of T ′.

Proof. (i) Suppose that (L(T) ∪ R(T)) ∩ S 6= ∅. Then, there exists a vertex u ∈
V (T) ∩K. Let T ′ be the graph obtained from T as follows:

� Remove all vertices belonging to (L(T) ∪ R(T)) ∩ S and their incident edges;

� For each u′ ∈ L(T) ∩ S, add the edge vv′, where NT (u′) = {v, v′};

� For each u′ ∈ NT (R(T) ∩ S), add the edge uu′.

Clearly, T ′ is a connection tree of G for W such that L(T ′) ⊆ K and R(T ′) ⊆ K.

Moreover, note that L(T ′) ⊆ L(T) \ S, R(T ′) = R(T) if R(T) ∩ S = ∅, and R(T ′) ⊆
(R(T) ∪ {u}) \ S otherwise.

(ii) Suppose that W ∩S 6= ∅ and that there exists a vertex u ∈ (R(T)∪W)∩K.

In this case, every vertex w ∈ W ∩ S has at least one neighbour in T , say α(w).

Then, let T ′ be the graph obtained from T as follows:

� For each w ∈ W ∩ S, remove all edges of T that are incident to w except for

wα(w); additionally, for each v ∈ NT (w), add the edge uv if there is no path

between u and v in T [K].

Clearly, T ′ is a connection tree of G for W such that every vertex in W ∩S is a leaf

of T ′. Furthermore, one can verify that L(T ′) = L(T) and R(T ′) = R(T).

21

Next, we present our polynomial-time reduction to S-TCP.

Construction 2.1 (Reduction from TCP to S-TCP on split graphs). Let G〈K,S〉
be a split graph and I = (G,W, `, r) be an instance of TCP. If W ∩K = ∅, then we

define our reduction instance of S-TCP as simply g(I) = I. Otherwise, let ρ ∈ W∩K
and consider the graph G′ obtained from G as follows (see Figure 2.4):

� Add all vertices and all edges of G;

� For each terminal vertex w ∈ W ∩S \NG(ρ) that is neighbour in G of a vertex

in W ∩K, add the edge ρw;

� Add three new vertices w′1, w′2 and w′3, and make them adjacent to ρ.

Note that G′ is a split graph, and that K ∪ S ′ is a partition of V (G′) into a clique

and a stable set, where S ′ = S∪{w′1, w′2, w′3}. We then define our reduction instance

of S-TCP as g(I) = (G′,W ′, `, r + 1), where W ′ = (W \ {ρ}) ∪ {w′1, w′2, w′3}.

Figure 2.4: Split graph G′〈K,S ′〉 of the instance g(I) of S-TCP described in Con-
struction 2.1, obtained from a split graph G〈K,S〉 of an instance I of TCP, with
W ∩K 6= ∅.

The following lemma, along with Theorem 2.2, finishes the proof that TCP on

split graphs can be solved in time nO(r) for each r ≥ 1.

Lemma 2.5. Let G〈K,S〉 be a split graph and I = (G,W, `, r) be an instance of

TCP such that |W | ≥ 3. Also, let g(I) be the instance of S-TCP obtained from I,

as described in Construction 2.1. If r ≥ 1 or W ∩K 6= ∅, then I is a yes-instance

of TCP if and only if g(I) is a yes-instance of S-TCP.

Proof. First, suppose that I is a yes-instance of TCP. Then, there exists a connection

tree T of G for W such that |L(T)| ≤ ` and |R(T)| ≤ r. Since r ≥ 1, by Lemma 2.3,

we can assume that R(T) 6= ∅ or W ∩K 6= ∅. Furthermore, by Lemma 2.4, we can

assume that every vertex in W ∩ S is a leaf of T . This implies W \ leaves(T) ⊆ K.

If W ∩ K = ∅, then leaves(T) = W and, therefore, we immediately obtain that

g(I) = I is a yes-instance of S-TCP. Thus, suppose that W ∩K 6= ∅. Additionally,

22

by Lemma 2.4, assume that L(T) ⊆ K and R(T) ⊆ K. Note that every vertex

in V (T) ∩ S is a leaf of T . Since T is a tree and ρ ∈ V (T), for each vertex

w ∈ W ∩ K \ {ρ}, there exists a single path between ρ and w in T and a single

vertex in this path, say α(w), that belongs to NT (w)∩K. Thus, let T ′ be the graph

obtained from T as follows:

� For each w ∈ W ∩K \ {ρ} and each w′ ∈ NT (w) \ {α(w)}, remove the edge

ww′ and add the edge ρw′;

� For each i ∈ {1, 2, 3}, add the vertex w′i and the edge ρw′i.

One can verify that T ′ is a connection tree of G′ for W ′, such that leaves(T ′) = W ′,

L(T ′) = L(T) and R(T) = R(T ′) ∪ {ρ}.
Conversely, suppose that g(I) is a yes-instance of S-TCP. If W ∩ K = ∅, then

g(I) = I and, therefore, I is a yes-instance of TCP. Thus, suppose that W ∩K 6= ∅,
and let T ′ be a connection tree of G′ for W ′, such that leaves(T ′) = W ′, |L(T ′)| ≤ `

and |R(T ′)| ≤ r + 1. Since the only neighbour of the terminal vertices w′1, w′2 and

w′3 in G′ is the vertex ρ, we have that ρ necessarily belongs to T ′ and, besides that,

is a router of T ′. Moreover, by construction of G′, if a vertex w is a neighbour of ρ

in T ′ but is not a neighbour of ρ in G, then w ∈ W ∩ S and there exists a vertex

in W ∩ K, say β(w), which is a neighbour of w in G. Then, let T be the graph

obtained from T ′ as follows:

� Remove the vertices w′1, w′2 and w′3 and their incident edges;

� For each w ∈ NT ′(ρ) \NG(ρ), remove the edge ρw and add the edge β(w)w.

One can verify that T is a connection tree of G for W , such that L(T) = L(T ′) and

R(T) = R(T ′) \ {ρ}.

Now, through a parameterized reduction from Set cover, we prove the lower

bound for the time complexity of TCP on split graphs, completing therefore the

proof of Theorem 2.1. Below, we formally define Set cover, which is a classical

problem, known to be W[2]-hard when parameterized by the solution size cf. [31].

Input: A universe set U , a collection F = {F1, . . . , Fq} of non-empty

sets over U , and a positive integer k.

Question: Is there a subset F ′ ⊆ F , with |F ′| ≤ k, such that F ′ covers all

elements of U , i.e.
⋃
F∈F ′{x : x ∈ F} = U?

Set cover

Lemma 2.6. For any computable functions g and h, TCP cannot be solved in time

g(r) ·nh(`), unless FPT = W[2], and cannot be solved in time g(r) ·no(r), unless ETH

fails.

23

Proof. Let I = (U,F , k) be an instance of Set cover. We construct an instance

f(I, `) = (G,W, `, r = k) of S-TCP as follows:

� For each xi ∈ U , create the vertex wi;

� For each Fj ∈ F , create the vertex vFi
; let KF = {vFi

: Fi ∈ F};

� For each xi ∈ U and each Fj ∈ F with xi ∈ Fj, add the edge vFj
wi;

� For each i ∈ [`], create the vertices ui and w′i, and add the edge uiw
′
i; let

L = {u1, . . . , u`};

� Create the vertices wa and wb and, for each Fi ∈ F , add the edges wavFi
and

wbvFi
;

� Define W = {wa, wb} ∪ {w′i : i ∈ [`]} ∪ {wi : xi ∈ U};

� Finally, make all the vertices in L ∪KF adjacent to all vertices in W .

One can readily verify that the construction described above yields a split graph

G〈K,S〉, where K = L∪KF and S = W . Now, we prove that I is a yes-instance of

Set cover if and only if f(I, `) is a yes-instance of TCP.

First, suppose that I is a yes-instance of Set cover, and let F ′ = {F ′1, . . . , F ′z}
be a subset of F such that

⋃
F ′∈F ′ F

′ = U and z ≤ k. Assume without loss of

generality that F ′ is minimal with respect to the property of covering all elements

of U , i.e. for any set F ′ ∈ F ′, F ′ \ {F ′} does not cover all elements of U . Then, let

T be the connection tree of G for W defined as follows:

� For each i ∈ [`], add the vertices ui and w′i to T along with the edges uiw
′
i;

� For each F ′j ∈ F ′, add the vertex vF ′j to T ;

� For each i ∈ [z − 1], add the edge vF ′ivF ′i+1
to T ;

� Additionally, for each i ∈ [`], add the edge uivF ′1 to T ; also add the edges

wavF ′1 and wbvF ′z to T ;

� Finally, for each xi ∈ U , add the vertex wi to T along with the edge vF ′jwi,

where j is the minimum index in [z] such that xi ∈ F ′j and F ′j ∈ F ′.

It is easy to verify that T is a connection tree of G for W . Now, we prove that

|L(T)| ≤ ` and |R(T)| ≤ r. First, note that the vertices u1, . . . , u` have degree

exactly 2 in T . Thus, L(T) ⊇ L. On the other hand, it follows from the minimality

of F ′ that, for every set F ′j ∈ F , the vertex vF ′j is adjacent to at least one terminal

wi ∈ W , since F ′j covers at least one element xi ∈ U which is not covered by any other

24

set in F ′. Consequently, every vertex vF ′j has degree at least 3 in T . Thus, L(T) = L

and R(T) = {vF ′j : F ′j ∈ F ′}, which implies |L(T)| ≤ ` and |R(T)| = z ≤ k = r.

Conversely, suppose thatG admits a connection tree T forW such that |L(T)| ≤ `

and |R(T)| ≤ r = k. Note that, for every i ∈ [`], the path in T between the terminal

w′i and any other terminal belonging to W necessarily contains the vertex ui ∈ L.

Hence, V (T) ⊇ L. Furthermore, we recall that W ⊃ WU is a stable set of G and

that NG(WU) ⊆ KF , where WU = {wi : xi ∈ U}. Thus, for every wi ∈ WU , there

must exist a vertex vFj
∈ KF such that vFj

wi ∈ E(T), otherwise wi would not

belong to T . However, T contains at most ` + r non-terminal vertices. Thus, since

V (T) ⊇ L and |L| = `, there are at most r vertices belonging to KF in T , i.e.

|V (T) ∩ KF | ≤ r = k. Then, F ′ = {Fj : vFj
∈ V (T) ∩ KF} is a subset of F such

that |F ′| ≤ k. Finally, it follows from the fact that W ⊆ V (T) that
⋃
F ′∈F ′ F

′ = U .

Based on the argumentation above, we have that, for every ` ≥ 0, TCP param-

eterized by r is W[2]-hard. Thus, assuming FPT 6= W[2], TCP cannot be solved in

time g(r) ·nh(`). To prove that that TCP cannot be solved in time g(r) ·no(r), unless

ETH fails, it suffices to observe that in our reduction r = k and that the instance

f(I, `) can actually be constructed in time polynomial in I. This, along with the fact

that, under ETH, Set cover cannot be solved in time g(k) ·no(k) cf. [31] we obtain

the desired result (for more details, we refer to Theorem 7 of Appendix B).

The following corollary immediately follows from Theorem 2.2 and Lemma 2.6,

since the proof of Lemma 2.6 remains exactly the same if the sought connection tree

is required to be strict.

Corollary 2.1. For every r ≥ 0, S-TCP on split graphs can be solved in time nO(r)

but, assuming FPT 6= W[2], cannot be solved in time g(r) ·nh(`) and, assuming ETH,

cannot be solved in time g(r) · no(r), for any computable functions g and h.

2.2.2 Rooted Directed Path Graphs

Given a collection F over a universe set U , a graph G is called an intersection graph

of the intersection model (U,F) if there exists a bijection α : V (G)→ F such that,

for every two distinct vertices u, v ∈ V (G), uv ∈ E(G) if and only if α(u)∩α(v) 6= ∅.
Chordal graphs is one of the most import graph classes, and it is defined as

the class of graphs without induced cycles of length greater than 3. Alternatively,

Gavril [69] characterized chordal graphs as the class of intersection graphs of subtrees

of a tree. In other words, a graph G is chordal if and only if there is a tree T , called

characteristic tree, and a collection {Tu}u∈V (G) of subtrees of T , such that uv ∈ E(G)

if and only if V (Tu) ∩ V (Tv) 6= ∅ for every two distinct vertices u, v ∈ V (G).

Nested subclasses of chordal graphs can be defined by imposing further con-

straints on either the characteristic tree or on the collection of subtrees of the

25

intersection model. Indeed, undirected path graphs are the intersection graphs of

undirected paths of a tree [71]; directed path graphs are the intersection graphs of

directed paths of a directed tree [98]; rooted directed path graphs are the intersection

graphs of directed paths paths of a rooted directed tree [70]; and interval graphs are

the intersection graphs of subpaths of a path [13].

We prove that TCP remains NP-complete on rooted directed path graphs:

Theorem 2.3. For each r ≥ 0, TCP remains NP-complete when restricted to rooted

directed path graphs.

This results contrasts with the complexity of Steiner tree, which is known to

be polynomial-time solvable on strongly chordal graphs, a superclass of rooted di-

rected path graphs [16, 59]. In order to prove Theorem 2.3, we provide a polynomial-

time reduction from the Hamiltonian path problem, which was shown to be

NP-complete on rooted directed path graphs by Panda and Pradhan [103]. The

Hamiltonian path problem is formally defined below.

Input: A connected graph G.

Question: Is there a Hamiltonian path in G, i.e. a path that contains all

vertices of G?

Hamiltonian path

Given a graph G, we let C(G) denote clique set of G, i.e. the set of all maximal

cliques of G. Additionally, for each vertex u ∈ V (G), we denote by CG(u) the set of

all maximal cliques of G that contain u. The following theorem, due to Gavril [70],

establishes an intersection model characterization for rooted directed graphs in terms

of a characteristic tree whose vertex set is the clique set of G.

Theorem 2.4 ([70, 98]). A graph G is a rooted directed path graph if and only if

there exists a rooted directed tree T , with vertex set C(G), such that, for every vertex

u ∈ V (G), the subgraph of T induced by CG(u) is a directed path of T .

Next lemma presents some important properties of the class of rooted directed

path graphs that are used in our reduction.

Lemma 2.7. The class of rooted directed path graphs is closed under the following

operations:

(i) For any pair of true twin vertices u and v, adding a new vertex v′ and adding

the edges uv′ and vv′.

(ii) Adding a pendant vertex;

26

(iii) Adding true twin vertices;

Proof. Let G be a rooted directed path graph and T = (T, {Tu}u∈V (G)) be an inter-

section model of G, such that T is the clique tree of G, i.e. T is a rooted directed

tree satisfying the conditions of Theorem 2.4.

(i) and (ii) Let X ⊆ V (G) be a set of vertices such that, for every pair u, v ∈ X,

NG[u] = NG[v]. Also, let G′ be a graph obtained from G by adding a new vertex v′

and making it adjacent to every vertex in X, i.e. NG′(v
′) = X. In what follows, we

prove that G′ is a rooted directed path graph. Note that, if X consists of a single

vertex, then G′ is the graph obtained from G by adding a pendant vertex. Moreover,

note that, for every two vertices u, v ∈ X, we have that Tu = Tv, since u and v are

true twins in G, and therefore CG(u) = CG(v). Thus, let v be an arbitrary vertex

in X. Since Tv = T [CG(v)] is a directed path, there exists exactly one vertex in Tv,

say v, of out-degree 0. Then, consider the intersection model T ′ = (T ′, {T ′u}u∈V (G′))

obtained from T as follows:

� Define T ′ exactly as T , except for adding a new vertex v′, corresponding to

the maximal clique X ∪ {v′} of G′, and by adding the edge from v to v′;

� For each u ∈ X, define T ′u exactly as Tu, except for adding the vertex v′ and

the edge from v to v′;

� Define T ′v′ as the tree with V (T ′v′) = {v′} and E(T ′v′) = {(v,v′)};

� Finally, for each u ∈ V (G) \X, define T ′u exactly as Tu.

One can readily verify that T ′ is an intersection model of G′ satisfying the conditions

of Theorem 2.4. Therefore, G′ is a rooted directed path graph.

(iii) Let G′ be the graph obtained from G by adding, for some vertex v ∈ V (G),

a true twin v′ of v. Then, let T ′ = (T ′, {T ′u}u∈V (G′)) be the intersection model

obtained from T as follows:

� Define T ′ exactly as T and, for each u ∈ V (G), define T ′u exactly as Tu;

� Finally, define Tv′ exactly as Tv.

Since v′ is a true twin of G′, we have that K ⊆ V (G) is a maximal clique of G if

and only if: either K is maximal clique of G′ and v 6∈ K, or K ∪ {v′} is maximal

clique of G′ and v ∈ K. Thus, one can verify that T ′ is an intersection model of G′

satisfying the conditions of Theorem 2.4.

Construction 2.2 (Gadget Hr and Terminal Set Wr). Let r be a positive integer.

We define the gadget Hr as the graph (see Figure 2.5) with vertex set

V (Hr) = {ρ1, . . . , ρr} ∪ {x1
1, x

2
1} ∪ {xi : i ∈ {2, . . . , r}}, and edge set

E(Hr) = {ρiρi+1 : i ∈ {1, . . . , r − 1}} ∪ {x1
1ρ1, x

2
1ρ1} ∪ {xiρi : i ∈ {2, . . . , r}}.

27

Moreover, we let Wr = {x1
1, x

2
1} ∪ {x2, . . . , xr} be the terminal set of Hr.

Figure 2.5: Gadget Hr for r ≥ 1, described in Construction 2.2.

Construction 2.3 (Reduction from Hamiltonian path to TCP). Let G be a

graph, with vertex set V (G) = {u1, . . . , un}, and r be a non-negative integer. We

let G′ be the graph obtained from G and r as follows (see Figure 2.6):

� Add all vertices and all edges of G to G′;

� If r ≥ 1, create the gadget Hr and define Wr as described in Construction 2.2,

besides adding the edge ρrw1; otherwise, if r = 0, define Wr = ∅;

� For each vertex ui ∈ V (G), add a true twin u′i of ui, in such a way that in the

resulting graph G′, after performing all operations, u′i of ui are still true twins,

i.e. NG′ [u
′
i] = NG′ [ui];

� For each vertex ui ∈ V (G), add a new vertex wi and add the edges uiwi and

u′iwi, where u′i denotes the true twin of ui added in the last step (note that

this operation does not affect the fact of ui being a true twin of u′i).

We then define our reduction instance of TCP as g(G, r) = (G′,W, `, r), where

W = {w1, . . . , wn} ∪Wr and ` = 2n− 2.

We remark that, the graph G′ described in Construction 2.3 is similar to the one

constructed in [52] to prove the NP-completeness of TCP on general graphs for fixed

r ≥ 0. The main difference is the fact that, in construction of [52], it is added a

Figure 2.6: A graph G and the graph G′ obtained from G (and r = 0) as described
in Construction 2.3.

28

false twin of ui instead of a true twin of ui for each ui ∈ V (G). However, this makes

the original graph not be chordal, and therefore not a rooted directed path graph,

even if the input graph is a rooted directed path graph. For instance, a cycle C3

of length 3 is trivially a rooted directed path graph, but the graph resulting from

adding a false twin (preserving previously existent false twins) for each vertex of C3

is not chordal, since it contains an induced cycle of length 4. The following lemma,

which states that, whenever the input graph is rooted directed path, our constructed

graph is a rooted directed path as well, immediately follows from Lemma 2.7.

Lemma 2.8. Let G be a graph and r be a non-negative integer. Also, let G′ be

the graph of the instance g(G, r) of TCP obtained from G and r, as described in

Construction 2.3. If G is a rooted directed path graph, then so is G′.

The following Lemma concludes the proof of Theorem 2.3.

Lemma 2.9. Let G be a graph and r be a non-negative integer. Also, let g(G, r)

be the instance of TCP obtained from G and r, as described in Construction 2.3.

Then, G admits a Hamiltonian path if and only if g(G, r) is a yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un} and that g(G, r) = (G′,W, `, r). Addi-

tionally, for simplicity, consider Wr = V (Hr) = E(Hr) = ∅ if r = 0.

First, suppose that there exists in G a Hamiltonian path (uj1 , . . . , ujn). Then,

let T be the graph with vertex set

V (T) = V (Hr) ∪ V (P) ∪ {wj1 , u′j1 , ujn , wjn} ∪ {uji , wji , u′ji : i ∈ {2, . . . , n− 1}}

and edge set

E(T) = E(Hr) ∪ {ρrw1, w1u
′
1}

∪ {u′ji−1
uji , ujiwji , wjiu

′
ji

: i ∈ {2, . . . , n− 1}} ∪ {u′jn−1
ujn , ujnwjn},

where u′ji denotes the true twin of uji added in the construction of G′. Note that T

is a connection tree of G′ for W with L(T) = {u′j1 , ujn} ∪ {uj2 , u′j2 , . . . , ujn−1 , u
′
jn−1
}

and R(T) = {ρ1, . . . , ρr}. Therefore, g(G, r) is a yes-instance of TCP.

Conversely, suppose that g(G, r) is a yes-instance of TCP. Let T be a connection

tree of G′ for W such that |L(T)| ≤ 2n−2 and |R(T)| ≤ r. We remark that ρ1 is the

only neighbour of the terminal vertices x1
1, x

2
1 ∈ Wr and, for each i ∈ {2, . . . , r}, ρi is

the only neighbour of the terminal vertex xi ∈ Wr. As a result, T must contain all

the vertices ρ1, . . . , ρr. More specifically, such vertices must be routers of T . This

implies that T ′ = T −Hr cannot contain any router, and all non-terminal vertices of

T ′ must be linkers. Hence, T ′ is a path, since, by construction of G′, wi has degree at

most 2 in T ′ for every i ∈ [n]. Then, let P ′ = (wj1 , . . . , wjn) be a sequence of distinct

29

vertices such that, for each i ∈ [n−1], the path in T ′ between wji and wji+1
does not

contain any other terminal vertex. Note that, since |L(T)| ≤ ` = 2n− 2, every path

in T ′ between any two consecutive vertices wji and wji+1
in P ′ must be of one of the

following forms: (wji , u
′
ji
, u′ji+1

, wji+1
), (wji , u

′
ji
, uji+1

, wji+1
), (wji , uji , uji+1

, wji+1
), or

(wji , uji , u
′
ji+1

, wji+1
). As a result, it follows from the construction of G′ that, for each

i ∈ [n−1], uji and uji+1
are adjacent in G. Therefore, (uj1 , . . . , ujn) is a Hamiltonian

path of G.

Corollary 2.2. S-TCP remains NP-complete when restricted to rooted directed path

graphs.

Proof. Let G be a graph and f(G, r) = (G′,W, `, r) be the instance of TCP obtained

from G and r = 0 as described in Construction 2.3. Then, let G′′ be the graph

obtained from G′ by adding two new vertices w1
i and w2

i and the edges wiw
1
i and

wiw
2
i , for each wi ∈ W . We remark that, if G is a rooted directed path graph,

then so is G′′, since by Lemma 2.7 the class of rooted directed path graphs is closed

under the operation of adding pendant vertices. Consider W ′′ = {w1
i , w

2
i : wi ∈ W}.

Note that every terminal vertex belonging to W ′′ has degree exactly 1 in G′′. Thus,

one can verify that, for |W | > 1, f(G, r) is a yes-instance of TCP if and only if

(G′′,W ′′, `, r + |W |) is a yes-instance of S-TCP cf. [39]. Therefore, it follows from

Lemma 2.9 that S-TCP is NP-complete on rooted directed path graphs.

2.3 Graphs of Bounded Clique-Width

In this section, we prove that TCP parameterized by the clique-width of the input

graph is W[1]-hard. Similarly to the results presented in Section 2.2, this contrasts

with the complexity of Steiner tree, which is known to be in FPT when param-

eterized by clique-width [4]. On the other hand, agreeing with the complexity of

Steiner tree, we prove that TCP is linear-time solvable on cographs, which are

precisely the graphs of clique-width at most 2.

The notion of clique-width was introduced by Courcelle, Engelfriet and Rozen-

berg [29], and it is one of the most studied graph parameters. Next, we present the

definition of this notion cf. [60, 62].

Let k be a positive integer. A graph is called a k-graph if its vertices are labelled

with integers in [k]. An initial k-graph is a k-labelled graph on a single vertex. The

clique-width of a graph G, denoted by cwd(G), is the smallest positive integer k such

that G can be constructed by repeated application of the following four operations:

1. introducing (denoted by int(u, i)): construction of an initial k-graph, whose

single vertex u is labelled by an integer i ∈ [k] and has not been introduced

yet;

30

2. disjoint union (here, denoted by ⊕);

3. relabelling (denoted by reli,j): changing all labels i to j, for i, j ∈ [k];

4. join (denoted by ηi,j): connecting all vertices labelled by i with all vertices

labelled by j, for i, j ∈ [k], i 6= j.

A construction of a graph G using the operations (1)-(4) described above can

be represented by an algebraic term, called cwd-expression defining G, composed of

int, ⊕, reli,j, and ηi,j cf. [60], where i and j are distinct positive integers. Note that

cwd-expressions define a tree language, where each expression can be represented

by a rooted tree T cf. [62], where each int(u, i) of the expression is associated with

a leaf of T , and each vertex of G is introduced exactly once. A k-expression is a

cwd-expression that contains at most k distinct labels cf. [60]. Thus, a graph G has

clique-width at most k if and only if there exists a k-expression defining G.

2.3.1 Parameterization by clique-width

Now, we prove the following theorem.

Theorem 2.5. For each r ≥ 0, TCP parameterized by clique-width is W[1]-hard.

More specifically, we show that, if a graph G has clique-width at most k, then

the graph G′ obtained from G as described in Construction 2.3 has clique-width at

most k + 1. This, along with Lemma 2.9 and the fact that Hamiltonian path is

W[1]-hard parameterized by clique-width [62], implies the W[1]-hardness of TCP.

The following lemma is a well-known fact, and it can be immediately verified by

an inductive argument on the number of vertices of the tree.

Lemma 2.10. Every tree has clique-width at most 3. Moreover, if T is a tree and u

is a leaf of T , then there exists a 3-expression defining a construction of T in which

at the root all vertices but u have the same label.

Lemma 2.11. Let G be a graph. For each r ≥ 0, if cwd(G) = k for some k ≥ 2,

then cwd(G′) ≤ k+1, where G′ denotes the graph obtained from G and r as described

in Construction 2.3.

Proof. Assume that V (G) = {u1, . . . , un} and cwd(G) = k. Then, let γG be a k-

expression defining G. Also, let H ′ be the subgraph of G′ induced by the vertex set

V (Hr)∪ {w1}. Note that H ′ is a tree and w1 is a leaf in H ′. Thus, by Lemma 2.10,

there exists a construction (3-expression) of a vertex-labelled copy of H ′ (for short

γ′H) in which all vertices but w1 have the same label. Assume without loss of

generality that w1 is labelled by 1 at the root of γH′ , and that all the other vertices

31

of γH′ are labelled by 2. Moreover, since k ≥ 2, assume without loss of generality

that u1 is introduced in γG with a label different from 1. In what follows, we

show that we can obtain from γG and γH′ a (k + 1)-expression γG′ defining our

constructed graph G′. Consider a = k + 1. We recall that each vertex ui ∈ V (G)

has a true twin u′i in G′, and that NG′(wi) = {ui, u′i} for every i ∈ {2, . . . , k}, while

NG′(w1) = {u1, u
′
1, ρr}. Then, let γG′ be the cwd-expression obtained from γG and

γ′H as described next.

� Let int(u1, i) be the leaf term of u1 in γG for some i ∈ [k] \ {1}. Replace the

occurrence of int(u1, i) in γG with (see Figure 2.7)

rel1,a(ηi,1(rela,i
(
ηi,a(int(u1, i), int(u

′
1, a))

)
, rel2,a(γH′))). (2.1)

Figure 2.7: Cwd-expression described in (2.1). Beside some nodes, it is illustrated
the graph resulting from the corresponding operation.

� For each uj ∈ V (G) \ {u1}, if int(uj, i) is the leaf term of uj in γG for some

i ∈ [k], then replace the occurrence of int(uj, i) with (see Figure 2.8)

ηi,a(rela,i
(
ηi,a(int(uj, i), int(u

′
j, a))

)
, int(wj, a)). (2.2)

We recall that, besides being represented by leaves, each vertex is introduced

exactly once in a expression tree. Moreover, note that the operations described

above consists in local replacements in the corresponding leaves of the expression

tree associated to γG. Thus, one can verify that γG′ defines G′. Additionally, by

construction, γG′ uses at most k + 1 distinct labels, whenever k ≥ 2. Therefore, we

have that cwd(G′) ≤ k + 1.

Corollary 2.3. S-TCP parameterized by clique-width is W[1]-hard.

32

Figure 2.8: Cwd-expression described in (2.2). Beside some nodes, it is illustrated
the graph resulting from the corresponding operation.

Proof. Let G be a graph and f(G, r) = (G′,W, `, r) be the instance of TCP obtained

from G and r = 0 as described in Construction 2.3. Also, let (G′′,W ′′, `, r + |W |)
be the instance of S-TCP obtained from f(G, r) as described in Corollary 2.2. We

show that, if cwd(G) = k for some k ≥ 2, then cwd(G′′) = cwd(G′) = k + 1. Note

that, since r = 0, the expression γH′ described in Lemma 2.11 is exactly equal to

int(w1, 1). Then, let γG′′ be the cwd-expression obtained from γG′ as described next,

where a = k + 1.

� Replace the occurrence of γH′ in (2.1) with

rela,2(η1,a(int(w1, 1),⊕(int(w1
1, a), int(w2

1, a))).

� For each wj ∈ W \ {w1}, replace expression (2.2) with

reli′,a(ηi,a(rela,i
(
ηi,a(int(uj, i), int(u

′
j, a))

)
, γ′′)),

where γ′′ = ηi′,a(int(wj, i
′),⊕(int(w1

j , a), int(w2
j , a)) and i′ ∈ [k] \ {i}.

One can verify that γG′′ defines G′′ and that cwd(G′′) = cwd(G′).

2.3.2 Cographs

A cograph, or complement-reducible graph, is a graph that does not contain a path

of length 4 as an induced subgraph. Alternatively, cographs are characterized by

the following recursive definition, given by Corneil et al. [26]:

� A graph on a single vertex is a cograph;

� If G1, . . . , Gk are cographs, then so is their disjoint union G1 ⊕ · · · ⊕Gk;

� If G1, . . . , Gk are cographs, then so is their join G1 ∧ · · · ∧Gk.

33

We note that a graph is a cograph if and only if its clique-width is at most 2.

A key algorithmic property of cographs is the fact that, up to isomorphism,

each cograph G can be uniquely represented by a rooted tree TG, called cotree [26],

which can be seen as a specialization of a 2-expression defining G. The leaves of TG
correspond to the vertices of G, and each internal node u of TG represents either

the disjoint union or the join operation of the respective cographs induced by the

leaves of the subtrees of TG rooted at each child of u. Another important property is

that, given a graph G, recognising G as a cograph, as well as obtaining its respective

cotree (if any), can be performed in time linear in the number of vertices and the

number of edges of G [27].

Let I = (G,W, `, r) be an instance of TCP, where G is a cograph. Since TCP

can be easily solved in linear-time if |W | < 3 or G[W] is connected, we assume

throughout this section that |W | ≥ 3 and G[W] is not connected. Moreover, we

assume that G is connected and therefore is the join of k ≥ 2 cographs G1, . . . , Gk.

We omit the proof of the following lemma and refer to Lemma 9 in Appendix D

for more details.

Lemma 2.12. Let G be a cograph that is the join of k ≥ 2 cographs G1, . . . , Gk,

and let W ⊆ V (G) be a terminal set such that |W | ≥ 3 and G[W] is not connected.

There exists a unique i ∈ [k] such that V (Gi) ∩ W 6= ∅. Moreover, G admits a

connection tree for W that contains exactly one router and no linker.

Considering the input graph G as the join of k ≥ 2 cographs G1, . . . , Gk, it follows

from Lemma 2.12 that TCP can be trivially solved if r ≥ 1, or V (Gi) ∩W 6= ∅ and

V (Gj) ∩W 6= ∅ for some i, j ∈ [k], with i 6= j. Thus, we dedicate the remainder

of this section to resolve the case in which r = 0 and there is a unique i ∈ [k] such

that V (Gi) ∩W 6= ∅.

Lemma 2.13. Let G be a cograph and W ⊆ V (G) be a non-empty terminal set. If

T is a connection tree of G for W such that R(T) = ∅ and |L(T)| is minimum, then

NT (u) ⊆ W for each u ∈ L(T).

Proof. For the sake of contradiction, suppose that NT (u) 6⊆ W for some linker

u ∈ L(T). Since R(T) = ∅ and leaves(T) ⊆ W , u belongs to a path P of T between

two terminal vertices w,w′ ∈ W , such that (V (P)\{w,w′})∩W = ∅. Thus, it follows

from the assumption NT (u) 6⊆ W that |V (P)| ≥ 4. Since cographs do not contain

paths of length 4 as induced subgraphs, there exists a path P ′ of G between w and w′

such that |V (P ′)| ≤ 3 and V (P ′) ⊆ V (P). Then, let T ′ be the graph with vertex set

V (T ′) = (V (T)\V (P))∪V (P ′) and edge set E(T ′) = (E(T)\E(P))∪E(P ′). Observe

that T ′ is a connection tree of G for W such that R(T) = ∅ and L(T ′) (L(T), which

contradicts the minimality of |L(T)|.

34

For each graph G, we let cc(G) denote the set of connected components of G,

and we let o(G) = |cc(G)| denote the number of connected components of G.

Corollary 2.4. Let G be a cograph, W ⊆ V (G) be a non-empty terminal set, and

let T be a connection tree of G for W such that R(T) = ∅. If |L(T)| is minimum,

then |L(T)| = o(G[W])− 1.

Proof. Since R(T) = ∅ and each u ∈ L(T) connects at most two connected compo-

nents, it follow that |L(T)| ≥ o(G[W]) − 1. On the other hand, from Lemma 2.13,

NT (u) ⊆ W for each u ∈ L(T). In addition, we note that, if u ∈ L(T) and

NT (u) = {w,w′}, then w and w′ belong to distinct connected components of G[W],

otherwise the path (w, u, w′) of T could be replaced by a shortest path of G[W]

between w and w′, yielding a connection tree T ′ of G for W such that L(T ′) (L(T).

Therefore, |L(T)| ≤ o(G[W])− 1.

Corollary 2.4 establishes that, whenever a cograph G admits a connection tree

for a non-empty terminal set W ⊆ V (G) that does not contain routers, G admits

a connection tree T for W such that R(T) = ∅ and L(T) = o(G[W]) − 1. More

importantly, it establishes that o(G[W]) − 1 is the minimum possible number of

linkers that such a tree T can have. Therefore, if I = (G,W, `, r) is an instance of

TCP such that G is a cograph and r = 0, then ` must be at least o(G[W]) − 1,

otherwise I is certainly a no-instance of the problem.

A connection forest of a graph G for a non-empty terminal set W is a subgraph

F of G such that F is a forest and
⋃
T∈cc(F) leaves(T) ⊆ W ⊆ V (F). A connection

forest F is said to be routerless if
⋃
T∈cc(F) R(T) = ∅. For each graph G and each

non-empty terminal W ⊆ V (G), we let

λ[G,W] = min{o(F) : F is a routerless connection forest of G for W}.

As a degenerate case, we define λ[G, ∅] = 0.

We note that λ[G,W] = 1 if and only if G admits a connection tree of G for W

such that R(T) = ∅.

Lemma 2.14. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is the

disjoint union of k ≥ 2 cographs G1, . . . , Gk, then

λ[G,W] =
∑

i∈[k]

λ[Gi, V (Gi) ∩W].

Proof. Since G is the disjoint union of G1, . . . , Gk, there is no edge between the

vertices of Gi and the vertices of Gj for any i, j ∈ [k], with i 6= j. Thus, λ[G,W] ≥∑
i∈[k] λ[Gi, V (Gi) ∩W]. On the other hand, let {j1, . . . , ja} be the set of indexes

35

in [k] such that V (Gji) ∩W 6= ∅ for each i ∈ [a]. Also, for each i ∈ [a], let Fji be

a routerless connection forests of Gi for V (Gji) ∩W with the minimum number of

connected components. One can readily verify that F = Fj1∪· · ·∪Fja is a routerless

connection forests of G for W . Therefore, λ[G,W] ≤∑i∈[k] λ[Gi, V (Gi) ∩W].

Lemma 2.15. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is

the join of k ≥ 2 cographs G1, . . . , Gk and there exists a unique i ∈ [k] such that

V (Gi) ∩W 6= ∅, then

λ[G,W] = max{1, λ[Gi,W]− n+ ni},

where n = |V (G)| and ni = |V (Gi)|.

Proof. Let F be a routerless connection forest of G for W . Since W ⊆ V (Gi),

dF (u) = 2 for each u ∈ V (F) \ V (Gi). This implies that, if T is the connected

component of F that contains a vertex u ∈ V (G) \ V (Gi), then o(T − u) ≤ 2.

In other words, for each u ∈ V (G) \ V (Gi), there at most two distinct connected

components of Gi that are connected in F by u. More generally, F − (V (G)\V (Gi))

has at most |V (G) \ V (Gi)| = n− ni more connected components than F . Thus,

λ[G,W] ≥ max{1, λ[Gi,W]− n+ ni}.

On the other hand, let Fi be a routerless connection forest of Gi for W with

the minimum number of connected components, i.e. o(Fi) = λ[Gi,W], and let

S ⊆ V (G) \ V (Gi) such that |S| = min{|V (G) \ V (Gi)|, o(Fi) − 1}. Then, choose

an arbitrary connected component T of Fi, and some vertex wT ∈ V (T) ∩ W .

Additionally, let α : S → cc(Fi) \ {T} be an injective map, and wH ∈ V (H)∩W for

each H ∈ cc(Fi) \ {T}. We define F as the graph (see Figure 2.9) with vertex set

V (F) = V (Fi) ∪ S and edge set

E(F) = E(Fi) ∪ {wTu, uwH : u ∈ S,H ∈ cc(Fi) \ {T}, α(u) = H}.

One can verify that F is as routerless connection forest of G for W such that

o(F) = λ[Gi,W]− |S| = max{1, λ[Gi,W]− |V (G) \ V (Gi)|}. This implies that

λ[G,W] ≤ max{1, λ[Gi,W]− n+ ni},

concluding the proof.

Theorem 2.6. TCP is linear-time solvable on cographs.

36

Figure 2.9: Graph F , with S = {u1, . . . , u|S|} and α(ul) = Hl for each l ∈ [|S|].

Proof. Let I = (G,W, `, r) be an instance of TCP, where G is a cograph on n vertices

and m edges. Assume without loss of generality that |W | ≥ 3, G is connected but

G[W] is not connected. Moreover, based on Lemma 2.12 and on Corollary 2.4,

assume that r = 0 and ` ≥ o(G[W]) − 1, respectively. Then, compute λ[G,W] by

following the rules described below:

λ[G,W] =








case 1. |V (G)| = 1 :

0 if V (G) ∩W = ∅,
1 otherwise;

[
case 2. G = G1 ⊕ · · · ⊕Gk, for some k ≥ 2 :
∑

i∈[k] λ[Gi, V (Gi) ∩W];




case 3. G = G1 ∧ · · · ∧Gk, for some k ≥ 2 :

0 if ∀ i ∈ [k], V (Gi) ∩W = ∅,
1 if ∃ i, j ∈ [k], i 6= j, V (Gi) ∩W 6= ∅ and V (Gj) ∩W 6= ∅,
max{1, λ[Gi,W]− n+ ni} if ∃! i ∈ [k], V (Gi) ∩W 6= ∅,

where n = |V (G)| and ni = |V (Gi)|.

The correctness of the rules follows from Lemmas 2.12, 2.14 and 2.15. Since G

admits a routerless connection tree if and only if λ[G,W] = 1, we have that I is a

yes-instance of TCP if and only if λ[G,W] = 1.

Now, we analyse the time complexity of this algorithm. First, we note that

λ[G,W] can be computed in a bottom-up manner, according to the post-order

traversal of the cotree TG associated with G, using a dynamic programming ma-

trix indexed by the nodes of TG. Moreover, we recall that TG can be obtained

in time O (n+m) cf. [27], and that, by definition, the number of nodes of TG is

O (n). Additionally, we note that, before computing λ[G,W], TG can be prepro-

cessed in time O (n) so that each node u of TG is associated with a flag which

informs whether or not V (Gu) ∩ W 6= ∅, where Gu denotes the subgraph of G

corresponding to the subtree T uG of TG rooted at u, i.e. Gu is the subgraph of G

induced by the leaves of T uG . Thus, one can verify that, for each node u of TG,

37

the cell related to u of our dynamic programming matrix, which corresponds to

λ[Gu, V (Gu)∩W], can be computed in time O (dTG(u)). Since TG is a tree on O (n)

nodes, we have that
∑

u∈V (TG) dTG(u) = O (n) . Therefore, λ[G,W] can be computed

in time O (n+m).

In addition to Theorem 2.6, we note that S-TCP can also be solved in polynomial-

time on cographs. To prove this result, we use a similar approach, by defining a

dynamic programming matrix based on the cotree of the input graph. We omit here

the details of this proof and refer the reader to Section 5 in Appendix B.

2.4 Concluding Remarks

In this chapter, we have analysed the computational complexity of TCP and of

S-TCP when they are restricted to specific graph classes and some of their input

parameters are fixed. In particular, we have provided results that separate the

complexity of TCP from the complexity of Steiner tree (see Table 2.1).

Problem

Graph class/Parameter Steiner tree TCP TCP param. ` TCP param. r

Split NP-c [115]
NP-c

Lemma 2.6

paraNP-c

Lemma 2.6

XP, for r ≥ 1

but W[1]-h

Theorem 2.1

Rooted directed path graphs Poly [115]
NP-c

Theorem 2.3
Open

paraNP-c

Theorem 2.3

Directed path graphs Open
NP-c

Theorem 2.3
Open

paraNP-c

Theorem 2.3

Undirected path graphs NP-c [34]
NP-c

Theorem 2.3
Open

paraNP-c

Theorem 2.3

Interval graphs Poly [115] Open Open Open

Cographs Poly [24]
Poly

Theorem 2.6

Poly

Theorem 2.6

Poly

Theorem 2.6

Clique-width FPT [4]
W[1]-h

Theorem 2.5
Open

W[1]-h

Theorem 2.5

Table 2.1: Comparison between the computational complexity of TCP with the
computational complexity of Steiner tree.

It is worth mentioning that, besides the proofs and statements explicitly pre-

sented, we have obtained other results for TCP and for S-TCP in Appendixes B–D.

For instance, in Appendix C, we have shown that S-TCP is NP-complete on chordal

bipartite graphs even when ` ≥ 0 is fixed. The exact same proof can be used to

show that, for fixed ` ≥ 0, TCP is also NP-complete on chordal bipartite graphs,

agreeing with the complexity of Steiner tree [99]. In Section 3 of Appendix B, we

have shown that S-TCP parameterized by the maximum degree of the input graph

38

∆, ` and r does not admit a polynomial kernel, unless NP ⊆ coNP/poly, while it is

known to be in FPT [51]. Despite that, as for TCP parameterized by ∆, ` and r,

it is unknown whether the problem is in FPT. In addition, many other interesting

questions remain open. In what follows, we highlight some of those questions.

We have proved that, on split graphs, TCP is polynomial-time solvable for every

fixed r ≥ 1, whereas Steiner tree is known to be NP-complete [115]; and that, on

rooted directed path graphs, TCP is NP-complete for every r ≥ 0, whereas Steiner

tree is known to be polynomial-time solvable [16, 59, 115]. However, up to our

knowledge there is no known example of a graph class G on which, for fixed `, TCP

is polynomial-time solvable while Steiner tree is NP-complete, or vice-versa.

In addition, it is worth mentioning that, in our tractability proof for TCP on split

graphs, only the cases in which r ≥ 1 or W ∩K 6= ∅ are considered. Such hypotheses

are imperative in our argumentation so as to ensure the connectivity of the sought

tree. Thus, we leave as an open question whether TCP can be solved in polynomial-

time on split graphs when r = 0 and W ∩K = ∅. We also ask whether TCP and S-

TCP parameterized by clique-width are in XP. Through a parameterized-reduction

from Hamiltonian path, we have shown that these problems parameterized by

clique-width are W[1]-hard. Another intriguing question is related to the case in

which the number of terminals is fixed. Even though it is well-known that Steiner

tree parameterized by the number of terminal vertices is in FPT [56], the complexity

of the corresponding parameterizations of TCP and of S-TCP is widely open.

Concerning S-TCP in particular, the main open question is whether the problem

parameterized by r is in XP. It follows from Corollary 2.1 that the problem is not

in FPT, unless FPT = W[2]. Additionally, it is known that S-TCP can be solved in

polynomial-time when r ∈ {0, 1} cf. [39, 95]. However, deciding whether S-TCP is

in XP, for fixed r ≥ 2, is still unknown. For more details on this, we refer to [39, 40],

where we established close connections between S-TCP with fixed r and disjoint

path problems, besides investigating the complexity of some variants of S-TCP in

order to better understanding what makes the problem difficult.

Concerning Steiner tree, we proved in [34] (see Section 4 of Appendix A) that

Steiner tree is NP-complete on undirected path graphs (for short, UV). On the

other hand, it is known that the problem is polynomial-time solvable on strongly

chordal graphs [115], a superclass of rooted directed path graphs (for short, RDV).

However, it remains unsettled whether Steiner tree is polynomial-time solvable

on directed path graphs (for short, DV), a superclass of RDV and a subclass of UV.

We note that DV graphs are not strongly chordal, since the graph 4-sun is DV but

is not strongly chordal [58, 102]. Additionally, we note that Steiner tree is akin

to domination problems, in particular to Connected dominating set [115], and

that the complexity of such problems on DV graphs also remains unsettled [18, 37].

39

Chapter 3

Maximum Cut

In this chapter, we analyse the computational complexity of the MaxCut problem

when restricted to interval graphs of bounded interval count, and when restricted

to permutation graphs.

Many important graph classes are defined or can be characterized by a geometric

intersection model. Two well-studied examples are the classes of interval graphs and

of permutation graphs [13, 61, 74, 111]. In their respective models, the intersecting

objects are line segments in the plane, with different constraints on their positions.

In interval graphs, each line segment must have its endpoints on a single line, while

in permutation graphs, the endpoints must lie on two distinct parallel lines.

MaxCut is one of the most classical problems on graphs, and it is known to

be NP-complete since the seventies [67]. Nonetheless, only recently its restriction

to interval graphs has been announced to be hard. This result was proved by Ad-

hikary, Bose, Mukherjee, and Roy [1], settling a long-standing open problem from

the Ongoing Guide to NP-completeness by David S. Johnson [83]. Yet, the com-

plexity on the even more restrict class of unit/proper interval graphs, i.e. interval

graphs of interval count 1, still remains unknown. In fact, many flawed proofs of

polynomial-time solvability for the problem on the class of unit interval graphs have

been presented along the years [11, 15], just to be disproved closely after [9, 89].

We present the first complexity result for MaxCut on interval graphs of bounded

interval count. More specifically, we prove that the problem remains NP-complete

on interval graphs of interval count 4. Our contribution is an improvement towards

filling the complexity gap between interval and unit interval graphs. Additionally, we

prove that the problem is also NP-complete on permutation graphs, closing another

long-standing question from [83]. Our results are built on the general idea behind

the NP-completeness proof of MaxCut on interval graphs.

This chapter is organised as follows. In Section 3.1, we formally define the

MaxCut problem. In addition, we present the definitions of the classes of interval

graphs and permutation graphs, and of the notion of interval count of an interval

40

graph. In Section 3.2, we define the concept of grained gadgets. Such gadgets play

a central role in the proof given by Adhikary et al. [1], and they are extensively

used in both of our hardness proofs. In Section 3.3, we revisit Adhikary et al.’s

reduction, and we show that their constructed interval graph has unbounded interval

count and is not a permutation graph. In Sections 3.4 and 3.5, we present our NP-

completeness proofs for MaxCut on interval graphs of interval count 4 and on

permutation graphs, respectively. Finally, in Section 3.6 we present the concluding

remarks of this chapter, focusing on the open questions.

3.1 Basic Definitions

Let G be a graph. We recall that a cut of G is a partition [A,B] of V (G) into

two parts A,B ⊆ V (G), and that the cut-set of G associated with [A,B] is the set

EG(A,B) of edges of G with an endpoint in A and the other endpoint in B. We

denote by mc(G) the maximum size of a cut-set of G, i.e.

mc(G) = max{|EG(A,B)| : [A,B] is a cut of G}.

Next, we formally define the MaxCut problem.

Input: A graph G and a positive integer k.

Question: Is mc(G) ≥ k?

MaxCut

If I ⊆ R is a closed interval of the real line, then we let `(I) = min{p : p ∈ I}
and r(I) = max{p : p ∈ I} be the left and the right endpoints of I, respectively.

We denote a closed interval I by [`(I), r(I)]. The length of an interval I is defined

as |I| = r(I) − `(I). An interval model is a finite multiset M of intervals. The

interval count of an interval modelM, denoted by ic(M), is defined as the number

of distinct lengths of the intervals in M, i.e. ic(M) = |{|I| : I ∈ M}|. Let M be

an interval model and I, I ′ ∈M be two intervals such that I ∩ I ′ 6= ∅. We say that

I covers I ′ if I ⊇ I ′, I intersects I ′ to the left if `(I) < `(I ′) and r(I) < r(I ′), and

that I intersects I ′ to the right if `(I) > `(I ′) and r(I) > r(I ′).

Let G be a graph and M be an interval model. An M-representation of G is a

bijection φ : V (G) →M such that, for every two distinct vertices u, v ∈ V (G), we

have that uv ∈ E(G) if and only if φ(u)∩φ(v) 6= ∅. If such anM-representation ex-

ists, we say thatM is an interval model of G. We note that a graph may have either

no interval model or arbitrarily many distinct interval models. A graph is called an

interval graph if it has an interval model. The interval count of an interval graph G,

41

denoted by ic(G), is defined as ic(G) = min{ic(M) : M is an interval model of G}.
An interval graph is called a unit interval graph if its interval count is equal to 1.

Note that, for every interval modelM, there exists a unique (up to isomorphism)

graph that admits an M-representation. Thus, for every interval model M =

{I1, . . . , In}, we let GM be the graph with vertex set V (GM) = {1, . . . , n} and edge

set E(GM) = {ij : Ii, Ij ∈M, Ii ∩ Ij 6= ∅, i 6= j}. Since GM is uniquely determined

(up to isomorphism) from M, in what follows we may make an abuse of language

and use graph terminologies to describe properties related to the intervals inM. For

instance, two intervals Ii, Ij ∈M are said to be true twins in GM if their respective

vertices have the same closed neighbourhood in GM.

Let π and π′ be two permutations of a same set, say V . A graph G is called

the intersection graph related to {π, π′} if V (G) = V and, for each two vertices

u, v ∈ V (G), uv ∈ E(G) if and only if u <π v and v <π′ u. In this case, we also say

that {π, π′} is a permutation model of G. A graph is a permutation graph if it is the

intersection graph related to a permutation model.

Given two permutations π and γ of disjoint subsets X and Y , respectively, we

write πγ to denote the permutation of X∪Y given by the concatenation of π with γ.

Also, we write←−π to denote the reverse of the permutation π, i.e. if π = (v1, . . . , vi),

then←−π = (vi, . . . , v1). In order to simplify the notation, given a set Z, we sometimes

use the same symbol, Z, to denote also a chosen permutation of the elements of Z;

in such cases,
←−
Z represents the reverse of the chosen permutation for Z.

3.2 Grained Gadgets

Let x and y be positive integers. An (x, y)-grained gadget is a split graph H formed

by a clique K ′ ∪ K ′′ of size 2y and a stable set S ′ ∪ S ′′ of size 2x with K ′ being

complete to S ′, K ′′ being complete to S ′′, and satisfying |K ′| = |K ′′| = y and

|S ′| = |S ′′| = x. Figure 3.1a depicts an interval representation of an (x, y)-grained

gadget. Furthermore, one can readily verify that the intersection graph related to the

pair of permutations {K ′S ′S ′′K ′′, S ′←−K ′′←−K ′S ′′} (see Figure 3.1b) is an (x, y)-grained

gadget. Thus, grained gadgets are both interval graphs and permutation graphs.

Let H be an (x, y)-grained gadget and G be a supergraph of H. For each vertex

u ∈ V (G)\V (H), we say that (see Figure 3.2): u covers H if V (H) ⊆ NG(u), i.e. u

is universal with respect to H; u weakly intersects H if either NG(u) ∩ V (H) = K ′

or NG(u)∩ V (H) = K ′′; and that u strongly intersects H if either NG(u)∩ V (H) =

K ′∪S ′ or NG(u)∩V (H) = K ′′∪S ′′. Moreover, we say that G respects the structure

of H if, for each vertex u ∈ V (G) \ V (H), either NG(u) ∩ V (H) = ∅ or u satisfies

one of the previous conditions.

The next lemma establishes the key property of grained gadgets with respect to

42

(a) Interval representation (b) Permutation model

Figure 3.1: Interval representation and a permutation model of an (x, y)-grained
gadget, respectively.

(a) Covering intersection (b) Weak intersection (c) Strong intersection

Figure 3.2: Vertex u ∈ V (G)\V (H) (a) covering H, (b) weakly intersecting H, and
(c) strongly intersecting H. The set K ′ ∪ K ′′ is a clique and the set S ′ ∪ S ′′ is a
stable set. A line between sets, or between u and some set, means that all the edges
occur.

the MaxCut problem. Intuitively, it states that, for suitable values of x and y, if G

is a supergraph that respects the structure of an (x, y)-grained gadget, then, in any

maximum cut [A,B] of G, the vertices belonging to K ′ ∪ S ′′ are placed in a same

part of [A,B], opposite to the part containing the vertices belonging to K ′′ ∪ S ′.

Lemma 3.1. Let x and y be positive integers, H be an (x, y)-grained gadget and

G be a supergraph that respects the structure of H. Also, let [A,B] be a maximum

cut of G, t be the number of vertices in V (G) \ V (H) adjacent to some vertex of

H, ` be the number of vertices of G adjacent to some vertex in S ′, and r be the

number of vertices of G adjacent to some vertex in S ′′. If ` and r are odd, y > 2t

and x > t+ 2y, then each of the following holds:

� S ′ ⊆ A and K ′ ⊆ B, or vice versa;

� S ′′ ⊆ A and K ′′ ⊆ B, or vice versa;

� K ′ ⊆ A and K ′′ ⊆ B, or vice versa.

Proof. First, we prove that the vertices in S ′ belong to the same part of [A,B].

Since ` is odd, either A or B contains more than half of the vertices in NG(S ′).

Suppose without loss of generality that this is satisfied by B. This implies that

|B ∩NG(S ′)| > |A ∩NG(S ′)|. Thus, since S ′ is a stable set, every vertex in S ′ must

belong to A, otherwise [A,B] would not be maximum. Note that a similar argument

43

applies to the vertices in S ′′, since r is odd and S ′′ is a stable set. Therefore, in the

remainder of this proof, assume that S ′ ⊆ X and S ′′ ⊆ Y , for some X, Y ∈ {A,B}.
Now, we consider the vertices inK ′. Note that, the number of vertices in V (G)\S ′

adjacent to some vertex in K ′ is less than t + 2y < x. Therefore, since |S ′| = x,

K ′ ⊆ V (G) \X, i.e. K ′ must be contained in the part of [A,B] opposite to the part

containing S ′, otherwise [A,B] would not be maximum. We note that an analogous

argument applies to the vertices in K ′′, and thus K ′′ ⊆ V (G) \ Y .

Finally, we prove that X 6= Y . Let α denote the number of edges in the cut-set

EG(A,B) that are incident to some vertex in K ′ ∪ K ′′. By definition, every edge

of G incident to a vertex in K ′ (resp. K ′′) has as the other endpoint a vertex in

V (G) \ V (H), a vertex in S ′ (resp. S ′′), or a vertex in K ′′ (resp. K ′). Moreover,

we have shown that K ′ ⊆ V (G) \ X and K ′′ ⊆ V (G) \ Y . Hence, if X = Y , then

α ≤ 2ty + 2xy. On the other hand, if X 6= Y , then α ≥ y2 + 2xy. Therefore, since

y > 2t, X 6= Y , otherwise [A,B] would not be maximum.

Let G be a graph containing a grained gadget H as a subgraph. We say that

the pair (H,G) is well-valued if G respects the structure of H and, in addition, the

conditions of Lemma 3.1 are satisfied by H and G. More generally, we say that G

is well-valued if, for every grained gadget H ′ in G, (H ′, G) is well-valued. Let [A,B]

be a maximum cut of G. We say that H is A-partitioned by [A,B] if S ′ ∪K ′′ ⊆ A

and S ′′ ∪K ′ ⊆ B. The notion of B-partitioned is defined analogously.

Corollary 3.1. Let G be a graph and H be a (x, y)-grained gadget in G, such that

(H,G) is well-valued. Also, let Z and Z ′ be the sets of vertices that weakly intersect

and strongly intersect H, respectively. Assume that Z ′ is non-empty and |Z| ≤ 2|Z ′|.
If [A,B] is a maximum cut of G and Z ′ ⊆ B, then H is A-partitioned.

Proof. Since (H,G) is well-valued, x > 2y. Moreover, by Lemma 3.1, H is either

A-partitioned or B-partitioned. Let h denote the number of edges in the cut-set

that are between the vertices of H and the vertices in V (G) \ V (H), and let c

denote the number of vertices of G that cover H. Since Z ′ ⊆ B, one can verify

that, if H is B-partitioned, then h ≤ (x + y)c + y|Z|; while, if H is A-partitioned,

then h ≥ (x + y)c + x|Z ′|. Therefore, since x > 2y and |Z| ≤ 2|Z ′|, H must be

A-partitioned, otherwise [A,B] would not be maximum.

In the remainder of the text, when a grained gadget H is not clear in the context,

we write S ′(H), S ′′(H), K ′(H) and K ′′(H) to denote the stable sets S ′ and S ′′ and

the cliques K ′ and K ′′ of H, respectively. Additionally, for simplicity of notation,

when considering interval graphs, we may make an abuse of language and regard

a grained gadget H as any of its interval models. In such cases, motivated by the

interval representation (see Figure 3.1a), we may call the vertices in S ′ ∪ S ′′ short

intervals and the vertices in K ′ ∪K ′′ long intervals of H.

44

3.3 Adhikary et al.’s Reduction

In this section, we briefly present the polynomial-time reduction given by Adhikary

et al. [1] so as to prove the NP-completeness of MaxCut on interval graphs. Their

reduction is from MaxCut on cubic graphs, which is known to be NP-complete [5].

We show that their constructed interval graph has unbounded interval count and is

not a permutation graph.

Given a cubic graph G, let πV = (v1, . . . , vn) and πE = (e1, . . . , em) be arbitrary

orderings of V (G) and E(G), respectively. Define the values: q = 200n3 + 1, p =

2q+7n, q′ = 10n2 +1, and p′ = 2q′+7n. An interval graph G′ is defined through the

construction of one of its interval models M, defined as described below (observe

Figure 3.3 to follow the construction).

1. For each vertex vi ∈ V (G), add a (p, q)-grained gadget Hi. These gadgets

should be pairwise disjoint, with Hi appearing completely to the left of Hi+1

for every i ∈ [n− 1].

2. For each edge ej ∈ E(G), add a (p′, q′)-grained gadget Ej. Likewise, these

gadgets should be pairwise disjoint, with Ej appearing completely to the left

of Ej+1 for every j ∈ [m − 1]. Additionally, E1 should appear completely to

the right of Hn, without intersecting it.

3. Finally, for each edge ej = vivi′ ∈ E(G), with i < i′, add four intervals

C1
i,j, C

2
i,j, C

1
i′,j, C

2
i′,j, called incidence intervals, such that:

� C1
i,j and C2

i,j (resp. C1
i′,j and C2

i′,j) weakly intersect Hi (resp. Hi′) to the

right of Hi (resp. Hi′);

� C1
i,j and C2

i,j (resp. C1
i′,j and C2

i′,j) weakly intersect (resp. strongly inter-

sect) Ej to the left of Ej.

Figure 3.3: Example of Adhikary et al.’s interval model M, obtained from a graph
with edges e1 = v1v2, e2 = v1vn, and em = v2vn.

Now, we show that the interval count of the constructed interval graph G′ is

unbounded. More specifically, we prove that, there exist a cubic graph G and

45

orderings πV and πE of V (G) and of E(G), respectively, from which the resulting

interval graph G′ has interval count Ω(n), where n denotes the number of vertices

of G. It is worth noticing that the number of intervals in M, and therefore the

number of vertices in G′, is invariant under the particular choices of πV and πE.

Nonetheless, one can verify that distinct orderings yield distinct interval graphs,

possibly having distinct interval counts, since the set of intervals covered by any of

the intervals C1
i,j, C

2
i,j, C

1
i′,j, C

2
i′,j depends heavily on πV and πE.

Consider the cubic graph G depicted in Figure 3.4a, which consists in an even

cycle C = (v1, v2, . . . , vn) with the addition of the edges vivi+n
2

for every i ∈ [n/2].

Additionally, consider the ordering πV = (u1, . . . , un) of V (G), where ui = vn−i+1

for every i ∈ [n]. Also, let πE = (e1, . . . , em) be any ordering of E(G) such that

ei = un−iun−i+1 = vi+1vi for every i ∈ [n − 1], and en = u1un = vnv1. One can

verify that, for the graph G and the orderings πV and πE, the reduction yields a

model M that contains a chain C1
n,1 ⊂ C1

n−1,2 ⊂ . . . ⊂ C1
1,n of nested intervals (see

Figure 3.4b). This immediately implies that ic(M) ≥ n.

(a) (b)

Figure 3.4: (a) A cubic graph G, and (b) a chain of nested intervals in the modelM.

Now, we prove that the constructed graph G′ is not a permutation graph, and

that this holds regardless of the input cubic graph and the input orderings πV

and πE. For that, it suffices to note that G′ contains the graph X34 depicted

in Figure 3.5a as an induced subgraph, which is a known forbidden subgraph for

comparability graphs [47, 63], in turn a superclass of permutation graphs. Indeed,

observe Figure 3.5b. Given an edge ej = vivi′ ∈ E(G), with i < i′, it is depicted

the intervals in the grained gadgets of vi, vi′ and ej, as well as some incidence

intervals related to ej. The adjacencies can be easily checked to be as in the graph

of Figure 3.5a.

3.4 Interval Graphs of Bounded Interval Count

In this section, we extended the result given by Adhikary et al [1], by showing that

MaxCut remains NP-complete even on interval graphs of bounded interval count.

More specifically, through a polynomial-time reduction from MaxCut on cubic

graphs, we prove the following theorem:

46

(a) (b)

Figure 3.5: (a) Forbidden induced subgraph X34 for comparability graphs cf. [47].
(b) X34 as an induced subgraph in Adhikary et al.’s construction.

Theorem 3.1. MaxCut is NP-complete on interval graphs of interval count 4.

3.4.1 Reduction Graph

Let G be a cubic graph on n vertices and m = 3n/2 edges, πV = (v1, . . . , vn) be

an ordering of the vertices of G, and πE = (e1, . . . , em) be an ordering of the edges

of G. Also, let G denote the triple (G, πV , πE).

Intuitively, we select m mutually disjoint regions in the real line, such that, for

each j ∈ [m], the j-th region is related to the edge ej and holds the information

whether ej is in the cut-set. To accomplish this, the edge ej is represented by a

grained gadget Ej, which must be contained within the j-th region, and each vertex

vi is represented by a grained gadget Hj
i and special intervals, called link intervals,

connecting Hj
i to Hj+1

i . The aim of such link intervals is to propagate, from a region

to the next, the information about to which part of the cut the respective vertex

vi belongs. In addition, in order to represent that a vertex vi is an endpoint of

an edge ej, a couple of intervals, called incidence intervals, connecting Hj
i to Ej is

added. Figure 3.6 depicts this general idea of our construction.

Figure 3.6: General structure of our interval model. In this example, the complete
graph on 4 vertices, K4, is given as the input cubic graph.

Now, we formally define our interval model. We first describe the gadgets related

to the vertices. Please, refer to Figure 3.7 to follow the construction. The values of

p, q used next are properly defined later. An (n,m)-escalator is an interval model

comprising, for each vertex vi ∈ V (G), m+1 mutually disjoint (p, q)-grained gadgets,

denoted byH1
i , . . . ,Hm+1

i , along with 2m link intervals, denoted by L1
i , . . . , L

2m
i , such

that L2j−1
i and L2j

i weakly intersect Hj
i to the right and weakly intersect Hj+1

i to

the left. Additionally, for each j ∈ [m + 1] and each pair i, i′ ∈ [n] with i < i′, the

47

grained gadget Hj
i must be placed to the left of Hj

i′ , and the grained gadget Hj
n

must be placed to the left of Hj+1
1 for j ∈ [m].

Figure 3.7: An (n,m)-escalator. The shaded rectangles represent the vertex (p, q)-
grained gadgets Hj

1, . . . ,Hj
n and Hj+1

1 , . . . ,Hj+1
n .

Finally, we describe the gadgets related to the edges. Please, refer to Figure 3.8

to follow the construction. The values of p′, q′ used next are properly defined later.

For each edge ej = vivi′ ∈ E(G), with i < i′, create a (p′, q′)-grained gadget Ej and

intervals C1
j , C

2
j , C

3
j , C

4
j , called incidence intervals1, in such a way that Ej is entirely

contained in the j-th region (i.e., in the open interval between the right endpoint of

Hj
n and the left endpoint of Hj+1

1), C1
j and C2

j weakly intersect Hj
i to the right and

weakly intersect Ej to the left, and C3
j and C4

j weakly intersect Hj
i′ to the right and

strongly intersect Ej to the left.

We write M(G) to denote any selected interval model, obtained from G, that

satisfies the conditions described above. This model defines our reduction interval

graph GM(G). We note that, if M and M′ are any two interval models satisfying

the conditions described above, then their corresponding interval graphs GM and

GM′ are isomorphic. In what follows, when G is clear in the context, we may omit

it, and simply write M and GM to denote M(G) and GM(G), respectively.

Left short intervals

Figure 3.8: Interval model M(G). The shaded rectangle on the top represents the
edge (p′, q′)-grained gadget Ej.

1In Appendix E, such intervals are called intervals of type C.

48

The following lemma is straightforward, and it is used in the next sections in

order to ensure that, for suitable values of p, q, p′ and q′, Lemma 3.1 can always be

applied to every grained gadget of M(G).

Lemma 3.2. Let G be a graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be orderings

of V (G) and E(G), respectively, and G = (G, πV , πE). The following properties hold

for every vertex/edge grained gadget H of M(G):

� M(G) respects the structure of H;

� The number of intervals in M(G) covering H is even; and

� The number of intervals in M(G) strongly intersecting H to the left and the

number of intervals inM(G) strongly intersecting H to the right are both even.

Observe that Lemma 3.2 implies that, in order for the values ` and r in Lemma 3.1

to be odd, it suffices to choose odd values for q and q′.

3.4.2 Maximum Cut of the Reduction Graph

We now prove that mc(G) ≥ k if and only if mc(GM(G)) ≥ φ(n, k), where φ is a

suitable function, properly defined at the end of this subsection.

As usual in these types of reductions, constructing a maximum cut of the re-

duction graph GM(G), from a given maximum cut [X, Y] of the input graph G,

is generally an easy task, which does not depend on any additional properties of

[X, Y]. On the other hand, constructing a maximum cut [X, Y] of G, from a given

a maximum cut [A,B] of GM(G), requires that [A,B] exhibits some particular prop-

erties. Thus, in order to ensure that any maximum cut of GM(G) always owns such

properties, we must manipulate appropriately the values of p, q, p′, q′, as done in

Lemma 3.1.

Next lemma imposes some further conditions on the values of p, q, p′, q′ so that,

in any maximum cut of GM(G), the partitioning of the edge grained gadget related

to an edge ej = vivi′ , with i < i′, depends solely on the partitioning of Hj
i′ .

A cut [A,B] of GM(G) is said to be locally well-behaved if, for every i ∈ [n] and

every j ∈ [m + 1], Hj
i is either A-partitioned or B-partitioned by [A,B], and for

every edge ej = vivi′ of G, with i < i′, the following conditions are satisfied:

� If Hj
i is A-partitioned by [A,B], then {C1

j , C
2
j } ⊆ B; otherwise, {C1

j , C
2
j } ⊆ A;

� If Hj
i′ is A-partitioned by [A,B], then {C3

j , C
4
j } ⊆ B and Ej is A-partitioned

by [A,B]; otherwise, {C3
j , C

4
j } ⊆ A and Ej is B-partitioned by [A,B].

Figure 3.9 illustrates this notion of locally well-behaved cut.

49

Figure 3.9: General idea of locally well-behaved cuts of GM(G). Each part of the
cut is represented by a distinct colour. For instance, considering a cut [A,B] and
the part A represented by the colour green, we have in this case that the grained
gadgets Hj

1, Hj
i′ and Ej are A-partitioned, while Hj

i and Hj
n are B-partitioned. Note

that, since Hj
i′ is A-partitioned, {C1

j , C
2
j } ⊆ B and Ej is A-partitioned as well.

Lemma 3.3. Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be

orderings of V (G) and E(G), respectively, G = (G, πV , πE), and ej = vivi′ be an

edge of G, with i < i′. If [A,B] is a maximum cut of GM(G), GM(G) is well-valued

and, in addition, q > 4n+ p′ + q′, then [A,B] is locally well-behaved.

Proof. Since M(G) is well-valued, it follows from Lemma 3.1 that every grained

gadget in M(G) is either A-partitioned or B-partitioned. Suppose without loss of

generality that Hj
i is A-partitioned, i.e. S ′ ∪K ′′ ⊆ A and S ′′ ∪K ′ ⊆ B. We prove

that C l
j ∈ B, where l ∈ {1, 2}. First, note that, based on Lemma 3.1, all grained

gadgets inM(G) have the same number of intervals belonging to A and of intervals

belonging to B. In particular, Hj
i+1, . . . ,Hj

n comprise all the grained gadgets covered

by C l
j, and in total there are in such gadgets exactly (n−i)(p+q) intervals belonging

to A, and exactly (n− i)(p + q) intervals belonging to B. In addition, there are at

most 2(n − i) link intervals intersecting C l
j to the left (these are the link intervals

related to vi′′ for i′′ > i in the (j − 1)-th region, if j > 1), exactly 2(n − i) link

intervals intersecting C l
j to the right (these are the link intervals related to vi′′ for

i′′ > i in the j-th region), and exactly 2i link intervals covering C l
j (these are the

link intervals related to vi′′ for i′′ ≤ i in the j-th region). This amounts to at most

2(n− i) + 2(n− i) + 2i = 4n−2i < 4n intervals. Thus, if C l
j ∈ A, then there are less

than (n− i)(p+q)+4n+q′ edges in the cut-set incident to C l
j; while if C l

j ∈ B, then

there are at least (n − i)(p + q) + q edges in the cut-set incident to C l
j. Therefore,

since q > 4n+ p′ + q′ ≥ 4n+ q′, C l
j must belong to B.

We note that an analogous argument can be applied to the intervals C3
j , C

4
j , with

respect to the grained gadget Hj
i′ . Indeed, suppose without loss of generality that

50

Hj
i′ is A-partitioned, and consider l ∈ {3, 4}. If C l

j ∈ A, then there are less than

(n− i′)(p+ q) + 4n+p′+ q′ edges in the cut-set incident to C l
j; while if C l

j ∈ B, then

there are at least (n− i′)(p + q) + q edges in the cut-set incident to C l
j. Therefore,

since q > 4n + p′ + q′, C l
j must belong to B. By Corollary 3.1, this additionally

implies that Ej must be A-partitioned.

Informally, it follows from Lemma 3.3 that, in any maximum cut of GM(G), the

partitioning of every grained gadget, with its incidence intervals, behaves well within

each region individually. Nonetheless, note that, by definition, a cut [A,B] being

locally well-behaved does not necessarily imply that, in this cut, the partitioning of

the intervals related to a region influences the partitioning of the intervals related

to neighbouring regions. In order to make it possible to associate maximum cuts of

GM(G) with maximum cuts of G′, it is necessary that all grained gadgets correspond-

ing to a vertex vi of G agree with one another. In other words, for each j ∈ [m], the

partitioning of Hj
i must influence in a well-defined way the partitioning of Hj+1

i .

Let [A,B] be a cut of GM(G). Given a vertex vi ∈ V (G), we say that the gadgets

of vi alternate in [A,B] if, for every j ∈ [m], it holds that Hj
i is A-partitioned if

and only if {L2j−1
i , L2j

i } ⊆ B and Hj+1
i is B-partitioned. Figure 3.10 illustrates this

notion. In addition, we say that [A,B] is alternating partitioned if, for every vertex

vi ∈ V (G), the gadgets of vi alternate in [A,B]. Finally, we say that [A,B] is globally

well-behaved if it is simultaneously alternating partitioned and locally well-behaved.

In the following lemma, a further condition is imposed on the values of p, q, p′ and

q′ in order to ensure that every maximum cut of GM(G) is globally well-defined.

Figure 3.10: A cut [A,B] of GM(G) in which the gadgets of a vertex vi ∈ V (G)
alternate. Each colour represents a part of the cut.

Lemma 3.4. Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be

orderings of V (G) and of E(G), respectively, and G = (G, πV , πE). If [A,B] is a

maximum cut of GM(G), M(G) is well-valued, q > 4n + p′ + q′, and, in addition,

q > 3(2n2 + n+ q′ + 2), then [A,B] is globally well-behaved.

Proof. By hypothesis, the conditions of Lemmas 3.1 and 3.3 are satisfied. Thus, we

can assume that every maximum cut of GM(G) is locally well-behaved. Based on

that, we note that, for some pairs of subsets S and S ′ ofM(G), the number of edges

between S and S ′ in the cut-set of any maximum cut [A′, B′] of GM(G) is always the

same, regardless of whether [A′, B′] is alternating partitioned or not. Thus, to the

51

context of alternating partitioned cuts, the edges between S and S ′ are irrelevant.

For instance, every (x, y)-grained gadget H of GM(G) has exactly x+ y intervals in

either part of a maximum cut ofM(G). Hence, the edges between H and any subset

C of intervals covering H are irrelevant, since there always are exactly (x + y) · |C|
such edges in the cut-set of any maximum cut of M(G).

For each i ∈ [n], let Mi denote the set of intervals in M(G) related to the

vertex vi; that is to say, Mi consists of every interval in Hj
i for j ∈ [m + 1], every

link interval Lji for j ∈ [2m], every interval in Ej for ej incident to vi in G, and

every incidence interval C l
j weakly intersecting Hj

i . Additionally, for each i ∈ [n],

let fi denote the number of relevant edges in the cut-set of [A,B] that are incident

to some interval in Mi. In what follows, we determine an upper bound for fi, and

based on that we argue that, if the gadgets of vi do not alternate in [A,B], then,

by rearranging the partitioning of Mi, it is possible to obtain a cut of larger size,

contradicting therefore the maximality of [A,B].

First, for each i ∈ [n] and each j ∈ [m], we count the maximum possible number

of edges in the cut-set that are incident to the link interval Lli, where l ∈ {2j−1, 2j}.
Let λAi,l denote the number of link intervals inM(G)∩A\{Lli} that intersect Lli; define

λBi,l similarly. Note that, in addition to Ll
′
i for l′ ∈ {2j−1, 2j}\{l}, the link intervals

that intersect Lli in M(G) are precisely: L2j−1
ι , L2j

ι for ι ∈ [n] \ {i}, L2j−3
ι , L2j−2

ι for

ι ∈ {i + 1, . . . , n}, and L2j+1
ι , L2j+2

l for ι ∈ [i − 1]. Thus, λAi,l + λBi,l < 4n − 2. Let

zi,l ∈ {0, 1}, such that zi,l = 1 if and only if Lli and the long intervals in K ′′(Hj
i) are

in opposite parts of the cut; and, let z′i,l ∈ {0, 1}, such that z′i,l = 1 if and only if

Lli and the long intervals in K ′(Hj+1
i) are in opposite parts of the cut. Finally, note

that Lli and the incidence intervals C1
j , . . . , C

4
j might also be in opposite parts of the

cut. Hence, in total, the number of relevant edges in the cut-set that are incident

to Lli is at most q(zi,l + z′i,l) + λAi,l + λBi,l + 4.

Now, for each i ∈ [n] and each j ∈ [m], with ej incident to vi in G, we count the

number of relevant edges in the cut-set that are incident to the intervals in Mi ∩
(Ej∪{C1

j , . . . , C
4
j }). We note that the edges between {C3

j , C
4
j } and the short intervals

in S ′(Ej) are irrelevant, since Ej is always partitioned according to C3
j , C

4
j . Thus,

suppose without loss of generality that {C1
j , C

2
j } ⊆ A. If {C3

j , C
4
j } ⊆ A, then one can

verify that there are no relevant edges in the corresponding cut-set that are incident

to the intervals in Mi ∩ (Ej ∪ {C1
j , . . . , C

4
j }). On the other hand, if {C3

j , C
4
j } ⊆ B,

then there are exactly 2q′+4 relevant edges, namely: the edges between {C1
j , C

2
j } and

{C3
j , C

4
j }, and the edges between {C1

j , C
2
j } and the long intervals in K ′(Ej). Finally,

we note that the edges between {C1
j , . . . , C

4
j } and Hj

i are irrelevant, and that the

edges between {C1
j , . . . , C

4
j } and the link intervals have already been counted.

Thus, putting everything together, let ej1 , ej2 , ej3 be the three edges incident

to vi in G, and for each h ∈ {1, 2, 3}, let ci,h ∈ {0, 1}, such that ci,h = 1 if and

52

only if Hj
i and Hj

ih
are partitioned differently (e.g., Hj

i is A-partitioned while Hj
ih

is B-partitioned), where vih denotes the other endpoint of ejh , apart from vi. Then,

we obtain that

fi ≤
m∑

j=1

2j∑

l=2j−1

(q(zi,l + z′i,l) + λAi,l + λBi,l + 4) +
3∑

h=1

ci,h(2q
′ + 4). (3.1)

Now, based on equation (3.1), we finally show that [A,B] must be alternating

partitioned, otherwise it would not be maximum.

Suppose that, for some i ∈ [n] and some j ∈ [m], Hj
i and Hj+1

i are partitioned

differently by [A,B], but, for some l ∈ {2j − 1, 2j}, the link interval Lli belongs to

the same part of the cut as the long intervals in K ′′(Hj
i) and in K ′(Hj

i+1); say Hj
i is

A-partitioned, Hj+1
i is B-partitioned, but Lli ∈ A (see Figure 3.11a). In this case, fi

can be increased by simply switching the part of Lli. Indeed, compared to [A,B], the

resulting cut loses at most max{λAi,l, λBi,l}+4 < 4n+2 edges, whereas it gains 2q new

edges, namely: the edges between Lli and the long intervals in K ′′(Hj
i) ∪K ′(Hj

i+1).

This is a positive exchange, since by hypothesis q > 4n. Therefore, in what follows,

assume that the link intervals L2j−1
i , L2j

i and the long intervals in K ′′(Hj
i)∪K ′(Hj

i+1)

belong to opposite parts of the cut [A,B], whenever Hj
i and Hj+1

i are partitioned

differently.

(a) (b)

Figure 3.11: (a) Hj
i is A-partitioned, Hj+1

i is B-partitioned, but Lli ∈ A for some
l ∈ {2j − 1, 2j}. (b) Hj

i and Hj+1
i are both A-partitioned. The green colour

represents the part A, while the blue colour represents the part B.

Finally, suppose that, for some i ∈ [n] and some j ∈ [m], Hj
i and Hj+1

i are

partitioned in the same way by [A,B]; say they are both A-partitioned (see Fig-

ure 3.11b). Assume that j is the minimum integer in [m] satisfying this condition.

Let j′ be the minimum integer in {j + 1, . . . ,m} such that Hj′
i and Hj′+1

i are also

partitioned in the same way by [A,B], i.e. they are either both A-partitioned or

both B-partitioned; if it does not exist, let j′ = m+1. Note that, if j′ < m, then we

can assume based on the previous paragraph that the link intervals L2j′−1
i , L2j′

i and

the long intervals in K ′(Hj′+1
i) are in opposite parts of the cut, since, by the defi-

nition of j′, Hj′+1
i and Hj′+2

i are partitioned differently by [A,B]. Then, let [A′, B′]

be the cut obtained from [A,B] by switching of parts the intervals in Mi related

to the h-region for each h ∈ {j + 1, . . . , j′}, and placing the link intervals L2j−1
i , L2j

i

53

in the opposite part of the long intervals in K ′′(Hj
i). More formally, [A′, B′] is the

cut obtained from [A,B] such that, except for satisfying the following conditions,

A′ and B′ are defined exactly as A and B, respectively.

� {L2j−1
i , L2j

i } ⊆ B′;

� For each h ∈ {j + 1, . . . , j′}, if Hh
i is A-partitioned by [A,B], then Hh

i is

B′-partitioned by [A′, B′]; otherwise, Hh
i is A′-partitioned by [A′, B′];

� For each h ∈ {j + 1, . . . ,min{j′,m}}, if Hh
i is A-partitioned by [A,B], then

{L2h−1
i , L2h

i } ⊆ A′; otherwise, {L2h−1
i , L2h

i } ⊆ B′;

� For each h ∈ {j+1, . . . ,min{j′,m}} with eh = vivi′ and i < i′, if {C1
h, C

2
h} ⊆ B,

then {C1
h, C

2
h} ⊆ A′; otherwise {C1

h, C
2
h} ⊆ B′;

� For each h ∈ {j+1, . . . ,min{j′,m}} with eh = vi′vi and i > i′, if {C3
h, C

4
h} ⊆ B,

then {C3
h, C

4
h} ⊆ A′ and Ej is B′-partitioned by [A′, B′]; otherwise {C3

h, C
4
h} ⊆

B′ and Ej is A′-partitioned by [A′, B′].

Note that [A′, B′] is locally well-behaved. Moreover, one can verify that, compared

to [A,B], the resulting cut [A′, B′] gains at least 2q new edges, since now the long

intervals in K ′′(Hj
i) and in K ′(Hj+1

i) belong to the same part of the cut, which is

opposite to the part containing the link intervals L2j−1
i and L2j

i . Next, we prove that

[A′, B′] loses at most 6(2n2 +n)+6(q′+2) = 6(2n2 +n+ q′+2) edges, contradicting

therefore the maximality of [A,B] since q > 3(2n2 + n+ q′ + 2).

We recall that we are supposing that Hj
i is A-partitioned. Thus, concerning the

link intervals L2j−1
i and L2j

i , in the worst case, we have that {L2j−1
i , L2j

i } ⊆ A and

{C1
j . . . , C

4
j } ⊆ A, and then [A′, B′] might lose at most

∑2j
l=2j−1(λBi,l + 4) ≤∑2j

l=2j−1(max{λAi,l, λBi,l}+ 4) < 8n+ 4

edges. As for the intervals L2h−1
i , L2h

i for h ∈ {j + 1, . . . , j′}, the cut [A′, B′] might

also lose at most
∑2h

l=2h−1(max{λAi,l, λBi,l}+ 4) < 8n+ 4, while, by the definition of j′,

the number of edges in the cut-set between such link intervals and the vertex grained

gadgets can only increase. Therefore, concerning the link intervals in Mi, [A′, B′]

loses in total at most m(8n+4) = 6(2n2+n) edges. Additionally, based on the upper

bound (3.1) for fi, we have that in the worst case {j1, j2, j3} ⊆ {j + 1, . . . , j′} and

the values of ci,1, ci,2, ci,3 are all equal to 1 with respect to [A,B] (i.e. all the three

edges ej1 , ej2 , ej3 incident to vi belong to the cut-set of [A,B]), but with respect to

[A′, B′] they are all equal to 0 (i.e. none of the three edges ej1 , ej2 , ej3 incident to vi

belong to the cut-set of [A′, B′]). This leads to a loss of at most 6(q′+ 2) edges.

54

Now, if [X, Y] is a cut of G, then we let Φ(X, Y) = [A,B] be the globally

well-behaved cut of GM(G) such that, for each vertex vi ∈ V (G),

vi ∈ X if and only if H1
i is A-partitioned by [A,B].

Note that [A,B] is well-defined and uniquely determined by [X, Y]. On the other

hand, given a globally well-behaved cut [A,B] of GM(G), there is a unique cut

[X, Y] = Φ−1(A,B) of G such that [A,B] = Φ(X, Y). Therefore, Φ is a bijection.

Next lemma establishes that, for q′ large enough, the size of a globally well-

behaved cut [A,B] grows as a function of the size of Φ−1(A,B). We present the

general idea behind the proof of this result, and we refer the reader to Lemma 5 of

Appendix E for a thorough proof.

Lemma 3.5. Let G be a cubic graph on n vertices, πV and πE be orderings of V (G)

and of E(G), respectively, and G = (G, πV , πE). For every positive integer k, if

[A,B] is a globally well-behaved cut of GM(G) and q′ ≥ 13n2, then

|EG(X, Y)| ≥ k if and only if |EG(A,B)| ≥ φ(n, k),

where G denotes GM(G), [X, Y] = Φ(A,B) and φ is a well-defined function.

Proof sketch. Since [A,B] is globally well-behaved, one can verify that the following

statements hold, with respect to EG(A,B), where m denotes the number of edges

of G, i.e. m = 3n/2.

� Among intervals of vertex/edge grained-gadgets, there are exactly β1 = n(m+

1)(q2 + 2pq) +m((q′)2 + 2p′q′) edges in the cut-set.

� Between intervals of a vertex grained-gadget and link intervals, there are ex-

actly β2 = 2mn[n(p+ q) + q − p] edges in the cut-set.

� Between intervals of an edge grained-gadget and any other intervals, and

among incidence intervals, there are exactly β3 + (2q′ + 4) · |EG(X, Y)| edges

in the-cut set, where β3 = 2nm(p′ + q′) + 2p′m.

� Among link intervals, there are exactly β4+4|X||Y | edges in the cut-set, where

β4 = n(n− 1)(3n− 2). Note that, 4(n− 1) ≤ 4|X||Y | ≤ n(n+ 1).

� Between intervals of a vertex grained-gadget and incidence intervals, there are

exactly

β5 = 4m[n(p+ q) + q]− 2(p+ q)
∑m

j=1(ji + ji′)

≤ 4m[n(p+ q) + q]

edges in the cut-set, where ej = vjivji′ for each j ∈ [m].

55

� Finally, between link intervals and incidence intervals, there at most 16nm =

24n2 edges in the cut-set.

By the construction of G, one can additionally that the edge set of G can be parti-

tioned into the groups described above.

Let β =
∑5

i=1 βi and γ = β + 4(n− 1). We have just shown that

γ︷ ︸︸ ︷
β + 4(n− 1) +(2q′ + 4)|EG(X, Y)| ≤ |EG(A,B)|

≤ β + n(n+ 1) + 24n2 + (2q′ + 4)|EG(X, Y)|.

If |EG(X, Y)| ≥ k, then it follows from the first inequality that

|EG(A,B)| ≥ β + 4(n− 1) + (2q′ + 4)k.

Conversely, if |EG(A,B)| ≥ β+ 4(n−1) + (2q′+ 4)k, then it follows from the second

inequality that

|EG(X, Y)| ≥ k − 25n2 − 3n+ 4

2q′ + 4
≥ k − 26n2

2q′ + 4
.

Since q′ ≥ 13n2, |EG(X, Y)| > k−1. Finally, we note that p, q, p′ and q′ are defined

depending exclusively on n. Therefore, by setting φ(n, k) = γ+(2q′+4)k, we obtain

that |EG(X, Y)| ≥ k if and only if |EG(A,B)| ≥ φ(n, k).

To finish the proof that the reduction works, we need to choose appropriate

values for p, q, p′ and q′. Recall all necessary conditions:

� For each (x, y)-grained gadget H in M, if ` is the number of intervals in M
intersecting the short intervals in S ′(H), and r is the number of intervals inM
intersecting the short intervals S ′(H), then ` and r must both be odd (from

Lemma 3.1); moreover, y > 2t and x > t + 2y (from Lemma 3.1), where t

denotes number of intervals in M\H intersecting H;

� q > 4n+ p′ + q′ = α1 (from Lemma 3.3);

� q > 3(2n2 + n+ q′ + 2) = α2 (from Lemma 3.4); and

� q′ ≥ 13n2 (from Lemma 3.5).

It follows from Lemma 3.2 that, in order for r and ` to be odd, it suffices to

define q and q′ odd. Moreover, we note that n ≥ 4, since G is a cubic graph. For

a edge grained gadget Ej, there are exactly 2n + 4 intervals in M\ Ej intersecting

it. Hence, if we define q′ = 13n2 + 1, all the conditions on q′ are satisfied, since

13n2 +1 > 4n+8. As for p′, it suffices to define p′ = 2n+4+2q′+1 = 26n2 +2n+7.

56

Now, for a vertex grained gadget Hj
i , there are at most 2(n−1)+8 = 2n+6 intervals

in M\Hj
i intersecting it. Thus, in order to satisfy the conditions of Lemma 3.1, it

suffices to ensure q > 4n + 12 and p > 2q + 2n + 6. Considering the chosen values

for p′ and q′ above, we obtain that

α1 = 4n+ p′ + q′ = 39n2 + 6n+ 8 and α2 = 3(2n2 + n+ q′ + 2) = 45n2 + 3n+ 9.

Moreover, one can verify that 47n2 + 1 > max{4n+ 12, α1, α2} for n ≥ 4. Hence, it

suffices to define q = 47n2 + 1 and p = 2(47n2 + 1) + 2n+ 6 + 1 = 94n2 + 2n+ 9.

In the next section, we prove that the interval count of our reduction graph is

exactly 4, concluding therefore the proof of Theorem 3.1.

3.4.3 Bounding the Interval Count

Now, we finally prove that, for every cubic graphG and every pair of orderings πV , πE

of V (G) and of E(G), respectively, there exists an interval model for (G, πV , πE),

satisfying the conditions described in Section 3.4.1, whose interval count is bounded.

Upper bound

Let G be a cubic graph on n vertices and m = 3n/2 edges, πV = (v1, . . . , vn)

and πE = (e1, . . . , em) be orderings of V (G) and of E(G), respectively, and let G

denote the triple (G, πV , πE). We note that there exist infinitely many interval

models (possibly of distinct interval counts) satisfying the conditions described in

Section 3.4.1 for G. In other words,M(G) is not uniquely determined and, actually,

can be seem as a meta interval model. In what follows, we provide a construction

of an instance M′ of M(G) that has interval count 4.

For each j ∈ [m], let Sj denote the set of intervals related to the j-th region, i.e.,

Sj = Ej ∪
4⋃

`=1

C`
j ∪

n⋃

i=1

(Hj
i ∪ {L2j

i ∪ L2j−1
i }).

Next, we show how to accommodate Sj within the closed interval [tj, 6n − 2 + tj],

where tj = 4n·(j−1). Note that tj acts as a shifting function. Figure 3.12 exemplifies

the closed intervals in S1 ∪
⋃4
i=1H2

i of a graph on 4 vertices.

For each each l ∈ [n] and each j ∈ [m + 1], the intervals composing the vertex

grained gadget Hj
l are defined as follows:

� The long intervals in K ′(Hj
l) are equal to [2l− 2 + tj, 2l− 3

2
+ tj] and the short

intervals in S ′(Hj
l) are any choice of q distinct points within the corresponding

open interval (2l − 2 + tj, 2l − 3
2

+ tj);

57

� The long intervals in K ′′(Hj
l) are equal to [2l− 3

2
+ tj, 2l−1+ tj] and the short

intervals in S ′′(Hj
l) are any choice of q distinct points within the corresponding

open interval (2l − 3
2

+ tj, 2l − 1 + tj).

For each j ∈ [m], with ej = vivi′ and i < i′, the intervals C1
j , C

2
j , C

3
j , C

4
j , the

intervals composing the edge grained gadget Ej, and the link intervals are defined

as follows, respectively:

� The intervals C1
j and C2

j are equal to [2i − 1 + tj, 2i + 2n − 2 + tj], and the

intervals C3
j and C4

j are equal to [2i′ − 1 + tj, 2i
′ + 2n− 2 + tj];

� The long intervals in K ′(Ej) are equal to [2n + tj, 4n − 1 + tj] and the short

intervals in S ′(Ej) are any choice of p′ distinct points in the open interval

(2i+ 2n− 2 + tj, 2i
′ + 2n− 2 + tj);

� The long intervals in K ′′(Ej) are equal to [4n−1+ tj, 4n− 1
2

+ tj] and the short

intervals in S ′′(Ej) are any choice of p′ distinct points within the corresponding

open interval (4n− 1 + tj, 4n− 1
2

+ tj);

� For each l ∈ [n], the intervals L2j−1
l , L2j

l are equal to [2l−1+tj, 4n+2(l−1)+tj].

We remark that the open intervals described above are only used to locate the

closed intervals of length zero, but that the short intervals themselves are not open.

Figure 3.12: The closed intervals in S1 ∪
⋃4
i=1H2

i of a graph on 4 vertices. In this
example, we consider e1 to be equal to v3v4. Each colour represents a different
interval size. The short intervals are represented by the dots located inside the open
interval. Vertical lines mark the endpoints of the intervals in S1, while the green
vertical line marks the beginning of the intervals in S2.

One can verify that the closed intervals defined previously have the the following

lengths (see Figure 3.12).

1. Length 0: short intervals of all grained gadgets (dots in Figure 3.12);

2. Length 1/2: long intervals of each vertex grained gadget Hj
i , and long intervals

in K ′′(Ej) for each j ∈ [m] (red intervals in Figure 3.12);

58

3. Length 2n − 1: intervals C1
j , C

2
j , C

3
j , C

4
j and long intervals in K ′(Ej) for each

j ∈ [m] (blue intervals in Figure 3.12);

4. Length 4n − 1: intervals L2j−1
i , L2j

i for each i ∈ [n] and each j ∈ [m] (orange

intervals in Figure 3.12).

As a result, the resulting interval model M′ clearly has interval count 4. It

remains to prove that M′ is an instance of M(G), i.e. that M′ satisfies the condi-

tions imposed in Section 3.4.1. This is achieved through Lemma 3.6, whose proof is

omitted and deferred to Lemma 6 in Appendix E.

Lemma 3.6. Let G be a cubic graph. Then, there exists an interval model M(G)

of interval count 4 for G = (G, πV , πE), for every ordering πV and every ordering

πE of the vertex set and edge set of G, respectively.

Lower bound

We have just shown that, for every cubic graph G and every pair of orderings πV and

πE, there exists an interval model M(G) of interval count 4, where G denotes the

triple (G, πV , πE). On the other hand, we prove in the remainder of this section that

any graph isomorphic to GM(G) has interval count at least 4. For this, we show that

all such graphs contain as an induced subgraph a certain graph, which we denote

by H4, of interval count exactly 4. Next, we define the family {Hk}k≥2.

Let P5 = (u1, . . . , u5) be a path on 5 vertices. For every graph H ′, we let P5 ◦H ′
be the graph obtained from the disjoint union of P5 with H ′ by making u3, the

central vertex of P5, adjacent to every vertex of H ′. In other words, P5 ◦H ′ is the

graph with vertex set V (P5)∪V (H ′) and edge set E(P5)∪E(H ′)∪{u3v | v ∈ V (H ′)}.
Then, for every k ≥ 2, we let Hk be the graph defined recursively as follows (see

Figure 3.13): H2 = K1,3; and Hk = P5 ◦Hk−1 for k > 2.

(a) H2 = K1,3 (b) H3 = P5 ◦H2 (c) H4 = P5 ◦H3 (d) Hk = P5 ◦Hk−1

Figure 3.13: Graph Hk for k ≥ 2.

By induction on k, and based on the fact that H2 has interval count ex-

actly 2 cf. [108], one can prove that ic(Hk) = k for every k ≥ 2. We refer the

reader to Lemma 8 in Appendix E for the complete proof of this result.

Now, we finally show that, if G′ is a graph isomorphic to our reduction graph

GM(G), then G′ has an H4 as an induced subgraph. Then, let M′ be an inter-

val model of G′. Note that M′ exhibits the same intersection properties of M(G)

59

described in Section 3.4.1, otherwise G′ would not be isomorphic to GM(G). Con-

sequently, there exist orderings π′V and π′E of the vertex set and edge set of G,

respectively, for which M′ can be defined as a composition of vertex grained gad-

gets Hj
i for i ∈ [n] and j ∈ [m+1], edge grained gadgets Ej for j ∈ [m], link intervals

L2j−1
i , L2j

i for i ∈ [n] and j ∈ [m], and intervals C1
j , C

2
j , C

3
j , C

4
j for j ∈ [m]. Addi-

tionally, since the input graph G is cubic, there exists an edge ej = (vi, vi′) ∈ E(G)

such that, with respect to π′V and π′E, 1 < i < i′. Thus, let (see Figure 3.8):

� I1 and I2 be intervals in S ′′(Hj
1) and in K ′′(Hj

1), respectively;

� I3 be the link interval L2j−1
1 ;

� I4 and I5 be intervals in K ′(Hj+1
1) and in S ′(Hj+1

1), respectively;

� I ′1 and I ′2 be intervals in S ′′(Hj
i) and in K ′′(Hj

i), respectively;

� I ′3 be the interval C1
j ;

� I ′4 and I ′5 be intervals in K ′(Ej) and in S ′(Ej), respectively;

� J1, J2 and J3 be three distinct intervals in S ′(Hj
i+1); and

� J be an interval in K ′(Hj
i+1).

We note that the intervals described above exist and are well-defined inM′. More-

over, the interval graph related to the model comprised by such intervals is isomor-

phic to H4. More specifically, observe first that J = {J, J1, J2, J3} models K1,3.

Then, note that P = {I1, . . . , I5} and P ′ = {I ′1, . . . , I ′5} model paths on 5 vertices,

in this order. Finally observe that I ′3 is adjacent to every I ∈ J , while there are no

edges between J and P ′ \ {I ′3}; hence, J ∪ P ′ is a model for H3. Similarly, I3 is

adjacent to every I ∈ J ∪P ′, while there are no edges between J ∪P ′ and P \{I3};
hence J ∪P ′∪P is a model for H4. Therefore, G′ has an H4 as an induced subgraph,

as we wanted to prove.

3.5 Permutation Graphs

In this section, we prove that MaxCut also remains NP-complete on permuta-

tion graphs, settling a long-standing open problem from the Ongoing Guide to NP-

completeness by David S. Johnson [83]. Based on Adhikary et al.’s construction [1],

through a polynomial-time reduction from MaxCut on cubic graphs, we prove the

following theorem:

Theorem 3.2. MaxCut is NP-complete on permutation graphs.

60

3.5.1 Reduction Graph

Let G be a cubic graph on n vertices and m = 3n/2 edges, and let πV = (v1, . . . , vn)

and πE = (e1, . . . , em) be orderings of V (G) and E(G), respectively.

The values of p, q, p′, q′ used next are not the same as in Sections 3.3 and 3.4, and

they are properly defined later. For each vertex vi ∈ V (G), create a (p, q)-grained

gadget, Hi, and for each edge ej ∈ E(G), create a (p′, q′)-grained gadget Ej.
For simplicity, in the remainder of this section, we write S ′i, S

′′
i , K ′i and K ′′i

to denote the sets S ′(Hi), S
′′(Hi), K

′(Hi) and K ′′(Hi), respectively. Similarly, we

write S ′ej , S
′′
ej

, K ′ej and K ′′ej to denote the sets S ′(Ej), S ′′(Ej), K ′(Ej) and K ′′(Ej),
respectively. We recall that, for each i ∈ [n], the permutation model of Hi consists

in the pair of permutations {π1
i , π

2
i }, where π1

i = K ′iS
′
iS
′′
iK
′′
i and π2

i = S ′i
←−
K ′′i
←−
K ′iS

′′
i .

Analogously, for each j ∈ [m], the permutation model of Ej consists in the pair of

permutations {γ1
j , γ

2
j }, where γ1

j = K ′ejS
′
ej
S ′′ejK

′′
ej

and γ2
j = S ′ej

←−
K ′′ej
←−
K ′ejS

′′
ej

.

Now, for each edge ej = vivi′ , with i < i′, add four new vertices C1
i,j, C

2
i,j, C

1
i′,j and

C2
i′,j, called incidence vertices2. In what follows, we modify some of the permutations

representing grained gadgets in order to make C1
i,j, C

2
i,j (resp. C1

i′,j, C
2
i′,j) weakly

intersect Hi (resp. Hi′) and strongly intersect (resp. weakly intersect) Ej.
If vi is incident to the edges ej1 , ej2 , ej3 , with j1 < j2 < j3, then modify the

permutation π1
i , definingHi, to include the incidence vertices related to vi, as follows:

π1
i = K ′iS

′
iS
′′
i C

1
i,j1
C2
i,j1
C1
i,j2
C2
i,j2
C1
i,j3
C2
i,j3

K ′′i .

Similarly, for each edge ej = vivi′ , i < i′, modify the permutation γ1
j , defining Ej,

to include the incidence vertices related to ej, as follows:

γ1
j = K ′ej C

2
i′,jC

1
i′,j S

′
ej
C2
i,jC

1
i,j S

′′
ej
K ′′ej .

We do not modify π2
i and γ2

j , and keep denoting by π2
i the permutation

S ′i
←−
K ′′i
←−
K ′iS ′′i , and by γ2

j the permutation S ′ej
←−−
K
′′e
j

←−
K
′e
jS
′′
ej

. Finally, let G′ be the

permutation graph related to {Π,Π′}, where:

Π = π1
1 . . . π

1
nγ

2
1 , . . . , γ

2
m, and

Π′ = π2
1 . . . π

2
nγ

1
1 , . . . , γ

1
m.

Figure 3.14 illustrates our permutation model {Π,Π′}, focusing on the vertex grained

gadgets Hi and Hi′ , the edge grained gadget Ej, and the incidence vertices C1
i,j, C

2
i,j

and C1
i′,j, C

2
i′,j related to an edge ej = vivi′ , with i < i′.

2In Appendix F, such vertices are called link vertices and are denoted by L. However, we note
that they are not related to the notion of link intervals defined in Section 3.4.

61

Figure 3.14: Vertex and edge grained gadgets, and incidence vertices related to an
edge ej = vivi′ , with i < i′, in our permutation model {Π,Π′}.

Note that, if C is an incidence vertex of G′ and H is a vertex/edge grained gadget

of G′, then C and H are related to one another in exactly one of the following ways:

� The relative order between C and V (H) in Π is the reverse of their relative

order in Π′, and therefore case C is complete to V (H);

� The relative order between C and V (H) is the same in both Π and Π′, and

therefore C is anti-complete to V (H);

� C ∈ {C1
i,j, C

2
i,j} and H is a vertex grained gadget Hi, and therefore only the

relative orders between C and K ′′i are reversed in Π and Π′, i.e., C is complete

to K ′′i and anti-complete to V (Hi) \K ′′i ;

� C ∈ {C1
i,j, C

2
i,j} and H is an edge grained gadget Ej, with ej = vivi′ , i < i′, and

therefore the relative orders between C and K ′ej ∪ S ′ej are reversed in Π and

Π′, i.e., C is complete to K ′ej ∪S ′ej and anti-complete to V (Ej) \ (K ′ej ∪S ′ej); or

� C ∈ {C1
i′,j, C

2
i′,j} and H is an edge grained gadget Ej, with ej = vivi′ , i < i′,

and therefore only the relative orders between C and K ′ej are reversed in Π

and Π′, i.e., C is complete to K ′ej and anti-complete to V (Ej) \K ′ej .

As an additional remark, we note that the main difference of our permutation

graph from the Adhikary et al.’s interval graph is the fact that, in Adhikary et

al.’s interval graph, the incidence vertices form a clique, whereas some incidence

vertices are not adjacent in our permutation graph. Furthermore, for an edge ej =

vivi′ ∈ E(G), with i < i′, the incidence vertices C1
i,j, C

2
i,j (resp. C1

i′,j, C
2
i′,j) weakly

intersect (resp. strongly intersect) the edge grained gadget Ej in Adhikary et al.’s

interval graph, whereas in our permutation graph the incidence vertices C1
i,j, C

2
i,j

(resp. C1
i′,j, C

2
i′,j) strongly intersect (resp. weakly intersect) Ej.

3.5.2 Maximum Cut of the Reduction Graph

We now prove that mc(G) ≥ k if and only if mc(G′) ≥ φ(n, k), where φ is a suitable

function, properly defined at the end of this subsection.

62

First, we need to introduce the notion of well-behaved3 cuts for G′. We say

that a maximum cut [A,B] of G′ is well-behaved if, for every i ∈ [n], Hi is either A-

partitioned or B-partitioned by [A,B], and for every edge ej ∈ E(G), with ej = vivi′

and i < i′, the following conditions are satisfied:

1. If Hi is A-partitioned, then {C1
i,j, C

2
i,j} ⊆ B; otherwise, {C1

i,j, C
2
i,j} ⊆ A.

2. If {C1
i,j, C

2
i,j} ⊆ B, then Ej is A-partitioned; otherwise, Ej is B-partitioned.

By counting the possible number of edges in the cut-set, one can show that, if

G′ is well-valued and, in addition, q > 6n + p′ and p′ > 2q′, then every maximum

cut [A,B] of G′ is well-behaved. For a detailed proof of this result, we refer the

reader to Section 4 in Appendix F. Assume in the remainder of this section that G′

is well-valued and q > 6n+ p′ and p′ > 2q′.

Then, for each well-behaved cut [A,B] of G′, we let Φ(A,B) be the cut [X, Y]

of G defined as follows: for each vertex vi ∈ V (G),

vi ∈ X if and only if Hi is A-partitioned by [A,B].

One can readily verify that Φ is well-defined and, actually, consists in a bijective

relation between the well-behaved cuts of G′ and the cuts of G.

Lemma 3.7 establishes that, for q′ large enough, the size of a well-behaved cut

[A,B] of G′ grows as a function of the size of Φ−1(A,B). The following notation is

useful in the proof of this lemma. For each edge ej ∈ E(G), with ej = vivi′ , we let

C(ej) = {C1
i,j, C

2
i,j, C

1
i′,j, C

2
i′,j};

and for each vertex vi ∈ V (G), we let

C(vi) = {C1
i,j, C

2
i,j | ej is incident to vi}.

Also, we denote by C =
⋃m
j=1C(ej) the set of all incidence vertices.

Lemma 3.7. Let G be a cubic graph, and πV and πE be orderings of V (G) and πE,

respectively. Also, let {Π,Π′} be the reduction permutation model obtained from G,

πV and πE, as previously defined, and G′ be the permutation graph of {Π,Π′}. For

every positive integer k, if [A,B] is a well-behaved cut of G′ and 2q′ > 9n2, then

|EG(X, Y)| ≥ k if and only if |EG′(A,B)| ≥ φ(n, k),

where [X, Y] = Φ(A,B) and φ is a well-defined function.

3This is analogous to the notion of locally well-behaved cut, defined in Section 3.4.2, for the
interval graph GM(G).

63

Proof. We count the number of edges in EG′(A,B) as a function of n, m, p, q, p′, q′

and the size of the cut-set EG(X, Y).

First, consider a vertex vi of G. By construction, there are 2pq+ q2 edges in the

cut-set among the vertices of Hi. Additionally, since G is cubic, there are exactly 6

incidence vertices weakly intersecting Hi, while all other incidence vertices are either

complete or anti-complete to V (Hi). Note also that the number of incidence vertices

complete to V (Hi) is exactly equal to 6(i−1); these are the incidence vertices related

to {v1, . . . , vi−1}. This gives us a total of 6[q + (i − 1)(p + q)] edges between the

vertices of Hi and the vertices belonging to C in the cut-set. Summing up these

values for every vi ∈ V (G), we obtain a total of

α1 = n[2pq + q2 + 6q] + 6
n∑

i=1

((i− 1)(p+ q)) = n[2pq + q2 + 6q + 3(p+ q)(n− 1)]

edges in the cut-set EG′(A,B) incident to vertex grained gadgets.

Now, let ej ∈ E(G), with ej = vivi′ and i < i′. By construction, there are

2p′q′ + (q′)2 edges of the cut-set among the vertices of Ej, and 2p′ edges of the cut-

set between C1
i,j, C

2
i,j and the vertices of Ej. Moreover, note that there are exactly

4(m−j) incidence vertices that cover and, therefore, are complete to Ej; these are the

incidence vertices related to {ej+1, . . . , em}. This gives us a total of 4(m− j)(p′+ q′)

edges between the vertices of Ej and the vertices belonging to C \ C(ej).

Suppose without loss of generality that Hi is A-partitioned (the count is analo-

gous if it is B-partitioned). Then, vi ∈ X. Moreover, since [A,B] is well-behaved,

we have that {C1
i,j, C

2
i,j} ⊆ B and that Ej is A-partitioned. Hence, if Hi′ is A-

partitioned, then {C1
i′,j, C

2
i′,j} ⊆ B. Consequently, in this case, there are no edges

between the vertices C1
i′,j, C

2
i′,j and the vertices of Ej in the cut-set EG′(A,B). Also,

note that vi′ ∈ X, and thus ej 6∈ EG(X, Y). On the other hand, if Hi′ is B-

partitioned, then {C1
i′,j, C

2
i′,j} ⊆ A. This implies that, in this case, there are 2q′

additional edges in the cut-set EG′(A,B), namely: the edges between the vertices

C1
i′,j, C

2
i′,j and the vertices in K ′ej . Furthermore, vi′ ∈ Y , and thus ej ∈ EG(X, Y).

Summing up these values for every ej ∈ E(G), we obtain a total of α2+2q′|EG(X, Y)|
edges in the cut-set EG′(A,B) incident to edge grained gadgets, where

α2 = m[2p′q′ + (q′)2 + 2p′] +
∑m

j=1 (4(m− j)(p′ + q′))

= m[2p′q′ + (q′)2 + 2p′ + 2(p′ + q′)(m− 1)].

Finally, note that there are at most |A∩C|·|B∩C| edges among incidence vertices

in the cut-set. Note also that |A ∩ C| = 6|X| since each vertex in X is related to 6

incidence vertices, which are all placed in A. Similarly, we have |B∩C| = 6|Y |. This

gives us at most 36|X| · |Y | ≤ 9n2 edges in the cut-set between incidence vertices.

64

Putting everything together, we obtain:

α1 + α2 + 2q′|EG(X, Y)| ≤ |EG′(A,B)| ≤ α1 + α2 + 2q′|EG(X, Y)|+ 9n2.

Thus, base on the facts that p, q, p′, q′ are defined depending exclusively on n, we

let φ(n, k) = α1 + α2 + 2q′k. Now, we finally prove that |EG(X, Y)| ≥ k if and only

if |EG′(A,B)| ≥ φ(n, k). First, suppose that |EG(X, Y)| ≥ k. Then, it follows from

the first inequality that |EG′(X, Y)| ≥ α1 +α2 +2q′k = φ(n, k). Conversely, suppose

that |EG′(A,B)| ≥ φ(n, k) = α1 + α2 + 2q′k. Then, it follows from the second

inequality that |EG(X, Y)| ≥ k−9n2/2q′. Since we are assuming that 2q′ > 9n2, we

obtain that k − 9n2/2q′ > k − 1. Therefore, |EG(X, Y)| ≥ k.

Now, to conclude the proof of Theorem 3.2, it only remains to properly define

the values of p, q, p′ and q′. Note that:

� For every grained gadget H, the total number of vertices in V (G′)\H adjacent

to a vertex of H is at most 6n (these are exactly the incidence vertices).

� For every vertex grained gadget H, the total number of vertices adjacent to

some vertex u ∈ S ′(H) is exactly q + 2h, for some positive integer h (this

is because the number of incidence vertices adjacent to the vertices in S ′(H)

is always even). The same holds for the number of vertices adjacent to the

vertices in S ′′(H). We then get that the parity of ` and r in the conditions of

Lemma 3.1 applied to H depends only on the parity of q.

� Similarly, if H is an edge grained gadget, then the parity of the total number

of vertices adjacent to some u ∈ S ′(H) ∪ S ′′(H) is equal to the parity of q′.

Therefore, for the graph G′, the necessary conditions of Lemma 3.1 translate

to: q > 12n and q′ > 12n; p > 2q + 6n and p′ > 2q′ + 6n; and q and q′ are odd.

Additionally, we need to ensure: q > 6n + p′ and p′ > 2q′ > 9n2. Hence, consider:

q′ = 5n2 + 1; p′ = 11n2 + 6n; q = 12n2 + 12n+ 1; and p = 25n2 + 30n. Since n ≥ 4,

one can readily verify that these values satisfy all the required conditions.

3.6 Concluding Remarks

In this chapter, we have presented the first complexity result for MaxCut when

restricted to interval graphs of bounded interval count. More specifically, we have

settled the problem as NP-complete on interval graphs of interval count 4. This

is an important improvement towards filling the complexity gap between interval

graphs and unit interval graphs (i.e., interval graphs of interval count 1). In this

65

sense, it is also worth mentioning the very recent proof due to Barsukov, Bose, and

Roy, available in the preprint [3], which claims to extend our result, by showing

that the problem is still NP-complete on interval graphs of interval count at most 2.

Despite all these advancements, it remains a challenging question to determine the

complexity of MaxCut on interval graphs of interval count 1.

Additionally, we have proved that MaxCut remains NP-complete on permuta-

tion graphs, answering a long-standing open question from [83]. Our proof is built

on the notion of grained gadgets, described in Section 3.2, which also plays an im-

portant role in Adhikary et al.’s construction for interval graphs [1]. Even though

grained gadgets are both interval and permutation graphs, we have shown in Sec-

tion 3.3 that being permutation is not a property that holds for the full construction

of Adhikary et al. [1]. In addition, through the same arguments, one can verify that

this property does not hold for our interval graph of bounded interval count either.

On the other hand, one could wonder whether our reduction permutation graph is

interval. However, the answer to that is no, as we argue next.

Let G be a cubic graph, and πV = (v1, . . . , vn) and πE = (e1, . . . , em) be arbitrary

orderings of V (G) and E(G), respectively. Let j1, j2, j3 be the indices of the edges

incident to v1, with j1 < j2 < j3. Also, let vi be the other endpoint of ej2 . We

show that the permutation graph G′, with permutation model {Π,Π′}, obtained

from (G, πV , πE) as described in Section 3.5.1, has a C4 as an induced subgraph.

This implies that G′ is not chordal, and hence not interval either [74]. Observe

Figure 3.15 to follow our argument. Let a be equal to C1
1,j1

, b be any vertex in K ′′i ,

c be equal to C1
i,j2

, and d be any vertex in K
′e
j1

. Since j2 > j1 and i > 1, the relative

order between a and c in Π is the same as in Π′; hence ac /∈ E(G′). Also, the relative

order in Π between a and any vertex of Hi is reversed in Π′, the same holds between

c and any vertex belonging to K ′′i ; hence {ab, bc} ⊆ E(G′). Similarly, the relative

order between a and any vertex belonging to K
′e
j1

in Π is reversed in Π′, and the

same holds between c and any vertex of Ej1 ; hence {ad, cd} ⊆ E(G′). Finally, since

j2 > j1, the relative order between b and d in Π is the same as in Π′, and therefore

bd /∈ E(G′), thus finishing our argument.

Figure 3.15: Existence of a C4 = (a, b, c, d) as an induced subgraph in our permuta-
tion graph.

The previous paragraph establishes that, for any chosen orderings of V (G) and

E(G), the graph constructed in Section 3.5.1 contains a C4 as an induced subgraph.

Since it is known that the class of C4-free co-comparability graphs is precisely the

66

class of interval graphs [72], and that the class of permutation graphs is equal to

the class of comparability co-comparability graphs [105], we obtain that interval

permutation graphs are exactly the class of C4-free permutation graphs.

A good question is whether there is a construction that produces a permutation

graph that is also C4-free (and hence interval). Up to our knowledge, the largest

class in the intersection of permutation and interval graphs for which the com-

plexity is known is the class of the trivially perfect graphs, on which MaxCut is

polynomial-time solvable thanks to the algorithm given for cographs [10], a subclass

of permutation graphs that is a superclass of trivially perfect graphs [73].

67

Chapter 4

Zig-Zag Number

In this chapter, we analyse the computational complexity of the problem of com-

puting the zig-zag number of a directed graph.

Structural graph parameters have been crucial in the development of parame-

terized complexity theory. Indeed, many problems that are hard on general graphs

become tractable when parameterized by such parameters [28, 30]. However, one of

their limitations is the fact that, when dealing with directed graphs, they do not take

the direction of edges into account. Then, in [84], Johnson, Robertson, Seymour and

Thomas initiated a quest for the development of width measures that explicitly take

the direction of edges into consideration, which motivated the development of sev-

eral width measures for directed graphs. In particular, the notion of zig-zag number

was introduced in [45] as an attempt to provide a unified algorithmic framework for

directed graphs. Nevertheless, little was known about the complexity of computing

the zig-zag number of a directed graph.

We provide the first results in this direction. We prove that k-zig-zag number,

the problem of deciding whether a directed graph has zig-zag number at most k, is

in NP for each fixed k ≥ 0. Although for most of the natural decision problems this

is an almost trivial result, settling k-zig-zag number in NP is surprisingly difficult.

Finally, we prove that 2-zig-zag number is an already NP-hard problem.

This chapter is organised as follows. In Section 4.1, we define the notion of

zig-zag number of a directed graph. In Section 4.2, we show that k-zig-zag num-

ber can be solved non-deterministically in time |G|O(k), implying therefore the NP-

membership of the problem for each fixed k. On the other hand, in Section 4.3, we

prove that 2-zig-zag number is an NP-hard problem. This hardness proof is built

on a polynomial-time reduction from Positive not all equal 3SAT. Finally, in

Section 4.4, we present the concluding remarks of this chapter, focusing on the main

open questions.

68

4.1 The Zig-Zag Number of a Directed Graph

Let n be a positive integer, G be a directed graph on n vertices and π : V (G)→ [n]

be a bijection. For simplicity, assume that V (G) = {u1, . . . , un} and π(ui) = i for

each vertex ui ∈ V (G).

For each i ∈ [n− 1], we let SG(π, i) = EG({u1, . . . , ui}) be the i-th cut-set of G

with respect to π, i.e. the set of all edges of G between the vertices in {u1, . . . , ui}
and the vertices in {ui+1, . . . , un}. The cutwidth of G with respect to π is defined as

cw(G, π) = max
i∈[n−1]

|SG(π, i)|,

and the cutwidth of G is defined as the minimum cw(G, π) over all bijections

π : V (G)→ [n]. Let P be a directed path of G. We let zn(G, π, P) be the maximum

number of edges of P that are part of the cut-set SG(π, i), where the maximum is

taken over all i ∈ [n− 1]. More formally,

zn(G, π, P) = max
i∈[n−1]

|E(P) ∩ SG(π, i)|.

Then, we let zn(G, π) be the maximum zn(G, π, P) over all directed paths P of G.

Finally, we define the zig-zag number of G, denoted by zn(G), as the minimum

zn(G, π) over all bijections π : V (G)→ [n].

Figure 4.1 exemplifies a directed graph G and a bijection π : V (G) → [n] such

that zn(G, π) = 2. In fact, one can verify that zn(G) = zn(G, π) = 2.

(a) zn(G, π, P1) = 1 (b) zn(G, π, P2) = 2

Figure 4.1: Directed graph G, bijection π : V (G) → {1 . . . , 5}, where i < j iff
ui <π uj, and directed paths P1 and P2 (in bold), such that zn(G, π, P1) = 1 and
zn(G, π, P2) = 2, respectively.

It is straightforward from the definition of zig-zag number that a directed graph

has zig-zag number 0 if and only if it does not contain any edge. Moreover, one can

verify that every directed acyclic graph with at least one edge has zig-zag number 1.

Indeed, it is known that a directed graph G is directed acyclic if and only if it admits

a topological ordering, i.e. a linear order <π such that u <π v for each (u, v) ∈ E(G).

Thus, one can verify that, if G is a directed acylic graph and π corresponds to a

topological ordering of G, then zn(G, π) = 1. In other words, graphs of zig-zag

number at least 2 must contain directed cycles. On the other hand, every directed

graph G with a directed cycle of length at least 3 necessarily has zig-zag number

69

greater than or equal to 2. In this case, for each bijection π : V (G) → [|G|], there

always exist three distinct vertices a, b, c ∈ V (G) such that (a, b, c) is a directed path

of G, where a <π b and c <π b. Intuitively, the zig-zag number of a directed graph

measures how much its directed cycles are nested.

Next, we formally define the Zig-zag number problem.

Input: A directed graph G and a non-negative integer k.

Question: Is zn(G) ≤ k? In other words, does there exist a bijection

π : V (G)→ [|G|] such that, for every directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

Zig-zag number

In particular, for each fixed non-negative integer k, we define k-zig-zag number

as the decision problem that, given a directed graph G, asks whether zn(G) ≤ k.

More formally:

Input: A directed graph G.

Question: Is zn(G) ≤ k? In other words, does there exist a bijection

π : V (G)→ [|G|] such that, for every directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

k-zig-zag number

4.2 NP-Membership for Fixed k

In this section, we prove that k-zig-zag number is in NP for each fixed k. We

remark that a naive application of the definition of zig-zag number of a directed

graph naturally leads to a ΣP
2 -upper bound. To circumvent this and settle k-zig-zag

number in NP, we show how to replace the inner universal quantifier, which iterates

over all directed paths, with an XP-time deterministic computation corresponding

to a guessed linear order of the vertices of the input graph and the integer k. More

specifically, we prove the following theorem.

Theorem 4.1. Let G be a directed graph and k be a non-negative integer. One can

non-deterministically decide in time |G|O(k) whether zn(G) ≤ k.

In order to prove Theorem 4.1, we reduce the problem of deciding whether

zn(G, π) ≥ k + 1, for a guessed bijection π : V (G) → [|G|], to the Reachability

problem in a suitably defined directed acyclic graph, denoted by DG(π, k), which we

70

call compatibility graph of the triple (G, π, k). The formal definition of such a graph

is properly given later on. Next, we describe how this section is organised.

In Section 4.2.1, we define the concept of compatible subcut sequence of a directed

graph G with respect to a bijection π : V (G) → [|G|]. Based on that, we provide a

necessary and sufficient condition for zn(G, π) ≥ k + 1. Then, we formally define in

Section 4.2.2 the notion of compatibility graph, and we introduce a characterization

relating the existence of the compatible subcut sequences of interest to the existence

of directed paths with |G| − 1 vertices in the compatibility graph of (G, π, k).

4.2.1 Compatible Subcut Sequence

Let G be a directed graph on n vertices and π : V (G) → [n] be a bijection. For

simplicity, assume throughout this section that V (G) = {u1, . . . , un} and π(ui) = i

for each vertex ui ∈ V (G).

The cut sequence of G with respect to π is defined as the sequence

γG,π = (SG(π, 1), . . . , SG(π, n− 1)).

For each i, j ∈ [n − 1], with i < j, and each two subcuts S ′i ⊆ SG(π, i) and S ′j ⊆
SG(π, j), we say that S ′i is compatible with S ′j, and we denote this fact by S ′i ≺G,π S ′j,
if for each e = (u, v) ∈ E(G) the two conditions below are observed.

1. If e ∈ S ′i, and either π(u) > j or π(v) > j, then e ∈ S ′j.

2. If e ∈ SG(π, i) \ S ′i, then e 6∈ S ′j.

Intuitively, Conditions 1 and 2 say that, if S ′i and S ′j are two compatible subcuts,

then it holds that e belongs to S ′i if and only if it belongs to S ′j, for any edge e

belonging simultaneously to the cut-sets SG(π, i) and SG(π, j).

A compatible subcut sequence of γG,π is a sequence of subcuts

γ′ = (S ′1, . . . , S
′
n−1)

such that S ′i ⊆ SG(π, i) for each i ∈ [n− 1], and S ′j ≺G,π S ′j+1 for each j ∈ [n− 2].

We note that, based on Conditions 1 and 2 described above, if S ′i and S ′j are

two subcuts in a same compatible subcut sequence, then there do not exist any

inconsistency with respect to the edges that belong to S ′i and to S ′j.

We let Γ(γG,π) denote the set of all compatible subcut sequences of γG,π.

For every γ′ = (S ′1, . . . , S
′
n−1) ∈ Γ(γG,π), we define the width of γ′ as

ω(γ′) = max
i∈[n−1]

|S ′i|.

71

If E ′ =
⋃
i∈[n−1] S

′
i 6= ∅, then we define G[γ′] = G[E ′] as the directed graph induced

by E ′. In particular, we remark that γG,π is a compatible subcut sequence itself of

width cw(G, π) and that G[γG,π] consists in the directed graph obtained from G by

removing all of its isolated vertices.

The next lemma, which plays a central role in the proof of Theorem 4.1, states

that deciding whether zn(G, π) ≥ k + 1 is equivalent to deciding whether there is a

compatible subcut sequence of γG,π of width at least k+1, whose associated directed

graph is a directed path.

Lemma 4.1. Let G be a directed graph, π : V (G) → [|G|] be a bijection and k be

a non-negative integer. Then, zn(G, π) ≥ k + 1 if and only if there is a compatible

subcut sequence γ′ = (S ′1, . . . , S
′
|G|−1) ∈ Γ(γG,π) such that ω(γ′) ≥ k + 1 and G[γ′] is

a directed path.

Proof. First, suppose that zn(G, π) ≥ k + 1, and let P be a directed path of G

such that zn(G, π, P) ≥ k + 1. Consider the sequence γ′ = (S ′1, . . . , S
′
|G|−1) of

subcuts such that S ′i = E(P) ∩ SG(π, i) for each i ∈ [|G| − 1]. We prove that γ′

is a compatible subcut sequence of γG,π. In other words, we prove that S ′i ≺G,π
S ′i+1 for each i ∈ [|G| − 2]. Note that, if for some i ∈ [|G| − 2] there exists an

edge e ∈ SG(π, i) \ S ′i, then e ∈ E(G) \ E(P) and, consequently, e 6∈ S ′i+1. Now,

suppose that for some i ∈ [|G| − 2] there exists an edge e = (u, v) ∈ S ′i such that

either π(u) > i + 1 or π(v) > i + 1. Clearly, e ∈ E(P). Moreover, note that

e ∈ SG(π, i + 1), and thus e ∈ S ′i+1. Therefore, γ′ is indeed a compatible subcut

sequence of γG,π. Additionally, by the choice of P and the construction of γ′, it

follows that ω(γ′) = zn(G, π, P) ≥ k + 1 and that G[γ′] is equal to P , which is a

directed path.

Conversely, suppose that there exists a compatible subcut sequence γ′ =

(S ′1, . . . , S
′
|G|−1) of γG,π such that ω(γ′) ≥ k + 1 and G[γ′] is a directed path. Thus,

there exists i ∈ [|G| − 1] such that |S ′i| ≥ k + 1. As a result, if P = G[γ′], then

zn(G, π, P) ≥ |S ′i| ≥ k + 1. Therefore, zn(G, π) ≥ zn(G, π, P) ≥ k + 1.

4.2.2 Compatibility Graph

In this section, we define the notion of compatibility graph. Intuitively, each directed

path with |G|−1 vertices of the compatibility graph DG(π, k) corresponds to a com-

patible subcut sequence γ′ of γG,π satisfying the conditions described in Lemma 4.1.

More specifically, the vertices of DG(π, k) consist in special tuples which, along with

the directed edges between them, define a dynamic programming table. This ta-

ble stores all the information needed to ensure that, if there is a directed path in

DG(π, k) with |G| − 1 vertices, then there exists a compatible subcut sequence γ′ of

γG,π such that ω(γ′) ≥ k + 1.

72

In order to capture the mentioned property, we partition the vertex set of

DG(π, k) into |G| − 1 distinct levels, such that each level i ∈ [|G| − 1] is associ-

ated with the cut-set SG(π, i) and there is a directed edge in DG(π, k) from a vertex

u to a vertex v only if u belongs to a level i and v belongs to the level i + 1, and

some additional constraints (described in Section 4.2.2) are satisfied. The vertices

in the level i = 1 are called initial, the vertices in a level i ∈ [|G| − 1] \ {1, |G| − 1}
are called intermediary, and the vertices in the level i = |G| − 1 are called final.

We note that, by definition, the initial vertices of DG(π, k) have in-degree 0 and the

final vertices of DG(π, k) have out-degree 0. Figure 4.2 illustrates the partitioning of

the vertex set of the compatibility graph DG(π, k) into these |G| − 1 distinct levels.

Figure 4.2: A compatibility graph.

One can alternatively regard DG(π, k) as an acyclic finite automaton — with

transition set defined by the adjacency relation described in Section 4.2.2. From

this perspective, the initial vertices represent the initial states of the automaton and

the final vertices represent the final states of the automaton.

The following immediate observation provides the basis for the definition of com-

patibility graph.

Observation 4.1. A non-trivial directed graph P is a directed path if and only if it

satisfies the following four conditions:

I. P has exactly one vertex, called source vertex, of in-degree 0 and out-degree 1;

II. P has exactly one vertex, called target vertex, of in-degree 1 and out-degree 0;

III. All the other vertices of P have in-degree 1 and out-degree 1;

IV. P is weakly connected.

In particular, for a compatible subcut sequence γ′ of γG,π, we have that G[γ′]

is a directed path if and only if it satisfies Conditions (I)–(IV). Based on that, let

BG(π, k) be the set consisting of all tuples of the form

ui = (i, S ′i, φi, ϕi,Si, τi, ψi),

73

where i ∈ [n − 1], S ′i is a subcut of SG(π, i) with cardinality at most k + 1, Si is

either an empty set or a partition of S ′i, φi, ϕi, τi ∈ {0, 1, 2} are ternary flags and

ψi ∈ {0, 1} is a boolean flag. We remark that, for each i ∈ [n− 1], there are at most

nO(k) distinct tuples ui ∈ BG(π, k). Indeed, for each i ∈ [n− 1], the cut-set SG(π, i)

has at most 2i(n− i) ≤ n2/2 directed edges, which is the maximum possible number

of directed edges between the vertices belonging to {u1, . . . , ui} and the vertices

belonging to {ui+1, . . . , un}. Thus, SG(π, i) has at most
(
n2/2
k+1

)
= O

(
n2k+2

)
distinct

subcuts S ′i of cardinality at most k + 1, and each such a subcut S ′i admits at most

(k + 1)O(k) distinct partitions.

Let i ∈ [n − 1] and pi = (1, S ′1, φ1, ϕ1,S1, τ1, ψ1), . . . , (i, S ′i, φi, ϕi,Si, τi, ψi) be a

sequence of tuples, such that S ′j is compatible with S ′j+1 for each j ∈ [i− 1]. Then,

let Hi be the subgraph of G with vertex set V (Hi) = {u1, . . . , ui} ∪Xi and edge set

E(Hi) = S ′1∪· · ·∪S ′i, whereXi denotes the set of endpoints of the edges in S ′1∪· · ·∪S ′i.
Note that Hi may contain isolated vertices. For instance, consider the compatible

subcut sequence γ′ illustrated in Figure 4.3. In this example, H1 is the trivial

directed graph containing only the vertex u1, and H4 is the directed graph with

vertex set V (H4) = {u1, . . . , u4} ∪ {u5, u6, u8} and edge set E(H4) = {e1, . . . , e5}.

Figure 4.3: Example of a compatible subcut sequence: γ′ = (S ′1, . . . , S
′
11), where

S ′1 = ∅, S ′2 = {e1}, S ′3 = {e1, e2, e3}, S ′4 = {e1, e2, e3, e4, e5}, S ′5 = {e1, e2, e5},
S ′6 = {e1, e2}, S ′7 = {e1, e2, e6}, S ′8 = {e6}, S ′9 = ∅, S ′10 = ∅, and S ′11 = {e7}.

Intuitively, the ternary flag φi (resp. the ternary flag ϕi) informs whether there

exist zero, one, or more than one vertices from {u1, . . . , ui} that are source vertices

(resp. target vertices) of Hi.

The partition Si represents the set of all non-trivial weakly connected components

of Hi, restricted to the subcut S ′i, that are defined by only taking into account the

vertices from {u1, . . . , ui}. In other words, two edges e, e′ ∈ S ′i belong to a same

part of Si if and only if there exists an undirected path of Hi between an endpoint

of e and an endpoint of e′ that only uses vertices from {u1, . . . , ui}. For instance,

considering the compatible subcut sequence γ′ illustrated in Figure 4.3, we have

that S1 = ∅, S2 = {{e1}}, S3 = {{e1}, {e2, e3}}, S4 = {{e1}, {e2, e3}, {e4, e5}},
S5 = {{e1}, {e2, e5}}, S6 = {{e1}, {e2}}, S7 = {{e1}, {e2}, {e6}}, S8 = {{e6}},
S9 = ∅, S10 = ∅, and S11 = {{e7}}. We remark that, if two distinct edges e, e′ ∈ S ′i
have the vertex ui as an endpoint, then e and e′ belong to the same part of Si.

74

However, the converse does not hold: possibly, e and e′ belong to the same part of

Si, while e and e′ do not share any endpoint. Indeed, consider for instance the edges

e2 and e5 depicted in Figure 4.3. These edges do not share any endpoint, but they

do belong to the same part of S5, since there is an undirected path in H5 between

u3 and u4, which are endpoints of e2 and e5, respectively.

The ternary flag τi informs whether there exist zero, one, or more than one

non-trivial weakly connected components of Hi whose vertices are contained in

{ui+1, . . . , un}. For instance, considering again the compatible subcut sequence γ′

illustrated in Figure 4.3, we have that τi = 0 for each i ∈ {1, . . . , 7}, τ8 = 1, and

τi = 2 for each i ∈ {9, 10, 11}.
Finally, the boolean flag ψi informs whether or not there exists a subcut of width

k + 1 among the subcuts S ′1, . . . , S
′
i.

Initial, Final and Intermediary tuples

Now, we formally present the notions of initial, final and intermediary tuples. Such

tuples define a proper subset of BG(π, k), which is precisely equal to the vertex

set of the compatibility graph DG(π, k). More specifically, the initial tuples, final

tuples and intermediary tuples correspond to the initial vertices, final vertices and

intermediary vertices of DG(π, k), respectively.

Let u = (i, S ′i, φi, ϕi,Si, τi, ψi) ∈ BG(π, k). Intuitively, u is called initial (resp.

final) if i = 1 (resp. i = n − 1) and the values assigned to the parameters S ′i, φi,

ϕi, Si, τi and ψi establish a valid configuration with respect to the semantic of each

parameter itself and with respect to Conditions (I)–(IV).

Thus, we say that u is initial if i = 1 and the following conditions are satisfied:

1. Vertex u1 has at most one in-edge and at most one out-edge in S ′1;

2. If u1 has no in-edge and one out-edge in S ′1, then φ1 = 1 and ϕ1 = 0;

3. If u1 has one in-edge and no out-edge in S ′1, then φ1 = 0 and ϕ1 = 1;

4. If u1 has one in-edge and one out-edge in S ′1 or does not have any incident

edge in S ′1, then φ1 = 0 and ϕ1 = 0;

5. If S ′1 = ∅, then S1 = ∅; otherwise, S1 = {S ′1};

6. τ1 = 0;

7. If |S ′1| = k + 1, then ψ1 = 1; otherwise, ψ1 = 0.

On the other hand, we say that u is final if i = n−1 and the following conditions

are satisfied:

75

1. Vertex un has at most one in-edge and at most one out-edge in S ′n−1;

2. If un has no in-edge and one out-edge in S ′n−1, then φn−1 = 0 and ϕn−1 = 1;

3. If un has one in-edge and no out-edge in S ′n−1, then φn−1 = 1 and ϕn−1 = 0;

4. If un has one in-edge and one out-edge in S ′n−1 or does not have any incident

edge in S ′n−1, then φn−1 = 1 and ϕn−1 = 1;

5. |Sn−1| ≤ 2, and if |Sn−1| = 1, then |S ′n−1| = 1;

6. τn−1 ≤ 1, and if τn−1 = 1, then S ′n−1 = ∅;

7. ψn−1 = 1.

Finally, we say u is intermediary if i ∈ [n− 1] \ {1, n− 1}.

Compatibility relation

Let u = (i, S ′i, φi, ϕi,Si, τi, ψi) and v = (j, S ′j, φj, ϕj,Sj, τj, ψj) be a pair of tuples

from BG(π, k). We say that u is compatible with v, and we denote such a fact

by u v, if the following conditions are satisfied: j = i + 1, S ′i ≺G,π S ′j, and u

and v satisfy the Vertex degree, Connectedness and Minimum subcut width rules,

described next. These rules are defined in a way that, for any sequence (u1, . . . , un−1)

of tuples from BG(π, k), such that ui is compatible with ui+1 for each i ∈ [n − 2],

there exists a unique associated compatible subcut sequence γ′ ∈ Γ(γG,π).

The intuition behind the Vertex degree and Connectedness rules is ensuring

that, if γ′ is the subcut sequence associated with a directed path (u1, . . . , un−1)

in DG(π, k), then G[γ′] satisfies Conditions (I)–(IV); and, the intuition behind the

Minimum subcut width rule is ensuring that the width of any such compatible subcut

sequences γ′ is at least k + 1. In a nutshell, each group of rules corresponds to the

computation of the related parameters φj, ϕj, τj, Sj, ψi, which are determined based

on the values of φi, ϕi, τi, Si, ψi, and on the edges in S ′i ∪ S ′j.

Vertex degree rules These rules mainly correspond to the computation of the

flags φj and ϕj. In particular, φj (resp. ϕj) is updates according to whether the

vertex uj is a new source (resp. target vertex).

1. The vertex uj has at most one in-edge and at most one out-edge in S ′i ∪ S ′j.

2. If uj has no in-edge and one out-edge in S ′i ∪S ′j, then φj = min{2, φi + 1} and

ϕj = ϕi.

3. If uj has one in-edge and no out-edge in S ′i ∪ S ′j, then φj = φi and ϕj =

min{2, ϕi + 1}.

76

4. If uj has one in-edge and one out-edge in S ′i∪S ′j or does not have any incident

edge in S ′i ∪ S ′j, then φj = φi and ϕj = ϕi.

Connectedness rules These rules mainly correspond to the computation of the

flag τj and of the partition Sj.

1. If S ′i \ S ′j = ∅ and uj has no incident edge in S ′j (see Figure 4.4a), then τj = τi

and Sj = Si.

2. If S ′i \ S ′j = ∅ but uj has some incident edge in S ′j (see Figure 4.4b), then

τj = τi and Sj = Si ∪
{
S ′j \ S ′i}.

3. If S ′i \ S ′j 6= ∅ and S ′j 6= ∅ (see Figures 4.4c and 4.4d), then τj = τi and

Sj = (Si \Q′j)∪Qj, where Q′j denotes the collection of all sets in Si that have

at least one edge in S ′i with uj as an endpoint, i.e.

Q′j =
{
Q ∈ Si : Q ∩ (S ′i \ S ′j) 6= ∅

}
,

and Qj denotes the singleton collection whose set comprises all edges in S ′j
with uj as an endpoint, along with all edges in S ′j that belong to a set of Q′j,
i.e.

Qj =
{

(S ′j \ S ′i) ∪
(⋃

Q∈Q′j Q ∩ S
′
j

)}
.

In this case, we further require Qj 6= ∅.

Informally, Q′j represents the set of non-trivial weakly connected components

restricted to S ′i that have at least one edge in S ′i with uj as an endpoint. Since,

when considering the subcut S ′j, all such components contain uj as a common

vertex, they actually form a single non-trivial weakly connected component

restricted to S ′j. This single component is represented by Qj, which, besides

the edges that are already present in S ′i, contains all the edges in S ′j with uj

as an endpoint.

4. If S ′i \S ′j 6= ∅ but S ′j = ∅ (see Figure 4.4e), then τj = min{2, τi+1} and Sj = ∅.

Minimum subcut width rule This rule corresponds to the computation of the

flag ψi.

1. If ψi = 1 or |S ′j| = k + 1, then ψj = 1.

Now, we are finally able to formally define the notion of compatibility graph and

then prove Theorem 4.1.

77

(a) S′i \ S′j = ∅ and uj has no
incident edge in S′j

(b) S′i \ S′j = ∅ but uj has some
incident edge in S′j

(c) S′i \ S′j 6= ∅, S′j 6= ∅ and uj has no
incident edge in S′j

(d) S′i \ S′j 6= ∅, S′j 6= ∅ but uj has some
incident edge in S′j

(e) S′i \ S′j 6= ∅ but S′j = ∅

Figure 4.4: Connectedness rules. (Red) dotted lines represent non-edges, (black)
thicker lines represent non-mandatory edges, and (blue) normal style lines represent
mandatory edges.

For each directed graph G, each bijection π : V (G)→ [|G|] and each non-negative

integer k, we define the compatibility graph of the triple (G, π, k) as the directed

acyclic graph DG(π, k) with vertex set

V = {u ∈ BG(π, k) : u is initial, intermediary or final}

and edge set

E = {(u, v) ∈ V × V : u v}.

We recall that, based on Lemma 4.1, our goal is to decide whether there exists a

compatible subcut sequence of γG,π of width at least k+1 whose associated directed

graph is a directed path. Next lemma establishes that this is equivalent to deciding

whether there exists a directed path of DG(π, k) with n− 1 vertices.

Due to the fact that the proof of Lemma 4.2 requires a highly technical analysis,

we omit it and refer the reader to Section 3.3 of Appendix G.

Lemma 4.2. Let G be a directed graph, π : V (G)→ [|G|] be a bijection and k be a

non-negative integer. There exists a compatible subcut sequence γ′ ∈ Γ(γG,π) such

that ω(γ′) ≥ k + 1 and G[γ′] is a directed path if and only if there exists a directed

path of DG(π, k) with |G| − 1 vertices.

Lemma 4.3. Given a directed graph G, a bijection π : V (G) → [|G|] and a

78

non-negative integer k, one can deterministically decide in time |G|O(k) whether

zn(G, π) ≤ k.

Proof. First, we construct the directed graph DG(π, k). Note that, for each tuple

ui = (i, S ′i, φi, ϕi,Si, τi, ψi) ∈ BG(π, k),

the subcut S ′i has at most k + 1 distinct elements. As a result, one can easily

check in time polynomial in k if ui is an initial, an intermediary or a final tu-

ple. Moreover, since there are |G|O(k) distinct tuples in BG(π, k), the vertex set of

DG(π, k) can be determined in time |G|O(k) ·kO(1) = |G|O(k). Regarding the edge set

of DG(π, k), we have by definition that there exists a directed edge from a vertex

ui = (i, S ′i, φi, ϕi,Si, τi, ψi) to a vertex uj =
(
j, S ′j, φj, ϕj,Sj, τj, ψj

)
of DG(π, k) if and

only if ui is compatible with uj, i.e., j = i+ 1, S ′i ≺G,π S ′j, and ui and uj satisfy the

Vertex degree, Connectedness and Minimum subcut width rules. Since |S ′i| ≤ k + 1

and |S ′j| ≤ k+1, the satisfaction of the Vertex degree, Connectedness and Minimum

subcut width rules by ui and uj can be clearly checked in time polynomial in k. In

addition, one can verify whether S ′i ≺G,π S ′j in time polynomial in |G|. Thus, it can

be checked in time kO(1) + |G|O(1) whether there should exist in DG(π, k) a directed

edge from ui to uj. This implies that the edge set of DG(π, k) can be determined in

time |G|O(k) · |G|O(k) · (kO(1) + |G|O(1)) = |G|O(k). Therefore, DG(π, k) can be wholly

constructed in time |G|O(k).

Then, by using an algorithm for the Reachability problem, we decide in time

linear in the number of vertices and edges of DG(π, k), i.e. in time |G|O(k), whether

there is a directed path of DG(π, k) with |G| − 1 vertices. By Lemmas 4.1 and 4.2,

such a path exists if and only if zn(G, π) ≥ k + 1. Therefore, we can decide in time

|G|O(k) whether zn(G, π) ≤ k.

As a result, by using a permutation π of the vertices of the input graph G as a

certificate, we obtain that deciding whether zn(G) ≤ k is in NP for each fixed k ≥ 0,

concluding thereby the proof of Theorem 4.1.

4.3 NP-Hardness

In this section, we prove that 2-zig-zag number is an NP-hard problem. For that,

we present a polynomial-time reduction from Positive not all equal 3SAT,

which is a well-known NP-complete problem [110], defined next.

79

Input: Set X of variables and a collection C of clauses over X such that

each clause has no negative literal and exactly three positive

literals.

Question: Is there a truth assignment α : X → {false, true} such that each

clause in C has at least one true literal and at least one false

literal under α?

Positive not all equal 3SAT (PNAE 3SAT)

Construction 4.1 (Reduction from 2-zig-zag number to PNAE 3SAT). Let

I = (X, C) be an instance of PNAE 3SAT with variable set X and clause set C.
We let GI be the directed graph obtained from I as follows.

� For each variable xi ∈ X, add the vertices u1
i , u

2
i and u3

i , and add the edges

(u1
i , u

2
i), (u2

i , u
3
i) and (u3

i , u
1
i).

� For each clause Cj ∈ C, add the vertices v1
j , v

2
j and v3

j , and add the edges

(v1
j , v

2
j), (v2

j , v
3
j) and (v3

j , v
1
j). Moreover, assuming Cj = {xl1 , xl2 , xl3} with

l1 < l2 < l3, add the edges (u1
l1
, v1
j), (u3

l1
, v1
j), (u1

l2
, v2
j), (u3

l2
, v2
j), (u1

l3
, v3
j) and

(u3
l3
, v3
j).

For each variable xi ∈ X, we let Hi denote the subgraph of GI induced by the

vertices in {u1
i , u

2
i , u

3
i }. And, for each clause Cj ∈ C, we let H̃j denote the subgraph

of GI induced by the vertices in {v1
j , v

2
j , v

3
j}. We remark that Hi and H̃j are directed

cycles of length 3.

Figure 4.5 exemplifies the directed graph GI , described in Construction 4.1.

Figure 4.5: Directed graph GI obtained from the instance I = (X, C) of PNAE
3SAT where X = {x1, x2, x3, x4} and C = {C1 = {x1, x2, x3}, C2 = {x2, x3, x4}}.

We establish in Lemmas 4.4 and 4.6 that there exists a satisfying truth assign-

ment for an instance I of PNAE 3SAT if and only if there exists a linear order

of zig-zag number at most 2 for the vertices of GI . The central idea of our proof

is to explore the possible internal relative orderings of the vertices of each directed

cycle of GI and, for each clause Cj = {xl1 , xl2 , xl3} ∈ C, the possible ordered relative

placements among the subgraphs Hl1 , Hl2 , Hl3 , and H̃j.

80

Lemma 4.4. Let I = (X, C) be an instance of PNAE 3SAT. If I is a yes instance

of PNAE 3SAT, then zn(GI) ≤ 2.

Proof. Let α : X → {false, true} be a truth assignment such that each clause in C
has at least one true literal and at least one false literal under α. In what follows,

we define from α a linear order <π of the vertices of GI such that zn(GI , π) ≤ 2.

Throughout this proof, consider X = {x1, . . . , x|X|} and C = {C1, . . . , C|C|}.
For each variable xi ∈ X, set

{
u1
i <π u

2
i <π u

3
i if α(xi) = true

u1
i >π u

2
i >π u

3
i otherwise.

Let V ′false = {u1
i , u

2
i , u

3
i : α(xi) = false} and V ′true = {u1

i , u
2
i , u

3
i : α(xi) = true}. Then,

place all the vertices belonging to V ′true at the end of the order π, and all the vertices

belonging to V ′false at the beginning of π. More formally, for each y ∈ V ′false and each

z ∈ V (GI) \ V ′false, set y <π z. And, for each y ∈ V ′true and each z ∈ V (GI) \ V ′true,
set y >π z.

Let Cj be a clause in C. Assume that Cj = {xl1 , xl2 , xl3} with l1 < l2 < l3. There

are two cases to be considered. First, suppose that Cj has exactly one true literal

under α, say lq for some q ∈ {1, 2, 3}. Then, order the clause cycle (v1
j , v

2
j , v

3
j) as

vpj <π v
q
j <π v

r
j , in such a way that the vertex vqj , corresponding to the literal lq,

appears in the middle and (vrj , v
q
j), (v

q
j , v

p
j) are edges of the cycle. More formally, set

vpj <π v
q
j <π v

r
j ,

where p = q mod 3+1 and r = (q+1) mod 3+1. Now, suppose that Cj has exactly

two true literals under α. Thus, Cj has exactly one false literal under α, say lq for

some q ∈ {1, 2, 3}. Then, set

vpj >π v
q
j >π v

r
j ,

where p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.

Finally, for each pair of distinct variables xi, xi′ ∈ X with i < i′, such that

α(xi) = α(xi′), set upi <π u
q
i′ for each p, q ∈ {1, 2, 3}. And, for each pair of distinct

clauses Cj, Cj′ ∈ C with j < j′, set vpj <π v
q
j′ for each p, q ∈ {1, 2, 3}.

One can readily verify that <π is indeed a linear order of the vertices of GI .

Now, we prove that zn(GI , π) ≤ 2. For the sake of contradiction, suppose that

there exists a directed path P in GI such that zn(GI , π, P) ≥ 3. Assume with-

out loss of generality that P is a minimal path with respect to the property that

zn(GI , π, P) ≥ 3. Recall that, for each variable xi ∈ X, Hi is a directed cycle of

length 3. Similarly, for each clause Cj ∈ C, H̃j is a directed cycle of length 3. Conse-

quently, P is neither a subgraph of Hi nor a subgraph of H̃j, for any xi ∈ X and any

81

Cj ∈ C, otherwise zn(GI , π, P) < 3. Moreover, every edge of GI is either an edge of

one of these subgraphs Hi and H̃j or is an edge from a vertex of Hi to a vertex of H̃j,

for some xi ∈ X and some Cj ∈ C. As a result, there exists precisely one variable

xi ∈ X and there exists precisely one clause Cj ∈ C such that V (P) ∩ V (Hi) 6= ∅
and V (P) ∩ V (H̃j) 6= ∅. More specifically, P consists in a directed path on at most

4 vertices (by its minimality) from a vertex of Hi to a vertex of H̃j that only con-

tains vertices belonging to V (Hi) ∪ V (H̃j). Assume that Cj = {xl1 , xl2 , xl3} with

l1 < l2 < l3.

First, consider the case in which Cj has exactly one true literal under α, and

let xlq be such a literal for some q ∈ {1, 2, 3}. Thus, vpj <π v
q
j <π v

r
j , where p =

q mod 3 + 1 and r = (q+ 1) mod 3 + 1. Consequently, if i = lq, then u1
i <π u

2
i <π u

3
i

and V (Hi) >π V (H̃j), which implies zn(GI , π, P) < 3 (see Figure 4.6a). On the

other hand, if i = lp or i = lr, then u1
i >π u

2
i >π u

3
i and V (Hi) <π V (H̃j), which

also implies zn(GI , π, P) < 3 (see Figures 4.6b and 4.6c).

(a) i = lq (b) i = lp (c) i = lr

Figure 4.6: Case in which the clause Cj = {xl1 , xl2 , xl3} has exactly one true literal
under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

Now, consider the case in which Cj has exactly two true literals under α, and let

lq be the only false literal of Cj under α for some q ∈ {1, 2, 3}. Thus, vpj >π v
q
j >π v

r
j ,

where p = q mod 3+1 and r = (q+1) mod 3+1. If i = lq, then u1
i >π u

2
i >π u

3
i and

V (Hi) <π V (H̃j), which implies zn(GI , π, P) < 3 (see Figure 4.7a). On the other

hand, if i = lp or i = lr, then u1
i <π u

2
i <π u

3
i and V (Hi) >π V (H̃j), which also

implies zn(GI , π, P) < 3 (see Figures 4.7b and 4.7c).

(a) i = lq (b) i = lp (c) i = lr

Figure 4.7: Case in which the clause Cj = {xl1 , xl2 , xl3} has exactly one false literal
under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

Therefore, such a path P does not exist in GI , and consequently we obtain that

zn(GI) ≤ zn(GI , π) ≤ 2.

Next lemma provides the basis for the proof of Lemma 4.6. Intuitively, it estab-

lishes that, if the zig-zag number of GI is at most 2 with respect to some bijection

82

π : V (GI)→ [|GI |], and Cj and Cj′ are any two clauses containing a common literal

xi, then, with respect to π, the gadgets H̃j and H̃j′ are both comparable with Hi and

have the same order relative to Hi. The proof of this lemma is by case analysis, and

it heavily relies on the fact that, if neither V (Hi) <π V (H̃j) nor V (Hi) >π V (H̃j),

then there exist two (not necessarily distinct) vertices vpj , v
p′
j ∈ V (H̃j) such that

vpj <π max πV (Hi) and vp
′
j >π min πV (Hi),

contradicting therefore the hypothesis that zn(GI , π) ≤ 2. For the complete proof,

we refer the reader to Lemma 5 of Appendix G.

Lemma 4.5. Let I = (X, C) be an instance of PNAE 3SAT, π : V (GI) → [|GI |]
be a bijection such that zn(GI , π) ≤ 2, and let xi ∈ X. The following statements

hold:

� If Cj ∈ C is a clause containing xi as a literal, then either V (Hi) <π V (H̃j)

or V (Hi) >π V (H̃j);

� Furthermore, if there exists a clause Cj ∈ C containing xi as a literal such

that V (Hi) <π V (H̃j), then V (Hi) <π V (H̃j′) for every other clause Cj′ ∈ C
containing xi as a literal.

Figure 4.8 illustrates an example of a bijection π for which the second statement

of Lemma 4.5 is not satisfied, implying therefore zn(GI , π) ≥ 3.

Figure 4.8: An example of a bijection π, such that Cj and Cj′ are clauses containing

the literal xi, and V (H̃j) <π V (Hi) <π V (H̃j). In this case, zn(GI , π) ≥ 3.

Lemma 4.6. Let I = (X, C) be an instance of PNAE 3SAT. If zn(GI) ≤ 2, then

I is a yes instance of PNAE 3SAT.

Proof. Let π : V (GI)→ [|GI |] be a bijection such that zn(GI , π) ≤ 2. By Lemma 4.5,

for each variable xi ∈ X and each clause Cj ∈ C, if V (Hi) >π V (H̃j), then V (Hi) >π

V (H̃j′) for each clause Cj′ ∈ C containing xi as a literal. Thus, we let α : x →
{false, true} be the truth assignment defined as follows: for each variable xi ∈ X,

α(xi) = true if and only if V (Hi) >π V (H̃j) for each clause Cj ∈ C.
Now, we prove that each clause in C has at least one true literal and at least

one false literal under α. For the sake of contradiction, suppose that there exists a

83

clause Cj = {xl1 , xl2 , xl3} in C such that α(xl1) = α(xl2) = α(xl3). Let q ∈ {1, 2, 3},
p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.

Suppose that α(xl1) = α(xl2) = α(xl3) = true. Thus, {u1
l1
, u1

l2
, u1

l3
} >π V (H̃j).

Consequently, if vpj <π v
q
j <π v

r
j , then P = (u1

lp
, vpj , v

r
j , v

q
j) is a directed path of GI

such that zn(GI , π, P) = 3 (see Figures 4.9a); on the other hand, if vpj >π v
q
j >π v

r
j ,

then P = (u1
lq
, vqj , v

p
j , v

r
j) is a directed path of GI such that zn(GI , π, P) = 3 (see

Figures 4.9c).

Suppose that α(xl1) = α(xl2) = α(xl3) = false. Thus, {u1
l1
, u1

l2
, u1

l3
} <π V (H̃j).

Consequently, if vpj <π v
q
j <π v

r
j , then P = (u1

lq
, vqj , v

p
j , v

r
j) is a directed path of GI

such that zn(GI , π, P) = 3 (see Figures 4.9b); on the other hand, if vpj >π v
q
j >π v

r
j ,

then P = (u1
lp
, vpj , v

r
j , v

q
j) is a directed path of GI such that zn(GI , π, P) = 3 (see

Figures 4.9d).

(a) (b) (c) (d)

Figure 4.9: (a) and (c) α(xl1) = α(xl2) = α(xl3) = true. (b) and (d) α(xl1) =
α(xl2) = α(xl3) = false. (a) and (b) vpj <π v

q
j <π v

r
j . (c) and (d) vpj >π v

q
j >π v

r
j .

Therefore, each clause in C has at least one true literal and at least one false

literal under α, and consequently I is a yes instance of PNAE 3SAT.

Theorem 4.2. 2-zig-zag Number is NP-complete.

Proof. By Theorem 4.1, 2-zig-zag Number is in NP. It follows from Lemmas 4.4

and 4.6 that I is a yes instance of PNAE 3SAT if and only if zn(GI) ≤ 2. Therefore,

since GI can be constructed in time polynomial in |I|, 2-zig-zag Number is NP-

complete.

4.4 Concluding Remarks

We have proved that one can non-deterministically decide in time |G|O(k) whether

a directed graph G admits zig-zag number at most k, settling therefore k-zig-zag

number in NP for each fixed k ≥ 0. Nevertheless, it remains unknown whether k-

zig-zag number admits a non-deterministic FPT-time algorithm. Another question

corresponds to determining whether Zig-zag number is also in NP for non-fixed k.

It is worth mentioning that, to settle k-zig-zag number in NP, we have actually

proved that, given a directed graph G and a bijection π : V (G) → [|G|], deciding

whether zn(G, π) ≤ k is polynomial-time solvable for fixed k. However, for non-fixed

k, deciding whether zn(G, π) ≤ k is coNP-complete. As a matter of fact, given a

84

bipartite directed graph G with bipartition V (G) = X ∪ Y , if π : V (G) → [|G|] is

defined in such a way that x <π y for each x ∈ X and each y ∈ Y , then deciding

whether zn(G, π) ≥ |G|−1 is equivalent to deciding whether G admits a Hamiltonian

path, which is a well-known NP-complete problem [81].

Another intriguing question corresponds to determining whether 1-zig-zag

number is polynomial-time solvable. As already mentioned, every directed acyclic

graph has zig-zag number at most 1, and every directed graph containing directed

cycles of length at least 3 must have zig-zag number at least 2. However, there exist

directed graphs that are not directed acyclic but still have zig-zag number at most 1

(see Figure 4.10a). Note that, such graphs can only contain directed cycles that are

digons, i.e. directed cycles of length 2. Nevertheless, this is not a sufficient condition

for a directed graph to have zig-zag number at most 1, since there exist directed

graphs that only contain directed cycles that are digons and yet have zig-zag number

at least 2 (see Figure 4.10b). A simple property that seems to be useful to resolve

this problem is the fact that, for every directed graph G, zn(G) ≤ 1 if and only if

there exists a bijection π : V (G) → [|G|] such that, for each three distinct vertices

a, b, c ∈ V (G), with (a, b), (b, c) ∈ E(G), either a <π b <π c or c <π b <π a.

(a) zn(G) = 1. (b) zn(G) ≥ 2.

Figure 4.10: (a) Example of directed graph G that is not directed acyclic and has
zig-zag number 1. (b) Example of directed graph G that does not contain directed
cycles of length at least 3 and yet has zig-zag number 2.

Motivated by the NP-hardness of 2-zig-zag number, we additionally ask

whether k-zig-zag number is NP-hard for k ≥ 3. In particular, determining

whether k-zig-zag number is polynomially reducible to (k+ 1)-zig-zag number

is an elusive open problem. Generally, such a reduction must consist in constructing

a directed graph H from a given directed graph G, such that zn(H) = zn(G) + 1.

However, since for distinct bijections π : V (G)→ [|G|] there might exist distinct di-

rected paths P of G such that zn(G, π, P) = zn(G, π), it is not clear how G could be

modified to produce a directed graph with zig-zag number exactly one unit greater

than zn(G). For instance, consider the operation of adding a universal vertex. There

exist directed graphs G such that the addition of a universal vertex results in a di-

rected graph with zig-zag number equal to zn(G) (see Figure 4.11a); while there also

exist directed graphs G such that the addition of a universal vertex results in a di-

rected graph with zig-zag number strictly greater than zn(G) + 1 (see Figure 4.11b).

85

(a) zn(G+ u) = zn(G). (b) zn(G+ u) = zn(G) + 2.

Figure 4.11: (a) Example of directed graph G, with zn(G) = 2, whose addition of
a universal vertex u does not increase the zig-zag number. (b) Example of directed
graph G, with zn(G) = 2, whose addition of a universal vertex u increases the zig-
zag number in more than one unit. (For readability, some edges incident to the
universal vertex u are omitted.)

It is worth mentioning that, even if k-zig-zag number is proved to be NP-

hard for every k ≥ 3, zig-zag number is still a directed width measure of important

theoretical and algorithmic interest. Indeed, in addition to the fact that zig-zag

number is asymptotically upper bounded by directed pathwidth [45], there possibly

exist efficient approximation algorithms with constant approximation factors for the

k-zig-zag number problem. Motivated by that, we leave as an open question the

existence of such approximation algorithms.

Finally, further investigations to be pursued concern the relationship between zig-

zag number and other width measures. It was proved in [45] that directed graphs

of constant directed pathwidth have constant zig-zag number, whereas there exist

directed graphs of constant zig-zag number but of unbounded directed pathwidth.

Nevertheless, it was unknown whether a similar result would hold with respect to

zig-zag number and directed tree-width. Then, we proved in [50] that there exist

directed graphs of constant directed tree-width but of unbounded zig-zag number.

More specifically, we showed that there exists a bidirected graph (i.e., a directed

graph whose edge set is a symmetric relation) Bn on 3n vertices that has the com-

plete binary treeBn on n vertices as an undirected minor, and which can be described

as the union of a constant number of directed paths. As a result, we were able to

show that, apart from a constant factor, the zig-zag number of Bn is at least the

undirected pathwidth of Bn. In addition, we proved that the undirected tree-width

of Bn is at most 8. Therefore, relying on the facts that the directed tree-width

(resp. pathwidth) of a bidirected graph is equal to its undirected tree-width (resp.

pathwidth) [2, 84], and that the complete binary tree on n vertices has undirected

pathwidth Ω(log n) [6, 46], we obtained that the zig-zag number of Bn is Ω(log n),

whereas its directed tree-width is at most 8. For more details on this proof, we refer

the reader to Section 5 of Appendix G.

Despite the result mentioned above, it remains unknown whether the family of

directed graphs of constant directed tree-width contains the family of directed graphs

of constant zig-zag number. We remark that a counter-example for such containment

would also imply the existence of directed graphs of constant tree-zig-zag number

86

but of unbounded directed tree-width, closing an open question from [46]. Related

to this, we additionally ask whether there exists a characterization of zig-zag number

in terms of pursuit games.

87

Chapter 5

Conclusion

In this work, we have analysed the computational complexity of connection and cut

problems on graphs.

Concerning connection problems, we have investigated the complexity of the

so-called Terminal connection problem (TCP), which is a variant of Steiner

tree that imposes further restrictions on the non-terminal vertices of a solution

tree, demanding connection trees for the input terminal set to contain at most `

linker vertices (i.e., non-terminal vertices of degree exactly 2 in the tree) and at

most r router vertices (i.e., non-terminal vertices of degree at least 3 in the tree).

We have proved that, for fixed r (and arbitrary `), the classes of split graphs

and rooted directed graphs separate the complexity of TCP from the complexity

of Steiner tree. In particular, in order to prove that TCP is polynomial-time

solvable on split graphs for fixed r, we have employed a polynomial-time algorithm

for the Strict terminal connection problem (S-TCP) on split graphs as a

building block. Moreover, we have shown that, when parameterized by clique-width,

TCP is W[1]-hard, whereas Steiner tree is known to be in FPT.

In Section 2.4, we have posed several questions with respect to TCP and S-TCP

that remain unanswered. Next, we highlight the most important of such questions:

� Are TCP and S-TCP parameterized by the number of terminal vertices in

FPT, or in XP? It is well-known that Steiner tree parameterized by the

number of terminal vertices is in FPT [56]. Nonetheless, the corresponding

parameterization of TCP and of S-TCP has not been settled yet.

� Is S-TCP parameterized by r ≥ 2 in XP? This problem was addressed

in [39, 40], where it was shown to be closely related to the so-called Min-

sum disjoint path and Shortest K-cycle problems.

In addition, as for Steiner tree, we proved in [34] (see Appendix A for more

details) that the problem is NP-complete on undirected path graphs, while it is

88

polynomial-time solvable on undirected path graphs of diameter at most 2. Based

on the notions of vertex leafage and leafage of chordal graphs, we proved in [37] that

the problem on undirected path graphs is in FPT when parameterized by the solution

size. In spite of Steiner tree being deeply studied, it is still unknown whether the

problem can be solved in polynomial-time when restricted to directed path graphs,

which is a subclass of undirected path graphs, and a superclass of rooted directed

path graphs (on which the problem is polynomial-time solvable [115]).

Concerning cut problems, we have investigated the complexity of the classical

MaxCut problem. We have shown that the problem remains NP-complete on inter-

val graphs of interval count 4, providing therefore the first complexity classification

for the problem on interval graphs of bounded interval count. This result repre-

sents an important step in the direction of better understanding the complexity of

MaxCut on unit interval graphs, which are precisely the interval graphs of interval

count 1. Besides, we have proved that MaxCut is also NP-complete on permutation

graphs. Next, we describe the main open questions with respect to MaxCut:

� Is MaxCut polynomial-time solvable on unit interval graphs?

� Is MaxCut polynomial-time solvable on interval graphs that are also permu-

tation graphs? This question is equivalent to deciding whether the problem is

polynomial-time solvable on permutation graphs that do not have a C4 as an

induced subgraph, since such graphs are precisely interval permutation graphs.

Finally, we have investigated the complexity of k-zig-zag number, the problem

of deciding whether a given directed graph has zig-zag number at most k. We have

proved that, for every fixed k, the problem is in NP. Also, we have shown that,

for k = 2, the problem is NP-complete. Next, we highlight some of the main open

questions described in Section 4.4, with respect to k-zig-zag number:

� Is Zig-zag number in NP for arbitrary k? The running time of the non-

deterministic algorithm presented in Section 4.2 depends exponentially on k.

Thus, it remains undetermined whether the problem is in NP for non-fixed

values of k.

� Is k-zig-zag number NP-complete for k ≥ 3? We have proved that 2-zig-

zag number is NP-complete. However, it is not clear how to construct a

directed graph of zig-zag number k + 1 from a directed of zig-zag number k.

In addition to zig-zag number, during the doctoral studies we have developed

other works regarding width measures for directed graphs [42–44], from formal lan-

guage and logic standpoints. These works are related to the notion of decisional

width, which is built on ordered decision digrams (i.e., read-once oblivious branching

programs). In Appendix H, we present one-page abstracts of the obtained results.

89

References

[1] Adhikary, R., Bose, K., Mukherjee, S., and Roy, B. Complexity of

maximum cut on interval graphs. In 37th International Symposium on

Computational Geometry, SoCG 2021, June 7-11, 2021, Buffalo, NY,

USA (Virtual Conference) (Dagstuhl, Germany, 2021), K. Buchin and

É. C. de Verdière, Eds., vol. 189 of LIPIcs, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, pp. 7:1–7:11.

[2] Barát, J. Directed path-width and monotonicity in digraph searching. Graphs

and Combinatorics 22, 2 (2006), 161–172.

[3] Barsukov, A., Bose, K., and Roy, B. Maximum cut on interval graphs of

interval count two is NP-complete. CoRR abs/2203.06630 (2022).

[4] Bergougnoux, B., and Kanté, M. Fast exact algorithms for some con-

nectivity problems parameterized by clique-width. Theoretical Computer

Science 782 (2019), 30 – 53.

[5] Berman, P., and Karpinski, M. On some tighter inapproximability results

(extended abstract). In Automata, Languages and Programming, 26th

International Colloquium, ICALP’99, Prague, Czech Republic, July 11-

15, 1999, Proceedings (Berlin, Heidelberg, 1999), J. Wiedermann, P. van

Emde Boas, and M. Nielsen, Eds., vol. 1644 of Lecture Notes in Computer

Science, Springer, pp. 200–209.

[6] Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., and Ob-

drzálek, J. The DAG-width of directed graphs. Journal of Combi-

natorial Theory, Series B 102, 4 (2012), 900–923.

[7] Berwanger, D., Grädel, E., Kaiser, L., and Rabinovich, R. Entan-

glement and the complexity of directed graphs. Theoretical Computer

Science 463 (2012), 2–25.

[8] Björklund, A., Husfeldt, T., Kaski, P., and Koivisto, M. Fourier

meets möbius: Fast subset convolution. In Proceedings of the Thirty-Ninth

90

Annual ACM Symposium on Theory of Computing (New York, NY, USA,

2007), STOC ’07, Association for Computing Machinery, p. 67–74.

[9] Bodlaender, H. L., de Figueiredo, C. M. H., Gutierrez, M., Kloks,

T., and Niedermeier, R. SIMPLE MAX-CUT for split-indifference

graphs and graphs with few P4s. In Experimental and Efficient Al-

gorithms, Third International Workshop, WEA 2004, Angra dos Reis,

Brazil, May 25-28, 2004, Proceedings (Berlin, Heidelberg, 2004), C. C.

Ribeiro and S. L. Martins, Eds., vol. 3059 of Lecture Notes in Computer

Science, Springer, pp. 87–99.

[10] Bodlaender, H. L., and Jansen, K. On the complexity of the maximum

cut problem. In Annual Symposium on Theoretical Aspects of Computer

Science, STACS 94 (1994), P. Enjalbert, E. W. Mayr, and K. W. Wagner,

Eds., vol. 775, Springer, pp. 769–780.

[11] Bodlaender, H. L., Kloks, T., and Niedermeier, R. SIMPLE MAX-

CUT for unit interval graphs and graphs with few P4s. Electronic Notes

in Discrete Mathematics 3 (1999), 19–26.

[12] Bondy, J. A., and Murty, U. S. R. Graph theory. Graduate Texts in

Mathematics. Springer London, 2008.

[13] Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property,

interval graphs, and graph planarity using PQ-tree algorithms. Journal

of Computer and System Sciences 13, 3 (1976), 335–379.

[14] Borradaile, G., Klein, P. N., and Mathieu, C. Steiner tree in pla-

nar graphs: An o(nlogn) approximation scheme with singly-exponential

dependence on epsilon. In Algorithms and Data Structures (Berlin, Hei-

delberg, 2007), F. Dehne, J.-R. Sack, and N. Zeh, Eds., Springer Berlin

Heidelberg, pp. 275–286.

[15] Boyaci, A., Ekim, T., and Shalom, M. A polynomial-time algorithm for

the maximum cardinality cut problem in proper interval graphs. Infor-

mation Processing Letters 121 (2017), 29–33.

[16] Brandstädt, A., Hundt, C., Mancini, F., and Wagner, P. Rooted

directed path graphs are leaf powers. Discrete Mathematics 310, 4 (feb

2010), 897–910.

[17] Byrka, J., Grandoni, F., Rothvoss, T., and Sanità, L. Steiner tree

approximation via iterative randomized rounding. Journal of the ACM

60, 1 (feb 2013), 1–33.

91

[18] Cerioli, M. R. Problemas separadores para grafos de caminho. Master’s

thesis, Universidade Federal do Rio de Janeiro, 1992.

[19] Cerioli, M. R., de S. Oliveira, F., and Szwarcfiter, J. L. The in-

terval count of interval graphs and orders: a short survey. Journal of the

Brazilian Computer Society volume 18, 2 (2012), 103–112.

[20] Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D.,

and Roy, B. Algorithms and complexity for geodetic sets on planar

and chordal graphs. In 31st International Symposium on Algorithms and

Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China

(Virtual Conference) (Dagstuhl, Germany, 2020), Y. Cao, S. Cheng, and

M. Li, Eds., vol. 181 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 7:1–7:15.

[21] Cheng, X., Li, Y., Du, D.-Z., and Ngo, H. Q. Steiner Trees in Industry.

Springer US, Boston, MA, 2005, pp. 193–216.

[22] Chleb́ık, M., and Chleb́ıková, J. The Steiner tree problem on graphs: In-

approximability results. Theoretical Computer Science 406, 3 (oct 2008),

207–214.

[23] Cohen, J., Fomin, F. V., Heggernes, P., Kratsch, D., and

Kucherov, G. Optimal linear arrangement of interval graphs. In

Mathematical Foundations of Computer Science 2006, 31st International

Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1,

2006, Proceedings (Berlin, Heidelberg, 2006), R. Kralovic and P. Urzy-

czyn, Eds., vol. 4162 of Lecture Notes in Computer Science, Springer,

pp. 267–279.

[24] Colbourn, C. J., and Stewart, L. K. Permutation graphs: connected

domination and Steiner trees. Discrete Mathematics 86, 1-3 (1990), 179–

189.

[25] Cook, S. A. The complexity of theorem-proving procedures. In Proceedings

of the Third Annual ACM Symposium on Theory of Computing (New

York, NY, USA, 1971), STOC ’71, Association for Computing Machinery,

p. 151–158.

[26] Corneil, D. G., Lerchs, H., and Burlingham, S. L. Complement re-

ducible graphs. Discrete Applied Mathematics 3, 3 (1981), 163–174.

92

[27] Corneil, D. G., Perl, Y., and Stewart, L. K. A linear recognition

algorithm for cographs. SIAM Journal on Computing 14, 4 (1985), 926–

934.

[28] Courcelle, B. The monadic second-order logic of graphs. I. Recognizable

sets of finite graphs. Information and Computation 85, 1 (1990), 12–75.

[29] Courcelle, B., Engelfriet, J., and Rozenberg, G. Handle-rewriting

hypergraph grammars. Journal of Computer and System Sciences 46, 2

(1993), 218–270.

[30] Courcelle, B., Makowsky, J. A., and Rotics, U. Linear time solvable

optimization problems on graphs of bounded clique-width. Theory of

Computing Systems 33, 2 (2000), 125–150.

[31] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D.,

Pilipczuk, M., Pilipczuk, M., and Saurabh, S. Parameterized

Algorithms. Springer, 2015.

[32] Cygan, M., Pilipczuk, M., Pilipczuk, M., and Wojtaszczyk, J. O.

Kernelization hardness of connectivity problems in d-degenerate graphs.

Discrete Applied Mathematics 160, 15 (2012), 2131 – 2141.

[33] D’Atri, A., and Moscarini, M. Distance-hereditary graphs, Steiner trees,

and connected domination. SIAM Journal on Computing 17, 3 (1988),

521–538.

[34] de Figueiredo, C. M., de Melo, A. A., Sasaki, D., and Silva, A. Re-

vising Johnson’s table for the 21st century. Discrete Applied Mathematics

(2021).

[35] de Figueiredo, C. M. H., de Melo, A. A., de S. Oliveira, F., and

Silva, A. Maximum cut on interval graphs of interval count four is NP-

complete. In 46th International Symposium on Mathematical Foundations

of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia

(Dagstuhl, Germany, 2021), F. Bonchi and S. J. Puglisi, Eds., vol. 202

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 38:1–

38:15.

[36] de Figueiredo, C. M. H., de Melo, A. A., de S. Oliveira, F.,

and Silva, A. Maxcut on permutation graphs is NP-complete. CoRR

abs/2202.13955 (2022).

93

[37] de Figueiredo, C. M. H., Lopes, R., de Melo, A. A., and Silva, A.

Parameterized algorithms for Steiner tree and dominating set: Bounding

the leafage by the vertex leafage. In WALCOM: Algorithms and Com-

putation, P. Mutzel, M. S. Rahman, and Slamin, Eds., Lecture Notes in

Computer Science. Springer International Publishing, 2022, pp. 251–262.

[38] de Melo, A., de Figueiredo, C., and de Souza, U. The strict terminal

connection problem on chordal bipartite graphs. Matemática Contem-

porânea 48, 14 (2022), 137–145.

[39] de Melo, A. A. Conexão de terminais com limitação de roteadores: Com-

plexidade e relação com fluxos e caminhos disjuntos. Master’s thesis,

Universidade Federal do Rio de Janeiro, 2017.

[40] de Melo, A. A., de Figueiredo, C. M. H., and dos Santos Souza,

U. On undirected two-commodity integral flow, disjoint paths and strict

terminal connection problems. Networks 77, 4 (2021), 559–571.

[41] de Melo, A. A., de Figueiredo, C. M. H., and Souza, U. S. On

the terminal connection problem. In SOFSEM 2021: Theory and Prac-

tice of Computer Science - 47th International Conference on Current

Trends in Theory and Practice of Computer Science, SOFSEM 2021,

Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings (2021), T. Bures,

R. Dondi, J. Gamper, G. Guerrini, T. Jurdzinski, C. Pahl, F. Sikora, and

P. W. H. Wong, Eds., vol. 12607 of Lecture Notes in Computer Science,

Springer, pp. 278–292.

[42] de Melo, A. A., and de Oliveira Oliveira, M. On the width of regular

classes of finite structures. In Automated Deduction - CADE 27 - 27th

International Conference on Automated Deduction, Natal, Brazil, August

27-30, 2019, Proceedings (2019), P. Fontaine, Ed., vol. 11716 of Lecture

Notes in Computer Science, Springer, pp. 18–34.

[43] de Melo, A. A., and de Oliveira Oliveira, M. Second-order finite

automata. In Computer Science - Theory and Applications - 15th Inter-

national Computer Science Symposium in Russia, CSR 2020, Yekaterin-

burg, Russia, June 29 - July 3, 2020, Proceedings (2020), H. Fernau, Ed.,

vol. 12159 of Lecture Notes in Computer Science, Springer, pp. 46–63.

[44] de Melo, A. A., and de Oliveira Oliveira, M. Symbolic Solutions for

Symbolic Constraint Satisfaction Problems. In Proceedings of the 17th

International Conference on Principles of Knowledge Representation and

Reasoning (9 2020), pp. 49–58.

94

[45] de Oliveira Oliveira, M. Subgraphs satisfying MSO properties on z-

topologically orderable digraphs. In Parameterized and Exact Compu-

tation (2013), G. Gutin and S. Szeider, Eds., vol. 8246 of Lecture Notes

in Computer Science, Springer, pp. 123–136.

[46] de Oliveira Oliveira, M. An algorithmic metatheorem for directed

treewidth. Discrete Applied Mathematics 204 (2016), 49–76.

[47] de Ridder et al., H. N. Graphclass: comparability graphs. informa-

tion system on graph classes and their inclusions (isgci). https://www.

graphclasses.org/classes/gc_72.html. Accessed: 2022-02-17.

[48] de Souza Oliveira, F. Problemas Separadores para Grafos de Caminho.

PhD thesis, Universidade Federal do Rio de Janeiro, 2011.

[49] Demaine, E. D., Hajiaghayi, M., and Klein, P. N. Node-weighted

Steiner tree and group Steiner tree in planar graphs. ACM Transactions

on Algorithms 10, 3 (jun 2014), 1–20.

[50] Dourado, M. C., de Figueiredo, C. M., de Melo, A. A.,

de Oliveira Oliveira, M., and Souza, U. S. Computing the zig-

zag number of directed graphs. Discrete Applied Mathematics 312 (2022),

86–105.

[51] Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S.

Conexão de terminais com número restrito de roteadores e elos. In Pro-

ceedings of XLVI Simpósio Brasileiro de Pesquisa Operacional (2014),

pp. 2965–2976.

[52] Dourado, M. C., Oliveira, R. A., Protti, F., and Souza, U. S. Design

of connection networks with bounded number of non-terminal vertices.

Matemática Contemporânea 42, 14 (2014), 39–47.

[53] Downey, R. G., and Fellows, M. R. Parameterized computational fea-

sibility. In Feasible Mathematics II, P. Clote and J. B. Remmel, Eds.,

Progress in Computer Science and Applied Logic. Birkhäuser Boston,

1995, pp. 219–244.

[54] Downey, R. G., and Fellows, M. R. Parameterized Complexity. Springer-

Verlag, 1999. Monographs in Computer Science.

[55] Downey, R. G., and Fellows, M. R. Fundamentals of Parameterized

Complexity. Texts in Computer Science. Springer, 2013.

95

https://www.graphclasses.org/classes/gc_72.html
https://www.graphclasses.org/classes/gc_72.html

[56] Dreyfus, S. E., and Wagner, R. A. The Steiner problem in graphs.

Networks 1, 3 (1971), 195–207.

[57] Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., and Meister, D.

Computing minimum geodetic sets of proper interval graphs. In LATIN

2012: Theoretical Informatics - 10th Latin American Symposium, Are-

quipa, Peru, April 16-20, 2012. Proceedings (Berlin, Heidelberg, 2012),

D. Fernández-Baca, Ed., vol. 7256 of Lecture Notes in Computer Science,

Springer, pp. 279–290.

[58] Farber, M. Characterizations of strongly chordal graphs. Discrete Mathe-

matics 43, 2 (1983), 173 – 189.

[59] Farber, M. R. Applications of Linear Programming Duality to Problems

Involving Independence and Domination. Technical report (Simon Fraser

University. Department of Computing Science). 1981.

[60] Fellows, M. R., Rosamond, F. A., Rotics, U., and Szeider, S. Clique-

width is NP-complete. SIAM Journal on Discrete Mathematics 23, 2

(2009), 909–939.

[61] Fishburn, P. C. Interval graphs and interval orders. Discrete Mathematics

55, 2 (1985), 135–149.

[62] Fomin, F. V., Golovach, P. A., Lokshtanov, D., and Saurabh, S.

Clique-width: on the price of generality. In Proceedings of the Twenti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,

New York, NY, USA, January 4-6, 2009 (2009), C. Mathieu, Ed., SIAM,

pp. 825–834.

[63] Gallai, T. Transitiv orientierbare graphen. Acta Mathematica Hungarica 18,

1-2 (1967), 25–66.

[64] Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., and

Rossmanith, P. On digraph width measures in parameterized algo-

rithmics. In Parameterized and Exact Computation, 4th International

Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009,

Revised Selected Papers (2009), J. Chen and F. V. Fomin, Eds., vol. 5917

of LNCS, pp. 185–197.

[65] Garey, M. R., and Johnson, D. S. The rectilinear Steiner tree problem

is NP-complete. SIAM Journal on Applied Mathematics 32, 4 (1977),

826–834.

96

[66] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

1979.

[67] Garey, M. R., Johnson, D. S., and Stockmeyer, L. J. Some simplified

NP-complete graph problems. Theoretical Computer Science 1, 3 (1976),

237–267.

[68] Gargano, L., Hammar, M., Hell, P., Stacho, L., and Vaccaro, U.

Spanning spiders and light-splitting switches. Discrete Mathematics 285,

1 (2004), 83 – 95.

[69] Gavril, F. The intersection graphs of subtrees in trees are exactly the chordal

graphs. Journal of Combinatorial Theory, Series B 16, 1 (1974), 47–56.

[70] Gavril, F. A recognition algorithm for the intersection graphs of directed

paths in directed trees. Discrete Mathematics 13, 3 (1975), 237–249.

[71] Gavril, F. A recognition algorithm for the intersection graphs of paths in

trees. Discrete Mathematics 23, 3 (1978), 211–227.

[72] Gilmore, P. C., and Hoffman, A. J. A characterization of comparabil-

ity graphs and of interval graphs. Canadian Journal of Mathematics 16

(1964), 539–548.

[73] Golumbic, M. C. Trivially perfect graphs. Discrete Mathematics 24 (1978),

105–107.

[74] Golumbic, M. C. Algorithmic Graph Theory and Perfect Graphs (Annals

of Discrete Mathematics, Vol 57). North-Holland Publishing Co., NLD,

2004.

[75] Hadlock, F. Finding a maximum cut of a planar graph in polynomial time.

SIAM Journal on Computing 4, 3 (sep 1975), 221–225.

[76] Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., and

Wang, N. Integrality ratio for group Steiner trees and directed Steiner

trees. SIAM Journal on Computing 36, 5 (jan 2007), 1494–1511.

[77] Hans Jürgen Prömel, A. S. The Steiner Tree Problem. Vieweg+Teubner

Verlag, 2012.

[78] Hunter, P., and Kreutzer, S. Digraph measures: Kelly decompositions,

games, and orderings. Theoretical Computer Science 399, 3 (2008), 206–

219.

97

[79] Hwang, F. A linear time algorithm for full Steiner trees. Operations Research

Letters 4, 5 (1986), 235 – 237.

[80] Hwang, F. K., Richards, D. S., and Winter, P. The Steiner tree prob-

lem, vol. 53 of Annals of Discrete Mathematics. Elsevier, 1992.

[81] Itai, A., Papadimitriou, C. H., and Szwarcfiter, J. L. Hamilton paths

in grid graphs. SIAM Journal on Computing 11, 4 (nov 1982), 676–686.

[82] Jinjiang, Y., and Sanming, Z. Optimal labelling of unit interval graphs.

Applied Mathematics 10, 3 (sep 1995), 337–344.

[83] Johnson, D. S. The NP-completeness column: An ongoing guide. Journal of

Algorithms 6, 3 (1985), 434–451.

[84] Johnson, T., Robertson, N., Seymour, P. D., and Thomas, R. Di-

rected tree-width. Journal of Combinatorial Theory, Series B 82, 1 (2001),

138–154.

[85] Jones, M., Lokshtanov, D., Ramanujan, M. S., Saurabh, S., and

Suchý, O. Parameterized complexity of directed Steiner tree on sparse

graphs. SIAM Journal on Discrete Mathematics 31, 2 (jan 2017), 1294–

1327.

[86] Karp, R. M. Reducibility among Combinatorial Problems. Springer US,

Boston, MA, 1972, pp. 85–103.

[87] Klein, P., and Ravi, R. A nearly best-possible approximation algorithm

for node-weighted Steiner trees. Journal of Algorithms 19, 1 (jul 1995),

104–115.

[88] Korte, B., Lovász, L., Prömel, H. J., and Schrijver, A. Paths, flows,

and VLSI-layout. Springer, 1990.

[89] Kratochv́ıl, J., Masaŕık, T., and Novotná, J. U-bubble model for

mixed unit interval graphs and its applications: The maxcut problem re-

visited. In 45th International Symposium on Mathematical Foundations of

Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Re-

public (Dagstuhl, Germany, 2020), J. Esparza and D. Král’, Eds., vol. 170

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 57:1–

57:14.

[90] Leibowitz, R., Assmann, S. F., and Peck, G. W. The interval count of

a graph. SIAM Journal on Algebraic Discrete Methods 3, 4 (dec 1982),

485–494.

98

[91] Lin, G., and Xue, G. On the terminal Steiner tree problem. Information

Processing Letters 84, 2 (2002), 103–107.

[92] Lu, C. L., Tang, C. Y., and Lee, R. C.-T. The full Steiner tree problem.

Theoretical Computer Science 306, 1-3 (2003), 55–67.

[93] Mahajan, M., and Raman, V. Parameterizing above guaranteed values:

Maxsat and maxcut. Journal of Algorithms 31, 2 (1999), 335–354.

[94] Marx, D. A short proof of the NP-completeness of minimum sum interval

coloring. Operations Research Letters 33, 4 (2005), 382–384.

[95] Melo, A. A., Figueiredo, C. M. H., and Souza, U. S. Connecting ter-

minals using at most one router. Matemática Contemporânea 45 (2017),

49–57.

[96] Melo, A. A., Figueiredo, C. M. H., and Souza, U. S. A multivariate

analysis of the strict terminal connection problem. Journal of Computer

and System Sciences 111 (2020), 22–41.

[97] Mölle, D., Richter, S., and Rossmanith, P. Enumerate and expand:

Improved algorithms for connected vertex cover and tree cover. Theory

Comput. Syst. 43, 2 (2008), 234–253.

[98] Monma, C. L., and Wei, V. K. Intersection graphs of paths in a tree.

Journal of Combinatorial Theory, Series B 41, 2 (1986), 141–181.

[99] Müller, H., and Brandstädt, A. The NP-completeness of Steiner tree

and dominating set for chordal bipartite graphs. Theoretical Computer

Science 53, 2-3 (1987), 257–265.

[100] Nederlof, J. Fast polynomial-space algorithms using inclusion-exclusion.

Algorithmica 65, 4 (2013), 868–884.

[101] Nicoloso, S., Sarrafzadeh, M., and Song, X. On the sum coloring

problem on interval graphs. Algorithmica 23, 2 (1999), 109–126.

[102] Panda, B. The forbidden subgraph characterization of directed vertex graphs.

Discrete Mathematics 196, 1-3 (feb 1999), 239–256.

[103] Panda, B. S., and Pradhan, D. NP-completeness of Hamiltonian cycle

problem on rooted directed path graphs. CoRR abs/0809.2443 (2008).

[104] Papadimitriou, C. Computational Complexity. Theoretical computer sci-

ence. Addison-Wesley, 1994.

99

[105] Pnueli, A., Lempel, A., and Even, S. Transitive orientation of graphs

and identification of permutation graphs. Canadian Journal of Mathe-

matics 23 (1971), 160–175.

[106] Pocai, R. V. The complexity of SIMPLE MAX-CUT on comparability

graphs. Electronic Notes in Discrete Mathematics 55 (nov 2016), 161–

164.

[107] Reed, B. A. Introducing directed tree width. Electronic Notes in Discrete

Mathematics 3 (1999), 222–229.

[108] Roberts, F. Indifference graphs, F. Harary (ed.), proof techniques in graph

theory, 1969.

[109] Safari, M. A. D-width: A more natural measure for directed tree width. In

Mathematical Foundations of Computer Science 2005, 30th International

Symposium, MFCS 2005, Gdansk, Poland, August 29 - September 2, 2005,

Proceedings (2005), J. Jedrzejowicz and A. Szepietowski, Eds., vol. 3618

of Lecture Notes in Computer Science, Springer, pp. 745–756.

[110] Schaefer, T. J. The complexity of satisfiability problems. In Proceedings

of the 10th Annual ACM Symposium on Theory of Computing, May 1-3,

1978, San Diego, California, USA (1978), R. J. Lipton, W. A. Burkhard,

W. J. Savitch, E. P. Friedman, and A. V. Aho, Eds., ACM, pp. 216–226.

[111] Spinrad, J. P. Efficient Graph Representations. Fields Institute mono-

graphs. American Mathematical Society, Providence, RI, 2003.

[112] Voß, S. Steiner Tree Problems in Telecommunications. Springer US, Boston,

MA, 2006, pp. 459–492.

[113] Watel, D., Weisser, M., Bentz, C., and Barth, D. Steiner prob-

lems with limited number of branching nodes. In Structural Informa-

tion and Communication Complexity - 20th International Colloquium,

SIROCCO 2013, Ischia, Italy, July 1-3, 2013, Revised Selected Papers

(2013), T. Moscibroda and A. A. Rescigno, Eds., vol. 8179 of Lecture

Notes in Computer Science, Springer, pp. 310–321.

[114] Watel, D., Weisser, M.-A., Bentz, C., and Barth, D. Directed Steiner

trees with diffusion costs. Journal of Combinatorial Optimization 32, 4

(2016), 1089–1106.

[115] White, K., Farber, M., and Pulleyblank, W. Steiner trees, connected

domination and strongly chordal graphs. Networks 15, 1 (1985), 109–124.

100

Appendix A

Manuscript: Revising Johnson’s

Table for the 21st Century

This appendix contains the manuscript:

Celina M. H. de Figueiredo, Alexsander A. de Melo, Diana Sasaki, Ana Silva. Re-

vising Johnson’s Table for the 21st Century. Accepted for publication in Discrete

Applied Mathematics [34].

101

https://doi.org/10.1016/j.dam.2021.05.021
https://doi.org/10.1016/j.dam.2021.05.021

Please cite this article as: C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al., Revising Johnson’s table for the 21st century, Discrete Applied Mathematics
(2021), https://doi.org/10.1016/j.dam.2021.05.021.

Discrete Applied Mathematics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Revising Johnson’s table for the 21st century
Celina M.H. de Figueiredo a, Alexsander A. de Melo a,∗, Diana Sasaki b, Ana Silva c

a Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Rio de Janeiro State University, Rio de Janeiro, Brazil
c Federal University of Ceará, Ceará, Brazil

a r t i c l e i n f o

Article history:
Received 29 May 2020
Received in revised form 21 December 2020
Accepted 17 May 2021
Available online xxxx

Keywords:
Computational complexity
Parameterized complexity
NP-complete
Steiner tree
Dominating set

a b s t r a c t

What does it mean today to study a problem from a computational point of view?
We focus on parameterized complexity and on Column 16 ‘‘Graph Restrictions and
Their Effect’’ of D.S. Johnson’s Ongoing guide, where several puzzles were proposed
in a summary table with 30 graph classes as rows and 11 problems as columns.
Several of the 330 entries remain unclassified into Polynomial or NP-complete after
35 years. We provide a full dichotomy for the Steiner Tree column by proving that
the problem is NP-complete when restricted to Undirected Path graphs. We revise
Johnson’s summary table according to the granularity provided by the parameterized
complexity for NP-complete problems.

© 2021 Elsevier B.V. All rights reserved.

1. Graph restrictions and their effect 35 years later

The 1979 book Computers and Intractability, A Guide to the Theory of NP-completeness by Michael R. Garey and David
S. Johnson [53] is considered the single most important book by the computational complexity community and it is
known as The Guide, which we cite by [GJ]. The book was followed by The NP-completeness Column: An Ongoing Guide
where, from 1981 until 2007, D.S. Johnson continuously updated The Guide in 26 columns published first in the Journal of
Algorithms and then in the ACM Transactions on Algorithms. The Guide has an appendix where 300 NP-complete problems
are organized into 13 categories according to subject matter. The first, ‘‘A1 Graph Theory’’, contains 65 problems and the
second, ‘‘A2 Network Design’’, contains 51 problems. Category ‘‘A13 Open Problems’’ lists 12 problems in NP, at the time
not classified into polynomial or NP-complete, and it is surprising that since then 5 have been classified into polynomial
and 5 into NP-complete. Garey and Johnson were amazingly able to foresee a list of challenging problems which would
evenly be split into tractable and intractable problems. The goal of the present paper is to propose an answer to the
question: What does it mean today to study a problem from a computational complexity point of view? In search of an answer,
we focus on parameterized complexity and on Column 16 ‘‘Graph Restrictions and Their Effect’’ [66], which we cite by
[OG], where several puzzles were proposed by D.S. Johnson and many remain unsolved after 35 years. Consider in Table 1
the summary table from [OG] with 30 graph classes as rows and 11 columns, the first of which is Membership, followed
by 10 well-known NP-complete problems, listed in The Guide’s appendix as GT20, GT19, GT15, GT13, Open5, GT37, GT2,
ND16, ND12, and Open1. The entries follow the notation of [OG], where the complexity of the problem restricted to the
graph class is N = NP-complete, P = polynomial, or O = open. Following our convention, reference [GJ] stands for ‘‘The
Guide’’ and [OG] stands for ‘‘Column 16’’, and we highlight in bold the reference updates with the corresponding new

∗ Corresponding author.
E-mail addresses: celina@cos.ufrj.br (C.M.H. de Figueiredo), aamelo@cos.ufrj.br (A.A. de Melo), diana.sasaki@ime.uerj.br (D. Sasaki),

anasilva@mat.ufc.br (A. Silva).

https://doi.org/10.1016/j.dam.2021.05.021
0166-218X/© 2021 Elsevier B.V. All rights reserved.

102

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Table 1
The updated NP-Completeness Column: An Ongoing Guide table 35 years later. Depicted in bold are the references that correspond to unresolved
entries in [OG] and [GJ]. The references not in bold confirm resolved entries from [OG] or [GJ], that we updated either because they cited private
communications, because the cited reference is not easily accessible, or could not be confirmed. There is one entry highlighted in italic that corrects
the entry for HamCirc restricted to Circle graphs. We keep the abbreviations used by [OG], namely for entries: P = Polynomial-time solvable; N
= NP-complete; I = Open, but equivalent in complexity to general Graph Isomorphism; O? = Apparently open, but possibly easy to resolve; and
O = Open, and may well be hard; and for references [T] = Restriction trivializes the problem; [GJ] = the Guide [53]; and [OG] = the Ongoing
guide [66], please refer to this reference for the entry.
Graph Class Member IndSet Clique CliPar ChrNum ChrInd HamCir DomSet MaxCut StTree GraphIso

Trees/Forests P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]
Almost Trees (k) P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
Partial k-trees P [OG] P [5] P [T] P [16] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
Bandwidth-k P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [5] P [OG] P [76] P [OG]
Degree-k P [T] N [GJ] P [T] N [29] N [GJ] N [OG] N [GJ] N [GJ] N [GJ] N [GJ] P [OG]

Planar P [GJ] N [GJ] P [T] N [78] N [GJ] O N [GJ] N [GJ] P [GJ] N [OG] P [GJ]
Series Parallel P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [OG] P [GJ] P [OG] P [GJ]
Outerplanar P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]
Halin P [OG] P [OG] P [T] P [OG] P [5] P [17] P [T] P [OG] P [GJ] P [118] P [GJ]
k-Outerplanar P [OG] P [OG] P [T] P [OG] P [5] P [17] P [OG] P [OG] P [GJ] P [76] P [GJ]
Grid P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [32] P [T] N [OG] P [GJ]
K3,3-Free* P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] P [OG] N [GJ] P [40]
Thickness-k N [OG] N [GJ] P [T] N [78] N [GJ] N [OG] N [GJ] N [GJ] N [119] N [GJ] I Proposition 3
Genus-k P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] O? N [GJ] P [OG]

Perfect P [34] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [OG] N [20] N [GJ] I [84]
Chordal P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [84]
Split P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [108]
Strongly Chordal P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] P [OG] N [109] P [OG] I [111]
Comparability P [OG] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [94] N [102] N [GJ] I [22]
Bipartite P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [94] P [T] N [GJ] I [22]
Permutation P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] O? P [OG] P [OG]
Cographs P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

Undirected Path P [OG] P [OG] P [OG] P [OG] P [OG] O? N [13] N [OG] N [20] N Theorem 4 I [22]
Directed Path P [OG] P [OG] P [OG] P [OG] P [OG] O? N [99] P [OG] N [1] P [OG] P [7]
Interval P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] N [1] P [OG] P [OG]
Circular Arc P [OG] P [OG] P [OG] P [OG] N [OG] O? P [106] P [OG] N [1] P [11] P [80]
Circle P [OG] P [GJ] P [OG] N [73] N [OG] O? N [39] N [71] N [26] P [OG] P [68]
Proper Circ. Arc P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] O? P [11] P [82]
Edge (or Line) P [OG] P [GJ] P [T] N [95] N [OG] N [28] N [OG] N [GJ] P [59] N [19] I [OG]
Claw-Free P [T] P [OG] N [103] N [85] N [OG] N [28] N [OG] N [GJ] N [20] N [19] I [OG]

recent references. Every reference associated with each entry of Table 1 has been checked, and the updated entries are
precisely those that needed to be updated. It is surprising that several O? entries remain stubbornly open. At the time,
D.S. Johnson proposed only one ‘‘O! = famous open problem’’, Membership for Perfect graphs, which we know today to
be in P, and two entries ‘‘O = may well be hard’’, Hamiltonian Circuit restricted to Permutation graphs, known today
to be in P, and Chromatic Index restricted to Planar graphs, which is still open. We remark that in the original summary
table [OG], there was only one entry co-authored by a Brazilian researcher among 330 entries, namely Hamiltonian
Circuit restricted to Grids [64], and today we have two additional such entries: Maximum Cut restricted to Strongly
Chordal [109] and Graph Isomorphism restricted to Proper Circular Arc [82].

We depict in Figs. 1 and 2 the relations between the graph classes, and use the convention from [OG] that an arrow
from Class A to Class B means that Class A contains Class B. Since the only O! entry was Membership for Perfect graphs,
the chosen 30 classes were classified into the following four categories: Trees and Near-Trees, Planarity and its Relations,
A Catalog of Perfect Graphs, and Intersection Graphs. Although very similar to the figures presented in [OG], our Figs. 1
and 2 present some additional relations, that were either unknown or unobserved, and about which we comment next.
Unless explicitly mentioned, we follow the definitions from [OG]. According to it, Undirected Path graphs can be modeled
by a set of paths in a tree, and Directed Path graphs are undirected path graphs whose representation is such that for
some root vertex in the tree, all paths are subpaths of paths from the root to a leaf. We refer to [91] for the variations
called UV, DV and RDV of intersection graphs of a family of undirected or directed vertex paths in an undirected or in a
directed tree.

Fig. 1 highlights the key property that 7 graph classes are subclasses of Partial k-Trees [18], also known as Bounded
Treewidth graphs. Also, although Table 1 follows the same organization as the one used in [OG], our proposed new
Table 2 is organized in a way as to highlight this relationship, with the first 8 rows being exactly Partial k-Trees and
its subclasses. In the summary table, D.S. Johnson used entry ‘‘P? = appears to be polynomial-time solvable by standard
techniques, but I haven’t checked the details’’. D.S. Johnson is correct, since all P? entries are known today to be P entries.
All former P? entries used to appear in these 8 rows, Partialk-Trees and the 7 subclasses [18].

Another difference is that we use K3,3-Free* to denote the graph class referred to in [OG] by K3,3-Free. This is to
avoid confusion, since nowadays it is standard to use H-Free to refer to the class of graphs that do not contain H as

2

103

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 1. Containment relations for classes from [OG], where, in particular, the subclasses of Partial k-Trees are highlighted. A graph class Class A
has an arrow to a graph class Class B if Class A contains Class B.
Source: Adapted from [OG].

Fig. 2. Containment relations for classes from [OG], our target class is Undirected Path.
Source: Adapted from [OG].

an induced subgraph. However, the class investigated in [OG] is instead the class of graphs that contain no subgraphs
homeomorphic to K3,3; in other words, the class of graphs that do not contain K3,3 as a topological minor. Observe that,
using our notation, we have that K3,3-Free* is a proper subclass of K3,3-Free. Also, we mention that this confusion does
not occur for Claw-Free graphs, since we, as well as [OG], use it to denote the class of graphs that do not contain K1,3
(also known as the claw) as an induced subgraph.

Finally, we mention two relations that do not appear in [OG], both involving the class Thickness-k. A graph G is said to
have thickness at most k if E(G) can be partitioned into at most k subsets, each of which forms a planar subgraph of G. In
the same way as all the other graph classes that have a parameter in their names such as the class of Partial k-Trees that
is also known as Bounded Treewidth graphs, the class Thickness-k means Bounded Thickness graphs. First, note that if
G has degree at most ∆(G), then by Vizing’s Theorem, we get that E(G) can be colored with at most ∆(G) + 1 colors. In
other words, this means that the edge set of G can be partitioned into ∆(G)+ 1 matchings, which are planar graphs, and
hence G has thickness at most ∆(G)+1. Therefore, we get that Degree-k is a subclass of Thickness-k. Another non-trivial

3

104

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Table 2
The parameterized NP-Completeness Column: An Ongoing Guide table revised for the 21st century. The parameterized puzzle is to classify every O
entry, every O? entry and every N entry into FPT = Fixed parameter tractable, W1= W [1]-hard, W2= W [2]-hard, and pN = paraNP-complete,
where the considered parameterization is with respect to the natural parameter of each corresponding problem. We highlight as O* the N entry of
Table 1 that constitutes the parameterized puzzle, for which so far we were not able to provide a parameterized complexity classification.
Graph Class Member IndSet Clique CliPar ChrNum ChrInd HamCir DomSet MaxCut κ-StTree GraphIso

Partial k-trees P [OG] P [5] P [T] P [16] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
Trees/Forests P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]
Almost Trees (k) P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
Bandwidth-k P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [5] P [OG] P [76] P [OG]
Series Parallel P [OG] P [OG] P [T] P [16] P [5] P [17] P [5] P [OG] P [GJ] P [OG] P [GJ]
Outerplanar P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]
Halin P [OG] P [OG] P [T] P [OG] P [5] P [17] P [T] P [OG] P [GJ] P [118] P [GJ]
k-Outerplanar P [OG] P [OG] P [T] P [OG] P [5] P [17] P [OG] P [OG] P [GJ] P [76] P [GJ]

Planar P [GJ] FPT [96] P [T] FPT [T] pN [55] O FPT [89] FPT [47] P [GJ] FPT [101] P [GJ]
Grid P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] FPT [89] FPT [47] P [T] FPT [101] P [GJ]
K3,3-Free* P [OG] FPT [42] P [T] FPT [T] pN [55] O? FPT [89] FPT [100] P [OG] XP [T] P [40]
Thickness-k pN [OG] FPT [74] P [T] FPT [T] pN [55] pN [63] FPT [89] XP [T] FPT [86] XP [T] FPT [6]
Genus-k P [OG] FPT [30] P [T] FPT [T] pN [55] O? FPT [89] FPT [51] FPT [86] FPT [101] P [OG]

Degree-k P [T] FPT [48] P [T] FPT [T] pN [55] pN [63] FPT [89] FPT [3] FPT [86] FPT [67] P [OG]

Perfect P [34] P [OG] P [OG] P [OG] P [OG] pN [28] FPT [89] W2 [104] FPT [86] W2 [104] FPT [6]
Chordal P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [89] W2 [104] FPT [86] W2 [104] FPT [6]
Split P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [89] W2 [104] FPT [86] W2 [104] FPT [6]
Strongly Chordal P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [89] P [OG] FPT [86] P [OG] FPT [6]
Comparability P [OG] P [OG] P [OG] P [OG] P [OG] pN [28] FPT [89] W2 [104] FPT [86] W2 Proposition 1 FPT [6]
Bipartite P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] FPT [89] W2 [104] P [T] W2 Proposition 1 FPT [6]
Permutation P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] FPT [86] P [OG] P [OG]
Cographs P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

Undirected Path P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [89] XP [T] FPT [86] XP [T] FPT [6]
Directed Path P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [89] P [OG] FPT [86] P [OG] P [7]
Interval P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] FPT [86] P [OG] P [OG]
Circular Arc P [OG] P [OG] P [OG] P [OG] FPT [54] O? P [106] P [OG] FPT [86] P [11] P [80]
Circle P [OG] P [GJ] P [OG] XP [73] pN [112] O? FPT [89] W1 [24] FPT [86] P [OG] P [68]
Proper Circ. Arc P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] FPT [86] P [11] P [82]
Edge (or Line) P [OG] P [GJ] P [T] O* [95] pN [63] pN [28] FPT [89] FPT [38] P [59] XP [T] FPT [6]
Claw-Free P [T] P [OG] FPT [38] pN [85] pN [63] pN [28] FPT [89] FPT [38] FPT [86] XP [T] FPT [6]

relation involving this class is with Genus-k graphs. A k-book embedding of a graph G is a linear ordering of its vertices
along the spine of a book and an assignment of its edges to k pages so that edges assigned to the same page can be drawn
on that page without crossings. The pagenumber of a graph G is the minimum k for which G admits a k-book embedding.
Clearly, the pagenumber of G is an upper bound for the thickness of G. Additionally, in [87] the authors prove that the
pagenumber of G is bounded above by a function of the genus of G. This means that if G has bounded genus, then G also
has bounded thickness. Therefore, Genus-k is a subclass of Thickness-k. On the other hand, to the best of our knowledge,
it is not known whether graphs with bounded thickness have bounded genus.

Our contribution. In the summary table, the Steiner Tree column had 6 unresolved entries: 5 P? entries, all of which are
now known to be subclasses of Partial k-Trees and henceforth are in P, and one O? entry for Undirected Path graphs.
Upon close investigation of the references given in [GJ] and [OG], we found that many consist of ‘‘private communication’’
or could not be confirmed. In the particular case of the Steiner Tree column, we found that this happens for the lines
Circular Arc, Circle, Proper Circular Arc, Edge (or Line), and Claw-Free. We were able to find a recent reference for
Edge (or Line) and Claw-Free. Additionally, based on the facts that Circular Arc and, consequently, Proper Circular Arc
graphs have bounded mim-width and that Steiner tree is polynomial-time solvable for graphs of bounded mim-width,
we were able to resolve such entries as well. However, we could not find any reference for Circle graphs, and therefore
we underline the corresponding [OG] reference in Table 1. Moreover, the entry Undirected Path is said to be NP-complete
in [107], but again with a ‘‘private communication’’ reference (we comment more on this in Section 4). Believing in the
need to have explicit proofs for these important problems, we here give a proof of NP-completeness for Undirected Path
graphs, which would provide a full dichotomy Polynomial versus NP-complete for the Steiner Tree column. Actually,
we provide a second dichotomy for the Steiner Tree problem restricted to Undirected Path graphs, according to the
diameter of the input graph. For the Graph Isomorphism column we also provide a full dichotomy Polynomial versus
NP-complete by giving an explicit proof of GI-completeness for Thickness-k graphs (please refer to Section 3).

Besides providing a full dichotomy Polynomial versus NP-complete for the Steiner Tree column, in Table 1 we have
thoroughly revised the summary table that 35 years later has 54 new resolved entries depicted in bold. Additionally, there
are 36 citations for references not in bold that confirm resolved entries from [OG] or [GJ], that we updated because they
cited private communications, or because the cited reference is not easily accessible, or could not be confirmed. There is

4

105

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

one entry highlighted in italic that corrects the entry for Hamiltonian Circuit restricted to Circle graphs originally P but
that actually is N [39].

In addition, we consider the parameterized complexity of hard problems to revise Table 1 into a new Table 2, a
proposed summary table of what it means today to study a problem from a computational complexity point of view. This
is of course just a sample of what it means, since we could even consider other classifications (e.g., the approximability
complexity theory and the space complexity theory). We have kept the same 30 classes but have drawn the horizontal
lines so that the Partial k-Trees subclasses appear together, and we may focus on the remaining rows, where the
NP-complete entries appear. In Section 2, we discuss in detail Table 2, also presenting the basic definitions of param-
eterized complexity, in order to draw the reader’s attention to the granularity provided by the parameterized complexity
for the NP-complete problems into XP, FPT, W1, W2, and pN. We depict in Table 2 as O* the only N entry of Table 1
that constitutes the parameterized puzzle for which so far we were not able to provide a parameterized complexity
classification. This is to show how rich the original problems posed by Garey and Johnson are, and how their initial
classification continues to develop into ever evolving complexity classes, with the NP-complete class being now just the
beginning of a very interesting story.

2. The parameterized complexity of hard problems

In this section, we discuss in detail new Table 2. We also further discuss some of the differences that arise between
our updated Table 1 and the table presented in [OG] thirty-five years ago. We start by giving some basic definitions of
parameterized complexity and its complexity hierarchy classes. After that, we discuss each of the 11 columns separately.

Parameterized complexity. We refer the reader to [37,48,49,52,96] for all basic formal definitions, as well as many
techniques employed in the parameterized complexity theory. Formally, given a fixed finite alphabet Σ , a language
L ⊆ Σ∗

× N is called a parameterized problem; given an instance (x, κ) ∈ L, we call κ the parameter. Also, we denote the
size of an instance (x, κ) by |(x, κ)|. Observe that each possible parameter defines a different parameterized problem; for
example, when considering the Clique problem on graphs, it can be parameterized by the size of the desired clique, or by
the maximum degree of the input graph. In both cases, the input consists of a graph G, an integer c , and the corresponding
parameter, and the problem consists of deciding whether G has a clique of size at least c , except that in the former the
parameter is also c , while in the latter the parameter is the maximum degree ∆(G). When the parameterized problem is
a decision problem having as parameter the size of the solution, we say that the problem is parameterized by the natural
parameter. Table 2 is filled taking into account the natural parameter, whenever possible. We give more details about this
when analyzing each of the 11 columns.

We say that a parameterized problem L is fixed parameter tractable (from now on denoted by FPT) if there exists an
algorithm A that solves L on input (x, κ) in time f (κ) · |(x, κ)|O(1), where f is a computable function. In this case, the
algorithm A is said to be an FPT algorithm for L, and we also use FPT to denote the set of FPT problems. Observe that
P ⊆ FPT.

Intuitively, one could describe the FPT class as the parallel, in the parameterized complexity theory, of the P class
in the traditional complexity theory. Another ‘‘approachable’’ class is that of the slice-wise polynomial. We say that
a parameterized problem L is slice-wise polynomial (denoted by XP) if there exists an algorithm that solves L in time
f (κ) · |(x, κ)|g(κ), where f and g are two computable functions. Observe that, for each fixed value of κ , this is a polynomial
algorithm.

Concerning a parallel of the NP-complete class, there are two main hard classes in the parameterized complexity, the
paraNP-complete and the W-hard. A parameterized problem L is paraNP-complete if it is NP-complete for some fixed value
of the parameter κ . For instance, the Vertex Coloring problem is paraNP-complete when parameterized by the number
of colors. Note that, unless P = NP, a paraNP-complete problem cannot be XP, hence it cannot be FPT either.

Now, before defining our last parameterized complexity class, we need another definition. Given an instance (x, κ) of
a parameterized problem L, a parameterized reduction from L to another parameterized problem L′ is an algorithm that
computes, in time f (κ) · |x|O(1) for some computable function f , an equivalent instance (x′, κ ′) of L′ such that κ ′

≤ g(κ)
for some computable function g . The class of W-hard problems can be formally defined based on a hierarchy of nested
classes called W[i], for each i ∈ N\{0}. However, for our purposes it suffices to define the W[1]-hard and W[2]-hard classes
in terms of their ‘‘base’’ problems; think of it as defining the NP-hard class in terms of SAT. A parameterized problem
L is W[1]-hard if there is a parameterized reduction from Clique, parameterized by the size of the clique, to L; and it is
W[2]-hard if there is a parameterized reduction from Dominating Set, parameterized by the size of the dominating set, to
L. Observe that a parameterized version of an NP-hard problem can be classified in any of these classes, unless of course
P = NP, in which case all the classes collapse to P.

Tree decompositions are an important tool in the parameterized complexity theory, as well as in the traditional com-
putational complexity, since good algorithms can often be obtained for graphs with bounded treewidth, and also because
even graphs with unbounded treewidth can sometimes be approached by applying the bidimensionality technique (see
e.g. [37]). Since the publication of [OG], in addition to treewidth, many other width parameters have been introduced
(see [113] for a nice Hasse diagram containing 32 graph parameters; we also refer to the survey [58]). In particular, the
clique-width [69] and the mim-width [113] parameters are of special interest to us, since they are bounded for some of our
proposed classes, and because some of the proposed problems can be solved in polynomial time when these parameters

5

106

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

are bounded. More specifically, Partial kP-trees and Cographs have bounded clique-width [36], while the following
have bounded mim-width: graphs with bounded clique-width [113], Permutation [10], Circular Arc [10], Directed
Path [25] (this is because they are a subclass of leaf powers [65]). Regarding the proposed problems, the following
can be solved in polynomial time on graphs with bounded mim-width, provided a branch decomposition of bounded
mim-width is given: Independent Set, Dominating Set [27], and Steiner Tree [11]; while the following can always
be solved in polynomial time on graphs with bounded clique-width, since a construction sequence of bounded clique-
width can be found in polynomial (and even FPT) time [62,97,98]: Clique [35], Chromatic Number [75], Hamiltonian
Circuit,Maximum Cut [116], and Clique Partition [105]. Although the problem of finding in polynomial-time a branching
decomposition of bounded mim-width is still open for general graphs with bounded mim-width, it has been proven
to be polynomial-time solvable for some graph classes, including Permutation and Circular Arc graphs [10]. These
observations help to solve an issue about the complexity of Steiner Tree restricted to Circular Arc and Proper Circular
Arc, which we discuss later on. Also, because Maximum Cut is NP-complete on Interval graphs [1], and this is a subclass
of Circular Arc, it follows that the problem is NP-complete on graphs with bounded mim-width, which is in contrast
with the complexity of the problem restricted to bounded clique-width [116].

We now discuss Tables 1 and 2, dividing the discussion by the problems.

Membership. The entries P are inherited from Table 1; hence the only class that can be further refined in the parame-
terized complexity is the class Thickness-k. It is known that deciding whether a given graph G has thickness at most k is
NP-complete even if k = 2 (for k = 1 it coincides with deciding planarity, which is polynomial) [OG]. We therefore get
that, considering k as the parameter, the related parameterized problem is paraNP-complete.

We mention that the reference cited by [OG] for Partial k-trees was a technical report that now has a published
version [4].

Independent set. The natural parameter considered is the size of the desired independent set. The problem is trivially
in XP in general: by enumerating all vertex subsets of size κ , one can readily check in time O(nκ) whether a graph on
n vertices admits an independent set of size at least κ . Nevertheless, Independent Set is unlikely to be FPT, since it is
known to be W[1]-hard [48]. In fact, by considering the complement graph, we obtain that Independent Set and Clique,
for general graphs, are equivalent to each other from the parameterized complexity perspective. On the positive side, as
can be seen in Table 2, the problem is FPT for Planar [96], Genus-k [30] and Degree-k [48] graphs. More generally, the
problem is also FPT for Thickness-k graphs [74]: This follows from the fact that Independent Set is FPT when restricted to
graphs with bounded clique number, as first observed in [74] as a special case of a more general framework cf. [52,104].
Additionally, Independent Set is also FPT for K3,3-Free*. Indeed, it is well known that, if a graph H of maximum degree at
most 3 is a minor of a graph G, then H is a topological minor of G as well cf. [46,77]. Thus, K3,3-Free* coincides with the
class K3,3-Minor-Free* of graphs that do not contain K3,3 as a minor. Therefore, since Independent Set was proven to be
FPT for K3,3-Minor-Free* graphs [42,43], we obtain that the problem is also FPT for K3,3-Free*. We remark that, although
Independent Set is FPT for K3,3-Free* graphs, it remains W[1]-hard for the larger class K3,3-Free. This latter result follows
from the fact that Independent Set was proven to be W[1]-hard for another subclass of K3,3-Free, the C4-free graphs [21],
which consists of graphs that do not contain C4 as an induced subgraph.

We observe that, for the entry Partial k -Trees, we cite Ref. [5], which is different from Ref. [2] cited in [OG]. This is
because, upon checking [2], we were not able to find any mention to the Independent Set problem restricted to Partial
k -Trees.

An interesting fact is that D.S. Johnson mentions, in the caption of his summary table, that Vertex Cover was not
included as a column because its complexity will always be the same as the complexity of Independent Set. While this
is true for traditional complexity theory, one could say that Vertex Cover is a canonical problem in FPT since it is FPT
in general [31] and many of the known techniques can be successfully applied to it, whereas Independent Set can be
regarded as a canonical W[1]-hard problem.

Clique. Analogously, the natural parameter considered is the size of the desired clique. All entries here are in P, except
for Claw-Free graphs, which is FPT [38].

Partition into cliques. The problem has as input a graph G and a positive integer κ , and it consists of deciding whether
the vertex set of G can be partitioned into κ disjoint cliques. The natural parameter considered is the integer κ . One can
straightforwardly verify that Partition into Cliques is polynomially equivalent to Chromatic Number by considering the
complement graph G of the input graph G, i.e. the problem of deciding whether G can be proper colored with at most κ
colors. Nevertheless, it is worth mentioning that the respective particular cases of Partition into Cliques and Chromatic
Number restricted to specific graph classes are not necessarily polynomially equivalent to each other, as usually these
graph classes are not closed under taking the complement. As an example, observe that in Table 1, Partition into Cliques
is in P for Circular Arc graphs, while Chromatic Number remains NP-complete for Circular Arc graphs.

The problem is trivially FPT for graphs that only contain cliques whose size can be upper-bounded by a computable
function f of κ . Indeed, if the size of the maximum clique of G is at most f (κ), then either G contains at most f (κ)·κ vertices,
or the vertex set of the input graph cannot be partitioned into at most κ disjoint cliques, and thus we are dealing with a
no-instance. Based on that, we immediately obtain that Partition into Cliques is FPT for Planar and K3,3-Free* graphs
(observe that the latter graphs cannot have cliques of size bigger than 5). Additionally, one can verify that Thickness-k,

6

107

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Genus-k and Degree-k graphs also have cliques whose size depends only on k, and since k is constant by definition, we get
that these graphs have maximum clique bounded by a constant value. As a result, we obtain that Partition into Cliques
is also FPT for Thickness-k, Genus-k and Degree-k graphs.

On the other hand, Circle graphs may have cliques of unbounded size. J. Keil and L. Stewart proved that Partition
into Cliques is XP for Circle graphs [73], however it remains unknown whether the problem is FPT in this class. The
paraNP-completeness of Partition into Cliques for Claw-Free graphs follows from the fact that Chromatic Number is
NP-complete, even when κ = 3, for Triangle-Free graphs (i.e., graphs that do not contain K3 as an induced subgraph) [85]
— since the complement graphs of Triangle-Free graphs do not have independent sets of size larger than 2, such
complement graphs are Claw-free.

In what follows, we discuss some discrepancies between our Table 1 and the table presented in [OG], with respect to
the Partition into Cliques entries. First, [OG] cites [GJ] for the Degree-k entry. However it is not immediate how the
results presented in [GJ] (or in the references cited by [GJ]) lead to the NP-completeness of Partition into Cliques for
Degree-k. In fact, [GJ] proves that Partition into Cliques remains NP-complete for graphs that contain no cliques of size
larger than 4; nevertheless the graph constructed in their reduction does not have bounded maximum degree. For this
reason, we cite [29] instead, which gives an explicit NP-completeness proof for Partition into Cliques restricted to Cubic
graphs. As for Planar graphs, [OG] cites [12], which actually proves that the following problem is NP-hard: given a planar
graph G, and a fixed connected outerplanar graph H with at least three vertices, maximizes the number of vertices of G
that can be covered with copies of H . This does not immediately imply that Partition into Cliques is NP-complete for
Planar graphs since they limit the number of vertices in each clique to 3 (by considering H = K3) when a planar graph
could have a partition into cliques with cliques also of size 4. We then cite the more explicit construction given in [78].
Note that this also impacts the entries K3,3-Free*, Thickness-k, and Genus-k, as these contain Planar graphs. Finally, we
remark that the references cited by [OG] for Line graphs and Claw-Free graphs are actually private communications.
Therefore, we cite [95] for Line graphs, and [85] for Claw-Free graphs, instead of [OG]. We remark that although the
NP-completeness of Partition into Cliques for such graph classes directly follows from [95], we have decided to cite the
oldest known reference for each result.

A problem closely related to Partition into Cliques is the so-called Clique Edge-Partition, which is defined as follows:
given a graph G and a positive integer k, decide whether the edge set of G can be partitioned into at most k subsets
such that each subset induces a complete subgraph of G. However, it is worth mentioning that, since the line graph of a
complete graph is not necessarily a complete graph, this problem is not the same as deciding whether the vertex set of
the line graph L(G) of a graph G can be partitioned into at most k disjoint cliques. As a matter of fact, while Partition
into Cliques is paraNP-complete [85], Clique Edge-Partition is FPT in general [92].

Chromatic number. The problem has as input a graph G and a positive integer κ , with κ being the considered parameter,
and it consists of deciding whether the chromatic number of G is at most κ . Also one of Karp’s 21 NP-complete
problems [70], Chromatic Number is NP-complete for fixed values of κ for very restricted graph classes. Since it is
NP-complete to decide whether a planar graph with maximum degree 4 is 3-colorable [55], we get that Chromatic
Number is paraNP-complete for Planar, K3,3-Free*, Genus-k, Thickness-k and Degree-k graphs. Additionally, since it is
NP-complete to decide whether a circle graph is 4-colorable [112], we obtain that Chromatic Number is paraNP-complete
for Circle graphs. Finally, it is also NP-complete to decide whether the line graph of a 3-regular graph is 3-colorable [63],
implying the paraNP-completeness for Line and Claw-Free graphs. On the positive side, we mention that, even though the
parameterized complexity theory had not yet been defined by the time of publication of [54], the algorithm presented
in [54] for Circular Arc is actually an FPT algorithm. Therefore, Chromatic Number parameterized by κ , the number of
colors, is FPT for Circular Arc graphs.

As for the differences between our tables and [OG]’s Table, they cite [2] for the entry Partial k-Trees. However this
reference does not mention the Chromatic Number problem, and this is why we cite [5]. As for Bandwidth-k graphs,
they cite [90], which treats only the case k = 3. The same happens for the entry k-Outerplanar [8]. Also, we could not
find the reference cited by [OG] for Series–Parallel graphs [110], which is the same as the one cited for Halin graphs.
Nevertheless, the polynomial results for all these classes follow from the fact they all have bounded treewidth; therefore
we cite [5].

Chromatic index. This is by far the hardest problem of the table, with the largest number of open entries, remaining open
even for classes considered ‘‘easy’’ as for instance Cographs, a graph class for which all problems besides Chromatic Index
have been classified as P [75]. The problem has as input a graph G, and a positive integer κ , with κ being the considered
parameter, and one wants to decide whether the chromatic index of G, denoted by χ ′(G), is at most κ . Observe that,
since Vizing’s Theorem tells us that χ ′(G) ∈ {∆(G), ∆(G) + 1}, we can then consider κ as being equal to the maximum
degree of G as otherwise the answer is trivial. As already mentioned, deciding whether χ ′(G) = 3 is NP-complete even
for Cubic graphs [63], which implies that Chromatic Index is paraNP-complete for Degree-k graphs, and that it is also
paraNP-complete for Thickness-k graphs. In addition, L. Cai and J. A. Ellis proved that deciding whether χ ′(G) = 3 is
NP-complete even for Comparability graphs and for Line graphs [28]. Therefore, Chromatic Index remains paraNP-
complete when restricted to Comparability, Perfect, Line and Claw-Free graphs.

The reference cited by [OG] for Series–Parallel graphs and Halin graphs is the same as the one cited for these graphs
on column Chromatic Number [110]. Again, even though we could not find the reference, the results follow from the fact
that these graphs have bounded treewidth [17].

7

108

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Hamiltonian circuit. Here, the size of any solution is the size of the input graph; therefore, we consider the problem of
deciding whether a given graph G has an Hamiltonian cycle parameterized by n = |V (G)|. It is known that Longest Cycle
parameterized by the size κ of the cycle is FPT [89]. If follows that Hamiltonian Circuit is FPT when parameterized by n.

The reference cited by [OG] for Series–Parallel graphs [110] is the same as the one cited for these graphs on
Chromatic Number (see comments above); thus, we cite [5] instead. Also, we were not able to access the reference
for Split and Chordal graphs [33], therefore we cite Ref. [93]. For Circle graphs, we find a more serious discrepancy
between our Table 1 and the table presented in [OG]. They cite [13] as providing a polynomial algorithm for Circle
graphs. However, the paper only provides a polynomial algorithm for Interval graphs, a subclass of Circle graphs. And
actually, the problem has been shown to be NP-complete for Circle graphs in [39].

Dominating set. Given a graph G and a positive integer κ , the problem consists of deciding whether G has a dominating
set of size at most κ (a set D ⊆ V (G) is dominating if, for every vertex v ∈ V (G), v ∈ D or v has a neighbor that
belongs to D). The natural parameter is of course κ , and as previously mentioned, this is the canonical problem in the class
W[2]-hard. Because of this, Dominating Set is among the most investigated problems in the parameterized complexity
theory, deserving a survey of its own. Here, we make a short compilation of the results that concern the classes of interest.
The problem is FPT for: Planar graphs [47], and therefore also for Grid graphs; for K3,3-Free* graphs [100]; for Genus-k
graphs [51]; for k-Degenerate graphs [3], and therefore also for Degree-k graphs; and for Claw-Free graphs [38], and
therefore also for Line graphs. In addition, it is W[2]-hard for Split and Bipartite graphs [104], and therefore also for
Chordal, Perfect, and Comparability graphs. Finally, it is W[1]-hard for Circle graphs [24]. Observe that this problem
is trivially in XP, since it suffices to test all the O(nκ) subsets of size κ . However, this is not completely refined, and the
entries for Thickness-k and Undirected Path graphs can be regarded as the only open cases in this column.

Regarding the differences between our Table 1 and the table in [OG], they cite [57] for Almost Trees (k), but the paper
does not seem to attack this class. Something similar happens with entry Bandwidth-k, where they cite [90] but the
paper attack domination-related problems, but not Dominating Set itself. Nevertheless, we now know that the problem
is indeed polynomial for these classes since they have bounded treewidth [5]. Also, the entry for Grids is cited as a private
communication in [OG]; this is why we provide Ref. [32]. As for the Bipartite and Comparability entries, we were not
able to find Ref. [45], cited by [OG], this is why we also provide [94].

Maximum cut. This is another problem that is FPT in general. Given a graph G, and an integer κ , we consider the problem
of deciding whether there exists S ⊆ E(G) that separates G and has size at least κ , parameterized by κ . The best known
algorithm so far runs in time O(m + n + κ · 4κ) [86], where m denotes the number of edges and n denotes the number
of vertices of the input graph G.

We were not able to find the reference cited by [OG] for Thickness-k graphs [9], and therefore we provide the same
reference given by [GJ] for Degree-k graphs [119].

Steiner tree. Given a graph G, a subset X ⊆ V (G), called terminal set, and a positive integer t , the problem consists
of deciding whether there exists a subset S ⊆ V (G) \ X such that |S ∪ X | ≤ t and G[S ∪ X] is connected — and hence
G[S ∪X] contains a tree subgraph T with X ⊆ V (T), called a Steiner tree of G for X . The vertices in S are commonly called
Steiner vertices. Steiner Tree parameterized by the number of terminal vertices |X | is well-known to be FPT [50], with
the current best algorithm running in time O(2|X |

·nO(1)) [15], where n denotes the number of vertices of the input graph
G. This clearly implies that Steiner Tree parameterized by the natural parameter, i.e. by the size of the sought solution
|S ∪ X | ≤ t , is also FPT. Interestingly enough, the problem is W[2]-hard when parameterized by the number of Steiner
vertices |S| as shown in [88]. We denote by κ the maximum number of Steiner vertices allowed in a given instance of the
problem, and then we write κ-Steiner Tree to denote Steiner Tree parameterized by κ . Since the other parameterized
versions of the problem are already known to be FPT for general graphs, this latter is the version considered in Table 2.

The κ-Steiner Tree problem is FPT for Genus-k graphs [101], and therefore for Planar and Grid graphs; and for
k-Degenerate graphs [67], and therefore for Degree-k graphs. Also, the proof given in [104] for W[2]-hardness of
Dominating Set for Split graphs actually holds for Connected Dominating Set. Moreover, in [117], the authors give
a parameterized reduction from Connected Dominating Set to κ-Steiner Tree that works for any subclass of Chordal
graphs, without changing the input graph. Therefore, based on the results presented in [104], we obtain that κ-Steiner
Tree is W[2]-hard for Split, Chordal and Perfect graphs. In the next section, we give in Proposition 1 a simple reduction
to prove that the problem is W[2]-hardness for Bipartite graphs (and therefore also for Comparability graphs). Finally,
observe that a simple XP algorithm can be obtained by simply testing all O(nκ) possible vertex subsets S ⊆ V (G) \ X of
size at most κ .

Regarding the differences between our tables and [OG]’s Table, Ref. [114] cited in [OG] for Outerplanar graphs could
not be found, but we mention that the reference cited in [OG] for Series–Parallel [115] is indeed correct, and that it
can be used for Outerplanar as well. Also, [OG] cites a private communication with Schäffer for the entries Circle, Line,
and Claw-Free graphs, and cites [117] for Circular Arc graphs and Proper Circular Arc. We were not able to find any
mention to Circular Arc graphs in [117]. Also, in his book [107], Spinrad writes:

‘‘The status of Steiner Tree is slightly unclear; Schäffer sketched a proof that this is polynomially solvable (for both
Circle and Circular Arc graphs), and thus it appeared as polynomial in the table of ‘[OG]’, though no algorithm
solving the problem appears in the general literature’’.

8

109

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Nevertheless, because Circular Arc graphs have bounded mim-width and a branch decomposition with bounded mim-
width of these graphs can be computed in polynomial time [10], it follows from [11] that Steiner Tree can be solved in
polynomial time for Circular Arc, and consequently also for Proper Circular Arc. As for entries Line and Claw-Free,
they have been recently filled [19], while the situation remains the same for Circle graphs. We add that in [71], J. Keil
proves that Connected Dominating Set is NP-complete for Circle graphs. Thus if a proof of polynomiality of Steiner
tree indeed exists for Circle graphs, this will be a nice example of class that separates Connected Dominating Set from
Steiner tree.

Graph isomorphism. This is problem Open1 from [GJ], and perhaps the most controversial problem in Graph Theory,
being regarded as the only naturally defined problem with a high chance to be an NP-intermediate problem, thus having
deserved a classification of its own. Given two graphs G and H , it consists of deciding whether G and H are isomorphic,
i.e., whether there exists a bijection of the vertex sets that preserves adjacencies. A problem is GI-complete if it is
equivalent in complexity to general Graph Isomorphism. As it happened with Hamiltonian Circuit, the natural parameter
here is the size of the input graph. This problem is FPT in general, with the best known algorithm running in time
O∗(2

√
n log n) [6].

There are again some discrepancies between our Table 1 and the table presented in [OG]. In [OG], they cite [GJ] as a
reference for the entries Perfect and Chordal graphs to be GI-complete; however, Chordal graphs are cited as an open
case in [GJ]. Nevertheless, these classes are indeed GI-complete as proven in [84] for Chordal graphs; this construction
was noticed to work also for Split graphs [108]. Something similar happens in entries Bipartite and Undirected Path
graphs, with them being cited as open cases in [GJ], instead of GI-complete, as cited in [OG]. Nevertheless, these are
indeed GI-complete as proven in [22]. This also impacts the Comparability graphs entry. Finally, Graph Isomorphism is
also GI-complete for Thickness-k cf. [41]. Since [41] cites an unpublished paper due to De Biasi, we provide a proof in
Proposition 3, for the sake of completeness.

3. Some simple reductions

For the sake of completeness, here we present two simple proofs. First, we prove that κ-Steiner Tree is W[2]-hard when
restricted to Bipartite graphs. Indeed, this result follows from a standard parameterized reduction from Dominating Set,
described in Proposition 1. We remark that Raman and Saurabh present a similar reduction to prove that Dominating Set
is W[2]-hard for Bipartite graphs [104].

Proposition 1. κ-Steiner Tree remains W[2]-hard for Bipartite graphs.

Proof. Let I = (G, κ) be an instance of Dominating Set. We let I ′ = (G′, X, κ) be the instance of κ-Steiner Tree such that
G′ is defined as follows:

• V (G′) = {r} ∪ {v′: v ∈ V (G)} ∪ V (G), where r denotes a new vertex, and we add a new vertex v′ for each v ∈ V (G);
• E(G′) = {rv: v ∈ V (G)} ∪ {v′u: u ∈ NG[v], u, v ∈ V (G)}; and

the terminal set is defined as X = {r} ∪ {v′: v ∈ V (G)}. Note that X and V (G) are independent sets of G′. Thus, G′ is a
bipartite graph.

Suppose that G admits a dominating set D ⊆ V (G) of size at most κ . It is not hard to check that D ∪ X induces a
connected subgraph of G′. Therefore, I ′ is a yes-instance of κ-Steiner Tree.

Conversely, suppose that G′ admits a Steiner tree T for X such that |V (T) \ X | ≤ κ . Note that neighbors of X in G′ belong
to V (G). Thus, V (T)∩V (G) is a dominating set of G, otherwise either T would not be connected, or there would exist some
terminal vertex belonging to X \ {r} that is not in T . Moreover, since |V (T) \ X | ≤ κ , we obtain that |V (T) ∩ V (G)| ≤ κ .
Therefore, V (T) ∩ V (G) is a dominating set of G of size at most κ , and I is a yes-instance of Dominating Set. □

Now, we present a proof that Graph Isomorphism is GI-complete when restricted to Thickness-k graphs. This result
actually follows from a simple adaptation of an argument described in [14] by De Biasi, which we present in Proposition 3.
The subdivision of a graph G is defined as the graph s(G) obtained from G by replacing each edge e = uv ∈ E(G) with the
path ⟨u, we, v⟩, where we denotes a new vertex. More formally, s(G) is the graph with vertex set V (s(G)) = V (G)∪{we: e ∈

E(G)} and edge set E(s(G)) = {uwe, wev: e = uv ∈ E(G)}.

Lemma 2. For each graph G, the subdivision s(G) of G has thickness at most 2.

Proof. Assume without loss of generality that V (G) = {v1, . . . , vn}, for some positive integer n. Let H1 and H2 be the
spanning subgraphs of s(G) defined as follows: for each edge e = vivj ∈ E(G) with i < j, add the edge viwe to H1 and add
the edge wevj to H2. Note that, for each e ∈ E(G), the degree of we in H1, and in H2, is exactly 1. Moreover, V (G) is an
independent set in H1, and in H2. Thus, H1 and H2 are forests whose components are stars, which implies that H1 and H2
are planar graphs. Therefore, since s(G) = H1 ∪ H2, we obtain that s(G) has thickness at most 2. □

Proposition 3. Graph Isomorphism is GI-complete for Thickness-k.

9

110

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Proof. Let G1 and G2 be two arbitrary graphs. It follows from Lemma 2 that s(G1) and s(G2) have thickness at most 2.
Moreover, one can easily verify that G1 and G2 are isomorphic if and only if s(G1) and s(G2) are isomorphic. □

4. Steiner tree for undirected path graphs

In this section, we prove that the Steiner Tree problem is NP-complete for Undirected Path graphs, which provides
a full dichotomy Polynomial versus NP-complete for the Steiner Tree column. Our proof holds even if the input graph
has diameter 3, and we show that Steiner Tree is in P when restricted to Undirected Path graphs of diameter 2, thus
getting another dichotomy for the problem in terms of the diameter.

We mention that Spinrad writes in his book [107] that he was unable to find any work on the Steiner Tree problem
restricted to Undirected Path graphs, but that Dieter Kratsch told him this should be NP-complete as a simple extension
of a proof that Connected Dominating Set is NP-complete for Undirected Path graphs. Haynes et al. cite a paper [72],
submitted in 1997, in their book [60], where the NP-completeness proof of Connected Dominating Set supposedly
appears. However, we were not able to find any version of [72]. Thus, in order to fill this gap, we provide a non-trivial
adaptation of the NP-completeness proof presented in [23] for the Dominating Set problem restricted to Undirected
Path graphs, which finally explicitly shows that the Connected Dominating Set problem restricted to Undirected Path
graphs is indeed NP-complete. Then, we use a transformation by White et al. [117] between the Steiner Tree and the
Connected Dominating Set problems to obtain the desired result as a corollary.

A closely related variant of Connected Dominating Set that should be mentioned is the so-called Total Dominating
Set problem, which, rather than a dominating set inducing a connected subgraph, simply requires a dominating set
having no isolated vertices. Through a different non-trivial adaptation of the proof presented in [23], Total Dominating
Set restricted to Undirected Path graphs was proven to be NP-complete [81]. However, it is worth noticing that the
construction described in [81] cannot be used so as to further obtain the NP-completeness of Connected Dominating Set
for Undirected Path graphs. Therefore, we emphasize the merit of our contribution.

We start by giving some formal definitions. A chordal graph can also be described as the intersection graph of subtrees
of a tree: given a tree T , each vertex u of G corresponds to a subtree Tu of T , and uv ∈ E(G) if and only if V (Tu)∩V (Tv) ̸= ∅.
We call (T , {Tu}u∈V (G)) a tree model of G. One can verify that a tree decomposition of G of width ω(G) can be obtained
from this tree model. The subclasses of Undirected Path, Directed Path and Interval graphs can be derived from this
definition as follows. An undirected path graph is a chordal graph that has a tree model (T , {Tu}u∈V (G)) where each u ∈ V (G)
corresponds to a subpath of T . A directed path graph is an undirected path graph that has a tree model (T , {Tu}u∈V (G)) such
that T is rooted at a vertex r , and every subpath Tu is from a node t ∈ V (T) to a node t ′ ∈ V (T) where t belongs to the
(r, t ′)-path of T . Finally, an interval graph is a chordal graph that has a tree model (T , {Tu}u∈V (G)) where T is a path. From
Fig. 2, we know that these classes are nested.

We recall that, given a graph G, a subset D ⊆ V (G) is a dominating set of G if, for every vertex v ∈ V (G)\D, NG(v)∩D ̸= ∅.
Additionally, D is said to be connected if G[D] is a connected subgraph of G. Given also a subset X ⊆ G of terminals, a Steiner
tree of G for X is a tree subgraph T of G such that X ⊆ V (T). Next, we formally state the Steiner Tree and Connected
Dominating Set problems. Although the usual question for Steiner Tree asks for the minimum tree, it is more convenient
for our reduction to ask for the minimum set of non terminal vertices. Notice that this gives a polynomially equivalent
problem.

Steiner Tree
Input: A connected graph G, a non-empty subset X ⊆ V (G), and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) \ X with |S| ≤ k, such that G[S ∪ X] is connected?

Connected Dominating Set
Input: A graph G and a positive integer k.
Question: Does there exist a subset D ⊆ V (G) with |D| ≤ k, such that NG[D] = V (G) and G[D] is connected?

As we said before, we first prove that Connected Dominating Set is NP-complete for Undirected Path graphs. We do
this with a reduction from the following problem, which is one of Karp’s 21 NP-complete problems [70].

3D-Matching
Input: Disjoint sets P , Q and R each of cardinality n, for some positive integer n, and a subset S ⊆ P × Q × R.
Question: Does there exist a subset D ⊆ S such that |D| = n and s ∩ s′

= ∅ for every two triples s, s′
∈ D?

Theorem 4. Connected Dominating Set remains NP-complete when restricted to undirected path graphs of diameter at
most 3.

Proof. Let P = {p1, . . . , pn}, Q = {q1, . . . , qn} and R = {r1, . . . , rn} be disjoint sets each of cardinality n, for some
positive integer n, and let S = {s1, . . . , sm} be a subset of P × Q × R of cardinality m, for some positive integer m. We let
I = (P,Q , R, S) be the instance of 3D-Matching constituted by P , Q , R and S. Then, we let G be the graph obtained from
I as follows (Fig. 3 shows a tree model of the constructed graph):

10

111

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 3. A tree model (T , {Tu}u∈V (G)) associated with the graph G, constructed from a given instance I = (P,Q , R,S) of the 3D-Matching problem.

• For each sj ∈ S , we let Vj = {aj, bj, cj, xj, yj, z1j , z
2
j , z

3
j }. We remark that, for each two sets sj, sℓ ∈ S , Vj ∩ Vℓ = ∅ if

and only if j ̸= ℓ;
• V (G) = ∪

m
j=1Vj ∪ P ∪ Q ∪ R;

• K =
⋃

sj∈S{aj, bj, cj, xj} is a clique of G;
• for each sj ∈ S , {aj, bj, xj, yj}, {aj, yj, z1j }, {bj, yj, z

2
j } and {cj, xj, z3j } are cliques of G;

• for each pi ∈ P , {pi} ∪ {aj: pi ∈ sj, sj ∈ S} is a clique of G;
• for each qi ∈ Q , {qi} ∪ {bj: qi ∈ sj, sj ∈ S} is a clique of G;
• for each ri ∈ R, {ri} ∪ {cj: ri ∈ sj, sj ∈ S} is a clique of G.

Fig. 3 illustrates a tree model (T , {Tu}u∈V (G)) associated with the graph G. We depict inside a node t ∈ V (T), the set of
vertices of G that contains node t in its corresponding subtree; more formally, denoting by Xt the subset of V (G) drawn
inside node t , and given v ∈ V (G), we define Tv as the subtree of T induced by {t ∈ V (T): v ∈ Xt}. Based on (T , {Tu}u∈V (G)),
one can verify that G is an undirected path graph. Indeed, for each vertex u ∈ V (G), we get that Tu is a path of T . Moreover,
one can readily verify that K is a dominating clique of G. Therefore, G has diameter at most 3.

We now prove that I is a yes-instance of 3D-Matching if and only if G admits a connected dominating set D of size
at most 2m + n.

First, suppose that I is a yes-instance of 3D-Matching, and let M be a 3d-matching of I . Then, we define D =

{aj, bj, cj: sj ∈ M} ∪ {xj, yj: sj ̸∈ M}. Note that |D| = 3n + 2(m − n) = 2m + n. We claim that D is a connected dominating
set of G. Indeed, since M is a 3d-matching of I , we have that the following holds:

• for each pi ∈ P , there exists (exactly) one triple sj ∈ M such that pi ∈ sj, which implies that aj ∈ D and that pi is
dominated in G by aj;

• for each qi ∈ Q , there exists (exactly) one triple sj ∈ M such that qi ∈ sj, which implies that bj ∈ D and that qi is
dominated in G by bj;

• for each ri ∈ R, there exists (exactly) one triple sj ∈ M such that ri ∈ sj, which implies that cj ∈ D and that ri is
dominated in G by cj.

Additionally, it directly follows from the construction of G that {aj, bj, cj} dominates all vertices belonging to Vj for each
sj ∈ M , and that {xℓ, yℓ} dominates all vertices belonging to Vℓ for each sℓ ∈ S \ M . Consequently, D is a dominating
set of G. To verify that D induces a connected subgraph of G, first note that K ′

=
⋃

sj∈M{aj, bj, cj} induces a connected
subgraph of G since K is a clique of G and K ′

⊆ K . In addition, it follows from the facts that
⋃

sj∈S{xj} ⊆ K , and xjyj ∈ E(G)
for each sj ∈ S , that the set K ′′

=
⋃

sj∈S\M{xj, yj} induces a connected subgraph of G. Therefore, the result follows since
D = K ′

∪ K ′′ is a connected subgraph of G.
Conversely, suppose now that G admits a connected dominating set D of size at most 2m + n. By the construction of

G, for each sj ∈ S , the following holds (see Fig. 4):

• D ∩ {aj, yj, z1j } ̸= ∅, otherwise z1j would not be dominated in G by D;
• D ∩ {bj, yj, z2j } ̸= ∅, otherwise z2j would not be dominated in G by D;
• D ∩ {cj, xj, z3j } ̸= ∅, otherwise z3j would not be dominated in G by D.

We recall that Vj = {aj, bj, cj, xj, yj, z1j , z
2
j , z

3
j } for each sj ∈ S.

Then, based on the above, one can verify that |D ∩ Vj| ≥ 2. Moreover, we prove that if |D ∩ Vj| = 2 for some sj ∈ S ,
then D ∩ Vj = {xj, yj}. This follows from the fact that the only other possibilities for D ∩ Vj with |D ∩ Vj| = 2 would be
D∩ Vj = {cj, yj} and D∩ Vj = {z3j , yj}. However, note that, {aj, bj, xj} is a separator of cj and yj in G for each sj ∈ S . Thus, if
D ∩ Vj = {cj, yj}, then D would not induce a connected subgraph of G. Analogously, {cj, xj} is a separator of z3j and yj in G
for each sj ∈ S. Thus, if D ∩ Vj = {z3j , yj}, then D would not induce a connected subgraph of G. As a result, we have that
D ∩ Vj = {xj, yj} whenever |D ∩ Vj| = 2.

11

112

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 4. Subgraph of G induced by Vj , for sj ∈ S.

We prove now that we can assume that D ∩ Vj = {aj, bj, cj} for each sj ∈ S with |D ∩ Vj| ≥ 3. Indeed, for each sj ∈ S ,
{aj, bj, cj} dominates at least the same vertices of G as any other subset of Vj, which implies NG[D ∩ Vj] ⊆ NG[{aj, bj, cj}].
Moreover, since by hypothesis D induces a connected subgraph of G, we obtain that (D \ Vj) ∪ {aj, bj, cj} also induces a
connected subgraph of G for each sj ∈ S. Thus, assume without loss of generality that D ∩ Vj = {aj, bj, cj} whenever
|D ∩ Vj| ≥ 3.

Now, let M = {sj ∈ S: |D ∩ Vj| = 3}. Based on the definition of M , we obtain that |D| ≥ 3|M|+2(m−|M|) = 2m+|M|.
On the other hand, we have by hypothesis that |D| ≤ 2m + n. Consequently, |M| ≤ n. Towards a contradiction, suppose
that |M| < n. Let D′

=
⋃

sj∈S (D ∩ Vj). Note that, for each U ∈ {P,Q , R}, there are at most |M| vertices from U that are
dominated in G by some vertex in D′. As a result, there exist at least 3(n − |M|) distinct vertices from P ∪ Q ∪ R that are
not dominated in G by any vertex belonging to D′, i.e. |(P ∪ Q ∪ R) \ NG[D′

]| ≥ 3(n−|M|). This implies that D must further
contain each of such vertices from P ∪ Q ∪ R that are not dominated in G by D′. Then, we obtain that actually

|D| ≥ 3|M| + 2(m − |M|) + 3(n − |M|) = 2m + n + 2(n − |M|) > 2m + n,

which contradicts the hypothesis of D being a connected dominating set of G of size at most 2m + n. Consequently,
|M| = n and |D| = 2m + n. This implies that, if u is a vertex in D, then u ∈ Vj for some sj ∈ S. Hence, we obtain that M
is a 3d-matching of I , otherwise there would exist a vertex v ∈ P ∪ Q ∪ R such that, for every triple sj ∈ S with v ∈ sj,
|D ∩ Vj| = 2, which would imply that v is not dominated in G by any vertex belonging to D. Therefore, I is a yes-instance
of 3D-Matching. □

As previously mentioned, in [117], the authors give a reduction from Connected Dominating Set to Steiner Tree that
works in any subclass of Chordal graphs without changing the input graph. We then get the following corollary.

Corollary 5. Steiner Tree is NP-complete when restricted to undirected path graphs of diameter at most 3.

In [79], the author proves that deciding whether an undirected path graph has a dominating clique of size at most k
can be done in polynomial time. We apply his result to get a dichotomy for Steiner Tree restricted to Undirected Path
graphs in terms of the diameter of the input graph. For this, we first need some definitions and tool lemmas, which are
presented below.

Let G be a connected graph and X ⊆ V (G) be a non-empty set. We denote by ST (G, X) the minimum size of a subset
S ⊆ V (G) \ X such that S ∪ X induces a connected subgraph of G. Throughout the remainder of this section, we assume
without loss of generality that |X | ≥ 3 and that X does not induce a connected subgraph of G, as otherwise ST (G, X)
would be easily determined: if |X | = 1 or G[X] is connected, then trivially ST (G, X) = 0; and, if X = {u, v}, then ST (G, X)
is equal to the number of vertices in any minimum path between u and v in G.

We say that two distinct vertices u, v ∈ V (G) are twins in G if they have the same neighborhood in G, i.e. either
NG(u) = NG(v) or NG[u] = NG[v]. We prove in the next lemma that we can suppose without loss of generality that G has
no twins. Observe that the hypothesis involving u and v can be assumed without loss of generality. It is included in order
to write the equation in a more concise way.

Lemma 6. Let G be a connected graph, containing twin vertices u and v, and X ⊆ V (G) with |X | ≥ 3. Also, suppose that
u ∈ X implies v ∈ X. Then,

ST (G, X) = ST (G − u, X − u).

Proof. First, let S ⊆ V (G − u) \ X be a minimum set such that S ∪ (X − u) induces a connected subgraph of G − u. We
want to prove that S ∪ X induces a connected subgraph of G, in which case we get ST (G, X) ≤ ST (G − u, X − u). Suppose
first that v ∈ S. Since X \ {u} ̸= ∅, v must have some neighbor w ∈ S ∪ X in G − u. Then, it follows from the hypothesis
that u and v are twins in G that w is also a neighbor of u in G. This implies that S ∪ X induces a connected subgraph of G.
A similar argument can be applied when v ∈ X . Indeed, since |X | ≥ 3, X \ {u, v} ̸= ∅. Thus, v must have some neighbor

12

113

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

w ∈ S ∪ (X − u), which is also a neighbor of u in G, and consequently S ∪ X induces a connected subgraph of G. Finally, if
v /∈ S ∪ X , then by hypothesis we also know that u /∈ X , in which case trivially S ∪ X induces a connected subgraph of G.

Now, let S ⊆ V (G) \ X be a minimum set such that S ∪ X induces a connected subgraph of G. Since S is minimum,
|S ∩ {u, v}| ≤ 1. If u ∈ S, then, by the minimality of S, v ̸∈ S and (S \ {u}) ∪ {v} witnesses ST (G − u, X − u) ≤ ST (G, X).
On the other hand, if u /∈ S, then we trivially get that S ∪ (X − u) induces a connected subgraph of G − u, and therefore
ST (G − u, X − u) ≤ ST (G, X). □

Based on Lemma 6, we assume from now on that the input graph G has no twin vertices. Also, in the remainder of the
text, (T , {Tu}u∈V (G)) is a tree model of G. Moreover, given a node t ∈ V (T), we denote by Vt the set {u ∈ V (G): t ∈ V (Tu)}.
We say that u ∈ V (G) is a leafy vertex if V (Tu) = {ℓu} and ℓu is a leaf in T ; denote by L the set of leafy vertices, and for
every u ∈ L, denote by ℓu the unique node in Tu. We also say that (T , {Tu}u∈V (G)) is minimal if there are no two adjacent
nodes t, t ′ ∈ V (T) such that Vt ⊆ Vt ′ . It is known that such a tree model can be computed in polynomial time [56].
We prove in the following lemma that, for any minimal tree model (T , {Tu}u∈V (G)), there is a one-to-one correspondence
between the leaves of T and the leafy vertices associated with T .

Lemma 7. Let G be a connected undirected path graph without twin vertices, and (T , {Tu}u∈V (G)) be a minimal tree model for
G. Then, for every leaf ℓ of T , there exists a unique u ∈ L such that L ∩ Vℓ = {u}.

Proof. Since G has no twin vertices, for every leaf t of T , there exists at most one leafy vertex u of G associated with T
such that ℓu = t . On the other hand, suppose that there exists a leaf t of T such that there is no leafy vertex of G associated
with T corresponding to t , i.e., for every leafy vertex u of G associated with T , we have that ℓu ̸= t . Then, let t ′ be the
parent of t in T . One can readily verify that Vt ⊆ Vt ′ , contradicting the fact that we are on a minimal tree model. □

A vertex u is called simplicial if NG(u) is a clique in G. Note that every leafy vertex is simplicial. Moreover, note that a
simplicial vertex that is not in X certainly is not contained in any minimum Steiner tree for X; therefore we can suppose
that X contains every simplicial vertex of G and, in particular, L ⊆ X . In the next lemma, we prove that we can suppose
that every x ∈ X is either leafy, or is such that Tx contains no leaf of T .

Lemma 8. Let G be a connected undirected path graph without twin vertices. Also, let (T , {Tu}u∈V (G)) be a minimal tree model
of G, L be the set of leafy vertices associated with T , and let X ⊆ V (G) be a set of terminals such that L ⊆ X ⊆ V (G). Suppose
that x ∈ X \ L is such that ℓ ∈ V (Tx) for some leaf ℓ of T . Then, ST (G, X) = ST (G − u, X − u), where L ∩ Vℓ = {u}.

Proof. By Lemma 7, G − u is the graph related to the tree model T − ℓ. Suppose that there exists a set S ⊆ V (G − u) \ X
such that S ∪ (X − u) induces a connected subgraph of G− u. Since ℓ ∈ Tu ∩ Tx, ux ∈ E(G). Thus, S ∪X induces a connected
subgraph of G, and consequently ST (G, X) ≤ ST (G − u, X − u). Conversely, suppose that there exists a set S ⊆ V (G) \ X
such that S ∪ X induces a connected subgraph of G. Since u is a simplicial vertex of G, we obtain that S ∪ (X − u) induces
a connected subgraph of G − u, and therefore ST (G, X) ≥ ST (G − u, X − u). □

In the proof, we modify a subset S that gives a solution in order to ensure that the new set is a clique. The following
lemma will help us do that.

Lemma 9. Let G be a connected undirected path graph, (T , {Tu}u∈V (G)) be a tree model of G, X ⊆ V (G) be a set of terminals,
S ⊆ V (G)\X be a set such that G[S∪X] is connected, and let u, v ∈ S. If y, z ∈ V (G) are such that NG(u)∪NG(v) ⊆ NG(y)∪NG(z),
then S ′

∪ X is connected, where S ′
= ((S \ {u, v}) ∪ {y, z}) \ X.

Proof. Suppose otherwise, and let H,H ′ be distinct components of G[S ′
∪ X]. This means that there exist w ∈ V (H) and

w′
∈ V (H ′) such that every path P between w and w′ goes through u and/or v; but since NG(u) ∪ NG(v) ⊆ NG(y) ∪ NG(z),

it means that u and/or v can be replaced by y and/or z. □

We are now ready to prove our theorem. In [79], the author proves that deciding whether an undirected path graph has
a dominating clique of size at most k can be done in polynomial time. We make a polynomial reduction from Connected
Dominating Set to Dominating Clique, thus getting the desired polynomial algorithm by the equivalence given in [117].
This and Theorem 4 give a dichotomy of both Connected Dominating Set and Steiner Tree in terms of the diameter of
the input graph G. We observe that, in order to prove that Dominating Clique is polynomial-time solvable for Undirected
Path graphs, it is used in [79] an alternative notion of tree model called characteristic tree, where the nodes of the model
are the maximal cliques of the graph G (see [56,91]).

Theorem 10. Steiner Tree and Connected Dominating Set can be solved in polynomial time when restricted to undirected
path graphs of diameter at most 2.

Proof. In view of the reduction from Connected Dominating Set to Steiner Tree presented in [117], it suffices to prove
that Steiner Tree can be solved in polynomial time. Thus, let G be a connected undirected path graph with diameter at
most 2, X ⊆ V (G) be a terminal set such that |X | ≥ 3, and let κ be a positive integer.

13

114

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 5. The bold lines represent the paths Tu and Tv .

As usual, we consider a minimal tree model (T , {Tu}u∈V (G)) of G. There is no loss of generality making these assumptions,
since, as previously mentioned, it is known that such a tree model can be computed in polynomial time [56]. Let L denote
the set of leafy vertices associated with T , and assume that L ⊆ X .

In what follows, we prove that: ST (G, X) ≤ κ if and only if there exists a clique S ⊆ V (G) \ X in G of size at most κ
that dominates L. Our theorem follows since this is exactly what is computed in the algorithm presented in [79].

For the sufficiency part of our claim, we just note that if S is a clique of G that dominates L, then
⋃

u∈S V (Tu) = V (T),
which means that in fact S is a dominating clique of G and therefore S ∪ X induces a connected subgraph of G. Because
|S| ≤ κ , it follows that ST (G, X) ≤ κ .

Now, to prove necessity, suppose first that ST (G, X) ≤ κ , and let S ⊆ V (G)\X be a set such that S∪X induces a connected
subgraph of G. Suppose that S is minimum and that, among all such subsets of minimum cardinality, S maximizes the
number of edges in E(G[S]). In addition, by Lemma 8, we can suppose that there are no edges in G between the vertices
belonging to X \ L and the vertices belonging to L. Moreover, note that L is an independent set. Thus, since G[S ∪ X] is
connected, we get that every vertex in L must be adjacent to some vertex in S; in other words, S dominates L. Thus, it
remains to prove that S is a clique of G. Suppose for the sake of contradiction that there exist two distinct vertices u, v ∈ S
such that uv /∈ E(G). We prove that one can find a pair x, y of adjacent vertices in G such that NG(u)∪NG(v) ⊆ NG(x)∪NG(z).
Then, based on Lemma 9, by letting S ′

= ((S\{u, v})∪{y, z})\X , we obtain a contradiction, since in this case either |S ′
| < |S|,

or |E(G[S ′
])| > |E(G[S])|.

Let tu ∈ V (Tu) and tv ∈ V (Tv) be nodes whose distance from each other in T is the smallest possible (observe Fig. 5).
Note that tu ̸= tv since V (Tu) ∩ V (Tv) = ∅. Also, let P1

u , P2
u be the two subpaths defined by tu in Tu, and define P1

v , P2
v

similarly. For each i ∈ {1, 2}, let ℓiu be the end vertex of P i
u different from tu, if it exists; otherwise, let ℓiu be equal to tu.

Define ℓ1v, ℓ
2
v similarly. Note that, if ℓ1u ̸= tu, then we can suppose that there exist w1

u ∈ V (G) such that ℓ1u ∈ Tw1
u
, and

t /∈ Tw1
u
, where t is the neighbor of ℓ1u in P1

u (otherwise, we could contract the edge ℓ1ut and still have a tree model of G).
Define w2

u, w
1
v , w

2
v similarly. There are two possible cases to be considered.

Case 1. Suppose that all the vertices w1
u, w

2
u, w

1
v , w

2
v exist and are well-defined. Since G has diameter at most 2, there

must exist vertices y ∈ NG(w1
u) ∩ NG(w1

v) and z ∈ NG(w2
u) ∩ NG(w2

v). Clearly, the path between tu and tv in T is
contained in the paths Ty and Tz (which means that y and z are adjacent in G), and V (P1

u ∪ P1
v) ⊆ V (Ty), and

V (P2
u ∪ P2

v) ⊆ V (Tz). Thus, NG(u) ∪ NG(v) ⊆ NG(y) ∪ NG(z), as desired.
Case 2. Now, suppose that some of the vertices w1

u, w
2
u, w

1
v , w

2
v do not exist or are not well-defined. Note that, since S∪X

induces a connected subgraph of G, there must exist a path in G[S ∪X] between u and v, which means that there
must exist w ∈ (S ∪ X) \ {u} such that tu ∈ V (Tw). This implies that at least one of the vertices w1

u, w
2
u is well-

defined, as otherwise V (Tu) = {tu} ⊆ V (Tw) and we could just remove u from S. The same argument can be applied
with respect to w1

v , w
2
v . Thus, suppose without loss of generality that w1

u, w
1
v are well-defined, and that w2

u is not
well-defined (which means that V (P2

u) = {tu}). Pick y as before, and note that V (Tu) ⊆ V (Ty), and that yv ∈ E(G)
since ℓ1v ∈ V (Ty)∩V (Tv). We can then apply Lemma 9 to {u, v} and {y, v} since NG(u)∪NG(v) ⊆ NG(y)∪NG(v). □

5. Stubborn puzzles 35 years later

After 40 years, two open problems from [GJ] are still unsolved, namely: Open1 Graph Isomorphism, and Open8
Precedence constrained 3-processor schedule. In STOC 2016, László Babai announced that Graph Isomorphism could be
solved in Quasipolynomial Time. Only one O entry from [OG] remains stubbornly open for 35 years: the complexity of
Chromatic Index for Planar graphs. It is a puzzle to understand why still today the Chromatic Index column has the
majority of thirteen O? entries, for instance Chromatic Index for Cographs is a long-standing open problem, as mentioned
in [75]. We invite the reader to find a reference or a proof for the underlined [OG] entry in Table 1 corresponding to a
‘‘private communication’’ which would classify as polynomial Steiner Tree restricted to Circle graphs. Our proposed
Table 2 leaves as open the parameterized complexity classification of Partition into Cliques for Line graphs. We invite
the reader to further study the eight XP entries, observing that five of them belong to our target Steiner Tree column.
In particular, we highlight that, even though the closely related problem Connected Dominating Set is known to be

14

115

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

FPT for Claw-Free graphs [61], it is open whether κ-Steiner Tree is also FPT for Line and Claw-Free graphs. Regarding
the obtained second dichotomy for the Steiner Tree problem restricted to Undirected Path graphs, according to the
diameter of the input graph, we should mention that Connected Dominating Set was proven to be NP-complete and
W[2]-hard even when restricted to Split graphs of diameter 2 [83]. A straightforward modification of their proof leads
to the NP-completeness of Steiner Tree (and to the W[2]-hardness of κ-Steiner Tree) when restricted to Split graphs of
diameter 2.

Acknowledgments

We would like to thank anonymous reviewers for their thorough reading and numerous insightful suggestions and
comments; in particular, we would like to thank one of the reviewers for the references related to mim-width. We are
grateful to Vinicius F. Santos for sharing Ref. [1], for the NP-completeness proof of MaxCut for Interval graphs. This work
was partially supported by the Brazilian agencies CNPq, Brazil (Grant Nos.: 407635/2018-1, 140399/2017-8, 407430/2016-
4, 437841/2018-9, 401519/2016-3, and 304576/2017-4), CAPES, Brazil (Finance Code 001), FAPERJ, Brazil (Grant Nos.: CNE
E-26/202.793/2017), and CNPq/FUNCAP, Brazil (PNE-0112-00061.01.00/16).

References

[1] R. Adhikary, K. Bose, S. Mukherjee, B. Roy, Complexity of maximum cut on interval graphs, 2020, arXiv:2006.00061.
[2] T. Akiyama, T. Nishizeki, N. Saito, NP-completeness of the Hamiltonian cycle problem for bipartite graphs, J. Inf. Process. 3 (2) (1980) 73–76.
[3] N. Alon, S. Gutner, Linear time algorithms for finding a dominating set of fixed size in degenerated graphs, Algorithmica 54 (4) (2009) 544.
[4] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebr. Discrete Methods 8 (2) (1987) 277–284.
[5] S. Arnborg, A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1) (1989)

11–24.
[6] L. Babai, E.M. Luks, Canonical labeling of graphs, in: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, 1983,

pp. 171–183.
[7] L. Babel, I. Ponomarenko, G. Tinhofer, The isomorphism problem for directed path graphs and for rooted directed path graphs, J. Algorithms

21 (3) (1996) 542–564.
[8] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1) (1994) 153–180.
[9] F. Barahona, On the Complexity of Max Cut, Technical Report, Université Scientifique et Medicale et Institut National Polytechnique de Grenoble,

France, 1980.
[10] R. Belmonte, M. Vatshelle, Graph classes with structured neighborhoods and algorithmic applications, Theoret. Comput. Sci. 511 (2013) 54–65.
[11] B. Bergougnoux, M.M. Kanté, More applications of the d-neighbor equivalence: Connectivity and acyclicity constraints, in: 27th Annual European

Symposium on Algorithms, ESA 2019, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
[12] F. Berman, D. Johnson, T. Leighton, P.W. Shor, L. Snyder, Generalized planar matching, J. Algorithms 11 (2) (1990) 153–184.
[13] A.A. Bertossi, M.A. Bonuccelli, Hamiltonian circuits in interval graph generalizations, Inform. Process. Lett. 23 (4) (1986) 195–200.
[14] M.D. Biasi, Polynomial problems in graph classes defined by forbidden induced cyclic subgraphs, Theoretical Computer Science Stack Exchange.

https://cstheory.stackexchange.com/q/24882 (version: 2014-06-15).
[15] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius: fast subset convolution, in: Proceedings of the Thirty-Ninth Annual

ACM Symposium on Theory of Computing, 2007, pp. 67–74.
[16] M. Blanchette, E. Kim, A. Vetta, Clique cover on sparse networks, in: 2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering

and Experiments, ALENEX, SIAM, 2012, pp. 93–102.
[17] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, J. Algorithms 11 (4) (1990) 631–643.
[18] H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1–2) (1998) 1–45.
[19] H. Bodlaender, N. Brettell, M. Johnson, G. Paesani, D. Paulusma, E.J. van Leeuwen, Steiner trees for hereditary graph classes: a treewidth

perspective, 2020, arXiv:2004.07492.
[20] H.L. Bodlaender, K. Jansen, On the complexity of the maximum cut problem, in: Annual Symposium on Theoretical Aspects of Computer

Science, Springer, 1994, pp. 769–780.
[21] É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, R. Watrigant, Parameterized complexity of independent set in H-free graphs, in: 13th

International Symposium on Parameterized and Exact Computation, 2019.
[22] K.S. Booth, C.J. Colbourn, Problems Polynomially Equivalent to Graph Isomorphism, Technical Report CS-77-04, Computer Science Department,

University of Waterloo, Waterloo, Ont., 1979, Available on https://cs.uwaterloo.ca/research/tr/1977/CS-77-04.pdf.
[23] K. Booth, J. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11 (1) (1982) 191–199.
[24] N. Bousquet, D. Gonçalves, G.B. Mertzios, C. Paul, I. Sau, S. Thomassé, Parameterized domination in circle graphs, Theory Comput. Syst. 54 (1)

(2014) 45–72.
[25] A. Brandstädt, C. Hundt, F. Mancini, P. Wagner, Rooted directed path graphs are leaf powers, Discrete Math. 310 (4) (2010) 897–910.
[26] C. Buchheim, L. Zheng, Fixed linear crossing minimization by reduction to the maximum cut problem, in: International Computing and

Combinatorics Conference, Springer, 2006, pp. 507–516.
[27] B.-M. Bui-Xuan, J.A. Telle, M. Vatshelle, Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems,

Theoret. Comput. Sci. 511 (2013) 66–76.
[28] L. Cai, J.A. Ellis, NP-completeness of edge-colouring some restricted graphs, Discrete Appl. Math. 30 (1) (1991) 15–27.
[29] M. Cerioli, L. Faria, T. Ferreira, C. Martinhon, F. Protti, B. Reed, Partition into cliques for cubic graphs: Planar case, complexity and approximation,

Discrete Appl. Math. 156 (12) (2008) 2270–2278.
[30] J. Chen, I.A. Kanj, L. Perković, E. Sedgwick, G. Xia, Genus characterizes the complexity of certain graph problems: Some tight results, J. Comput.

System Sci. 73 (6) (2007) 892–907.
[31] J. Chen, I.A. Kanj, G. Xia, Improved parameterized upper bounds for vertex cover, in: International Symposium on Mathematical Foundations

of Computer Science, Springer, 2006, pp. 238–249.
[32] B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graphs, Discrete Math. 86 (1–3) (1990) 165–177.
[33] C.J. Colbourn, L. Stewart, Dominating cycles in series-parallel graphs, Ars Combin. 19 (1985) 107–112.
[34] G. Cornuejols, X. Liu, K. Vuskovic, A polynomial algorithm for recognizing perfect graphs, in: Proceedings 44th Annual IEEE Symposium on

Foundations of Computer Science, 2003, 2003, pp. 20–27.

15

116

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

[35] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst.
33 (2) (2000) 125–150.

[36] B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl. Math. 101 (1–3) (2000) 77–114.
[37] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Vol. 4, Springer,

2015.
[38] M. Cygan, G. Philip, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Dominating set is fixed parameter tractable in claw-free graphs, Theoret.

Comput. Sci. 412 (50) (2011) 6982–7000.
[39] P. Damaschke, The Hamiltonian circuit problem for circle graphs is NP-complete, Inform. Process. Lett. 32 (1) (1989) 1–2.
[40] S. Datta, P. Nimbhorkar, T. Thierauf, F. Wagner, Graph Isomorphism for K3,3-free and K5-free graphs is in Log-space, in: IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, Vol. 4, 2009, pp. 145–156.
[41] H.N. de Ridder, et al., Information system on graph classes and their inclusions (ISGCI), https://www.graphclasses.org.
[42] E.D. Demaine, M.T. Hajiaghayi, D.M. Thilikos, Exponential speedup of fixed-parameter algorithms on K3,3-minor-free or K5-minor-free graphs,

in: Algorithms and Computation, Springer Berlin Heidelberg, 2002, pp. 262–273.
[43] E.D. Demaine, M.T. Hajiaghayi, D.M. Thilikos, Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing

graphs as minors, Algorithmica 41 (4) (2004) 245–267.
[44] J.S. Deogun, G. Steiner, Polynomial algorithms for Hamiltonian cycle in cocomparability graphs, SIAM J. Comput. 23 (3) (1994) 520–552.
[45] A.K. Dewdney, Fast Turing Reductions Between Problems in NP: Chapter 4: Reductions Between NP-Complete Problems, Department of

Computer Science, University of Western Ontario, 1981.
[46] R. Diestel, Graph Theory, Springer Berlin Heidelberg, 2017.
[47] R.G. Downey, M.R. Fellows, Parameterized computational feasibility, in: P. Clote, J.B. Remmel (Eds.), Feasible Mathematics II, Birkhäuser Boston,

Boston, MA, 1995, pp. 219–244.
[48] R.G. Downey, M.R. Fellows, Parameterized Complexity, in: Monographs in Computer Science, Springer Verlag, 1999.
[49] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, in: Texts in Computer Science, Springer, 2013.
[50] S.E. Dreyfus, R.A. Wagner, The Steiner problem in graphs, Networks 1 (3) (1971) 195–207.
[51] J. Ellis, H. Fan, M. Fellows, The dominating set problem is fixed parameter tractable for graphs of bounded genus, J. Algorithms 52 (2) (2004)

152–168.
[52] F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernelization: Theory of Parameterized Preprocessing, Cambridge University Press, 2019.
[53] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979.
[54] M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou, The complexity of coloring circular arcs and chords, SIAM J. Algebr. Discrete Methods

1 (2) (1980) 216–227.
[55] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) 237–267.
[56] F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (3) (1978) 211–227.
[57] E.M. Gurari, I.H. Sudborough, Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement

problem, J. Algorithms 5 (4) (1984) 531–546.
[58] F. Gurski, The behavior of clique-width under graph operations and graph transformations, Theory Comput. Syst. 60 (2) (2017) 346–376.
[59] V. Guruswami, Maximum cut on line and total graphs, Discrete Appl. Math. 92 (2–3) (1999) 217–221.
[60] T.W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press, 1998.
[61] D. Hermelin, M. Mnich, E.J.V. Leeuwen, G. Woeginger, Domination when the stars are out, ACM Trans. Algorithms 15 (2) (2019) 1–90.
[62] P. Hliněnỳ, S.-i. Oum, Finding branch-decompositions and rank-decompositions, SIAM J. Comput. 38 (3) (2008) 1012–1032.
[63] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (4) (1981) 718–720.
[64] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Comput. 11 (4) (1982) 676–686.
[65] L. Jaffke, O.-j. Kwon, T.J. Strømme, J.A. Telle, Mim-width III. Graph powers and generalized distance domination problems, Theoret. Comput.

Sci. 796 (2019) 216–236.
[66] D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 6 (3) (1985) 434–451.
[67] M. Jones, D. Lokshtanov, M.S. Ramanujan, S. Saurabh, O. Suchý, Parameterized complexity of directed Steiner tree on sparse graphs, SIAM J.

Discrete Math. 31 (2) (2017) 1294–1327.
[68] V. Kalisz, P. Klavík, P. Zeman, Circle graph isomorphism in almost linear time, 2019, arXiv:1908.09151v1.
[69] M. Kamiński, V.V. Lozin, M. Milanič, Recent developments on graphs of bounded clique-width, Discrete Appl. Math. 157 (12) (2009) 2747–2761.
[70] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher, J. Bohlinger (Eds.), Chapter Complexity of Computer Computations,

Plenum, New York, 1972, pp. 85–103.
[71] J. Keil, The complexity of domination problems in circle graphs, Discrete Appl. Math. 42 (1) (1993) 51–63.
[72] J. Keil, R. Laskar, P. Manuel, The vertex clique cover problem and some related problems in chordal graphs, in: Abstract Presented at SIAM

Conference on Discrete Mathematics, 1994, Albuquerque, New Mexico, submitted for publication in 1997.
[73] J. Keil, L. Stewart, Approximating the minimum clique cover and other hard problems in subtree filament graphs, Discrete Appl. Math. 154

(14) (2006) 1983–1995.
[74] S. Khot, V. Raman, Parameterized complexity of finding subgraphs with hereditary properties, in: Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 2000, pp. 137–147.
[75] D. Kobler, U. Rotics, Edge dominating set and colorings on graphs with fixed clique-width, Discrete Appl. Math. 126 (2–3) (2003) 197–221.
[76] E. Korach, N. Solel, Linear Time Algorithm for Minimum Weight Steiner Tree in Graphs with Bounded Treewidth, Technical Report 632, Israel

Institute of Technology, 1990.
[77] R. Kothari, (https://cstheory.stackexchange.com/users/206/robin-kothari). Citation showing minors are topological minors for subcubic graphs.

Theoretical Computer Science Stack Exchange, https://cstheory.stackexchange.com/q/7331, URL: https://cstheory.stackexchange.com/q/7331
(version: 2011-07-12).

[78] D. Král’, J. Kratochvíl, Z. Tuza, G.J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: Graph-Theoretic Concepts
in Computer Science, Springer Berlin Heidelberg, 2001, pp. 254–262.

[79] D. Kratsch, Finding dominating cliques efficiently, in strongly chordal graphs and undirected path graphs, Discrete Math. 86 (1–3) (1990)
225–238.

[80] T. Krawczyk, Testing isomorphism of circular-arc graphs – Hsu’s approach revisited, 2019, arXiv:1904.04501v3.
[81] R. Laskar, J. Pfaff, S.M. Hedetniemi, S.T. Hedetniemi, On the algorithmic complexity of total domination, SIAM J. Algebr. Discrete Methods 5

(3) (1984) 420–425.
[82] M.C. Lin, F.J. Soulignac, J.L. Szwarcfiter, A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs, in:

Scandinavian Workshop on Algorithm Theory, Springer, 2008, pp. 355–366.
[83] D. Lokshtanov, N. Misra, G. Philip, M.S. Ramanujan, S. Saurabh, Hardness of r-dominating set on graphs of diameter (r + 1), in: G. Gutin, S.

Szeider (Eds.), Parameterized and Exact Computation, Springer International Publishing, 2013, pp. 255–267.
[84] G.S. Lueker, K.S. Booth, A linear time algorithm for deciding interval graph isomorphism, J. ACM 26 (2) (1979) 183–195.

16

117

C.M.H. de Figueiredo, A.A. de Melo, D. Sasaki et al. Discrete Applied Mathematics xxx (xxxx) xxx

[85] F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1) (1996)
313–317.

[86] M. Mahajan, V. Raman, Parameterizing above guaranteed values: MaxSat and MaxCut, J. Algorithms 31 (2) (1999) 335–354.
[87] S. Malitz, Genus g graphs have pagenumber O(

√
g), J. Algorithms 17 (1) (1994) 85–109.

[88] D. Mölle, S. Richter, P. Rossmanith, Enumerate and expand: Improved algorithms for connected vertex cover and tree cover, Theory Comput.
Syst. 43 (2) (2008) 234–253.

[89] B. Monien, How to find long paths efficiently, in: G. Ausiello, M. Lucertini (Eds.), Analysis and Design of Algorithms for Combinatorial Problems,
in: North-Holland Mathematics Studies, Elsevier, 1985, pp. 239–254.

[90] B. Monien, I.H. Sudborough, Bandwidth constrained NP-complete problems, Theoret. Comput. Sci. 41 (1985) 141–167.
[91] C.L. Monma, V.K. Wei, Intersection graphs of paths in a tree, J. Combin. Theory Ser. B 41 (2) (1986) 141–181.
[92] E. Mujuni, F. Rosamond, Parameterized complexity of the clique partition problem, in: Proceedings of the Fourteenth Symposium on Computing:

The Australasian Theory-Volume 77, 2008, pp. 75–78.
[93] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1–3) (1996) 291–298.
[94] H. Müller, A. Brandstädt, The NP-completeness of steiner tree and dominating set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (2–3)

(1987) 257–265.
[95] A. Munaro, Bounded clique cover of some sparse graphs, Discrete Math. 340 (9) (2017) 2208–2216.
[96] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
[97] S.-I. Oum, Approximating rank-width and clique-width quickly, ACM Trans. Algorithms 5 (1) (2008) 1–20.
[98] S.-i. Oum, P. Seymour, Approximating clique-width and branch-width, J. Combin. Theory Ser. B 96 (4) (2006) 514–528.
[99] B.S. Panda, D. Pradhan, NP-Completeness of Hamiltonian cycle problem on rooted directed path graphs, 2008, arXiv:0809.2443v1.

[100] G. Philip, V. Raman, S. Sikdar, Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels, in: European
Symposium on Algorithms, Springer, 2009, pp. 694–705.

[101] M. Pilipczuk, M. Pilipczuk, P. Sankowski, E.J.V. Leeuwen, Network sparsification for Steiner problems on planar and bounded-genus graphs,
ACM Trans. Algorithms 14 (4) (2018) 1–73.

[102] R.V. Pocai, The complexity of SIMPLE MAX-CUT on comparability graphs, Electron. Notes Discrete Math. 55 (2016) 161–164, 14th
Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW16).

[103] S. Poljak, A note on stable sets and colorings of graphs, Comment. Math. Univ. Carolin. 15 (2) (1974) 307–309.
[104] V. Raman, S. Saurabh, Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles,

Algorithmica 52 (2) (2008) 203–225.
[105] M. Rao, MSOL partitioning problems on graphs of bounded treewidth and clique-width, Theoret. Comput. Sci. 377 (1–3) (2007) 260–267.
[106] W. Shih, T. Chern, W.-L. Hsu, An O(n2 log n) algorithm for the Hamiltonian cycle problem on circular-arc graphs, SIAM J. Comput. 21 (6) (1992)

1026–1046.
[107] J. Spinrad, Efficient Graph Representations, American Mathematical Society, Fields Institute, 2003.
[108] L. Stewart, Cographs - A Class of Tree Representable Graphs (Master’s thesis), University of Toronto, Canada, 1978, also a Technical Report,

126/78, Department of Computer Science, University of Toronto.
[109] R. Sucupira, L. Faria, S. Klein, A complexidade do problema corte máximo para grafos fortemente cordais, in: Anais do XLV Simpósio Brasileiro

de Pesquisa Operacional, 2013, pp. 2979–2988.
[110] M. Syslo, NP-complete problems on some tree-structured graphs: a review, in: Proc. WG’83 International Workshop on Graph Theoretic

Concepts in Computer Science, Univ. Verlag Rudolf Trauner, Linz, West Germany, 1983.
[111] R. Uehara, S. Toda, T. Nagoya, Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs, Discrete Appl. Math.

145 (3) (2005) 479–482.
[112] W. Unger, On the k-colouring of circle-graphs, in: R. Cori, M. Wirsing (Eds.), Proceedings of the Annual Symposium on Theoretical Aspects of

Computer Science STACS 88, in: Lecture Notes in Computer Science, vol. 294, Springer, Berlin, Heidelberg, 1988, pp. 61–72.
[113] M. Vatshelle, New Width Parameters of Graphs (Ph.D. thesis), The University of Bergen, 2012.
[114] J.A. Wald, C.J. Colbourn, Steiner trees in outerplanar graphs, in: Proc. 13th Southeastern Conference on Combinatorics, Graph Theory, and

Computing, 1982, pp. 15–22.
[115] J.A. Wald, C.J. Colbourn, Steiner trees, partial 2–trees, and minimum IFI networks, Networks 13 (2) (1983) 159–167.
[116] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (2–3) (1994) 251–266.
[117] K. White, M. Farber, W. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1985) 109–124.
[118] P. Winter, Steiner problem in Halin networks, Discrete Appl. Math. 17 (3) (1987) 281–294.
[119] M. Yannakakis, Node-and edge-deletion NP-complete problems, in: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing,

STOC’78, ACM Press, 1978, pp. 253–264.

17

118

Appendix B

Manuscript: A Multivariate

Analysis of the Strict Terminal

Connection Problem

This appendix contains the manuscript:

Alexsander A. de Melo, Celina M. H. de Figueiredo, Uéverton S. Souza. A Multi-

variate Analysis of the Strict Terminal Connection Problem. Published in Journal

of Computer and System Sciences (2020) [96].

119

https://doi.org/10.1016/j.jcss.2020.02.001
https://doi.org/10.1016/j.jcss.2020.02.001

Journal of Computer and System Sciences 111 (2020) 22–41

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A multivariate analysis of the strict terminal connection

problem ✩

Alexsander A. Melo a,∗, Celina M.H. Figueiredo a, Uéverton S. Souza b

a Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
b Universidade Federal Fluminense, Niterói, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2018
Received in revised form 29 January 2020
Accepted 4 February 2020
Available online 10 February 2020

Keywords:
Terminal vertices
Connection tree
Steiner tree
Bounded degree
Parameterized complexity

A strict connection tree of a graph G for a set W is a tree subgraph of G whose leaf set
equals W . The Strict terminal connection problem (S-TCP) is a network design problem
whose goal is to decide whether G admits a strict connection tree T for W with at most
� vertices of degree 2 and r vertices of degree at least 3. We establish a Poly vs. NP-c
dichotomy for S-TCP with respect to � and �(G). We prove that S-TCP parameterized by
r is W[2]-hard even if � is bounded by a constant; we provide a kernelization for S-TCP
parameterized by �, r and �(G), and we prove that such a version of the problem does
not admit a polynomial kernel, unless NP ⊆ coNP/poly. Finally, we analyze S-TCP on split
graphs and cographs.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Network design problems are combinatorial questions of great practical and theoretical interest. Indeed, such problems
are challenging tasks closely related to real-world applications. In this paper, we investigate the computational complexity
of a network design problem called Strict terminal connection.

A connection tree T of a graph G = (V , E) for a terminal set W ⊆ V is a tree subgraph of G such that W ⊆ V (T) and every
leaf of T belongs to W cf. [1,2]. In a connection tree T for W , the vertices belonging to V (T) \ W are called non-terminal
and are classified into two types according to their respective degrees in T , namely: the non-terminal vertices with degree
exactly equal to 2 in T are called linkers and the non-terminal vertices with degree at least 3 in T are called routers cf. [1,2].
Thus, there exists a partition VT = {W , L(T), R(T)} of the vertex set of a connection tree T into terminal vertices, linkers
and routers, where L(T) and R(T) denote the linker and router sets of T , respectively.

In some applications, the terminal vertices must be leaves. For example, in telecommunications, the message senders
and receivers, which correspond to the terminal vertices, are not allowed to behave as transmitters [3], which correspond to
the vertices with degree greater than 1. A connection tree T for W is said strict if all vertices belonging to W are leaves of
T , i.e. the leaf set of T coincides with the terminal set W . Based on that and also motivated by applications in information
security and network routing, Dourado et al. [2] introduced the Strict terminal connection problem (S-TCP), which has as

✩ This work was partially supported by the Brazilian agencies CNPq (Grant numbers: 132890/2015-1, 140399/2017-8, 407635/2018-1, 303726/2017-2),
CAPES (Finance Code 001) and FAPERJ (Grant numbers: CNE E-26/202.793/2017, JCNE E-26/203.272/2017).

* Corresponding author.
E-mail addresses: aamelo@cos.ufrj.br (A.A. Melo), celina@cos.ufrj.br (C.M.H. Figueiredo), ueverton@ic.uff.br (U.S. Souza).

https://doi.org/10.1016/j.jcss.2020.02.001
0022-0000/© 2020 Elsevier Inc. All rights reserved.

120

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 23

Table 1
Contributions of this work (in bold) and known results for S-TCP.

Graph class Parameters

– � r �, r �, r,�

General NP-c [2] NP-c [2]
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2,

and W[2]-h Theorem 4

XP [2]
but W[2]-h Theorem 4

FPT [2] (and Theorem 5) but
No-poly kernel Theorem 6

� = 4 NP-c Theorem 1 NP-c Theorem 1
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2

FPT [2] (and Theorem 5) FPT [2] (and Theorem 5)

� = 3 NP-c Theorem 2 XP Theorem 3
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2

FPT [2] (and Theorem 5) FPT [2] (and Theorem 5)

Split NP-c Theorem 7 NP-c Theorem 7
XP Theorem 7
but W[2]-h Theorem 7

XP [2] (and Theorem 7)
but W[2]-h Theorem 7

FPT [2] (and Theorem 5)

Cographs Poly Theorem 8 Poly Theorem 8 Poly Theorem 8 Poly Theorem 8 Poly Theorem 8

input a graph G = (V , E), a non-empty subset W ⊆ V and two non-negative integers � and r, and asks for the existence of
a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r.

Besides the practical point of view, S-TCP is strongly related to classical network design problems, such as vertex-disjoint
path problems and integral network flow problems. Furthermore, S-TCP can be viewed as a close variant of the unweighted
version of the Steiner tree problem in graphs, in which we are given a graph G = (V , E), a terminal set W ⊆ V and a
positive integer k, and we aim to decide whether G contains a connected subgraph T such that W ⊆ V (T) and |E(T)| ≤ k.
Since every minimal solution T for a given instance of Steiner tree is necessarily a connection tree for W , the constraints
on T being a tree and its leaf set being a subset of W can be omitted without loss of generality from the definition of
Steiner tree. However, for our target problem, S-TCP, neither constraint can be ignored. Indeed, as a result of the number
of non-terminal vertices with degree 2 being bounded, there exist instances I = (G, W , �, r) that would be considered Yes

instances of S-TCP although all connected subgraphs of G containing the vertices in W , and with at most � non-terminal
vertices with degree 2 and at most r non-terminal vertices with degree at least 3, have cycles or non-terminal vertices that
are leaves.

Steiner tree is a classical NP-complete problem [4], and it has been extensively studied from distinct classes of algorith-
mic paradigms, such as structured graph classes [5–9] and parameterized complexity [10–14].

Additionally, several variants of Steiner tree have been investigated over the years. One of the most well-known variants
is the so-called Full Steiner tree (or Terminal Steiner tree), in which the terminal vertices are further constrained to be
leaves of the sought connection tree T , i.e. T must be strict [15]. The original motivation to study the Full Steiner tree

problem was to use it as a building block to solve the Steiner tree problem itself, provided the fact that any connection
tree can be decomposed into strict connection trees [16,17]. Full Steiner tree was proved to be NP-complete [3,17,18]. On
the other hand, Fernau et al. [19] proved that the problem is in FPT when parameterized by k, the maximum size of the
sought strict connection tree T , but that it does not admit a strict polynomial kernel unless P = NP. It is also known that,
unless NP ⊆ coNP/poly, Full Steiner tree parameterized by k does not admit a polynomial kernel cf. [14,12]. In addition,
many approximation algorithms and approximation lower bounds for the problem have been proposed [3,17,20–25] in the
last years.

Motivated by applications in optical networks and bandwidth consumption minimization, another variant of Steiner tree

that has been investigated is the one in which the number of branching nodes, i.e. vertices with degree at least 3 in T (not
necessarily non-terminal), is bounded. In [26–28], the authors address the undirected and directed cases of this variant, for
which they devise approximation and parameterized polynomial-time algorithms, apart from obtaining some intractability
results.

Nevertheless, there is no variant of Steiner tree requiring simultaneously full Steiner trees and bounded number of branch-
ing nodes that has been investigated. Therefore, we emphasize that S-TCP certainly has its own merit to be studied. Thus,
this paper aims to provide a multivariate analysis of S-TCP with respect to the input aspects: �, number of linkers; r, number
of routers; and �, the maximum degree of the input graph.

S-TCP was proved to be polynomial-time solvable if � and r are bounded by constants [2], or if � is unbounded but
r ∈ {0, 1} [29]; and it was proved to be in FPT when �, r and � are parameters [2]. On the other hand, for every � ≥ 0,
S-TCP was proved to be NP-complete when r is unbounded, even if � is bounded by a constant [2].

In this paper, we extend the results described above by presenting several contributions to the complexity of S-TCP. More
specifically, in Section 2, we establish a Poly vs. NP-c dichotomy for S-TCP with respect to � and �; and in Section 3, we
provide further complexity results for S-TCP parameterized by �, r or �. Additionally, in Sections 4 and 5, we investigate
the problem on split graphs and cographs, respectively. Finally, in Section 6, we present some directions for future work.
Table 1 summarizes the contributions of this work.

Throughout this work we denote by n, m, and � the number of vertices, the number of edges, and the maximum degree
of the input graph G , respectively.

121

24 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 1. Gadgets Gxi and GCι .

2. Bounded maximum degree dichotomy

In this section, we address the analysis of the computational complexity of S-TCP when it is restricted to graphs with
bounded maximum degree. More specifically, we prove that S-TCP is NP-complete even if � is bounded by a constant and
� = 4, or � is unbounded and � = 3. On the other hand, we give a polynomial-time algorithm for the problem when � is
bounded by a constant and � = 3. Observe that S-TCP is easily solvable if � ≤ 2. Thus, our results establish a Poly vs. NP-c
dichotomy for S-TCP with respect to � and �.

2.1. Hardness results

We first prove the NP-completeness of S-TCP with � bounded by a constant and � = 4. Our proof consists in a
polynomial-time reduction from the NP-complete (cf. [30]) variant of 3-SAT, called 3-SAT(3), which has as input a set X
of boolean variables and a set C of clauses over X such that: (1) each clause in C has two or three distinct literals; and (2)
each variable in X appears exactly twice positive and once negative in the clauses belonging to C; and asks for the existence
of a truth assignment for the variables in X such that every clause in C has at least one true literal.

Theorem 1. For every � ≥ 0, S-TCP remains NP-complete even if � = 4.

Proof. Let I = (X, C) be an instance of 3-SAT(3), where X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. We construct from I
an instance f (I) = (G, W , r) of S-TCP with � bounded by a constant, such that � = 4, as follows (see Fig. 2):

• first, we create � vertices u1, u2, . . . , u� and, for each i ∈ {1, 2, . . . , � − 1}, add the edges uiui+1; moreover, we create the
vertices w I and v I and add the edges w I u1 and u�v I , originating the path P I = 〈w I , u1, . . . , u�, v I 〉;

• for each variable xi ∈ X , we create the gadget Gxi (see Fig. 1a) such that
– V (Gxi) = {v2

xi
, w2

xi
, w3

xi
, t1

xi
, t2

xi
, fxi } and

– E(Gxi) = {w2
xi

v2
xi
, v2

xi
t1

xi
, t1

xi
t2

xi
, t2

xi
w3

xi
, w3

xi
fxi , fxi v2

xi
};

moreover, we create the vertices w1
xi

and v1
xi

, and we add the edges w1
xi

v1
xi

and v1
xi

v2
xi

;
• we create a complete strict binary tree T I , rooted at v I , whose leaves are the vertices v1

x1
, v1

x2
, . . . , v1

xp
;

• for each clause Cι ∈ C , we create the gadget GCι such that, if |Cι| = 3, then (see Fig. 1b)
– V (GCι) = {vκ

Cι
, wκ

Cι
, w ′κ

Cι
| κ ∈ {1, 2, 3, 4, 6}} ∪ {v5

Cι
, w5

Cι
} and

– E(GCι) = {vκ
Cι

wκ
Cι

, vκ
Cι

w ′κ
Cι

| κ ∈ {1,2,3,4,6}} ∪ {v5
Cι

w5
Cι

} ∪ {v1
Cι

v4
Cι

, v4
Cι

v5
Cι

, v5
Cι

v2
Cι

, v5
Cι

v6
Cι

, v6
Cι

v3
Cι

},
and if |Cι| = 2, then (see Fig. 1c)
– V (GCι) = {vκ

Cι
, wκ

Cι
, w ′κ

Cι
| κ ∈ {1, . . . , 4}} and

– E(GCι) = {vκ
Cι

wκ
Cι

, vκ
Cι

w ′κ
Cι

| κ ∈ {1, . . . , 4}} ∪ {v1
Cι

v3
Cι

, v3
Cι

v4
Cι

, v4
Cι

v2
Cι

};

• for each clause Cι ∈ C , we add the edge t j
xi

vκ
Cι

if the κ-th literal belonging to Cι corresponds to the j-th occurrence in I
of the positive literal xi , for xi ∈ X , j ∈ {1, 2} and κ ∈ {1, . . . , |Cι|}; on the other hand, we add the edge fxi vκ

Cι
if the κ-th

literal belonging to Cι corresponds to the (only) occurrence in I of the negative literal xi , for xi ∈ X and κ ∈ {1, . . . , |Cι|};
• we define W = WC ∪ {w I } ∪ {w1

xi
, w2

xi
, w3

xi
| xi ∈ X}, where WC = ⋃

Cι∈C W Cι and

– W Cι =
{ {wκ

Cι
, w ′κ

Cι
| κ ∈ {1,2,3,4,6}} ∪ {w5

Cι
} if |Cι| = 3

{wκ
Cι

, w ′κ
Cι

| κ ∈ {1, . . . ,4}} if |Cι| = 2;
• finally, we define r = |V \ W | − �.

One may verify that the maximum degree of G is 4.
Fig. 2 exemplifies the graph G and the terminal set W of f (I).
Now, we prove that I is a Yes instance of 3-SAT(3) if and only if f (I) is a Yes instance of S-TCP with � bounded by a

constant.

122

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 25

Fig. 2. Graph G and terminal set W (blue square vertices) of f (I) obtained from the instance I = (X, C) of 3-SAT(3), where X = {x1, x2, x3} and C = {C1 =
{x1, x2, x3}, C2 = {x1, x2, x3}, C3 = {x1, x2, x3}}. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Patterns used to connect the vertices of GCι to T .

First, suppose that I is a Yes instance of 3-SAT(3). Hence, there exists a truth assignment α : X → {true, false} that satisfies
all clauses in C . Based on α, we construct a strict connection tree T of G for W as follows:

• we add the path P I to T ;
• we add the complete strict binary tree T I to T along with the vertices w1

xi
and the edges w1

xi
vxi for every xi ∈ X ;

• for each variable xi ∈ X , we add the vertices v2
xi

, w2
xi

and w3
xi

and the edges v1
xi

v2
xi

and v2
xi

w2
xi

to T ; furthermore, if
α(xi) = true, then we add the vertices t1

xi
and t2

xi
to T along with all of their neighbors and incident edges in G; on the

other hand, if α(xi) = false, then we add the vertex fxi to T along with all of its neighbors and incident edges in G .

Since by hypothesis α satisfies all clauses in C , for each Cι ∈ C , there exists at least one vertex either t j
xi

(where j ∈ {1, 2})
or fxi , for some xi ∈ X , which is adjacent to one of the vertices v1

Cι
, v2

Cι
(and v3

Cι
if |Cι| = 3) in T . Thus, we can connect all

the other vertices of the gadget GCι to T by following one of the patterns (or their symmetrical cases) depicted in Fig. 3,
concluding the construction of T .

Fig. 4 exemplifies the strict connection tree T of G for W , referring to the instance f (I) described in Fig. 2, obtained
from a truth assignment α.

Observe that, T is indeed a strict connection tree of G for W and, besides that, L(T) = {u1, u2, . . . , u�} and R(T) =
V (T I) ∪

(⋃
Cι∈C V (GCι) \ W C

) ∪ {v2
xi

| xi ∈ X} ∪ {t1
xi
, t2

xi
| α(xi) = true, xi ∈ X} ∪ { fxi | α(xi) = false, xi ∈ X}. Hence, |L(T)| ≤ �

and, obviously, |R(T)| ≤ |V \ W | − �. Therefore, f (I) is a Yes instance of S-TCP with � bounded by a constant.
Conversely, suppose that f (I) is a Yes instance of S-TCP with � bounded by a constant. Hence, there exists a strict

connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ |V \ W | − �. Since the path P I is necessarily contained in
T and there are precisely � vertices in P I with degree 2, the vertices belonging to V (T) \ (W ∪ V (P I)) are routers of T .
However, we have dG(t1

xi
) = dG (t2

xi
) = dG(fxi) = 3. Thus, if t1

xi
∈ V (T), then NT (t1

xi
) = NG(t1

xi
); if t2

xi
∈ V (T), then NT (t2

xi
) =

NG(t2
xi
); and, if fxi ∈ V (T), then NT (fxi) = NG(fxi). Hence, if t1

xi
∈ V (T) or t2

xi
∈ V (T), then fxi /∈ V (T), otherwise T would

have a cycle (and the degree of the terminal w3
xi

would be greater than 1 in T). Analogously, if fxi ∈ V (T), then t1
xi
, t2

xi
/∈

V (T). Thus, we can define a truth assignment α : X → {true, false} in the following way: α(xi) = true if and only if fxi /∈

123

26 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 4. Strict connection tree of G for W obtained from the truth assignment α(x1) = true, α(x2) = true and α(x3) = false.

V (T). Since by hypothesis WC ⊂ W ⊆ V (T) and, for every clause Cι ∈ C , the path in T between any terminal wCι ∈ W Cι

and any other terminal w ∈ W \ W Cι must contain either t j
xi

(where j ∈ {1, 2}) or fxi , for some xi ∈ X , we have that all
clauses in C are satisfied by α. Therefore, I is a Yes instance of 3-SAT(3). �

Now, we analyze S-TCP when � = 3. First, by a polynomial-time reduction from the 1-in-3-SAT(3) problem — which has
the same input of 3-SAT(3) but asks whether there exists a truth assignment such that every clause has exactly (instead of
at least) one true literal — we prove that, if � is unbounded, then S-TCP remains NP-complete even if � = 3.

The next proposition shows that 1-in-3-SAT(3) is an NP-complete problem and that, unless ETH fails, it does not admit
a 2o(|X |+|C|)-time algorithm. To prove such a result, we first present a polynomial-time reduction from 3-SAT (where each
clause has exactly three distinct literals) to 1-in-3-SAT, which has the same input of 3-SAT and the same question of
1-in-3-SAT(3); then, we present a polynomial-time reduction from 1-in-3-SAT to 1-in-3-SAT(3).

For simplicity, in the context of 1-in-3-SAT and 1-in-3-SAT(3), we say that a truth assignment α satisfies a given clause
C if there is exactly (instead of at least) one true literal in C under α.

Proposition 1. 1-in-3-SAT(3) is NP-complete and cannot be solved in time 2o(|X |+|C|) , unless ETH fails.

Proof. Polynomial-time reduction from 3-SAT to 1-IN-3-SAT.
Let I = (X ′, C′) be an instance of 3-SAT. We construct from I an instance f (I) = (X ′′, C′′) of 1-in-3-SAT, as follows: X ′′ =

X ′ ∪ {y1
j , y

2
j , y

3
j , y

4
j | C j ∈ C′} and C′′ = {C1

j , C
2
j , C

3
j | C j ∈ C′}, where, for C j = {z1

j , z
2
j , z

3
j }, with zi

j ∈ {xi
j, x

i
j} for some variable

xi
j ∈ X ′ , we have C1

j = {z1
j , y1

j , y
2
j }, C2

j = {z2
j , y

2
j , y

3
j } and C3

j = {z3
j , y

3
j , y

4
j }. Note that, |X ′′| = |X ′| + 4|C′| and |C′′| = 3|C′|.

Suppose that I is a Yes instance of 3-SAT, and let α : X ′ → {true, false} be a truth assignment that satisfies all clauses in
C′ . Then, from α, we defined a truth assignment β : X ′′ → {true, false}, as follows: β(xi) = α(xi) for all xi ∈ X ′ , and

• β(y1
j) = false, β(y2

j) = true, β(y3
j) = false and β(y4

j) = false if α(z1
j) = true, α(z2

j) = false and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = false and β(y4

j) = false if α(z1
j) = false, α(z2

j) = true and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = true and β(y4

j) = false if α(z1
j) = false, α(z2

j) = false and α(z3
j) = true;

• β(y1
j) = true, β(y2

j) = false, β(y3
j) = false and β(y4

j) = false if α(z1
j) = true, α(z2

j) = true and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = true, β(y3
j) = false and β(y4

j) = true if α(z1
j) = true, α(z2

j) = false and α(z3
j) = true;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = false and β(y4

j) = true if α(z1
j) = false, α(z2

j) = true and α(z3
j) = true;

• β(y1
j) = true, β(y2

j) = false, β(y3
j) = false and β(y4

j) = true if α(z1
j) = true, α(z2

j) = true and α(z3
j) = true;

for all C j ∈ C′ , where α(zi
j) = α(xi

j) if zi
j = xi

j , and α(zi
j) = α(xi

j) otherwise. It is easy to see that β satisfies all clauses in
C′′ . Therefore, f (I) is a Yes instance of 1-in-3-SAT.

Conversely, suppose that f (I) is a Yes instance of 1-in-3-SAT, and let β : X ′′ → {true, false} be a truth assignment that
satisfies all clauses in C′′ . We let α : X ′ → {true, false} be the truth assignment such that, for each xi ∈ X ′ , α(xi) = β(xi).
For the sake of contradiction, suppose that there exists a clause C j = {z1

j , z
2
j , z

3
j } ∈ C′ that is false under α, i.e. α(z1

j) = false,
α(z2

j) = false and α(z3
j) = false, where zi

j ∈ {xi
j, x

i
j} for some variable xi

j ∈ X ′ . Then, β(y1
j) = false and β(y2

j) = false, otherwise

124

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 27

C1
j would have more than one true literal under β . Consequently, β(y3

j) = true, otherwise C2
j would have no true literal

under β . However, this contradicts the hypothesis that C3
j has exactly one true literal under β , since in this case z3

j and
y3

j are both true literals under β . As a result, we obtain that α is indeed a truth assignment that satisfies all clauses in C′ .
Therefore I is Yes instance of 3-SAT.

Polynomial-time reduction from 1-IN-3-SAT to 1-IN-3-SAT(3).

Now, let I = (X ′′, C′′) be an instance of 1-in-3-SAT. For a given variable xi ∈ X ′′ , let γi denote the number of positive
occurrences of xi in I , and let γ i denote the number of negative occurrences of xi in I . We construct from I an instance
f (I) = (X, C) of 1-in-3-SAT(3), as follows:

• for each xi ∈ X ′′ such that γi ≥ 2 and each j ∈ {2, . . . , γi}, we create the variable μ j
i and replace the j-th positive

occurrence of xi with the positive literal μ j
i ; moreover, if γ i ≥ 1, then we create the variable μγi+1

i ;

• for each xi ∈ X ′′ such that γ i ≥ 1 and each j ∈ {1, . . . , γ i}, we create the variable ν j
i and replace the j-th negative

occurrence of xi with the positive literal ν j
i ; moreover, we create the variable νγ i+1

i ;

• for each xi ∈ X ′′ such that γi = 0 and γ i ≥ 1, we create the clauses {xi, xi}, {xi, ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i },

{νγ i
i , νγ i+1

i }, {νγ i+1
i , νγ i+1

i };

• for each xi ∈ X ′′ such that γi = 1 and γ i ≥ 1, we create the clauses {xi, ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i }, {νγ i

i , xi};

• for each xi ∈ X ′′ such that γi ≥ 2 and γ i = 0, we create the clauses {xi, μ2
i }, {μ2

i , μ
3
i }, . . ., {μγi−1

i , μγi
i }, {μγi

i , xi};

• finally, for each xi ∈ X ′′ such that γi ≥ 2 and γ i ≥ 1, we create the clauses {xi, μ2
i }, {μ2

i , μ
3
i }, . . ., {μγi

i , μγi+1
i },

{μγi+1
i , xi}, {μγi+1

i , ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i }, {νγ i

i , νγ i+1
i }, {νγ i+1

i , νγ i+1
i }.

It is easy to see that every variable in X appears exactly twice positive and once negative in f (I). Additionally, note that
|X | ≤ 2|X ′′| + ∑

xi∈X ′′ (γi + γ i) ≤ 2|X ′′| + 3|C′′| and |C| ≤ |C′′| + 3|X ′′| + ∑
xi∈X ′′ (γi + γ i) ≤ 4|C′′| + 3|X ′′|.

Suppose that I is a Yes instance of 1-in-3-SAT, and let α : X ′′ → {true, false} be a truth assignment that satisfies all clauses
in C′′ . From α, we defined a truth assignment β : X → {true, false}, as follows: β(xi) = α(xi) for all xi ∈ X ′′; β(μ

j
i) = α(xi)

for all j ∈ {2, . . . , γi}∪ {γi + 1 | γi ≥ 2, γ i ≥ 1} and all xi ∈ X ′′; and β(ν
j

i) = α(xi) for all j ∈ {1, . . . , γ i}∪ {γ i + 1 | γ i ≥ 1} and
all xi ∈ X ′′ . One may verify that β satisfies all clauses in C′′ . Therefore, f (I) is a Yes instance of 1-in-3-SAT(3).

Conversely, suppose that f (I) is a Yes instance of 1-in-3-SAT(3), and let β : X → {true, false} be a truth assignment that
satisfies all clauses in C . Note that, the truth assignment α : X ′′ → {true, false}, where α(xi) = β(xi) for all xi ∈ X ′′ , satisfies
all clauses in C′′ . Therefore I is Yes instance of 1-in-3-SAT.

To conclude this proof, note that, based on the above reductions, the existence of a 2o(|X |+|C|)-time algorithm for
1-in-3-SAT(3) implies the existence of a 2o

(|X ′|+|C′ |)-time algorithm for 3-SAT. Thus, unless ETH fails, 1-in-3-SAT(3) can-
not be solved in time 2o(|X |+|C|) . �
Theorem 2. S-TCP remains NP-complete and, unless ETH fails, cannot be solved in time 2o(�+n) even if � = 3.

Proof. Let I = (X, C) be an instance of 1-in-3-SAT(3), where X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. We construct
from I an instance f (I) = (G, W , �, r) of S-TCP, such that � = 3, as follows (see Fig. 5):

• first, we create the vertices v I and w I and add the edge v I w I ;
• for each variable xi ∈ X , we create the gadget Gxi such that

– V (Gxi) = {v2
xi
, u1

xi
, u2

xi
, t1

xi
, t2

xi
, fxi , wxi } and

– E(Gxi) = {v2
xi

u1
xi
, u1

xi
t1

xi
, t1

xi
t2

xi
, t2

xi
wxi , wxi fxi , fxi u

2
xi
, u2

xi
v2

xi
};

we also create the vertices w ′
xi

and v1
xi

and add the edges w ′
xi

v1
xi

and v1
xi

v2
xi

;
• we create a complete strict binary tree T I , rooted at v I , whose leaves are the vertices v1

x1
, v1

x2
, . . . , v1

xp
;

• for each clause Cι ∈ C , we create the vertex wCι ; moreover, we add the edge t j
xi

wCι if one of the literals in Cι corre-
sponds to the j-th occurrence in I of the positive literal xi , for xi ∈ X and j ∈ {1, 2}; on the other hand, we add the
edge fxi wCι if one of the literals in Cι corresponds to the (only) occurrence in I of the negative literal xi ;

• we define W = {w I } ∪ {wxi , w ′
xi

| xi ∈ X} ∪ {wCι | Cι ∈ C};
• finally, we define � = 2p and r = 2p + |V (T I)| = 4p − 1.

One may verify that the maximum degree of G is 3. Furthermore, note that, G has n = 10p + q vertices.
Fig. 5 exemplifies the graph G and the terminal set W of f (I).
Now, we prove that I is a Yes instance of 1-in-3-SAT(3) if and only if f (I) is a Yes instance of S-TCP.

125

28 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 5. Graph G and terminal set W (blue square vertices) of f (I) obtained from the instance I = (X, C) of 1-in-3-SAT(3), where X = {x1, x2, . . . , x9}
and C = {C1 = {x1, x2, x3}, C2 = {x1, x5}, C3 = {x1, x5}, C4 = {x3, x8}, C5 = {x2, x6}, C6 = {x2, x6}, C7 = {x4, x5, x7}, C8 = {x3, x7}, C9 = {x7, x8}, C10 = {x4, x9},
C11 = {x4, x9}, C12 = {x6, x8, x9}}.

Fig. 6. Strict connection tree of G for W obtained from the truth assignment α(x1) = false, α(x2) = false, α(x3) = true, α(x4) = false, α(x5) = false, α(x6) =
false, α(x7) = true, α(x8) = true e α(x9) = false. (For simplicity, some vertex labels are omitted.)

First, suppose that I is a Yes instance of 1-in-3-SAT(3). Hence, there exists a truth assignment α : X → {true, false} that
satisfies all clauses in C . Based on α, we construct a strict connection tree T of G for W as follows:

• we add the complete strict binary tree T I to T along with the terminal vertex w ′
xi

and the edges w ′
xi

v1
xi

for every
xi ∈ X ; we also add the vertex w I and the edge w I v I to T ;

• for each variable xi ∈ X , we add the vertices v2
xi

and wxi and the edge v1
xi

v2
xi

to T ; moreover, if α(xi) = true, then we
add the vertices u1

xi
, t1

xi
and t2

xi
to T along with all of their neighbors and incident edges in G; on the other hand, if

α(xi) = false, then we add the vertices u2
xi

and fxi to T along with all of their neighbors and incident edges in G .

Fig. 6 exemplifies the strict connection tree T of G for W , referring to the instance f (I) described in Fig. 5, obtained
from a truth assignment α.

126

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 29

Clearly, for every clause Cι ∈ C , wCι ∈ V (T). Furthermore, observe that these terminals are necessarily leaves of T , since
by hypothesis every clause Cι ∈ C has exactly one true literal under the truth assignment α. Thus, it is easy to see that T
is a strict connection tree of G for W . Additionally, note that L(T) = {v2

xi
| xi ∈ X} ∪ {u1

xi
| α(xi) = true, xi ∈ X} ∪ {u2

xi
| α(xi) =

false, xi ∈ X} and R(T) = V (T I) ∪ {t1
xi
, t2

xi
| α(xi) = true, xi ∈ X} ∪ { fxi | α(xi) = false, xi ∈ X}. Consequently, |L(T)| = 2p = � and

|R(T)| ≤ 2p + |V (T I)| = r. Therefore, f (I) is a Yes instance of S-TCP.
Conversely, suppose that f (I) is a Yes instance of S-TCP. Hence, there exists a strict connection tree T of G for W

such that |L(T)| ≤ � and |R(T)| ≤ r. Note that, for every variable xi ∈ X , the path in T between the terminals wxi and
w ′

xi
, say P xi , necessarily consists in one of the following possibilities: either P xi = 〈wxi , t2

xi
, t1

xi
, u1

xi
, v2

xi
, v1

xi
, w ′

xi
〉 or P xi =

〈wxi , fxi , u2
xi
, v2

xi
, v1

xi
, w ′

xi
〉. Hence, fxi ∈ V (T) if and only if t1

xi
/∈ V (T). Indeed, if fxi and t1

xi
simultaneously belonged to

V (T), then ux1
i
, ux2

i
, and at least one of the vertices fxi , t1

xi
or t2

xi
would be linkers of T , which would imply |L(T)| > 2p = �.

Thus, we can define a truth assignment α : X → {true, false} in the following way: α(xi) = true if fxi /∈ V (T), and α(xi) = false
otherwise.

Let WC = {wCι | Cι ∈ C}. Since WC ⊂ W ⊆ V (T) and every path in T between the terminal wCι ∈ WC and any other
terminal w ∈ W must contain one of the edges wCιt

1
xi

, wCιt
2
xi

or wCι fxi , for some xi ∈ X , all clauses in C have at least
one true literal under α. Indeed, for every clause Cι ∈ C , if wCιt

1
xi

∈ E(T) or wCιt
2
xi

∈ E(T), then fxi /∈ V (T), and so the
assignment α(xi) = true satisfies Cι; on the other hand, if wCι fxi ∈ E(T), then obviously fxi ∈ V (T), and so the assignment
α(xi) = false satisfies Cι . Furthermore, observe that, each clause in C has no more than one true literal under α, since by
hypothesis all terminals belonging to W ⊃ W Cι are leaves of T and, for every vertex ρxi ∈ {t1

xi
, t2

xi
, fxi | xi ∈ X} ∩ V (T), we

have that NT (ρxi) = NG(ρxi) — otherwise, |L(T)| > 2p = � or some non-terminal vertex would be a leaf of T . Therefore, I is
a Yes instance of 1-in-3-SAT(3).

To conclude this proof, note that, since n = 10p + q and � = 2p, the existence of a 2o(�+n)-time algorithm for S-TCP, even
if � = 3, implies the existence of a 2o(p+q)-time algorithm for 1-in-3-SAT(3). Therefore, based on Proposition 1, unless ETH
fails, S-TCP cannot be solved in time 2o(�+n) even if � = 3. �
2.2. Tractable case: maximum degree 3 and bounded number of linkers

Motivated by Theorems 1 and 2, which state that S-TCP remains NP-complete when � = 4 — even if � is bounded by
a constant — and when � = 3, respectively, we now prove that, if � is bounded by a constant and � = 3, then S-TCP is
polynomial-time solvable. More specifically, we show that S-TCP can be solved in time 2O(� log n) when � = 3. The following
proposition and the following lemmas provide the basis of this result.

Let G be a graph, and let W ⊆ V such that |W | ≥ 3. Given a strict connection tree T of G for W , we denote by L′(T) the
subset of L(T) defined as follows: v ∈ L′(T) if and only if v ∈ L(T) and v belongs to a path in T whose (two) endpoints are
routers of T ; and we denote by T ∗ the subgraph of T induced by the vertices belonging to L′(T) ∪ R(T). Observe that, since
|W | ≥ 3, R(T) �= ∅, and thus we have that T ∗ is well-defined, containing at least one vertex. Furthermore, observe that T ∗
is a tree.

Proposition 2. Let G = (V , E) be a graph, and let W ⊆ V such that |W | ≥ 3. If T is a strict connection tree of G for W , then ⌈ |W |−2
�−2

⌉
≤ |R(T)| ≤ |W | − 2.

Proof. Note that, |W | = ∑
v∈R(T) (dT (v) − dT ∗ (v)). Furthermore, we have that

∑
v∈R(T)

dT ∗(v) =
∑

v∈V (T ∗)\L′(T)

dT ∗(v) =
∑

v∈V (T ∗)
dT ∗(v) −

∑
v∈L′(T)

dT ∗(v)

= 2|E(T ∗)| − 2|L′(T)| = 2
(|L′(T)| + |R(T)| − 1

) − 2|L′(T)|
= 2|R(T)| − 2.

Thus, |W | = ∑
v∈R(T) dT (v) − 2|R(T)| + 2. Finally, observe that 3|R(T)| ≤ ∑

v∈R(T) dT (v) ≤ �|R(T)|. Therefore,
⌈ |W |−2

�−2

⌉
≤

|R(T)| ≤ |W | − 2. �
By Proposition 2, we can assume without loss of generality that r = |W | − 2 whenever � = 3. Thus, in the remainder of

this section, we omit the input aspect r in the description of the instances of S-TCP. Furthermore, we also assume that G
does not contain edges whose endpoints are both terminals, i.e. W is an independent set of G .

Lemma 1. Let G = (V , E) be a graph such that � = 3. Then, G admits a strict connection tree T for W with L(T) = ∅ if and only if
there exists a subset V ′ ⊆ V such that T ′ = G[V ′] is a strict connection tree for W with L(T ′) = ∅.

127

30 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 7. Operations corresponding to the possible configurations of u ∈ L being a linker in a strict connection tree of G for W .

Proof. First, suppose that G admits such a tree T . Since L(T) = ∅, all non-terminal vertices of T are routers, i.e. V (T) \ W =
R(T). Thus, if ρ ∈ V (T) \ W , then NT (ρ) = NG(ρ), otherwise ρ /∈ R(T) since � = 3. Finally, since W is an independent set
of G , we have G[V ′] = T , where V ′ = V (T).

Conversely, it is immediate that if there exists a subset V ′ such that T ′ = G[V ′] is a strict connection tree for W with
L(T ′) = ∅, then G admits a strict connection tree T for W with L(T) = ∅. Indeed, T ′ is itself such a tree T . �

Given a terminal vertex w ∈ W and a non-terminal vertex v ∈ NG(w), we denote by Hv the subgraph of G induced by
the vertices belonging to V (H′

v) ∪ W , where H′
v is the component of G − W that contains v .

Lemma 2. Let G = (V , E) be a graph such that � = 3, and let w ∈ W be an arbitrary terminal. Then, there exists a subset V ′ ⊆ V
such that T ′ = G[V ′] is a strict connection tree for W with L(T ′) = ∅ if and only if, for some non-terminal vertex v ∈ NG(w), Hv is a
strict connection tree for W with L(Hv) = ∅.

Proof. First, suppose that there exists such a subset V ′ ⊆ V . Let v ∈ NT ′ (w) be the only neighbor of w in T ′ , where T ′ =
G[V ′]. Since by hypothesis all terminals in W are leaves of T ′ , we have that T ′ − W = G[V ′ \ W] is connected. Consequently,
all non-terminal vertices ρ ∈ V ′ \ W (including v) belong to a same component of G − W . Thus, V ′ \ W ⊆ V (H′

v). On the
other hand, since � = 3 and |L(T ′)| = ∅, NT ′ (ρ) = NG(ρ) for every ρ ∈ V ′ \ W . Consequently, we have that V ′ \ W ⊇ V (H′

v).
Thus, V ′ = V (H′

v) ∪ W and, therefore, Hv is a strict connection tree for W such that L(Hv) = ∅.
Conversely, suppose that, for some non-terminal vertex v ∈ NG(w), Hv is a strict connection tree for W with L(Hv) = ∅.

Therefore, for V ′ = V (Hv), we have that T ′ = G[V ′] is a strict connection tree for W such that L(T ′) = ∅. �
Corollary 1. S-TCP is linear-time solvable when � = 0 and � = 3.

Proof. Let I = (G, W) be a given instance of S-TCP with � = 0 and � = 3. Let w ∈ W be an arbitrary terminal vertex. It
is easy to see that, for every non-terminal vertex v ∈ NG(w), the graph Hv can be constructed in time linear in the size
of I; for instance, we can obtain Hv by running the variant of the breadth-first search rooted at v on which the terminal
vertices are not explored (i.e. they must be leaves in the resulting search tree). Moreover, we can also verify in linear-time
whether Hv is a strict connection tree for W such that L(Hv) = ∅. Therefore, it follows from Lemmas 1 and 2 that S-TCP
is linear-time solvable if � = 3 and � = 0. �
Theorem 3. S-TCP can be solved in time 2O(� log n) when � = 3, but assuming ETH there is no 2o(�+n)-time algorithm for the problem.

Proof. We first prove that S-TCP can be solved in time 2O(� log n) when � = 3. Let I = (G, W , �) be an instance of S-TCP
such that � = 3. For each subset L ⊆ V \ W such that |L| ≤ �, we generate all combinations of graphs G ′

L obtained from G
by successively applying, for each vertex u ∈ L, the operation depicted in Fig. 7a if dG (u) = 2, or one of the three operations
depicted in Fig. 7b if dG(u) = 3. These operations simulate the possible configurations of the vertex u ∈ L being a linker in
a strict connection tree of G for W . In the end, after all vertices belonging to L have been processed as described above,
we verify whether the resulting graphs G ′

L admit a strict connection tree T ′ for W such that L(T ′) = ∅. Then, the algorithm
returns that I is a Yes instance of S-TCP if and only, for some subset L ⊆ V \ W , with |L| ≤ �, there exists a graph G ′

L that
admits such a tree T ′ . Algorithm 1 presents this Turing reduction formally, where the function Get-tree-without-linkers,
with input (G, W), denotes a linear-time procedure for solving S-TCP with � = 0, when � = 3, that returns either a strict
connection tree T of G for W such that L(T) = ∅ or null if such a tree does not exist.

The correctness of the algorithm follows from the fact that all possible relevant configurations for the existence of a
strict connection tree of G for W with at most � linkers are analyzed. In fact, if there exists a graph G ′

L that admits a
strict connection tree T ′

L for W such that L(T ′
L) = ∅, for some subset L ⊆ V \ W , with |L| ≤ �, then by construction G

admits a strict connection tree T for W such that L(T) ⊆ L, and thus we have that I = (G, W , �) is a Yes instance of S-TCP.
Conversely, if G admits a strict connection tree T for W such that |L(T)| ≤ �, then clearly, for L = L(T), there exists a graph
G ′

L that admits a strict connection tree T ′
L for W such that L(T ′

L) = ∅, and thus we have that I ′ = (G ′
L, W) is a Yes instance

of S-TCP with � = 0.

128

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 31

Algorithm 1: Turing reduction from S-TCP to S-TCP with � = 0, restricted to graphs with maximum degree 3.
Input: A graph G = (V , E) such that � = 3, a terminal set W ⊆ V and a non-negative integer �.
Output: A strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r, or null if such a tree does not exist.

1 Let L be a collection of all subsets L ⊆ V \ W , with |L| ≤ �, such that the sets in L are ordered according to their inclusion order.
2 foreach L ∈ L do
3 T := Get-tree-given-linker-superset(G, W , L, 1)

4 if T �= null then return T

5 return null

6 Function Get-tree-given-linker-superset(G, W , L, i)
7 if i > |L| then return Get-tree-without-linkers(G, W)

8 u := L[i] // L[i] denotes the i-th element in L
9 if dG (u) = 1 then return null

10 foreach x, y ∈ NG (u) such that x �= y do
11 Let G ′

L be the graph defined as follows: V (G ′
L) := V \ {u} and E(G ′

L) := (E \ {uv | v ∈ NG (u)}) ∪ {xy}
12 T := Get-tree-given-linker-superset(G ′

L , W , L, i + 1)

13 if T �= null then
14 E(T) := (E(T) \ {xy}) ∪ {ux, uy}
15 return T

16 return null

Regarding the running time of the algorithm, in the worst case the number of recursive calls to Get-tree-given-linker-

superset is

∑
L⊆V \W
|L|≤�

∏
u∈L

(
dG(u)

2

)
≤

∑
L⊆V \W
|L|≤�

3|L| ≤
�∑

i=0

(
n

i

)
3i = O

(
3� · n�

)
.

Thus, the total time spent by the algorithm is O
(
3� · n�+1

)
, since Get-tree-without-linkers runs in time linear in n and all

the other operations of the algorithm can be performed in constant time. Therefore, S-TCP can be solved in time 2O(� log n)

when � = 3.
The proof that S-TCP cannot be solved in time 2o(�+n) , even when � = 3, unless ETH fails, follows directly from Theo-

rem 2. �
3. Using �, r and � as parameters

In the present section, we investigate the parameterized complexity of S-TCP when �, r and � are parameters. We remark
that, as a result of Theorem 1, S-TCP parameterized by � and � is para-NP-complete; consequently, the problem does not
even admit an XP-time algorithm, unless P = NP. On the other hand, Dourado et al. [2] showed that S-TCP parameterized
by � and r is in XP.

Nevertheless, we now prove that S-TCP parameterized by � and r is W[2]-hard. Particularly, we show that, for every
� ≥ 0, S-TCP parameterized by r is W[2]-hard. Thus, unless FPT = W[2], S-TCP does not admit an algorithm with running
time g(r) · nh(�) , for any computable functions g and h.

Theorem 4. For every � ≥ 0, S-TCP parameterized by r is W[2]-hard.

Proof. Let I = (U , F , k) be an instance of Set cover, a classical W[2]-hard problem [14], where U is the universe, F is
the collection of non-empty sets over U , and k is the parameter of the problem, a non-negative integer. We construct an
instance f (I) = (G, W , r) of S-TCP with � bounded by a constant as follows:

• for each i ∈ {1, . . . , �}, we create the vertices ui and w ′
i , and we add the edge ui w ′

i ; let L = {u1, u2, . . . , u�};
• for each set Fi ∈ F , we create the vertex v Fi ; moreover, for each pair Fi, F j ∈ F with i �= j, we add the edge v Fi v F j ;

let KF = {v Fi | Fi ∈ F};
• we create the vertices wa and wb and, for each set Fi ∈ F , we add the edges wa v Fi and wb v Fi ;
• for each pair of vertices ui, v F j , where ui ∈ L and v F j ∈ KF , we add the edge ui v F j ;
• for each element xi ∈ U , we create the vertex wi;
• for each set F j ∈ F and each element xi ∈ F j , we add the edge v F j wi ;
• finally, we define W = {wa, wb} ∪ {w ′

i | i ∈ {1, . . . , �}} ∪ {wi | xi ∈ U } and r = k.

Now we prove that I is a Yes instance of Set cover if and only if f (I) is a Yes instance of S-TCP with � bounded by a
constant.

129

32 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

First, suppose that I is a Yes instance of Set cover, and let F ′ = {F ′
1, F

′
2, . . . , F

′
z} be a subcollection of F such that ⋃

F ′∈F ′ F ′ = U and z ≤ k. Assume without loss of generality that F ′ is minimal with respect to the property of covering
all elements of U , i.e. for any set F ′ ∈ F ′ , F ′ \ {F ′} does not cover all elements of U . Based on F ′ , we construct a strict
connection tree T of G for W as follows:

• for each i ∈ {1, 2, . . . , �}, we add the vertices ui and w ′
i to T along with the edges ui w ′

i ;• for each set F ′
j ∈ F ′ , we add the vertex v F ′

j
to T ;

• for each i ∈ {1, 2, . . . , z − 1}, we add the edge v F ′
i
v F ′

i+1
to T ;

• moreover, for each i ∈ {1, 2, . . . , �}, we add the edge ui v F ′
1

to T ; we also add the edges wa v F ′
1

and wb v F ′
z

to T ;
• finally, for each element xi ∈ U , we add the vertex wi to T along with the edge v F ′

j
wi , where j = min{1, . . . , z} such

that xi ∈ F ′
j and F ′

j ∈ F ′ .

It is easy to verify that T is a strict connection tree of G for W . Now, we prove that |L(T)| ≤ � and |R(T)| ≤ r. First, note
that the vertices u1, u2, . . . , u� have degree exactly 2 in T . Thus, L(T) ⊇ L. On the other hand, it follows from the minimality
of F ′ that, for every set F ′

j ∈ F , the vertex v F ′
j

is adjacent to at least one terminal wi ∈ W , since F ′
j covers at least one

element xi ∈ U which is not covered by any other set in F ′ . Consequently, every vertex v F ′
j

has degree at least 3 in T , for
F ′

j ∈ F ′ . Thus, L(T) = L and R(T) = {v F ′
j
| F ′

j ∈ F ′}, which implies |L(T)| ≤ � and |R(T)| = z ≤ k = r. Therefore, f (I) is a Yes

instance of S-TCP with � bounded by a constant.
Conversely, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r = k. Note that, for

every i ∈ {1, 2, . . . , �}, the path in T between the terminal w ′
i and any other terminal belonging to W necessarily contains

the vertex ui ∈ L. Hence, V (T) ⊇ L. Furthermore, since the vertices in W ⊃ {wi | xi ∈ U } are leaves of T , there is a vertex
v F j ∈ KF such that NT (wi) = {v F j } for every xi ∈ U . However, the vertices v F j are non-terminal and T contains at most
� + r non-terminal vertices. Thus, since V (T) ⊇ L and |L| = �, there are at most r vertices belonging to KF in T , i.e.
|V (T) ∩ KF | ≤ r = k. Then, F ′ = {F j | v F j ∈ V (T) ∩ KF } is a subcollection of F such that |F ′| ≤ k. Finally, it follows from
the fact that W ⊆ V (T) that

⋃
F ′∈F ′ F ′ = U . Therefore, I is a Yes instance of Set cover. �

Based on the technique called bounded search tree, Dourado et al. [2] provided an O
(
(2�−1)�+r�n

)
-time algorithm for

S-TCP. As an immediate result, they proved that if, besides � and r, the maximum degree � of G is also considered as
a parameter, then S-TCP is in FPT. We now present an alternative, but substantially simpler, proof for the tractability of
S-TCP parameterized by �, r and �, which consists in a kernelization algorithm for the problem derived from the following
reduction rules.

Reduction rule 1. For any two terminals w1, w2 ∈ W , if the distance between them in G − (W \ {w1, w2}) is greater than
� + r + 1, then conclude that G does not admit a strict connection for W with at most � linkers and at most r routers.

Reduction rule 2. Let v ∈ V \ W and w ∈ W . If the distance between v and w in G − (W \ {w}) is greater than � + r + 1,
then remove v from G .

Lemma 3. Reduction rules 1 and 2 are safe.

Proof. Suppose that there exist w1, w2 ∈ W such that the distance between w1 and w2 in G − (W \ {w1, w2}) is greater
than � + r + 1. Thus, every strict connection tree of G for W ⊇ {w1, w2} has more than � linkers or more than r routers.
Therefore, we are dealing with a No instance of the problem in this case, and so Reduction rule 1 is indeed safe. Now,
suppose that there exists a non-terminal vertex v ∈ V \ W such that, for some terminal w ∈ W , the distance between v and
w in G − (W \ {w}) is greater than � + r + 1. Note that, v does not belong to any strict connection tree T of G for W ⊃ {w},
otherwise T would have more than � linkers or more than r routers. Thus, G admits a strict connection tree for W with at
most � linkers and at most r routers if and only if G − v admits a strict connection tree for W with at most � linkers and
at most r routers. Therefore, we have that Reduction rule 2 is also safe. �
Theorem 5. S-TCP admits a kernel with O

(
�2(�+r+1)

)
vertices.

Proof. Based on Reduction rule 1, suppose that, for every pair of terminal vertices w1, w2 ∈ W , the distance between them
in G − (W \ {w1, w2}) is at most � + r + 1. Moreover, while it is possible, apply Reduction rule 2 successively. Let G ′ denote
the resulting graph. Note that, the distance between any non-terminal vertex v ∈ V (G ′) \ W and any terminal vertex w ∈ W
in G ′ − (W \ {w}) is at most � + r + 1. Moreover, the distance between any two non-terminal vertices u, v ∈ V \ W in G ′
is at most 2(� + r + 1). Thus, the diameter of G ′ is at most 2(� + r + 1) and, therefore, the number of vertices in G ′ is
O

(
�2(�+r+1)

)
. �

130

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 33

Fig. 8. Complete strict binary tree T j and paths P (vi
j , x), where x ∈ NG ′

i
(w j), for i ∈ {1,2, . . . , t} and j ∈ {1,2, . . . ,k}.

At this point, a natural question that arises is whether there exists a polynomial kernel for S-TCP parameterized by �,
r and �. However, we show that this does not seem to be the case, the existence of such a kernel is unlikely. By using a
framework developed by Bodlaender et al. [31,32], called cross-decomposition, we prove that S-TCP parameterized by �, r and
� does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

By Proposition 2, if a graph G with maximum degree � admits a strict connection tree T for a terminal set W with at
most r routers, then

⌈ |W |−2
�−2

⌉
≤ r, which implies |W | ≤ r(� − 2) + 2. Thus, if r and � are parameters, then, without loss of

generality, |W | can be considered as a parameter as well.

Theorem 6. S-TCP parameterized by �, r, � and |W | does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof. We prove this theorem by showing that S-TCP cross-composes into S-TCP parameterized by �, r, � and |W |. We
first need to present a polynomial equivalence relation. Thus, let R be the equivalence relation defined as follows: all
bitstrings which do not encode a valid instance of S-TCP belong to a same equivalence class; and two well-formed instances
(G1, W1, �1, r1) and (G2, W2, �2, r2) of S-TCP belong to a same equivalence class if and only if |V (G1)| = |V (G2)|, �(G1) =
�(G2), |W1| = |W2|, �1 = �2 and r1 = r2. One may verify that any set of well-formed instances of S-TCP on at most n
vertices each can be partitioned into O

(
n5

)
equivalence classes. Therefore, R is a polynomial equivalence relation.

Let I ′1, I ′2, . . . , I ′t be t ≥ 1 input instances which are equivalent under R. If such instances are not well-formed, then we
output a single trivial No instance of S-TCP parameterized by �, r, � and |W |. Thus, assume that all of the input instances
I ′1, I ′2, . . . , I ′t are well-formed and encode structures (G ′

1, W ′
1, �

′
1, r

′
1), (G ′

2, W
′
2, �

′
2, r

′
2), . . ., (G ′

t , W ′
t , �′

t, r′
t), respectively. For

simplicity, we also assume without loss of generality that, for every i ∈ {1, 2, . . . , t}, �′
i = �′ ≤ |V (G ′

i)|, r′
i = r′ ≤ |V (G ′

i)|,
�(G ′

i) = γ ≥ 3 and W ′
i is an independent set of G ′

i such that W ′
i = {w1, w2, . . . , wk}, where k ≥ 3. Then, we compose

I ′1, I ′2, . . . , I ′t into a single instance I = (G, W , �, r) of S-TCP parameterized by �, r, � and |W |, as follows:

• we add the vertices w1, w2, . . . , wk to G;
• for each j ∈ {1, 2, . . . , k}, we create the vertices v j, v1

j , v
2
j , . . . , v

t
j and a complete strict binary tree T j , rooted at v j ,

whose leaves are the vertices v1
j , v

2
j , . . . , v

t
j ; moreover, we add the edge w j v j to G;

• for each i ∈ {1, 2, . . . , t}, we add all the vertices and all the edges of the graph G ′
i − W ′

i to G;
• for each i ∈ {1, 2, . . . , t}, for each j ∈ {1, 2, . . . , k} and for each vertex x ∈ NG ′

i
(w j), we add the edge vi

j x to G and
subdivide this edge into α new vertices, where α = �′ + k

⌈
log2 t

⌉ + 1; in other words, for each vertex x ∈ NG ′
i
(w j), we

create the vertices x∗
1, x

∗
2, . . . , x

∗
α and the path P (vi

j, x) = 〈vi
j, x

∗
1, x

∗
2, . . . , x

∗
α, x〉 (see Fig. 8);

• finally, we define W = {w1, w2, . . . , wk}, � = (k + 1)α − 1 and r = r′ .

Fig. 9 illustrates the overall structure of G and W .
One may easily verify that I can be constructed in time polynomial in

∑t
i=1|I ′i |, and that �(G) ≤ γ + 1, |W | = k,

� = O
(
k�′ + k2 log2 t

)
and r = r′ .

We now proof that there exists i ∈ {1, 2, . . . , t} such that I ′i is a Yes instance of S-TCP if and only if I is a Yes instance of
S-TCP parameterized by �, r, � and |W |.

First, suppose that, for some i ∈ {1, 2, . . . , t}, I ′i is a Yes instance of S-TCP, and let T ′ be a strict connection tree of G ′
i for

W ′
i such that |L(T ′)| ≤ �′ and |R(T ′)| ≤ r′ . Then, consider the subgraph T of G defined as follows:

V (T) = V (T ′) ∪ ⋃
w j∈W

V (P (w j, vi
j)) ∪ ⋃

x∈NT ′ (w j)

w j∈W

V (P (vi
j, x)) and

E(T) = (
E(T ′) \ {w jx | w j ∈ W }) ∪ ⋃

w j∈W
E(P (w j, vi

j)) ∪ ⋃
x∈NT ′ (w j)

w j∈W

E(P (vi
j, x)),

131

34 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 9. Graph G and terminal set W . For simplicity, the vertices x∗
1, x∗

2, . . . , x∗
α corresponding to the subdivision of the edges vi

j x are omitted, where
x ∈ NG ′

i
(w j).

where P (w j, vi
j) denotes the only path in T j between the vertices w j and vi

j . It is easy to see that T is a strict
connection tree of G for W such that |L(T)| ≤ |L(T ′)| + k�log2 t� + kα ≤ (k + 1)α − 1 = � and |R(T)| ≤ r′ = r, since
L(T) = L(T ′) ∪ ⋃

x∈NT ′ (w j)

w j∈W

(
V (P (vi

j, x)) \ {x}
)

∪ ⋃
w j∈W

(
V (P (w j, vi

j)) \ {w j}
)

and R(T) = R(T ′). Therefore, I is a Yes in-

stance of S-TCP.
Conversely, suppose that I is a Yes instance of S-TCP, and let T be a strict connection tree of G for W such that

|L(T)| ≤ � and |R(T)| ≤ r. Note that, for each w j ∈ W , all paths in G between w j and any other terminal must contain
a path P (vi

j, x) as a subpath, for some x ∈ NG ′
i
(w j) and some i ∈ {1, 2, . . . , t}; so, since W ⊆ V (T), for each w j ∈ W , T

contains a path P (vi
j, x). Thus, |L(T)| ≥ kα. Consequently, for every j ∈ {1, 2, . . . , k}, the intersection between T and the

complete binary tree T j can only contain the path P (w j, vi
j) of T j whose endpoints are w j and vi

j , otherwise: T would
have a leaf which is not a terminal; or, besides P (vi

j, x), T would have a further path P (vι
j, y), for some y ∈ NG ′

ι
(w j) and

some ι ∈ {1, 2, . . . , t} with ι �= i, which would imply |L(T)| ≥ (k + 1)α > �. By similar reasons, we have that the degree
of vi

j in T must be equal to 2. Hence, for every j ∈ {1, 2, . . . , k}, the subgraph of T j in T — i.e. the path P (w j, vi
j) —

can be viewed as a leaf of T (in the sense that its only purpose in T is connecting the terminal w j , as a leaf of T).
Consequently, there exists precisely one index i ∈ {1, 2, . . . , t} such that V (T) ∩ V (G ′

i − W ′
i) �= ∅, otherwise T would be

disconnected. Therefore, I ′i is a Yes instance of S-TCP. Indeed, the graph T ′ , where V (T ′) = (
V (T) ∩ V (G ′

i − W ′
i)

) ∪ W ′
i and

E(T ′) = (
E(T) ∩ E(G ′

i − W ′
i)

) ∪ {w j x | vi
j x ∈ E(T)}, is a strict connection tree for W ′

i such that |L(T ′)| ≤ �′ and |R(T ′)| ≤ r′ ,
since L(T ′) = L(T) ∩ V (G ′

i − W ′
i) and R(T ′) = R(T). �

4. The split graph case

A split graph is a graph whose vertex set can be partitioned into a clique and an independent set.
S-TCP on split graphs may have interesting applications in IoT (Internet of Things), where devices with high communicat-

ing/processing power (such as wireless routers) are modeled as a cluster, while devices with low communicating/processing
power (such as wireless printers) are modeled as an independent set, being able to send (receive, resp.) messages just
to (from, resp.) devices of the cluster. Thus, motivated by applications in IoT and by the fact that it is well-known that
Steiner tree is NP-complete on split graphs [6], we analyze in this section the complexity of S-TCP restricted to split
graphs.

More specifically, we prove that S-TCP restricted to split graphs can be solved in time nO(r) , implying thereby that S-TCP
on split graphs is polynomial-time solvable when r is bounded by a constant. On the other hand, we extend Theorem 4
by showing that S-TCP parameterized by r remains W[2]-hard even if it is restricted to split graphs and � is bounded by a
constant; furthermore, we show that, for any computable function g , there is no g(r) · no(r)-time algorithm for the problem,
unless ETH fails.

Given an instance I = (G, W , �, r) of S-TCP, where G = (V , E) is a split graph. We assume throughout this section that
V = K ∪ S , where K is a maximal clique and S is a maximal independent set of G . We also assume that r ≥ 1 and |W | ≥ 3.

Fact 1. If K ⊆ W , then G does not admit a strict connection tree for W .

Fact 2. If K \ W �= ∅ and W ∩ S = ∅ (i.e. W ⊂ K), then G admits a strict connection tree T for W such that |L(T)| = 0 and
|R(T)| = 1.

132

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 35

Lemma 4. Suppose that K \ W �= ∅ and W ∩ S �= ∅. If G admits a strict connection tree T ′ for W , then there exists a strict connection
tree T of G for W such that |L(T)| ≤ |L(T ′)|, |R(T)| ≤ |R(T ′)|, and R(T) ⊆ K .

Proof. Since S is an independent set of G , NT ′ (S) ⊆ K . Moreover, it follows from the assumptions W ∩ S �= ∅ and |W | ≥ 3
that

(
V (T ′) \ W

) ∩ K �= ∅. Thus, let v be an arbitrary vertex in
(
V (T ′) \ W

) ∩ K . Since K is a clique of G , we have that
v ∈ NG(v ′) for all v ′ ∈ NT ′ (S) \ {v}. Then, consider the graph T defined as follows: V (T) = V (T ′) \ (

R(T ′) ∩ S
)

and E(T) =(
E(T ′) \ {ρv ′ | v ′ ∈ NT ′ (ρ), ρ ∈ R(T ′) ∩ S}) ∪ {v v ′ | v ′ ∈ NT ′ (R(T ′) ∩ S)}. One may easily verify that T is a strict connection

tree of G for W such that |L(T)| ≤ |L(T ′)|, |R(T)| ≤ |R(T ′)|, and R(T) ⊆ K . �
Lemma 5. Let T ′ be a strict connection tree of G for W such that R(T ′) ⊆ K . There exists a strict connection tree T of G for W , with
|L(T)| ≤ |L(T ′)| and R(T) ⊆ R(T ′), which holds the following properties:

(i) L(T) ⊆ K ;
(ii) each vertex in L(T) is adjacent to exactly one vertex in R(T) and exactly one vertex w ∈ W , where w ∈ S and w /∈ NG(R(T));

(iii) T [R(T)] is a path.

Proof. (i). Note that, for every vertex u ∈ L(T ′) ∩ S , if xu and yu are the two distinct neighbors of u in T ′ , then xu, yu ∈ K .
Thus, the graph obtained from T ′ by removing all the vertices in L(T ′) ∩ S and adding all the edges in {xu yu | xu, yu ∈
NT ′ (u), u ∈ L(T ′) ∩ S} is a strict connection tree of G for W with linker set L(T ′) \ S ⊆ K and router set R(T ′). Thus, for
simplicity, we assume hereinafter that L(T ′) ⊆ K .

(ii). Since |W | ≥ 3, for every vertex u ∈ L(T ′), if xu and yu are the two distinct neighbors of u in T ′ , then xu /∈ W or
yu /∈ W , otherwise T ′ would not be a strict connection tree for W . If xu, yu /∈ W , then xu, yu ∈ K . Hence, we can remove u
from T ′ and add the edge xu yu . Thus, suppose that xu ∈ W and yu /∈ W . If yu ∈ L(T ′), then yu has exactly one neighbor in
T ′ in addition to u. Let z be this second neighbor of yu in T ′ . Since |W | ≥ 3 and we are supposing that xu ∈ W , we have
z /∈ W , which implies z ∈ K . As a result, the graph obtained from T ′ by removing yu and adding the edge uz is a strict
connection tree of G for W with linker set L(T ′) \ {yu} and router set R(T ′). Suppose now that yu ∈ R(T ′) but there exists
a vertex ρ ∈ R(T ′), possibly ρ = yu , such that ρxu ∈ E(G). Consequently, the graph H obtained from T ′ by removing u and
adding the edge ρxu is a strict connection tree of G for W such that L(H) = L(T ′) \ {u} and R(H) = R(T ′) if dT ′ (yu) > 3
or ρ = yu , and L(H) = (

L(T ′) \ {u}) ∪ {yu} and R(H) = R(T ′) \ {yu} otherwise. Therefore, one may verify that, by applying
successively the steps described above, it is always possible to obtain a strict connection tree of G for W which holds
property (ii).

(iii). If |R(T ′)| ≤ 1, then trivially T ′ holds property (iii). Thus, assume that |R(T ′)| ≥ 2. Additionally, assume that T ′
holds property (ii). Consequently, H R = T [R(T ′)] is a tree. Note that, H R contains at least two leaves. Let R∗ be the set
defined in the following way: ρ∗ ∈ R∗ if and only if ρ∗ ∈ R(T ′) and there is at least one terminal vertex w ∈ W such that
distT ′ (w, ρ∗) = distT ′ (w, R(T ′)), i.e. the path between w and ρ∗ in T ′ does not contain any other router. Note that, every
leaf of H R necessarily belongs to R∗; more specifically, for every leaf ρ∗ of H R , there exists at least two distinct terminal
vertices w1

ρ∗ , w2
ρ∗ ∈ W such that distT ′ (wi

ρ∗ , ρ∗) = distT ′ (wi
ρ∗ , R(T ′)) for i ∈ {1, 2}, otherwise the degree of ρ∗ in T ′ would

be less than 3. Let 〈ρ1, . . . , ρk〉 be an arbitrary ordering of the vertices in R∗ such that ρ1 and ρk are leaves of H R , where
k = |R∗|. Then, consider the graph T defined as follows: V (T) = V (T ′) \ (

R(T ′) \ R∗) and E(T) = (
E(T ′) \ E(H R)

) ∪ {ρiρi+1 |
i ∈ {1, . . . , k − 1}}. One may verify that T is a strict connection tree of G for W such that L(T) = L(T ′), R(T) = R∗ ⊆ R(T ′),
and T [R(T)] is a path. �
Proposition 3. Suppose that K \ W �= ∅ and W ∩ S �= ∅. Given two non-negative integers � and r, with r ≥ 1, we can in time nO(r)

obtain a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r, or conclude that such a tree does not exist.

Proof. Since S-TCP can be solved in polynomial-time when r ≤ 1 [29], for simplicity, we assume that G does not admit
a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ 1. Based on Lemmas 4 and 5, our strategy consists in
enumerating all possible subsets R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and all possible unordered pairs {ρ1, ρk} ⊆ R of distinct
vertices in order to try to obtain a strict connection T of G for W such that |L(T)| ≤ �, R(T) = R and T [R(T)] is a path
with endpoints ρ1 and ρk . Hence, let R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and ρ1 and ρk be two distinct vertices belonging
to R .

Let W R = W ∩ NG(R) and W R = W \ W R . Note that, if |W R | > �, then G does not admit a strict connection tree for
W such that |L(T)| ≤ � and R(T) = R . Thus, assume |W R | ≤ �. Let H1 be the bipartite graph defined as follows: V (H1) =
X1 ∪ Y1 and E(H1) = {xy ∈ E(G) | x ∈ X1, y ∈ Y1}, where X1 = W R and Y1 = (V (G) \ (R ∪ W)) ∩ NG(X1).

Claim 1. If X1 �= ∅ and G admits a strict connection tree T for W such that |L(T)| ≤ � and R(T) = R, then there exists a matching
M1 in H1 that saturates all vertices belonging to X1.

133

36 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fig. 10. Strict connection tree of G for W obtained from a matching M2 in H2 that saturates all vertices belonging to X2.

Proof of claim. Assume that T holds properties (i)–(iii) described in Lemma 5. Thus, each linker u ∈ L(T) is adjacent to
exactly one vertex in R(T) and exactly one vertex w ∈ W such that w /∈ NG(R(T)). As a consequence, the set of terminal
vertices which are adjacent to a linker of T coincides with X1. In addition to that, note that, since |W | ≥ 3, each vertex
belonging to L(T) is adjacent in T to at most one vertex belonging to X1. Therefore, the set M1 = {uw ∈ E(T) | u ∈ L(T), w ∈
W } is a matching in H1 that saturates all vertices belonging to X1. �

Based on Claim 1, we assume that X1 = ∅, or that there exists a matching M1 in H1 that saturates all vertices belonging
to X1. From such a matching M1 (if any), we let L = ∅ if X1 = ∅, and L = {u ∈ Y1 | uw ∈ M1, w ∈ X1} otherwise; and we
let H2 be the bipartite graph such that V (H2) = X2 ∪ Y2 and

E(H2) = {xy ∈ E(G) | x ∈ R \ {ρ1,ρk}, y ∈ Y2}
∪ {ρ j

i y | ρi y ∈ E(G), y ∈ Y2, i ∈ {1,k}, j ∈ {1,2}},

where X2 = (R \ {ρ1, ρk}) ∪ {ρ1
1 , ρ2

1 , ρ1
k , ρ2

k }, Y2 = W R ∪ L and ρ1
1 , ρ2

1 , ρ1
k , ρ2

k are new auxiliary vertices, not belonging to G .

Claim 2. G admits a strict connection tree T for W such that |L(T)| ≤ �, R(T) = R and T [R(T)] is path with endpoints ρ1 and ρk if
and only if there exists a matching M2 in H2 that saturates all vertices belonging to X2.

Proof of claim. First, suppose that such a tree T exists. Additionally, assume that T holds properties (i)–(iii) described in
Lemma 5. As a result, we have |L| = |X1| = |L(T)|. Let φ : L(T) → L be an arbitrary bijection. Since all routers of T have
degree at least 3, each endpoint of the path T [R(T)] — i.e. the vertices ρ1 and ρk — must be adjacent to at least two distinct
vertices in W R ∪ L(T); thus, for i ∈ {1, k}, let v1

i , v
2
i ∈ W R ∪ L(T) be two arbitrary distinct neighbors of ρi in T . Furthermore,

we have that each internal vertex of T [R(T)] must be adjacent to at least one vertex in W R ∪L(T); thus, for i ∈ {2, . . . , k −1},
let vi ∈ W R ∪ L(T) be an arbitrary neighbor of ρi in T . Let Y M2 = {v j

i | i ∈ {1, k}, j ∈ {1, 2}} ∪ {vi | i ∈ {2, . . . , k − 1}}. We
remark that Y M2 \ W R ⊆ L(T). Therefore, one may verify that

M2 = {ρ j
i v j

i | ρi v j
i ∈ E(T), v j

i ∈ Y M2 ∩ W R , i ∈ {1,k}, j ∈ {1,2}}
∪ {ρi vi ∈ E(T) | vi ∈ Y M2 ∩ W R , i ∈ {2, . . . ,k − 1}}
∪ {ρ j

i φ(v j
i) | ρi v j

i ∈ E(T), v j
i ∈ Y M2 \ W R , i ∈ {1,k}, j ∈ {1,2}}

∪ {ρiφ(vi) | ρi vi ∈ E(T), vi ∈ Y M2 \ W R , i ∈ {2, . . . ,k − 1}}
is a matching in H2 that saturates all vertices belonging to X2.

Conversely, suppose that there exists a matching M2 in H2 that saturates all vertices belonging to X2. Let W ′
R and L′

be the subsets of W R and L, respectively, composed by the vertices which are not saturated by M2. Also, let ϕ : W ′
R → R

be a mapping such that, for each w ∈ W ′
R , if ϕ(w) = ρ , then w ∈ NG(ρ). Consider the graph T defined as follows: V (T) =

W ∪ L ∪ R and

E(T) = M1 ∪ (M2 \ {ρ j
i vi | vi ∈ Y2, i ∈ {1,k}, j ∈ {1,2}})

∪ {ρi vi | ρ j
i vi ∈ M2, vi ∈ Y2, i ∈ {1,k}, j ∈ {1,2}}

∪ {ρ1 v | v ∈ L′} ∪ {ϕ(w)w | w ∈ W ′
R} ∪ {ρiρi+1 | i ∈ {1, . . . ,k − 1}}.

Fig. 10 illustrates the graph T . One may verify that T is a strict connection tree of G for W such that L(T) = L, R(T) = R
and T [R(T)] is a path with endpoints ρ1 and ρk . �

134

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 37

To conclude the proof of this proposition, we remark that, based on Lemmas 4 and 5, there exists a strict connection tree
of G for W with at most � linkers and at most r routers if and only if, for some set R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and
some unordered pair {ρ1, ρk} ⊆ R of distinct vertices, there exists a strict connection tree T of G for W such that |L(T)| ≤ �,
R(T) = R and T [R(T)] is a path with endpoints ρ1 and ρk .

Furthermore, based on the previous claims, we have that, for a given set R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and a given
unordered pair {ρ1, ρk} ⊆ R of distinct vertices, we can obtain a strict connection tree T of G for W such that |L(T)| ≤ �,
R(T) = R and T [R(T)] is a path with endpoints ρ1 and ρk , or conclude that such a tree T does not exist, in time polynomial
in n. Therefore, since all unordered pair {ρ1, ρk} ⊆ R of distinct vertices can be enumerated in time O

(
n2

)
and all subsets

R ⊆ K \ W , with 2 ≤ |R| ≤ r, can be enumerated in time nO(r) , the total running time of the algorithm is nO(r) . �
Theorem 7. S-TCP restricted to split graphs can be solved in time nO(r) but, assuming FPT �= W[2], cannot be solved in time g(r) · nh(�)

and, assuming ETH, cannot be solved in time g(r) · no(r) , for any computable functions g and h.

Proof. It follows immediately from Facts 1 and 2 and Proposition 3 that S-TCP restricted to split graphs can be solved in
time nO(r) .

On the other hand, to see that S-TCP restricted to split graphs does not admit a g(r) · nh(�)-time algorithm, unless
FPT = W[2], note that the proof of Theorem 4 can be easily adapted so that the constructed graph G becomes a split graph.
Indeed, it is enough to add to G the edge uiu j for each i, j ∈ {1, . . . , �} with i �= j. In this case, {K = L ∪ KF , S = W } is a
partition of the vertex set V of G into a clique and an independent set, respectively. Therefore, S-TCP remains W[2]-hard
even if it is restricted to split graphs and � is bounded by a constant.

Finally, to show that S-TCP restricted to split graphs does not admit a g(r) ·no(r)-time algorithm, unless ETH fails, consider
the following claim.

Claim 3. Assuming ETH, Set cover cannot be solved in time g(k) · no(k) , for any computable function g.

Proof of claim. We present a polynomial-time reduction from Dominating set, another classical W[2]-complete problem,
which under ETH was proved not to admit a g(k) · no(k)-time algorithm, for any computable function g , where k is the
parameter of the problem cf. [14]. Let I = (G ′, k′) be an instance of Dominating set. We construct an instance f (I) =
(U , F , k) of Set cover, as follows: U = V (G ′), F = {NG ′ [u′] | u′ ∈ V (G ′)} and k = k′ .

It is easy to see that, if a set S ′ ⊆ V (G ′) is a dominating set of G ′ , then F ′ = {NG ′ [u′] | u′ ∈ V ′} ⊆ F is a vertex cover of
G such that |F ′| = |S ′|.

Conversely, if F ′ ⊆ F is a vertex cover of G , then S ′ = {u′ | NG ′ [u′] ∈ F ′} ⊆ V (G ′) is a dominating set of G ′ such that
|S ′| = |F ′|.

Thus, I is a Yes instance of Dominating set if and only if f (I) is a Yes instance of Set cover. Consequently, the existence
of a g(k) · |V (G)|o(k)-time algorithm for Set cover implies the existence of a g(k′) · |V (G ′)|o

(
k′)

-time algorithm for Dominating
set. �

Therefore, we obtain from the proof of Theorem 4 that the existence of such an algorithm for S-TCP implies the failure
of ETH. �
5. The cograph case

A cograph is a graph that does not contain any induced path of length 3. Alternatively, cographs can be characterized by
the following recursive definition given by Corneil et al. [33]: G is a cograph if and only if G = K1 or there exist two other
cographs G1 and G2 such that either G = G1 ∪ G2 or G = G1 ∧ G2, where K1 denotes the trivial graph with a single vertex,
and G1 ∪ G2 and G1 ∧ G2 respectively denote the disjoint union and the join of G1 and G2, i.e. V (G1 ∪ G2) = V (G1 ∧ G2) =
V (G1) ∪ V (G2), E(G1 ∪ G2) = E(G1) ∪ E(G2) and E(G1 ∧ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.

In complex networks, cograph communities are defined as the connected components of a network such that the underly-
ing graph is a cograph. According to [34], as a whole community, cograph communities reveal more intensive social roles or
biological functions than those obtained by general communities. Thus, motivated by the relevance of cographs in complex
networks, we analyze in this section the complexity of S-TCP restricted to cographs.

More specifically, we prove that S-TCP on cographs is polynomial-time solvable. Although this can be an expected re-
sult (for instance, it is known that Steiner tree on cographs is polynomial-time solvable [9]), since cographs have strong
structural properties that are useful for the development of polynomial-time algorithms, our proof is not trivial whatsoever,
consisting in providing a sophisticated dynamic programming algorithm for the problem.

Since S-TCP can be easily solved in linear-time when r < 1 or |W | < 3, we assume that r ≥ 1 and |W | ≥ 3. Next, we
analyze all the other possible cases, and then we finally summarize in Theorem 8 the recurrence relation of our algorithm.

135

38 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Fact 3. Let G = (V , E) be a cograph such that G = G1 ∪ G2. Then, G admits a strict connection tree for W with at most
� ≥ 0 linkers and at most r ≥ 1 routers if and only if V (G j) ∩ W = ∅ and Gi admits a strict connection tree for W with at
most � linkers and at most r routers, where V (Gi) ∩ W �= ∅, i, j ∈ {1, 2} and i + j = 3.

Fact 4. Let G = (V , E) be a cograph such that G = G1 ∧ G2, V (G1) ⊆ W and |V (G2) ∩ W | ≤ 1. Then, there exists a strict
connection tree of G for W if and only if W = V (G1), or V (G2) ∩ W = {w} and NG2 (w) �= ∅. In particular, if such a tree
exists, then G admits a strict connection tree T for W such that |L(T)| = 0 and |R(T)| = 1.

Lemma 6. Let G = (V , E) be a cograph such that G = G1 ∧ G2 , V (G1) ⊂ W and |V (G2) ∩ W | = 2. Let w ′
1 and w ′

2 be the two vertices
belonging to V (G2) ∩ W . Then, G admits a strict connection tree for W with at most � ≥ 0 linkers and at most r ≥ 1 routers if and
only if the distance in G ′

2 = G2 − w ′
1 w ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1, where n1 = |V (G1)|.

Proof. First, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r. Let P be the
path in T between w ′

1 and w ′
2. Observe that, the length of P is at most |L(T)| + |R(T)| + 1, otherwise T would have

more than |L(T)| linkers or more than |R(T)| routers. Since by hypothesis V (G1) ⊂ W and |V (G2) ∩ W | = 2, we have that
n1 = |V (G1)| = |W | − 2. Furthermore, we know that |R(T)| ≤ |W | − 2 (see Proposition 2), which implies |R(T)| ≤ n1. Thus,
|R(T)| ≤ min{r, n1}, and so the length of P is at most |L(T)| + min{r, n1} + 1 ≤ � + min{r, n1} + 1. Finally, since V (G1) ⊂ W
and |W | ≥ 3, P is contained in G ′

2, otherwise T would have some terminal with degree greater than 1. Therefore, the
distance in G ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1.
Conversely, suppose that the distance in G ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1. Let P = 〈w ′
1, u

′
1, u

′
2, . . . ,

u′
z, w ′

2〉 be a shortest path in G ′
2 between w ′

1 and w ′
2, and let α = 〈w1, w2, . . . , wn1 〉 be an arbitrary ordering of the vertices

in V (G1). We define from P and α the subgraph T of G as follows: V (T) = V (P) ∪ V (G1) and E(T) = E(P) ∪ {u′
i wi | i ∈

{1, . . . , min{r, n1, z}}} ∪ {u′
1 wi | i ∈ {min{r, n1, z} + 1, . . . , n1}}. Observe that, T is a strict connection tree of G for W such

that L(T) = {u′
i | i ∈ {min{r, n1} + 1, . . . , z}} and R(T) = {u′

i | i ∈ {1, . . . , min{r, n1, z}}}. Since by hypothesis the length of P
is at most � + min{r, n1} + 1, z ≤ � + min{r, n1}, and consequently |L(T)| ≤ �. Finally, note that |R(T)| = min{r, n1, z} ≤ r.
Therefore, G admits a strict connection tree for W with at most � linkers and at most r routers. �
Lemma 7. Let G = (V , E) be a cograph such that G = G1 ∧ G2 , V (G1) ⊂ W and |V (G2) ∩ W | ≥ 3. Then, G admits a strict connection
tree for W with at most � ≥ 0 linkers and at most r ≥ 1 routers if and only if G2 admits a strict connection tree for V (G2) ∩ W with
at most � + λ linkers and at most r − λ routers, for some λ ∈ {0, 1, . . . , min{r − 1, n1}}, where n1 = |V (G1)|.

Proof. First, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r. Since |V (G2) ∩
W | ≥ 3 and all vertices in V (G1) are terminal, there exists at least one router ρ ∈ R(T) such that ρ ∈ V (G2).

Suppose that there is a vertex v ∈ V (G2) \ W with NT (v) ∩ V (G1) �= ∅, such that |NG2 (v) ∩ V (T)| < 2. Then, let H
be the graph obtained from T by removing the vertex v and by adding, for each w ∈ NT (v) ∩ V (G1), the edge ρw . We
remark that H possibly contains non-terminal vertices that became leaves. Then, let T H be the graph obtained from H by
successively removing such non-terminal vertices. One can easily verify that T H is a strict connection tree of G for W such
that L(T H) ⊆ L(T) and R(T H) ⊆ R(T). Thus, hereinafter, assume without loss of generality that |NG2 (v) ∩ V (T)| ≥ 2 for every
vertex v ∈ V (G2) \ W with NT (v) ∩ V (G1) �= ∅.

Let T ′ = T − V (G1). Since by hypothesis V (G1) ⊂ W , the vertices belonging to V (G1) are leaves of T . Thus, T ′ is a
connected graph. More specifically, it follows from the assumption described in the previous paragraph that T ′ is a strict
connection tree of G2 for V (G2) ∩ W . Let

R ′ = {v ∈ V (G2) \ W | NT (v) ∩ V (G1) �= ∅,dT ′(v) < 3}.

Note that, the vertices belonging to R ′ are routers of T and linkers of T ′ . Thus, |L(T ′)| = |L(T)| + |R ′| and |R(T ′)| = |R(T)| −
|R ′|. Moreover, since the vertices belonging to V (G1) are leaves of T and |W | ≥ 3, each vertex w ∈ V (G1) is adjacent in T
to exactly one vertex v ∈ V (G2) \ W . Consequently, |R ′| ≤ n1. On the other hand, since by hypothesis |V (G2) ∩ W | ≥ 3, T ′
has at least one router. Thus, |R ′| ≤ r − 1, which implies |R ′| ≤ min{r − 1, n1}. Therefore, we can define λ = |R ′|, and so we
have that G2 admits a strict connection tree for V (G2) ∩ W with at most � + λ linkers and at most r − λ routers.

For the converse, suppose now that G2 admits a strict connection tree T ′ for V (G2) ∩ W such that |L(T ′)| ≤ � + λ and
|R(T ′)| ≤ r − λ, for some λ ∈ {0, 1, . . . , min{r − 1, n1}}. Since |V (G2) ∩ W | ≥ 3, R(T ′) is non-empty. Then, let ρ ∈ R(T ′),
arbitrarily chosen. Let R ′ be a subset of L(T ′) such that |R ′| = z, where z = min{|L(T ′)|, λ}; and let 〈u′

1, u
′
2, . . . , u

′
z〉 be

an arbitrary ordering of the vertices belonging to R ′ . Also, let 〈w1, w2, . . . , wn1 〉 be an arbitrary ordering of the vertices
belonging to V (G1). Then, the graph T , defined as follows: V (T) = V (T ′) ∪ V (G1) and E(T) = E(T ′) ∪{u′

i wi | i ∈ {1, . . . , z}}∪
{ρwi | i ∈ {z+1, . . . , n1}}, is a strict connection tree for W such that L(T) = L(T ′) \{u′

i | i ∈ {1, . . . , z}} and R(T) = R(T ′) ∪{u′
i |

i ∈ {1, . . . , z}}. Therefore, G admits a strict connection tree T for W such that |L(T)| = |L(T ′)|− z = |L(T ′)|−min{|L(T ′)|, λ} ≤
� and |R(T)| = |R(T ′)| + z = |R(T ′)| + min{|L(T ′)|, λ} ≤ r. �

136

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 39

Proposition 4. Let G = (V , E) be a cograph such that G = G1 ∧G2 , V (G1) �⊂ W , V (G1) ∩ W �= ∅, V (G2) �⊂ W and V (G2) ∩ W �= ∅.
Given � ≥ 0 and r ≥ 1, we can in polynomial-time obtain a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r, or
conclude that such a tree does not exist.

Proof. First, consider r = 1. By a Turing reduction to the problem of finding vertex-disjoint paths with minimum total cost,
we can in polynomial-time obtain a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| = 1, or conclude
that such a tree does not exist [29].

Thus, hereinafter, assume that r ≥ 2 and that G does not admit a strict connection tree T for W such that |L(T)| ≤ � and
|R(T)| ≤ 1. Consequently, assume also that |W | ≥ 4. There are two cases to be analyzed.

Case 1: |V (G1) ∩ W | = 1.

In this case, we can additionally assume that � = 0 and NG1 (w) = ∅, where w is the only vertex in V (G1) ∩ W . Indeed,
suppose that � ≥ 1. Then, for v ∈ V (G1) \ W and v ′ ∈ V (G2) \ W , we have that the graph T , where V (T) = W ∪ {v, v ′} and
E(T) = {v v ′, v ′w} ∪ {v w ′ | w ′ ∈ V (G2) ∩ W }, is a strict connection tree of G for W such that L(T) = {v ′} and R(T) = {v}.
Now, suppose that NG1 (w) �= ∅, and let v ∈ NG1 (w). Note that, NG(v) ⊇ W . Consequently, G admits a strict connection tree
for W without linkers and with at most one router. For example, the graph T , where V (T) = W ∪ {v} and E(T) = {v w |
w ∈ W }, is a strict connection tree of G for W such that L(T) = ∅ and R(T) = {v}. Thus, we assume hereinafter that � = 0
and NG1 (w) = ∅.

If NG2 (w ′) \W �= ∅ for some terminal w ′ ∈ V (G2) ∩W , then G admits a strict connection tree T for W such that |L(T)| =
0 and |R(T)| = 2. Indeed, for v ′ ∈ NG2 (w ′) \ W and v ∈ V (G1) \ W , we have that the graph T , where V (T) = W ∪ {v, v ′}
and E(T) = {v v ′, v ′w, v ′w ′} ∪ {v w ′ | w ′ ∈ (V (G2) ∩ W) \ {w ′}}, is a strict connection tree for W such that L(T) = ∅ and
R(T) = {v, v ′}. Thus, assume that, for every vertex w ′ ∈ V (G2) ∩ W , NG2 (w ′) \ W = ∅.

Note that, if r = 2 or |V (G2) ∩ W | = 3, then G does not admit a strict connection tree for W without linkers and with at
most r routers. Suppose for purposes of contradiction that it is not true, and let T be such a tree. Since NG1 (w) = ∅, the only
neighbor of w in T is a non-terminal vertex v ′ ∈ V (G2) \ W . However, if r = 2, then |R(T)| = 2; and if |V (G2) ∩ W | = 3,
then |R(T)| ≤ |W | − 2 = 2 (see Proposition 2). Consequently, T has at most two non-terminal vertices, being v ′ one of
those vertices. Thus, v ′ is adjacent to at most one non-terminal vertex in T , and so its degree in T is at most 2, since
NG2 (v ′) ∩ W = ∅. Therefore, G does not admit a strict connection tree for W without linkers and with at most r routers.
Similarly, it is easy to see that G does not admit such a tree if |V (G1) \ W | = 1. Hence, assume that r ≥ 3, |V (G2) ∩ W | ≥ 4
and |V (G1) \ W | ≥ 2.

Let v1, v2 ∈ V (G1) \ W and v ′ ∈ V (G2) \ W . Also, let 〈w ′
1, w

′
2, . . . , w

′
n2

〉 be an arbitrary ordering of the vertices
belonging to V (G2) ∩ W , where n2 = |V (G2) ∩ W |. Then, the graph T , where V (T) = W ∪ {v1, v2, v ′} and E(T) =
{v1 v ′, v2 v ′, v1 w ′

1, v2 w ′
2, v

′w ′} ∪ {v2 w ′
i | i ∈ {3, . . . , n2}}, is a strict connection tree for W such that L(T) = ∅ and R(T) =

{v1, v2, v ′}. Therefore, G admits a strict connection tree T for W such that |L(T)| = 0 = � and |R(T)| = 3 ≤ r.

Case 2: |V (G1) ∩ W | ≥ 2 and |V (G2) ∩ W | ≥ 2.

Let v ∈ V (G1) \ W and v ′ ∈ V (G2) \ W . Then, the graph T , where V (T) = W ∪ {v, v ′} and E(T) = {v v ′} ∪ {v w ′ | w ′ ∈
V (G2) ∩ W } ∪ {v ′w | w ∈ V (G1) ∩ W }, is a strict connection tree for W such that L(T) = ∅ and R(T) = {v, v ′}. Therefore, in
this case, G always admits a strict connection tree T for W such that |L(T)| = 0 and |R(T)| = 2.

To conclude the proof of this proposition, note that all operations described above can be computed in time polynomial
in n. �

An important property of cographs is that every cograph G can be uniquely represented by a rooted tree TG , called
cotree, such that (1) the leaves of TG correspond to the vertices of G; and, (2) each internal node u of TG corresponds
to either the disjoint union or the join of the cographs induced by the leaves of the subtrees of T G rooted at each child
of u [33]. Throughout this section, we assume without loss of generality that a cotree is a binary tree. Thus, the cotree TG

of a cograph G can be viewed as the tree corresponding to the unique decomposition of G as the trivial graph K1, or either
the join or the union of two other cographs. Another important property is the fact that the recognition of a given graph G
as a cograph, as well as obtaining its respective cotree (if any), can be performed in time linear in n and m [35].

Theorem 8. S-TCP is polynomial-time solvable if it is restricted to cographs.

Proof. Let I = (G, W , �, r) be an instance of S-TCP, where G = (V , E) is a cograph, and let TG be the cotree of G . We define
a dynamic programming table M such that: for each node u′ of TG and for each pair of non-negative integers �′ and r′ , with
�′ + r′ < |V (Gu′) \ W |, there is an entry M[Gu′ , �′, r′] which is set true if and only if V (Gu′) ∩ W �= ∅ and Gu′ admits a strict
connection tree for V (Gu′) ∩ W with at most �′ linkers and at most r′ routes, where Gu′ denotes the cograph associated
with the subtree of TG rooted at u′ .

137

40 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41

Facts 3 and 4, Lemmas 6 and 7 and Proposition 4 are used to fill M and, thus, decide whether G admits a strict
connection tree for W with at most � linkers and at most r routers. More specifically, M[G, �, r] is defined on the basis of
the following rules:

M[G, �, r] :=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

case 1. |V ∩ W | ≤ 2 or r = 0 :
true if |V ∩ W | = 1,

true if V ∩ W = {w1, w2} and distG(w1, w2) ≤ � + 1,

false otherwise;⎡
⎢⎣

case 2. G = G1 ∪ G2 :
M[G1, �, r] if V (G2) ∩ W = ∅,

false otherwise;[
case 3. G = G1 ∧ G2 and V (G1) = W :
true;⎡

⎢⎣
case 4. G = G1 ∧ G2, V (G1) ⊂ W and V (G2) ∩ W = {w} :
true if NG2(w) �= ∅,

false otherwise;
⎡
⎢⎢⎢⎣

case 5. G = G1 ∧ G2, V (G1) ⊂ W and V (G2) ∩ W = {w ′
1, w ′

2} :
true if distG ′

2
(w ′

1, w ′
2) < � + min{r,n1} + 1,

false otherwise,

where G ′
2 = G2 − w ′

1 w ′
2 and n1 = |V (G1)|;⎡

⎢⎢⎢⎢⎣
case 6. G = G1 ∧ G2, V (G1) ⊂ W and |V (G2) ∩ W | ≥ 3 :

min{r−1,n1}∨
λ=0

M[G2, � + λ, r − λ],

where n1 = |V (G1)|;⎡
⎢⎣

case 7. G = G1 ∧ G2, V (Gi) �⊂ W , V (Gi) ∩ W �= ∅,∀i ∈ {1,2} :
Alg(G, W , �, r),

where Alg denotes the algorithm described in Proposition 4.

Note that, the size of M is O
(
n3

)
. Furthermore, one may verify that each entry of M can be computed in time poly-

nomial in n, in a bottom-up manner according to the post-order traversal of TG . Regarding the correctness of the dynamic
programming algorithm, case 1 can be easily verified cf. [29]; case 2 derives from Fact 3; case 3 and 4 derive from Fact 4;
case 5 derives from Lemma 6; case 6 derives from Lemma 7; and case 7 clearly derives from Proposition 4. �
6. Conclusions and open problems

We have presented several complexity results for S-TCP (see Table 1). Nonetheless, the complexity of the problem remains
unknown on some particular cases. Thus, to conclude this work, three open questions are highlighted.

(i) Is S-TCP parameterized by r in XP?
(ii) Is S-TCP parameterized by � in FPT when � = 3?

(iii) Is S-TCP parameterized by |W | in FPT? And if r and � are parameters?

Although Steiner tree parameterized by |W | is in FPT [10], it is not clear that S-TCP parameterized by |W |, or even
parameterized by r and �, is also in FPT.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

138

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 41

References

[1] M.C. Dourado, R.A. Oliveira, F. Protti, U.S. Souza, Design of connection networks with bounded number of non-terminal vertices, in: Proceedings of V
Latin-American Workshop on Cliques in Graphs, in: Matemática Contemporânea, vol. 42, SBM, Buenos Aires, 2014, pp. 39–47.

[2] M.C. Dourado, R.A. Oliveira, F. Protti, U.S. Souza, Conexão de terminais com número restrito de roteadores e elos, in: Proccedings of XLVI Simpósio
Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

[3] G. Lin, G. Xue, On the terminal Steiner tree problem, Inf. Process. Lett. 84 (2) (2002) 103–107.
[4] R.M. Karp, Reducibility Among Combinatorial Problems, Springer US, Boston, MA, 1972, pp. 85–103.
[5] M.R. Garey, D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32 (4) (1977) 826–834.
[6] K. White, M. Farber, W. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1) (1985) 109–124.
[7] H. Müller, A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theor. Comput. Sci. 53 (2–3) (1987)

257–265.
[8] A. D’Atri, M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (3) (1988) 521–538.
[9] C.J. Colbourn, L.K. Stewart, Permutation graphs: connected domination and Steiner trees, Discrete Math. 86 (1–3) (1990) 179–189.

[10] S.E. Dreyfus, R.A. Wagner, The Steiner problem in graphs, Networks 1 (3) (1971) 195–207.
[11] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius: fast subset convolution, in: Proceedings of the Thirty-Ninth Annual ACM Sympo-

sium on Theory of Computing, STOC ’07, Association for Computing Machinery, New York, NY, USA, 2007, pp. 67–74.
[12] M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Kernelization hardness of connectivity problems in d-degenerate graphs, Discrete Appl. Math.

160 (15) (2012) 2131–2141.
[13] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion, Algorithmica 65 (4) (2013) 868–884.
[14] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[15] F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, vol. 53, Elsevier, 1992.
[16] F. Hwang, A linear time algorithm for full Steiner trees, Oper. Res. Lett. 4 (5) (1986) 235–237.
[17] C.L. Lu, C.Y. Tang, R.C.-T. Lee, The full Steiner tree problem, Theor. Comput. Sci. 306 (1–3) (2003) 55–67.
[18] A. Biniaz, A. Maheshwari, M. Smid, On the hardness of full Steiner tree problems, J. Discret. Algorithms 34 (2015) 118–127.
[19] H. Fernau, T. Fluschnik, D. Hermelin, A. Krebs, H. Molter, R. Niedermeier, Diminishable parameterized problems and strict polynomial kernelization,

in: Sailing Routes in the World of Computation. Proceedings of 4th Conference on Computability in Europe, in: Lecture Notes in Computer Science,
vol. 10936, Springer, 2018, pp. 161–171.

[20] R. Khandekar, G. Kortsarz, Z. Nutov, On some network design problems with degree constraints, J. Comput. Syst. Sci. 79 (5) (2013) 725–736.
[21] B. Fuchs, A note on the terminal Steiner tree problem, Inf. Process. Lett. 87 (4) (2003) 219–220.
[22] D.E. Drake, S. Hougardy, On approximation algorithms for the terminal Steiner tree problem, Inf. Process. Lett. 89 (1) (2004) 15–18.
[23] F.V. Martinez, J.C. de Pina, J. Soares, Algorithms for terminal Steiner trees, Theor. Comput. Sci. 389 (1) (2007) 133–142.
[24] Y.H. Chen, An improved approximation algorithm for the terminal Steiner tree problem, in: Proceedings of International Conference on Computational

Science and Its Applications, Springer, Berlin, Heidelberg, 2011, pp. 141–151.
[25] A. Biniaz, A. Maheshwari, M. Smid, On full Steiner trees in unit disk graphs, Comput. Geom. 48 (6) (2015) 453–458.
[26] L. Gargano, M. Hammar, P. Hell, L. Stacho, U. Vaccaro, Spanning spiders and light-splitting switches, Discrete Math. 285 (1) (2004) 83–95.
[27] D. Watel, M.-A. Weisser, C. Bentz, D. Barth, Steiner problems with limited number of branching nodes, in: Proceedings of 20th International Colloquium

on Structural Information and Communication Complexity, in: Lecture Notes in Computer Science, vol. 8179, Springer-Verlag Inc., New York, 2013,
pp. 310–321.

[28] D. Watel, M.-A. Weisser, C. Bentz, D. Barth, Directed Steiner trees with diffusion costs, J. Comb. Optim. 32 (4) (2016) 1089–1106.
[29] A.A. Melo, C.M.H. Figueiredo, U.S. Souza, Connecting terminals using at most one router, in: Proceedings of VII Latin-American Workshop on Cliques in

Graphs, in: Matemática Contemporânea, vol. 45, SBM, 2017, pp. 49–57.
[30] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1–3) (1996) 291–298.
[31] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Cross-composition: a new technique for kernelization lower bounds, CoRR, arXiv:1011.4224 [abs].
[32] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math. 28 (1) (2014) 277–305.
[33] D.G. Corneil, H. Lerchs, S.L. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (3) (1981) 163–174.
[34] S. Jia, L. Gao, Y. Gao, J. Nastos, Y. Wang, X. Zhang, H. Wang, Defining and identifying cograph communities in complex networks, New J. Phys. 17 (1)

(2015) 013044.
[35] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (4) (1985) 926–934.

139

Appendix C

Manuscript: The Strict Terminal

Connection Problem on Chordal

Bipartite Graphs

This appendix contains the manuscript:

Alexsander A. de Melo, Celina M. H. de Figueiredo, Uéverton S. Souza. The

Strict Terminal Connection Problem on Chordal Bipartite Graphs. Published in

Matemática Contemporânea (2021) [38].

140

http://doi.org/10.21711/231766362021/rmc4814
http://doi.org/10.21711/231766362021/rmc4814

Matemática Contemporânea, Vol. 48, 137–145

http://doi.org/10.21711/231766362021/rmc4814

©2021, Sociedade Brasileira de Matemática

The Strict Terminal Connection Problem

on Chordal Bipartite Graphs

Alexsander Andrade de Melo

Celina Miraglia Herrera de Figueiredo

Uéverton dos Santos Souza

Abstract

A strict connection tree T of a graph G for a non-empty subset

W ⊆ V (G), called terminal set, is a tree subgraph of G whose leaf

set coincides with W . A non-terminal vertex v ∈ V (T)\W is called

linker if its degree in T is exactly 2, and it is called router if its degree

in T is at least 3. Given a graphG, a terminal setW ⊆ V (G) and two

non-negative integers ℓ and r, the Strict terminal connection

problem (S-TCP) asks whether G admits a strict connection tree

for W with at most ℓ linkers and at most r routers. In the present

extended abstract, we prove that S-TCP is NP-complete on chordal

bipartite graphs even if ℓ is bounded by a constant.

1 Introduction

Steiner tree is one of the most fundamental problems in graph theory

2000 AMS Subject Classification: 68R10, 68Q17.

Keywords and Phrases: Connection tree, Terminal vertices, Steiner tree, Chordal

bipartite graphs, NP-completeness.

This research was supported by CAPES (Finance code 001), CNPq (140399/2017-

8, 407635/2018-1, 303726/2017-2), and FAPERJ (CNE E-26/202.793/2017, JCNE E-

26/203.272/2017)

141

138 A. A. de Melo, C. M. H. de Figueiredo, and U. S. Souza

and combinatorial optimization, being related to many real-world appli-

cations. In this work, we study the complexity of the so-called Strict

terminal connection problem, which is a natural variation of Steiner

tree introduced by Dourado et al. [1] motivated by questions in informa-

tion security, network routing and telecommunication.

Let G be a graph and W ⊆ V (G) be a non-empty set, called terminal

set. A strict connection tree of G for W is a tree subgraph of G whose

leaf set is equal to W . A non-terminal vertex of a strict connection tree

T is called linker if its degree in T is exactly 2, and it is called router

if its degree in T is at least 3. We remark that the vertex set of every

strict connection tree can be partitioned into terminal vertices, linkers and

routers. For each strict connection tree T , we let L(T) denote the linker

set of T and R(T) denote the router set of T . Next, we formally define

the Strict terminal connection problem.

Input: A graph G, a non-empty terminal set W ⊆ V (G) and

two non-negative integers ℓ and r.

Question: Does there exist a strict connection tree T of G for

W , such that |L(T)| ≤ ℓ and |R(T)| ≤ r?

Strict Terminal Connection (S-TCP)

Table 1 summarises the known complexity results of S-TCP with respect

to the parameters ℓ, r,∆(G), and the classes of split graphs and cographs.

In addition to these results, in [4], S-TCP was studied from the perspective

of disjoint paths and integral commodity flow problems.

Parameters

Graph class – ℓ r ℓ, r ℓ, r,∆(G)

General NPC [1] NPC [1]
P for r ∈ {0, 1} [2]

but W[2]h [3]

XP [1]

but W[2]h [3]

FPT [1, 3] but

No-poly kernel [3]

∆ = 4 NPC [3] NPC[3] P for r ∈ {0, 1} [2] FPT [1, 3] FPT [1, 3]

∆ = 3 NPC [3] XP [3] P for r ∈ {0, 1} [2] FPT [1, 3] FPT [1, 3]

Split NPC [3] NPC [3]
XP [3]

but W[2]h [3]

XP [1, 3]

but W[2]h [3]
FPT [1, 3]

Cographs P [3] P [3] P [3] P [3] P [3]

Table 1: Computational complexity of S-TCP. (Adapted from [3].)

142

S-TCP on Chordal Bipartite Graphs 139

Contribution. In this work, we prove that S-TCP remains NP-complete

when restricted to chordal bipartite graphs, even if ℓ ≥ 0 is bounded by a

constant.

2 S-TCP on Chordal Bipartite Graphs

A graph G is called chordal bipartite if every induced cycle of G has

length 4. Equivalently, a graph G is chordal bipartite if G is bipartite and

every cycle of G of length at least 6 has a chord, i.e. an edge between two

non-consecutive vertices of the cycle.

To prove that S-TCP is NP-complete on chordal bipartite graphs, we

present a polynomial-time reduction from Vertex Cover, which has as

input a graph G and a positive integer k and asks whether there is a subset

S ⊆ V (G) such that |S| ≤ k and every edge of G has an endpoint in S.

The proposed reduction, described next, is based on the polynomial-time

reduction given by Müller and Brandstädt [5] so as to prove that Steiner

tree is NP-complete on chordal bipartite graphs.

Construction. Let I = (G, k) be an instance of Vertex cover and

c ≥ 0 be a constant. Assume that V (G) = {v1, . . . , vn} for some positive

integer n ≥ 2. Moreover, assume that G has at least one edge, i.e. m =

|E(G)| ≥ 1. We let f(I, c) = (H,W, ℓ = c, r) be the instance of S-TCP

defined as follows.

1. For each vi ∈ V (G), create the gadget Hi as illustrated in Figure 1.

Figure 1: Gadget Hi.

143

140 A. A. de Melo, C. M. H. de Figueiredo, and U. S. Souza

2. Subdivide the edge w1
a1a1 of H1 into ℓ new vertices u1, u2, . . . , uℓ,

creating the induced path ⟨w1
a1 , u1, . . . , uℓ, a1⟩.

3. For each pair vi, vj ∈ V (G), with i ̸= j, add the edges xiyj and ziyj ,

making the subgraph of H induced by X∪Y ∪Z a complete bipartite

graph with bipartition (X ∪ Z, Y), where X = {xi | vi ∈ V (G)},
Y = {yi | vi ∈ V (G)} and Z = {zi | vi ∈ V (G)}.

4. For each vivj ∈ E(G), create the gadgets Hij and Hji as illustrated

in Figure 2.

(a) Hij (b) Hji

Figure 2: Gadgets Hij and Hji, respectively.

5. Finally, define W = W1 ∪W2 ∪W3 and r = k + 4n + 4m, where

W1 = {w1
i , w

2
i | vi ∈ V (G)}, W2 = {w1

ai , w
2
ai , w

1
bi
, w2

bi
, w1

ci , w
2
ci | vi ∈

V (G)}, and W3 = {w1
pij , w

2
pij , w

1
qij , w

2
qij | vivj ∈ E(G)}.

Lemma 2.1. Let I = (G, k) be an instance of Vertex Cover, such that

G has at least one edge. For every c ≥ 0, the graph H of f(I, c) is chordal

bipartite.

Proof. First, we note that H is chordal bipartite if and only if the graph

G′ = H−(W2∪W3) is chordal bipartite. Indeed, the vertices belonging to

W2∪W3 are vertices of degree 1 of H, and therefore they do not belong to

any cycle of H. Consequently, in order to prove this lemma, it is sufficient

to show that G′ is chordal bipartite. Note that, for every vi ∈ V (G), w1
i is

a false twin of ai in G
′, i.e. NG′(w1

i) = NG′(ai). Similarly, for every vi ∈
V (G), w2

i is a false twin of ci in G
′, i.e. NG′(w2

i) = NG′(ci). As a result, if

w1
i or w2

i belongs to an odd cycle or to an induced cycle of length greater

than or equal to 6 in G′, then certainly ai or ci, respectively, also belongs

144

S-TCP on Chordal Bipartite Graphs 141

(a) Hi − zi (b) Hi − {xi, yi}

Figure 3: Subgraphs Hi − zi and Hi − {xi, yi}, respectively.

to an odd cycle or to an induced cycle of length greater than or equal to

6 in G′. Therefore, it follows from the fact that H − (W1 ∪W2 ∪W3) is

chordal bipartite [5] that G′ (and, thus, H) is chordal bipartite as well. ■

Lemma 2.2. Let I = (G, k) be an instance of Vertex Cover, such that

G has at least one edge. For every c ≥ 0, I is a yes-instance of Vertex

cover if and only if f(I, c) is a yes-instance of S-TCP.

Proof. First, suppose that I is a yes-instance of Vertex cover, and let

S ⊆ V (G) be a vertex cover of G such that |S| ≤ k. Based on S, we

construct a strict connection tree T of H for W as described below.

1. For each vi ∈ V (G), if vi ∈ S, then add the subgraph Hi − zi (see
Figure 3a) to T ; on the other hand, if vi ̸∈ S, then add the subgraph

Hi − {xi, yi} (see Figure 3b) to T .

2. For each vivj ∈ E(G) with vi ∈ S, if vj ̸∈ S or i < j, then add the

subgraphs Hij − yj (see Figure 4a) and Hji − xj (see Figure 4b) to

T . We remark that, possibly, the pairs of vertices xi and yj , and yi

and xj , simultaneously belong to V (T). However, if xipij ∈ E(T) or

yiqji ∈ E(T), then xiyj , yjqij ̸∈ E(T) and xjyi, xjpji ̸∈ E(T).

One can verify that, until the last step, T is an acyclic subgraph of H

that contains all the terminal vertices belonging to W . Thus, in order to

conclude the construction of T , we only need to connect the connected

components of T in such a way that the resulting graph is still an acyclic

145

142 A. A. de Melo, C. M. H. de Figueiredo, and U. S. Souza

(a) Hij − yj (b) Hji − xj

Figure 4: Subgraphs Hij − yj and Hji − xj , respectively.

subgraph of H. Since |E(G)| ≥ 1, |S| ≥ 1. As a result, YS = {yi | vi ∈ S}
is non-empty. Then, let yα be a vertex in YS , arbitrarily chosen. It follows

from the construction of G that yα is adjacent inG to all vertices belonging

to XS ∪ ZS , where XS = {xi | vi ∈ S} and ZS = {zi | vi ̸∈ S}. Moreover,

note that all connected components of T necessarily have at least one

vertex in XS ∪ ZS . Thus, to conclude the construction of T , we perform

the following operation:

3. For each connected component T ′ of T which does not contain the

vertex yα, select arbitrarily a vertex v ∈ (XS ∪ ZS) ∩ V (T ′) and,

then, add the edge vyα to T .

Then, we have finally obtained a subgraph T of H which is a tree and

contains all the terminal vertices belonging to W . Moreover, note that

L(T) = {u1, u2, . . . , uℓ} and

R(T) = {xi, yi | vi ∈ S} ∪ {zi | vi ̸∈ S, vi ∈ V (G)}
∪ {ai, bi, ci | vi ∈ V (G)} ∪ {pij , pji, qij , qji | vivj ∈ E(G)}.

Hence, T is a strict connection tree of G for W such that |L(T)| = ℓ and

|R(T)| = 2|S|+(n− |S|)+ 3n+4m ≤ k+4n+4m = r. Therefore, f(I, c)

is a yes-instance of S-TCP.

Conversely, suppose that G admits a strict connection tree T for W

such that |L(T)| ≤ ℓ and |R(T)| ≤ r = k + 4n + 4m. Note that, by

construction of H, the only path in H between the terminal vertices w1
a1

146

S-TCP on Chordal Bipartite Graphs 143

and w2
a1 contains the non-terminal vertices u1, u2, . . . , uℓ. Besides that,

dH(ui) = 2 for every i ∈ {1, . . . , ℓ}. As a result, L(T) = {u1, u2, . . . , uℓ}.
This implies that all the other non-terminal vertices of T must be routers.

In addition, for every vi ∈ V (G), we have that ai ∈ R(T), since ai is the

only neighbour in H of the terminal vertices w1
ai and w2

ai and, thus, ai

necessarily belongs to V (T). Analogously, we have that bi, ci ∈ R(T).

Claim 2.1. Let vi ∈ V (G) and Ti be the subgraph of T induced by V (Hi).

If yi ∈ V (T), then we can assume that the degree of yi in Ti is at least 3.

Proof. First, we note that every path in H between yi and ai contains xi

or zi. Consequently, xi or zi must belong to the path P in T between yi

and ai. It is not hard to verify that, if xi ∈ V (P), then we can assume

that xi, w
2
i , ci ∈ NT (yi). On the other hand, if zi ∈ V (P), then we can

assume that zi, w
2
i , ci ∈ NT (yi). ■

Claim 2.2. Let vi ∈ V (G). If xi ∈ V (T), then we can assume that

yi ∈ V (T). Analogously, if yi ∈ V (T), then we can assume that xi ∈ V (T).

Proof. Suppose that xi ∈ V (T) but yi ̸∈ V (T). The case in which yi ∈
V (T) but xi ̸∈ V (T) is analogous. Note that, the path in T between

ai and ci must contain zi, which must be a router of T . Furthermore,

by the previous claim, we can assume that, for every vertex yj ∈ NT (zi)

with j ̸= i, the degree of yj in Tj is at least 3, where Tj denotes the

subgraph of T induced by V (Hj). Thus, let T ′ be the graph with vertex

set V (T ′) = V (T) \ {zi} ∪ {yi} and edge set

E(T ′) = E(T) \
(
{vzi | v ∈ NT (zi)} ∪ {w2

i bi}
)

∪ E(Hi − zi) ∪ {yjxi | yj ∈ NT (zi), j ̸= i}.

One can verify that T ′ is a strict connection tree of H for W that si-

multaneously contains the vertices xi and yi and satisfies the constraints

|L(T ′)| ≤ ℓ and |R(T ′)| ≤ r; more precisely, L(T ′) = L(T) and R(T ′) =

(R(T) \ {zi}) ∪ {yi}. ■

147

144 A. A. de Melo, C. M. H. de Figueiredo, and U. S. Souza

Thus, consider the subset S = {vi ∈ V (G) | xi, yi ∈ V (T)}. We claim

that S is a vertex cover of G. For the sake of contradiction, suppose

that there exists an edge e = vivj ∈ E(G) such that S ∩ {vi, vj} = ∅.
Consequently, xi, yi ̸∈ V (T) and xj , yj ̸∈ V (T). Moreover, we have that

w1
pij , w

2
pij , w

1
qij , w

2
qij ̸∈ V (T) (as well as w1

pji , w
2
pji , w

1
qji , w

2
qji ̸∈ V (T)), since

T is connected and the only path in T between such terminals and any

other terminal belonging to W — for example, the terminals in W1 ∪W2

— necessarily contains xi or yj (xj or yi, respectively). However, this

contradicts the hypothesis that W3 ⊆ W ⊆ V (T). As a result, such an

edge e cannot exist. In other words, S is a vertex cover of G. Finally,

note that, if |S| = k′, then

|R(T)| = 2k′ + (n− k′) + 3n+ 4m = k′ + 4n+ 4m ≤ r = k + 4n+ 4m,

which implies |S| ≤ k. Therefore, I is a yes-instance of Vertex cover.

■

Theorem 2.1. S-TCP remains NP-complete when restricted to chordal

bipartite graphs, even if ℓ is bounded by a constant.

Proof. This result follows from Lemmas 2.1 and 2.2 and from the fact that

the construction f can be computed in polynomial-time over the input size

of the given instance I of Vertex cover and the parameter ℓ. ■

3 Concluding Remarks

In the present extended abstract, we have proved that S-TCP is NP-

complete on chordal bipartite graphs even if ℓ is bounded by a constant.

On the other hand, it remains unknown whether S-TCP can be solved in

polynomial-time on chordal bipartite graphs if r is bounded by a constant

(and ℓ is arbitrarily large). More generally, one of the main questions

concerning S-TCP is whether the problem parameterized by r is in XP.

148

S-TCP on Chordal Bipartite Graphs 145

References

[1] M. C. Dourado, R. A. Oliveira, F. Protti, and U. S. Souza, Conexão de

terminais com número restrito de roteadores e elos, In Proceedings of

XLVI Simpósio Brasileiro de Pesquisa Operacional (2014), pp. 2965–

2976.

[2] A. A. Melo, C. M. H. de Figueiredo, and U. S. Souza, Connecting

terminals using at most one router, Matemática Contemporânea 45

(2017), SBM, pp. 49–57.

[3] A. A. Melo, C. M. H. de Figueiredo, and U. S. Souza, A multivariate

analysis of the strict terminal connection problem, Journal of Com-

puter and System Sciences 111 (2020), pp. 22–41.

[4] A. A. Melo, C. M. H. de Figueiredo, and U. S. Souza, On undirected

two-commodity integral flow, disjoint paths and strict terminal con-

nection problems, Networks 77 (2021), pp. 559–571.

[5] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree

and dominating set for chordal bipartite graphs, Theoretical Com-

puter Science 53 (1987), pp. 257–265.

Alexsander Andrade de Melo

Federal University of Rio de

Janeiro

Rio de Janeiro, Brazil.

aamelo@cos.ufrj.br

Celina Miraglia Herrera de

Figueiredo

Federal University of Rio de

Janeiro

Rio de Janeiro, Brazil.

celina@cos.ufrj.br

Uéverton dos Santos Souza

Fluminense Federal University

Niterói, Brazil.

ueverton@ic.uff.br

149

Appendix D

Manuscript: On the

Computational Difficulty of the

Terminal Connection Problem

This appendix contains the manuscript:

Alexsander A. de Melo, Celina M. H. de Figueiredo, Uéverton S. Souza. On the

Computational Difficulty of the Terminal Connection Problem. Presented in the

47th International Conference on Current Trends in Theory and Practice of Com-

puter Science (SOFSEM 2021) [41], and submitted in March 2022 to RAIRO -

Theoretical Informatics and Applications.

150

https://doi.org/10.1007/978-3-030-67731-2_20
https://doi.org/10.1007/978-3-030-67731-2_20

Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

ON THE COMPUTATIONAL DIFFICULTY OF THE

TERMINAL CONNECTION PROBLEM ∗

Alexsander A. de Melo1, Celina M. H. de Figueiredo1

and Uéverton S. Souza2

Abstract. A connection tree of a graph G for a terminal set W is
a tree subgraph T of G such that leaves(T) ⊆ W ⊆ V (T). A non-
terminal vertex is called linker if its degree in T is exactly 2, and
it is called router if its degree in T is at least 3. The Terminal
connection problem (TCP) asks whether G admits a connection tree
for W with at most ` linkers and at most r routers, while the Steiner
tree problem asks whether G admits a connection tree for W with
at most k non-terminal vertices. We prove that, if r ≥ 1 is fixed,
then TCP is polynomial-time solvable when restricted to split graphs.
This result separates the complexity of TCP from the complexity of
Steiner tree, which is known to be NP-complete on split graphs.
Additionally, we prove that TCP is NP-complete on strongly chordal
graphs, even if r ≥ 0 is fixed, whereas Steiner tree is known to be
polynomial-time solvable. We also prove that, when parameterized by
clique-width, TCP is W[1]-hard, whereas Steiner tree is known to be
in FPT. On the other hand, agreeing with the complexity of Steiner
tree, we prove that TCP is linear-time solvable when restricted to
cographs (i.e. graphs of clique-width 2). Finally, we prove that, even
if either ` ≥ 0 or r ≥ 0 is fixed, TCP remains NP-complete on graphs
of maximum degree 3.

2020 Mathematics Subject Classification. 68Q17, 68Q25, 68R10, 05C40, 05C85.

Keywords and phrases: Computational difficulty of problems, Parameterized complexity, Ter-

minal vertices, Connection tree, Steiner tree, Split graphs, Strongly chordal graphs, Cographs,

Bounded degree

∗ This work was supported by the Brazilian agencies CAPES (Finance Code: 001), CNPq

(Grant Numbers: 140399/2017-8, 407635/2018-1, 303726/2017-2) and FAPERJ (Grant

Numbers: E-26/202.793/2017 and E-26/203.272/2017).
1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; e-mail: aamelo@cos.ufrj.br

& celina@cos.ufrj.br
2 Fluminense Federal University, Niterói, Brazil; e-mail: ueverton@ic.uff.br

© EDP Sciences 1999

151

2

1. Introduction

Steiner tree is one of the most fundamental network design problems, proved
to be NP-complete by Karp in his seminal paper [20]. Besides being related to
several real-world applications, Steiner tree is of great theoretical interest, and
it has been extensively studied from the perspective of graph theory [4,9,16,29,33]
and computational complexity [2, 8, 12, 30]. The Steiner tree problem has as
input a connected graph G, a non-empty terminal set W ⊆ V (G), and a non-
negative integer k, and it asks whether there exists a connected subgraph T of G
such that W ⊆ V (T) and |V (T) \W | ≤ k. Such a connected subgraph T admits a
spanning tree with at most k non-terminal vertices. In this paper, we analyse the
computational complexity of a network design problem closely related to Steiner
tree, called Terminal connection.

Let G be a graph and W ⊆ V (G) be a non-empty set. A connection tree T of G
for W is a tree subgraph of G such that leaves(T) ⊆ W ⊆ V (T), where leaves(T)
denotes the leaf set of T . In a connection tree T for W , the vertices belonging
W are called terminal, and the vertices belonging to V (T) \W are called non-
terminal and are classified into two types according to their respective degrees in
T , namely: the non-terminal vertices of degree exactly 2 in T are called linkers
and the non-terminal vertices of degree at least 3 in T are called routers cf. [10].
We remark that the vertex set of every connection tree can be partitioned into
terminal vertices, linkers and routers. For each connection tree T , we let L(T)
denote the linker set of T and R(T) denote the router set of T . Next, we present
a formal definition for the Terminal connection problem.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and
two non-negative integers ` and r.

Question: Does there exist a connection tree T of G for W such that
|L(T)| ≤ ` and |R(T)| ≤ r?

Terminal Connection (TCP)

TCP was introduced by Dourado et al. [10], having as motivation applications
in information security and network routing, and it was proved to be polynomial-
time solvable when the parameters ` and r are both fixed [10]. Nevertheless, it was
proved to be NP-complete even if either ` ≥ 0 or r ≥ 0 is fixed [10]. In particular,
the problem was proved to be NP-complete even if ` ≥ 0 is fixed and the input
graph has constant maximum degree [11].

There is a straightforward Turing reduction from Steiner tree to TCP, namely:
(G,W, k) is a yes-instance of Steiner tree if and only if (G,W, `, r) is a yes-
instance of TCP for some pair `, r ∈ {0, . . . , k} such that `+ r = k. An interesting
aspect of this Turing reduction is the fact that it preserves the structure of the
input graph. Consequently, if TCP is polynomial-time solvable on some graph
class G, then so is Steiner tree. Analogously, if Steiner tree is NP-complete
on some graph class G, then TCP cannot be solved in polynomial-time on G, un-
less P=NP. Nevertheless, if either ` ≥ 0 or r ≥ 0 is fixed, then possibly TCP is

152

TITLE WILL BE SET BY THE PUBLISHER 3

polynomial-time solvable on a graph class G, while Steiner tree remains NP-
complete on G. In addition, there might exist a graph class G on which Steiner
tree is polynomial-time solvable whereas TCP remains NP-complete.

In this work, we confirm the existence of such complexity separating classes. In
Section 2, we prove that, on split graphs, TCP is polynomial-time solvable if r ≥ 1
is fixed, whereas Steiner tree is known to be NP-complete [33]. Besides, we
prove that, on strongly chordal graphs, TCP remains NP-complete even if r ≥ 0 is
fixed, whereas Steiner tree is known to be polynomial-time solvable [33]. Also,
we prove in Section 3.1 that, parameterized by clique-width, TCP is W[1]-hard,
whereas Steiner tree is known to be in FPT [1].

On the other hand, in Section 3.2, we prove that TCP can be solved in linear-
time on cographs (i.e. graphs of clique-width 2), agreeing with the computational
complexity of Steiner tree [4]. Additionally, in Section 4, we prove that TCP
remains NP-complete on graphs of maximum degree 3 even if either ` ≥ 0 or r ≥ 0
is fixed. It is worth mentioning that, although Steiner tree is known to be
NP-complete on graphs of maximum degree 3 [22], our NP-completeness results
of TCP with either ` ≥ 0 or r ≥ 0 fixed do not immediately follow from the
NP-completeness of Steiner tree.

Table 1 summarises the mentioned results.

Problem

Graph class/Parameter TCP TCP fixed ` TCP fixed r Steiner tree

Split
NP-c
Thm. 2

NP-c
Thm. 2

Poly, for r ≥ 1
Thm. 1

NP-c [33]

Strongly chordal
NP-c
Thm. 3

Open
NP-c
Thm. 3

Poly [33]

Clique-width
W[1]-h
Thm. 4

Open
W[1]-h
Thm. 4

FPT [1]

Cographs
Poly

Thm. 5

Poly
Thm. 5

Poly
Thm. 5

Poly [4]

Maximum degree 3
NP-c

Thms. 6 and 7

NP-c
Thm. 6

NP-c
Thm. 7

NP-c [22]

Table 1. Comparison between the computational complexity of
TCP with the computational complexity of Steiner tree.

Related works. Motivated by applications in optical networks and bandwidth
consumption minimization, another variant of Steiner tree that has been inves-
tigated is the one in which the number of branching nodes in the sought tree T ,
i.e. vertices (which not necessarily are non-terminal) of degree at least 3 in T , is
bounded. In [17, 31, 32], the authors addressed the undirected and directed cases
of this variant, for which they devised approximation and parameterized tractable
algorithms, apart from obtaining some intractability results.

In addition, Dourado et al. introduced in [11] the strict variant of TCP,
called Strict terminal connection problem (S-TCP), which has the same
input of TCP but further requires that the sought connection tree T satisfies

153

4 TITLE WILL BE SET BY THE PUBLISHER

leaves(T) = W ⊆ V (T). It is worth mentioning that, just as TCP can be seen as
a generalization of Steiner tree, S-TCP can be seen as a generalization of Full
Steiner tree, which is a widely studied variant of Steiner tree [18, 21, 23].
Similarly to TCP, it was proved that S-TCP is polynomial-time solvable when the
parameters ` ≥ 0 and r ≥ 0 are both fixed [11], and that the problem is still
NP-complete if ` ≥ 0 is fixed [11]. Nevertheless, except for the case r ∈ {0, 1},
which was shown to be polynomial-time solvable [24], the complexity of S-TCP
for fixed r ≥ 2 has remained open. Motivated by this question, S-TCP was also
investigated in [25,26]. In particular, in [26], S-TCP was proved to be NP-complete
(and W[2]-hard when parameterized by r), even if ` ≥ 0 is constant and the input
graph is restricted to split graphs. An interesting fact of this proof is that it can
be easily adapted to TCP. Consequently, we obtain that TCP is also NP-complete
(and W[2]-hard when parameterized by r) on split graphs even if ` ≥ 0 is con-
stant. Besides this result, it was analysed in [26] the complexity of S-TCP when
restricted to graphs of bounded maximum degree, and it was also proved that
S-TCP is polynomial-time solvable on cographs.

A previous version of this work appeared as an extended abstract at SOFSEM
2021 conference [27]. Besides the full proofs omitted in [27], the present paper
contains further contributions, such as the tractability of TCP on split graphs and
the W[1]-hardness of TCP parameterized by clique-width.

Graph notation. Now, we present some basic notation and terminologies of
graph theory that are used throughout this paper. For any missing definition or
terminology, we refer to [3].

In this work, all graphs are finite, simple and undirected. Let G be a graph. We
let V (G) and E(G) denote the vertex set and the edge set of G, respectively. For
every vertex u ∈ V (G), we let NG(u) and NG[u] = NG(u)∪{u} denote the (open)
neighbourhood and the closed neighbourhood of u in G, respectively; and we let
dG(u) = |NG(u)| denote the degree of u in G. Two distinct vertices u, v ∈ V (G)
are said to be false twins (resp. true twins) in G if in G if NG(u) = NG(v) (resp.
NG[u] = NG[v]). The length of a path P is defined as the number of edges of
P . The distance between two vertices u, v ∈ V (G) is the length of a path of G
between u and v of minimum length. For every non-empty subset S ⊆ V (G), we
let G[S] denote the subgraph of G induced by S.

Let G1, . . . , Gk be k ≥ 2 graphs. The disjoint union of G1, . . . , Gk is the graph
H, denoted by G1 ∪ · · · ∪ Gk, with vertex set V (H) = V (G1)] · · ·] V (Gk) and
edge set E(H) = E(G1)] · · ·] E(Gk). The join of G1, . . . , Gk is the graph H,
denoted by G1 ∧ · · · ∧Gk, with vertex set V (H) = V (G1 ∪ · · · ∪Gk) and edge set

E(H) = E(G1 ∪ · · · ∪Gk)] {uv | u ∈ V (Gi), v ∈ V (Gj), i, j ∈ {1, . . . , k}, i 6= j}.

2. Separating classes: Split and Strongly chordal

In this section, we present the main results of this work. First, we prove that,
when restricted to split graphs, TCP is polynomial-time solvable if r ≥ 1 is fixed.

154

TITLE WILL BE SET BY THE PUBLISHER 5

Second, we prove that, when restricted to strongly chordal graphs, TCP is NP-
complete even if r ≥ 0 is fixed. Such results separate the complexity of TCP from
the complexity of Steiner tree, since Steiner tree is known to be NP-complete
on split graphs [33] and polynomial-time solvable on strongly chordal graphs [33].

2.1. Split graphs

A split graph is a graph whose vertex set can be partitioned into a clique and
a stable set. In what follows, we prove the following theorem.

Theorem 1. For r ≥ 1, TCP can solved in time nO(r) on split graphs.

To prove Theorem 1, we propose a polynomial-time reduction from TCP, with
r ≥ 1, to its strict variant S-TCP, in which the terminal vertices are further
required to coincide with the leaf set of the sought tree. S-TCP was shown to
admit an nO(r)-time algorithm on split graphs [26]. In a nutshell, the algorithm
presented in [26] enumerates each possible candidate router set R ⊆ V (G) \W ,
with |R| ≤ r, and then decides through matching techniques whether the input
graph G admits a connection tree T for the terminal set W , such that |L(T)| ≤ `,
R(T) = R and leaves(T) = W . Thus, combining our polynomial-time reduction
with this algorithm, we obtain that TCP can be solved in time nO(r) on split
graphs for r ≥ 1.

It is worth mentioning that this result is optimum, i.e. the nO(r)-time complex-
ity cannot be considerably improved. Indeed, the following theorem immediately
comes from a trivial adaptation of a parameterized polynomial-time reduction
from the Set cover problem to S-TCP presented in [26] (see Theorem 7 of [26]).

Theorem 2 ([26]). For any computable functions f and h, TCP cannot be solved
in time f(r) · nh(`), unless FPT = W[2], and cannot be solved in time f(r) · no(r),
unless ETH fails.

In what follows, we write G〈K,S〉 to refer a split graph G and explicitly denote
that K ∪S is a partition of the vertex set of G into a clique K and a stable set S.

Lemma 1. Let G〈K,S〉 be a split graph and W ⊆ V (G). If |W | ≥ 3, W ∩K = ∅
and there exists a connection tree T of G for W such that R(T) = ∅, then there
exists a connection tree T ′ of G for W such that L(T ′) ⊆ |L(T)| and |R(T ′)| = 1.

Proof. Since |W | ≥ 3 and R(T) = ∅, there exists a terminal vertex w ∈ W whose
degree in T is at least 2. Then, let u and u′ be two distinct neighbours of w in T .
Since W ∩ K = ∅, u, u′ ∈ L(T) ∩ K. Let T ′ be the graph obtained from T by
removing the edge wu′ and adding the edge uu′. Clearly, T ′ is a connection tree
of G for W such that L(T ′) = L(T) \ {u} and R(T ′) = R(T) ∪ {u}. �
Lemma 2. Let G〈K,S〉 be a split graph and W ⊆ V (G) be a non-empty set.
Suppose that G admits a connection tree T for W . There exists a connection
tree T ′ of G for W , with L(T ′) ⊆ L(T) and |R(T ′)| ≤ |R(T)|, that simultaneously
satisfies the following conditions:

(1) L(T ′) ⊆ K and R(T ′) ⊆ K;

155

6 TITLE WILL BE SET BY THE PUBLISHER

(2) If R(T)∩K 6= ∅ or W ∩K 6= ∅, then every vertex in W ∩S is a leaf of T ′.

Proof. (1) Suppose that (L(T) ∪ R(T)) ∩ S 6= ∅. Then, there exists a vertex
u ∈ V (T) ∩K. Let T ′ be the graph obtained from T as follows:

• Remove all vertices belonging to (L(T)∪R(T))∩S and their incident edges;
• For each u′ ∈ L(T) ∩ S, add the edge vv′, where NT (u′) = {v, v′};
• For each u′ ∈ NT (R(T) ∩ S), add the edge uu′.

Clearly, T ′ is a connection tree of G for W such that L(T ′) ⊆ K and R(T ′) ⊆ K.
Moreover, note that L(T ′) ⊆ L(T) \S, R(T ′) = R(T) if R(T)∩S = ∅, and R(T ′) ⊆
(R(T) ∪ {u}) \ S otherwise.

(2) Suppose that W ∩S 6= ∅ and that there exists a vertex u ∈ (R(T)∪W)∩K.
Note that, in this case, every vertex w ∈ W ∩ S has at least one neighbour, say
α(w), in T . Then, let T ′ be the graph obtained from T as follows:

• For each w ∈ W ∩ S, remove all edges of T that are incident to w except
for wα(w); additionally, for each v ∈ NT (w), add the edge uv.

Clearly, T ′ is a connection tree of G for W such that every vertex in W ∩ S is a
leaf of T ′. Furthermore, one can verify that L(T ′) = L(T) and R(T ′) = R(T). �

Next, we present our polynomial-time reduction to S-TCP.

Construction 1 (Reduction from TCP to S-TCP on split graphs). Let G〈K,S〉
be a split graph and I = (G,W, `, r) be an instance of TCP. If W ∩K = ∅, then
we define our reduction instance of S-TCP as simply g(I) = I. Otherwise, let
ρ ∈W ∩K and consider the graph G′ obtained from G as follows (see Figure 1):

• Add all vertices and all edges of G;
• For each u ∈W ∩ S ∩NG(W ∩K) \NG(ρ), add the edge ρu;
• Add three new vertices w′1, w′2 and w′3, and make them adjacent to ρ.

Note that G′ is a split graph, and that K ∪ S′ is a partition of V (G′) into a
clique and a stable set, where S′ = S∪{w′1, w′2, w′3}. We then define our reduction
instance of S-TCP as g(I) = (G′,W ′, `, r+1), where W ′ = (W \{ρ})∪{w′1, w′2, w′3}.

Figure 1. Split graph G′〈K,S′〉 of the instance g(I) of S-TCP
described in Construction 1, obtained from a split graph G〈K,S〉
of an instance I of TCP, with K ∩W 6= ∅.

The following lemma concludes the proof of Theorem 1.

156

TITLE WILL BE SET BY THE PUBLISHER 7

Lemma 3. Let G〈K,S〉 be a split graph and I = (G,W, `, r) be an instance of
TCP such that |W | ≥ 3. Also, let g(I) be the instance of S-TCP obtained from I,
as described in Construction 1. If r ≥ 1 or W ∩K 6= ∅, then I is a yes-instance
of TCP if and only if g(I) is a yes-instance of S-TCP.

Proof. First, suppose that I is a yes-instance of TCP. Then, there exists a con-
nection tree T of G for W such that |L(T)| ≤ ` and |R(T)| ≤ r. By Lemma 1,
we can assume that R(T) 6= ∅ or W ∩K 6= ∅. Furthermore, by Lemma 2, we can
assume that every vertex in W ∩S is a leaf of T . This implies W \ leaves(T) ⊆ K.
If W ∩ K = ∅, then leaves(T) = W and, therefore, we immediately obtain that
g(I) = I is a yes-instance of S-TCP. Thus, suppose that W ∩K 6= ∅. Additionally,
by Lemma 2, assume that L(T) ⊆ K and R(T) ⊆ K. Note that every vertex
in V (T) ∩ S is a leaf of T . Since T is a tree and ρ ∈ V (T), for each vertex
w ∈ W ∩K \ {ρ}, there exists a single path between ρ and w in T and a single
vertex in this path, say α(w), that belongs to NT (w) ∩ K. Thus, let T ′ be the
graph obtained from T as follows:

• For each w ∈ W ∩ K \ {ρ} and each w′ ∈ NT (w) \ {α(w)}, remove the
edge ww′ and add the edge ρw′;

• For each i ∈ {1, 2, 3}, add the vertex w′i and the edge ρw′i.

One can verify that T ′ is a connection tree of G′ for W ′, such that leaves(T ′) = W ′,
L(T ′) = L(T) and R(T) = R(T ′) ∪ {ρ}.

Conversely, suppose that g(I) is a yes-instance of S-TCP. If W ∩K = ∅, then
g(I) = I and, therefore, I is a yes-instance of TCP. Thus, suppose that W ∩K 6= ∅,
and let T ′ be a connection tree of G′ for W ′, such that leaves(T ′) = W ′, |L(T ′)| ≤ `
and |R(T ′)| ≤ r+ 1. Since the only neighbour of the terminal vertices w′1, w′2 and
w′3 in G′ is the vertex ρ, we have that ρ necessarily belongs to T ′ and, besides that,
is a router of T ′. Moreover, by construction of G′, if a vertex w is a neighbour of
ρ in T ′ but is not a neighbour of ρ in G, then w ∈W ∩S and there exists a vertex
in W ∩K, say β(w), which is a neighbour of w in G. Then, let T be the graph
obtained from T ′ as follows:

• Remove the vertices w′1, w′2 and w′3 and their incident edges;
• For each w ∈ NT ′(ρ)\NG(ρ), remove the edge ρw and add the edge β(w)w.

One can verify that T is a connection tree of G for W , such that L(T) = L(T ′)
and R(T) = R(T ′) \ {ρ}. �

2.2. Strongly chordal graphs

A chord of a cycle C is an edge between any two non-consecutive vertices of C.
A graph G is called chordal if every cycle of G of length at least 4 has a chord.
In other words, a graph G is chordal if every induced cycle of G has length 3. An
even cycle is a cycle of even length. A chord uv of an even cycle C is called an odd
chord if the distance between u and v in C is odd. A graph G is called strongly
chordal if it is chordal and every even cycle of G of length at least 6 has an odd
chord.

157

8 TITLE WILL BE SET BY THE PUBLISHER

A vertex u of a graph G is called a simple vertex if, for any two vertices v, v′ ∈
NG(u), NG[v] ⊆ NG[v′] or NG[v′] ⊆ NG[v]. In other words, a vertex u of a graph
G is simple if the collection {NG[v] | v ∈ NG(u)} can be linearly ordered by set
inclusion. Farber [13] proved that a graph G is strongly chordal if and only if there
exists a linear ordering (u1, . . . , un) of the vertices of G, called simple elimination
ordering, such that ui is a simple vertex of G[{ui, . . . , un}] for each i ∈ {1, . . . , n}.

We prove that TCP remains NP-complete on strongly chordal graphs:

Theorem 3. For each r ≥ 0, TCP remains NP-complete when restricted to
strongly chordal graphs.

In order to prove Theorem 3, we provide a polynomial-time reduction from the
Hamiltonian path problem, which was shown to be NP-complete on strongly
chordal graphs by Müller [28]. The Hamiltonian path problem has as input a
graph G and asks whether G admits a Hamiltonian path, i.e. a path that contains
all vertices of G.

The next lemma presents some important properties of the class of strongly
chordal graphs, which are used in our reduction.

Lemma 4. The class of strongly chordal graphs is closed under the following
operations:

(1) Adding true twin vertices;
(2) For any pair of true twin vertices v and v′, adding a new vertex w and

adding the edges vw and wv′.

Proof. Let G be a strongly chordal graph and (u1, . . . , un) be a simple elimination
ordering of G. For each i ∈ {1, . . . , n}, let Gi denote G[{ui, . . . , un}].

(1) Let H be the graph obtained from G by adding a true twin v of ui, for some
i ∈ {1, . . . , n}. We claim that

(u1, . . . , ui, v, ui+1 . . . , un)

is a simple elimination ordering of H. First, we show that v is a simple vertex
of Hv, where Hv denotes H[{v, ui+1, . . . , un}]. Since ui and v are true twins in
H, NHv

[x] = (NGi
[x] \ {ui}) ∪ {v} and NHv

[y] = (NGi
[y] \ {ui}) ∪ {v} for every

pair x, y ∈ NHv
(v). Moreover, since ui is a simple vertex of Gi, we have that

NGi [x] ⊆ NGi [y] or NGi [y] ⊆ NGi [x] for every pair x, y ∈ NGi(v). Finally, we
remark that NHv (v) = NGi(ui). Then, let x, y ∈ NHv (v) and assume without loss
of generality that NGi

[x] ⊆ NGi
[y]. One can verify that

NHv
[x] = (NGi

[x] \ {ui}) ∪ {v} ⊆ (NGi
[y] \ {ui}) ∪ {v} = NHv

[y].

Therefore, v is indeed a simple vertex of Hv.
Now, let j ∈ {1, . . . , n}. We prove that vj is a simple vertex of Hj , where

Hj denotes H[{uj , . . . , ui, v, ui+1, . . . , un}] if j ≤ i, and H[{uj , . . . , un}] otherwise.
Note that, if j ≥ i+ 1, then uj is trivially a simple vertex of Hj , since in this case

158

TITLE WILL BE SET BY THE PUBLISHER 9

Hj = Gj . Thus, assume that j ≤ i. One can verify that, for every x ∈ V (Hj)\{v},

NHj
[x] =

{
NGj

[x] ∪ {v} if ui ∈ NG(x)

NGj
[x] otherwise.

Let x, y ∈ NHj
(uj). We prove that NHj

[x] ⊆ NHj
[y] or NHj

[y] ⊆ NHj
[x], implying

that uj is indeed a simple vertex of Hj . First, suppose that y = v. Note that, if
NGj

[x] ⊆ NGj
[ui], then

NHj [x] = NGj [x] ∪ {v} ⊆ NGj [ui] ∪ {v} = NHj [ui] = NHj [v].

On the other hand, if NGj [ui] ⊆ NGj [x], then

NHj
[v] = NHj

[ui] = NGj
[ui] ∪ {v} ⊆ NGj

[x] ∪ {v} = NHj
[x].

Now, suppose that x 6= v and y 6= v. Assume without loss of generality that
NGj

[x] ⊆ NGj
[y]. Note that, if ui ∈ NGj

(x), then ui ∈ NGj
(y) and, thus,

NHj
[x] = NGj

[x] ∪ {v} ⊆ NGj
[y] ∪ {v} = NHj

[y].

On the other hand, if ui 6∈ NG(x), then

NHj [x] = NGj [x] ⊆ NGj [y] ⊆ NHj [y].

(2) Let H be the graph obtained from G by adding a new vertex w and adding
the edges vw and v′w, where v and v′ are true twins of G. Since NH(w) = {v, v′}
andNH [v] = NH [v′], it is immediate that w is a simple vertex ofH[{w, u1, . . . , un}].
Moreover, for every i ∈ {1, . . . , n}, ui is a simple vertex of G[{ui, . . . , un}]. Thus,

(w, u1, . . . , ui, . . . , un)

is a simple elimination ordering of H, and therefore, H is strongly chordal. �
Construction 2 (Gadget Hr and Terminal Set Wr). Let r be a positive integer.
We define the gadget Hr as the graph such that (see Figure 2)

V (Hr) = {ρ1, . . . , ρr} ∪ {x11, x21} ∪ {xi | i ∈ {2, . . . , r}} and

E(Hr) = {ρiρi+1 | i ∈ {1, . . . , r − 1}} ∪ {x11ρ1, x21ρ1} ∪ {xiρi | i ∈ {2, . . . , r}}.

Moreover, we let Wr = {x11, x21} ∪ {x2, . . . , xr} be the terminal set of Hr.

Construction 3 (Reduction from Hamiltonian path to TCP). Let G be a
graph, with vertex set V (G) = {u1, . . . , un}, and r be a non-negative integer. We
let G′ be the graph obtained from G and r as follows (see Figure 3):

• Add all vertices and all edges of G to G′;

159

10 TITLE WILL BE SET BY THE PUBLISHER

Figure 2. Gadget Hr for r ≥ 1, described in Construction 2.

Figure 3. A graph G and the graph G′ obtained from G (and
r = 0) as described in Construction 3.

• For each vertex ui ∈ V (G), add a true twin u′i of ui, in such a way that
NG′ [u

′
i] = NG′ [ui];

• For each vertex ui ∈ V (G), add a new vertex wi and add the edges uiwi
and u′iwi, where u′i denotes the true twin of ui added in the last step;

• If r ≥ 1, create the gadget Hr and define the terminal set Wr as described
in Construction 2, besides adding the edge ρrw1; otherwise, if r = 0, define
Wr = ∅.

We then define our reduction instance of TCP as g(G, r) = (G′,W, `, r), where
W = {w1, . . . , wn} ∪Wr and ` = 2n− 2.

We remark that, the graph G′ described in Construction 3 is similar to the one
constructed in [10] to prove the NP-completeness of TCP on general graphs for
fixed r ≥ 0. The main difference is the fact that, in the graph constructed in [10],
for each ui ∈ V (G), it is added a false twin, instead of a true twin, of ui. However,
this makes the original graph not be strongly chordal, even if the input graph
is strongly chordal; for instance, a cycle C3 of length 3 is strongly chordal, but
the graph resulting from adding a false twin for each vertex of C3 is not strongly
chordal, since it contains an induced cycle of length 4. The next lemma, which
states that, whenever the input graph is strongly chordal, our constructed graph
is strongly chordal as well, immediately follows from Lemma 4 and from the fact
that the vertices of Hr are not contained in any cycle of G′.

160

TITLE WILL BE SET BY THE PUBLISHER 11

Lemma 5. Let G be a graph and r be a non-negative integer. Also, let G′ be
the graph of the instance g(G, r) of TCP obtained from G and r, as described in
Construction 3. If G is strongly chordal, then so is G′.

Lemma 6. Let G be a graph and r be a non-negative integer. Also, let g(G, r) be
the instance of TCP obtained from G and r, as described in Construction 3. Then,
G admits a Hamiltonian path if and only if g(G, r) is a yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un} and that g(G, r) = (G′,W, `, r). Addi-
tionally, for simplicity, consider Wr = V (Hr) = E(Hr) = ∅ if r = 0.

First, suppose that there exists in G a Hamiltonian path (uj1 , . . . , ujn). Then,
let T be the graph with vertex set

V (T) = V (Hr) ∪ V (P) ∪ {wj1 , u′j1 , ujn , wjn} ∪ {uji , wji , u′ji | i ∈ {2, . . . , n− 1}}

and edge set

E(T) = E(Hr) ∪ {ρrw1, w1u
′
1}

∪ {u′ji−1
uji , ujiwji , wjiu

′
ji | i ∈ {2, . . . , n− 1}} ∪ {u′jn−1

ujn , ujnwjn},

where u′ji denotes the true twin of uji added in the construction of G′. Note that T
is a connection tree of G′ for W with L(T) = {u′j1 , ujn}∪{uj2 , u′j2 , . . . , ujn−1

, u′jn−1
}

and R(T) = {ρ1, . . . , ρr}. Therefore, g(G, r) is a yes-instance of TCP.
Conversely, suppose that g(G, r) is a yes-instance of TCP. Let T be a connection

tree of G′ for W such that |L(T)| ≤ 2n−2 and |R(T)| ≤ r. We remark that ρ1 is the
only neighbour of the terminal vertices x11, x

2
1 ∈Wr and, for each i ∈ {2, . . . , r}, ρi

is the only neighbour of the terminal vertex xi ∈Wr. As a result, T must contain
all the vertices ρ1, . . . , ρr. More specifically, such vertices must be routers of T .
This implies that T ′ = T − Hr cannot contain any router, and all non-terminal
vertices of T ′ must be linkers. Hence, T ′ is a path, since, by construction of G′, wi
has degree at most 2 in T ′ for every i ∈ {1, . . . , n}. Then, let P ′ = (wj1 , . . . , wjn)
be a sequence of distinct vertices such that, for each i ∈ {1, . . . , n − 1}, the path
in T ′ between wji and wji+1 does not contain any other terminal vertex. Note
that, since |L(T)| ≤ ` = 2n − 2, every path in T ′ between any two consecutive
vertices wji and wji+1

in P ′ must be of one of the forms: (wji , u
′
ji
, u′ji+1

, wji+1
),

(wji , u
′
ji
, uji+1 , wji+1), (wji , uji , uji+1 , wji+1), or (wji , uji , u

′
ji+1

, wji+1). As a result,

it follows from the construction of G′ that, for each i ∈ {1, . . . , n − 1}, uji and
uji+1 are adjacent in G. Therefore, (uj1 , . . . , ujn) is a Hamiltonian path of G. �

3. Graphs of bounded clique-width

In this section, we prove that TCP parameterized by the clique-width of the
input graph is W[1]-hard. Similarly to the results presented in Section 2, this
contrasts with the complexity Steiner tree, since Steiner tree is known to
be in FPTwhen parameterized by clique-width [1]. On the other hand, agreeing

161

12 TITLE WILL BE SET BY THE PUBLISHER

with the complexity of Steiner tree, we prove that TCP is linear-time solvable
on cographs, which are precisely the graphs of clique-width 2.

The notion of clique-width was introduced by Courcelle, Engelfriet and Rozen-
berg [7], and it is one of the most studied graph parameters. Next, we present the
definition of this notion cf. [14, 15].

Let k be a positive integer. A graph is called a k-graph if its vertices are labelled
with integers in {1, . . . , k}. An initial k-graph is a k-labelled graph on a single
vertex. The clique-width of a graph G, denoted by cwd(G), is the smallest positive
integer k such that G can be constructed by repeated application of the following
four operations:

(1) introducing (denoted by int(u, i)): construction of an initial k-graph, whose
single vertex u is labelled by an integer i ∈ {1, . . . , k} and has not been
introduced yet;

(2) disjoint union (here, denoted by ⊕);
(3) relabelling (denoted by reli,j): changing all labels i to j, for i, j ∈ {1, . . . , k};
(4) join (denoted by ηi,j): connecting all vertices labelled by i with all vertices

labelled by j, for i, j ∈ {1, . . . , k}, i 6= j.

A construction of a graph G using the operations (1)-(4) described above can be
represented by an algebraic term, called cwd-expression defining G, composed of
int, ⊕, reli,j , and ηi,j cf. [14], where i and j are distinct positive integers. Note that
cwd-expressions define a tree language, where each expression can be represented
by a rooted tree T cf. [15], where each int(u, i) of the expression is associated with
a leaf of T , and each vertex of G is introduced exactly once. A k-expression is
a cwd-expression that contains at most k distinct labels cf. [14]. Thus, one can
verify that, a graph G has clique-width at most k if and only if there exists a
k-expression defining G.

3.1. Parameterization by clique-width

Now, we prove the following theorem.

Theorem 4. For each r ≥ 0, TCP parameterized by clique-width is W[1]-hard.

More specifically, we show that, if a graph G has clique-width at most k for
some k ≥ 2, then the graph G′ obtained from G as described in Construction 3
has clique-width at most k + 1. This, along with Lemma 6 and the fact that
Hamiltonian path is W[1]-hard parameterized by clique-width [15], implies the
W[1]-hardness of TCP.

The following lemma is a well-known fact, and it can be immediately verified
by an inductive argument on the number of vertices of the tree.

Lemma 7. Every tree has clique-width at most 3. Moreover, if T is a tree and
u is a leaf of T , then there exists a 3-expression defining a construction of T in
which at the root all vertices but u have the same label.

162

TITLE WILL BE SET BY THE PUBLISHER 13

Lemma 8. Let G be a graph. For each r ≥ 0, if cwd(G) = k for some k ≥ 2, then
cwd(G′) ≤ k + 1, where G′ denotes the graph obtained from G and r as described
in Construction 3.

Proof. Assume that V (G) = {u1, . . . , un} and cwd(G) ≤ k. Then, let γG be a
k-expression defining G. Also, let H ′ be the subgraph of G′ induced by V (Hr) ∪
{w1}. Note that H ′ is a tree. Thus, by Lemma 7, there exists a construction
(3-expression) of a vertex-labelled copy of H ′ (for short γ′H) in which all vertices
but w1 have the same label. Assume, without loss of generality, that w1 is labelled
by 1 at the root of γH′ , and that all the other vertices of γH′ are labelled by 2. In
what follows, we show that we can obtain from γG and γH′ a (k + 1)-expression
γG′ defining our constructed graph G′. We recall that each vertex ui ∈ V (G) has
a true twin u′i in G′, and that NG′−Hr

(wi) = {ui, u′i}. Consider b = k + 1. We
define γG′ as the cwd-expression obtained from γG as follows:

• Let int(u1, i) be the leaf term of u1 in γG, for i ∈ {2, . . . , k}. Replace the
occurrence of int(u1, i) in γG with

rel1,b
(
ηi,1

(
relb,i

(
ηi,b(int(u1, i), int(u

′
1, b))

)
, rel2,b(γH′)

))
,

For i = 1 is similar (just replace the occurrences of 1 by 2 and vice versa).
• For each uj ∈ V (G) \ {u1}, if int(uj , i) is the leaf term of uj in γG, replace

the occurrence of int(uj , i) with

ηi,b

(
relb,i

(
ηi,b(int(uj , i), int(u

′
j , b))

)
, int(wj , b)

)
.

We recall that, besides being represented by leaves, each vertex is introduced
exactly once in a expression tree. Moreover, we note that the operations described
above consists in local replacements in the corresponding leaves of the expression
tree associated to γG. Thus, one can verify that γG′ defines G′. In addition, it
is straightforward that γG′ is a (k + 1)-expression, whenever k ≥ 2. Therefore,
cwd(G′) ≤ k + 1. �

3.2. Cographs

A cograph is a graph that does not contain a path of length 3 as an induced
subgraph. Alternatively, cographs are characterized by the following recursive
definition, given by Corneil et al. [5]:

• A graph on a single vertex is a cograph;
• If G1, . . . , Gk are cographs, then so is their disjoint union G1 ∪ · · · ∪Gk;
• If G is a cograph, then so is its complement G.

We note that, if G is a connected cograph on more than one vertex, then there
exist k ≥ 2 cographs G1, . . . , Gk such that G is their join G1∧· · ·∧Gk. Moreover,
it is straightforward that a graph is a cograph if and only if its clique-width is
exactly 2.

163

14 TITLE WILL BE SET BY THE PUBLISHER

A key algorithmic property of cographs is the fact that, up to isomorphism,
each cograph G can be uniquely represented by a rooted tree TG, called cotree [5],
which can be seen as a specialization of a 2-expression defining G. The leaves
of TG correspond to the vertices of G, and each internal node u of TG represents
either the disjoint union or the join operation of the respective cographs induced
by the leaves of the subtrees of TG rooted at each child of u. Another important
property is that, given a graph G, recognising G as a cograph, as well as obtaining
its respective cotree (if any), can be performed in time linear in the number of
vertices and the number of edges of G [6].

Let I = (G,W, `, r) be an instance of TCP, where G is a cograph. Since TCP
can be easily solved in linear-time if |W | < 3 or G[W] is connected, we assume
throughout this section that |W | ≥ 3 and G[W] is not connected. Moreover, we
assume thatG is connected and, therefore, is the join of k ≥ 2 cographsG1, . . . , Gk.

Lemma 9. Let G be a cograph that is the join of k ≥ 2 cographs G1, . . . , Gk, and
let W ⊆ V (G) be a terminal set such that |W | ≥ 3 and G[W] is not connected.
There exists a unique i ∈ {1, . . . , k} such that V (Gi)∩W 6= ∅. Moreover, G admits
a connection tree for W that contains exactly one router and no linker.

Proof. For the sake of contradiction, suppose that, for some i, j ∈ {1, . . . , k} with
i 6= j, V (Gi) ∩ W 6= ∅ and V (Gj) ∩ W 6= ∅. Then, let u ∈ V (Gi) ∩ W , v ∈
V (Gj) ∩ W , and let T be the graph with vertex set V (T) = W and edge set
E(T) = {uw | w ∈W \V (Gi)}∪{vw | w ∈ V (Gi)∩W}. Clearly, T is a connected
subgraph of G[W]. Therefore, there exists a unique i ∈ {1, . . . , k} such that
V (Gi) ∩W 6= ∅. This implies that V (Gj) ∩W = ∅ for some j ∈ {1, . . . , k} \ {i}.
Then, let u′ ∈ V (Gj) and T ′ be the graph with vertex set V (T ′) = {u′} ∪W and
edge set E(T ′) = {u′w | w ∈ W}. One can verify that T ′ is a connection tree of
G for W such that L(T ′) = ∅ and R(T ′) = {u′}. �

Considering the input graph G as the join of k ≥ 2 cographs G1, . . . , Gk, it
follows from Lemma 9 that TCP can be trivially solved if r ≥ 1, or V (Gi)∩W 6= ∅
and V (Gj) ∩W 6= ∅ for some i, j ∈ {1, . . . , k}, with i 6= j. Thus, we dedicate
the remainder of this section to resolve the case in which r = 0 and there exists a
unique i ∈ {1, . . . , k} such that V (Gi) ∩W 6= ∅.
Lemma 10. Let G be a cograph and W ⊆ V (G) be a non-empty terminal set. If
T is a connection tree of G for W such that R(T) = ∅ and |L(T)| is minimum,
then NT (u) ⊆W for each u ∈ L(T).

Proof. For the sake of contradiction, suppose that NT (u) 6⊆ W for some linker
u ∈ L(T). Since R(T) = ∅ and leaves(T) ⊆W , u belongs to a path P of T between
two terminal vertices w,w′ ∈ W , such that (V (P) \ {w,w′}) ∩ W = ∅. Thus,
it follows from the assumption NT (u) 6⊆ W that |V (P)| ≥ 4. Since cographs
do not contain paths of length 3 as induced subgraphs, there exists a path P ′

of G between w and w′ such that |V (P ′)| ≤ 3 and V (P ′) ⊆ V (P). Then, let
T ′ be the graph with vertex set V (T ′) = (V (T) \ V (P)) ∪ V (P ′) and edge set
E(T ′) = (E(T) \ E(P)) ∪ E(P ′). One can easily verify that T ′ is a connection

164

TITLE WILL BE SET BY THE PUBLISHER 15

tree of G for W such that R(T) = ∅ and L(T ′) (L(T), which contradicts the
minimality of |L(T)|. �

For each graph G, we let cc(G) denote the set of connected components of G,
and we let o(G) = |cc(G)| denote the number of connected components of G.

Corollary 1. Let G be a cograph, W ⊆ V (G) be a non-empty terminal set, and
let T be a connection tree of G for W such that R(T) = ∅. If |L(T)| is minimum,
then |L(T)| = o(G[W])− 1.

Proof. Since R(T) = ∅, it is straightforward that |L(T)| ≥ o(G[W]) − 1. On the
other hand, it follows from Lemma 10 that, for each u ∈ L(T), NT (u) ⊆ W . In
addition, we note that, if u ∈ L(T) and NT (u) = {w,w′}, then w and w′ belong to
distinct connected components of G[W], otherwise the path (w, u,w′) of T could
be replaced by a shortest path of G[W] between w and w′, yielding a connection
tree T ′ of G for W such that L(T ′) (L(T). Therefore, |L(T)| ≤ o(G[W])− 1. �

Corollary 1 establishes that, whenever a cograph G admits a connection tree
for a non-empty terminal set W ⊆ V (G) that does not contain routers, G admits
a connection tree T for W such that R(T) = ∅ and L(T) = o(G[W]) − 1. More
importantly, it establishes that o(G[W]) − 1 is the minimum possible number of
linkers that such a tree T can have. Therefore, if I = (G,W, `, r) is an instance of
TCP such that G is a cograph and r = 0, then ` must be at least o(G[W]) − 1,
otherwise I is certainly a no-instance of the problem.

A connection forest of a graph G for a non-empty terminal set W is a subgraph
F of G such that F is a forest and

⋃
T∈cc(F) leaves(T) ⊆W ⊆ V (F). A connection

forest F is said to be routerless if
⋃
T∈cc(F) R(T) = ∅. For each graph G and each

non-empty terminal W ⊆ V (G), we let

λ[G,W] = min{o(F) | F is a routerless connection forest of G for W}.

As a degenerate case, we define λ[G, ∅] = 0.
We note that λ[G,W] = 1 if and only if G admits a connection tree of G for W

such that R(T) = ∅.
Lemma 11. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is the
disjoint union of k ≥ 2 cographs G1, . . . , Gk, then

λ[G,W] =
∑

i∈{1,...,k}
λ[Gi, V (Gi) ∩W].

Proof. Since G is the disjoint union of G1, . . . , Gk, there is no edge between the
vertices of Gi and the vertices of Gj for any i, j ∈ {1, . . . , k}, with i 6= j. Thus,
λ[G,W] ≥∑i∈{1,...,k} λ[Gi, V (Gi)∩W]. On the other hand, for each i ∈ {1, . . . , k}
with V (Gi)∩W 6= ∅, let Fi be a routerless connection forests of Gi for V (Gi)∩W
with the minimum number of connected components. One can readily verify that
F = F1 ∪ · · · ∪ Fk is a routerless connection forests of G for W . Therefore,
λ[G,W] ≤∑i∈{1,...,k} λ[Gi, V (Gi) ∩W]. �

165

16 TITLE WILL BE SET BY THE PUBLISHER

Lemma 12. Let G be a cograph and W ⊆ V (G) be a terminal set. If G is the
join of k ≥ 2 cographs G1, . . . , Gk and there exists a unique i ∈ {1, . . . , k} such
that V (Gi) ∩W 6= ∅, then

λ[G,W] = max{1, λ[Gi,W]− n+ ni},

where n = |V (G)| and ni = |V (Gi)|.
Proof. Let F be a routerless connection forest of G for W . Since W ⊆ V (Gi),
dF (u) = 2 for each u ∈ V (F)\V (Gi). This implies that, for each u ∈ V (G)\V (Gi),
there at most two distinct connected components of Gi that are connected in
F by u. In other words, if T is the connected component of F that contains
u ∈ V (G) \ V (Gi), then o(T − u) ≤ 2. Thus,

λ[G,W] ≥ max{1, λ[Gi,W]− |V (G) \ V (Gi)|}.

On the other hand, let Fi be a routerless connection forest of Gi for W with
the minimum number of connected components, i.e. o(Fi) = λ[Gi,W], and let
S ⊆ V (G) \ V (Gi) such that |S| = min{|V (G) \ V (Gi)|, o(Fi) − 1}. Also, let
T ∈ cc(Fi), wT ∈ V (T) ∩ W and α : S → cc(Fi) \ {T} be an injective map.
Additionally, let wH ∈ V (H) ∩W for each H ∈ cc(Fi) \ {T}. We define F as the
graph (see Figure 4) with vertex set V (F) = V (Fi) ∪ S and edge set

E(F) = E(Fi) ∪ {wTu, uwH | u ∈ S,H ∈ cc(Fi) \ {T}, α(u) = H}.

Figure 4. Graph F , with S = {u1, . . . , u|S|} and α(ul) = Hl for
each l ∈ {1, . . . , |S|}.

One can verify that F is as routerless connection forest of G for W such that
o(F) = λ[Gi,W]− |S| = max{1, λ[Gi,W]− |V (G) \ V (Gi)|}. This implies that

λ[G,W] ≤ max{1, λ[Gi,W]− n+ ni},

concluding the proof. �
Theorem 5. TCP is linear-time solvable on cographs.

166

TITLE WILL BE SET BY THE PUBLISHER 17

Proof. Let I = (G,W, `, r) be an instance of TCP, where G is a cograph on n
vertices and m edges. Assume without loss of generality that |W | ≥ 3, G is
connected but G[W] is not connected. Moreover, based on Lemma 9 and on
Corollary 1, assume that r = 0 and ` ≥ o(G[W]), respectively. Then, compute
λ[G,W] following the rules described below:

λ[G,W] =








case 1. |V (G)| = 1 :

0 if V (G) ∩W = ∅,
1 otherwise;

[
case 2. G = G1 ∪ · · · ∪Gk, for some k ≥ 2 :∑

i∈{1,...,k} λ[Gi, V (Gi) ∩W];




case 3. G = G1 ∧ · · · ∧Gk, for some k ≥ 2 :

0 if ∀ i ∈ {1, . . . , k}, V (Gi) ∩W = ∅,
1 if ∃ i, j ∈ {1, . . . , k}, i 6= j, V (Gi) ∩W 6= ∅ and V (Gj) ∩W 6= ∅,
max{1, λ[Gi,W]− n+ ni} if ∃! i ∈ {1, . . . , k}, V (Gi) ∩W 6= ∅,

where n = |V (G)| and ni = |V (Gi)|.
The correctness of the rules follows from Lemmas 11 and 12. Since G admits

a routerless connection tree if and only if λ[G,W] = 1, we have that I is a yes-
instance of TCP if and only if λ[G,W] = 1.

Now, we analyse the time complexity of this algorithm. First, we note that
λ[G,W] can be computed in a bottom-up manner, according to the post-order
traversal of the cotree TG associated with G, using a dynamic programming matrix
indexed by the nodes of TG. Moreover, we recall that TG can be obtained in time
O (n+m) cf. [6], and that, by definition, the number of nodes of TG is O (n).
Additionally, we note that, before computing λ[G,W], TG can be preprocessed
in time O (n) so that each node u of TG is associated with a flag which informs
whether or not V (Gu)∩W 6= ∅, where Gu denotes the subgraph of G corresponding
to the subtree T uG of TG rooted at u, i.e. Gu is the subgraph of G induced by the
leaves of T uG . Thus, one can verify that, for each node u of TG, the cell related
to u of our dynamic programming matrix, which corresponds to λ[Gu, V (Gu)∩W],
can be computed in time O (dTG(u)). Since TG is a tree on O (n) nodes, we have
that

∑
u∈V (TG) dTG(u) = O (n) . Therefore, λ[G,W] can be computed in linear

time. �

4. Graphs of bounded maximum degree

In this section, we analyse the complexity of TCP when restricted to graphs
of bounded maximum degree. More specifically, we prove that TCP remains NP-
complete on graphs of maximum degree 3 even if either the parameter ` ≥ 0 or
the parameter r ≥ 0 is fixed. In particular, for fixed r ≥ 0, we show that TCP is
NP-complete on graphs of maximum degree 3 that are planar.

It is worth mentioning that, if the input graph G is connected and has maximum
degree at most 2, then G is either a path or a cycle, and consequently TCP can

167

18 TITLE WILL BE SET BY THE PUBLISHER

be trivially solved in polynomial-time, regardless of ` or r. Thus, we obtain that
our results establish an NP-complete versus polynomial-time solvable dichotomy
for TCP with respect to the maximum degree of the input graph.

Another interesting fact about our results is that they separate the complexity
of TCP from the complexity of its strict variant, S-TCP. Indeed, while we prove
that, for each fixed ` ≥ 0, TCP is NP-complete on graphs of maximum degree 3,
S-TCP was proved to be polynomial-time solvable on graphs of maximum degree
3 even if ` ≥ 0 is fixed [26].

4.1. Fixed number of linkers

First, we consider the case in which the parameter ` ≥ 0 is fixed:

Theorem 6. For each ` ≥ 0, TCP remains NP-complete when restricted to graphs
of maximum degree 3.

To prove Theorem 6, we present a polynomial-time reduction from an NP-
complete variant of 3-SAT called 3-SAT(3) cf. [28]. The 3-SAT(3) problem has as
input a set X of boolean variables and a set C of clauses over X that satisfy the
following conditions:

• Each clause in C has two or three distinct literals;
• Each variable in X appears exactly twice positive and once negative in the

clauses belonging to C.
The problem then asks whether there exists a truth assignment α : X → {false, true}
such that every clause in C has at least one true literal under α.

Construction 4 (Reduction from 3-SAT(3) to TCP on Graphs of Maximum
Degree 3). Let I = (X, C) be an instance of 3-SAT(3), with variable set X =
{x1, x2, . . . , xp} and clause set C = {C1, C2, . . . , Cq}, and let ` be a non-negative
integer. We let G be the graph obtained from I and ` as follows (see Figure 5a):

• Create the vertices u1, u2, . . . , u` and, for each i ∈ {1, 2, . . . , `−1}, add the
edges uiui+1; moreover, create the vertices wI and vI and add the edges
wIu1 and u`vI , originating the path PI = (wI , u1, . . . , u`, vI);

• For each variable xi ∈ X, create the gadget Gi such that

V (Gi) = {w1
i , w

2
i , t

1
i , t

2
i , fi} and E(Gi) = {w1

i t
1
i , t

1
i t

2
i , t

2
iw

2
i , w

2
i fi, fiw

1
i };

• Create a complete binary tree TI , rooted at vI , whose leaves are the ver-
tices w1

1, . . . , w
1
p;

• For each clause Cj ∈ C, create the vertices v1j , v2j and v3j , and add the

edges v1j v
2
j , v2j v

3
j and v3j v

1
j ;

• For each clause Cj ∈ C, add the edge tai v
b
j if the b-th literal belonging

to Cj corresponds to the a-th occurrence in I of the positive literal xi,
for xi ∈ X, a ∈ {1, 2} and b ∈ {1, . . . , |Ci|}; on the other hand, add the
edge fiv

b
j if the b-th literal belonging to Cj corresponds to the (single)

occurrence in I of the negative literal xi, for xi ∈ X and b ∈ {1, . . . , |Cj |}.

168

TITLE WILL BE SET BY THE PUBLISHER 19

Clearly, G is a graph of maximum degree 3. Then, we let g(I, `) = (G,W, `, r) be
the instance of TCP such that W = {wI}∪V (TI)∪{w1

i , w
2
i | xi ∈ X}∪{v1j , v2j , v3j |

Cj ∈ C} and r = 2p.

Lemma 13. Let I = (X, C) be an instance of 3-SAT(3). For each ` ≥ 0, I is a yes-
instance of 3-SAT(3) if and only if the instance g(I, `) described in Construction 4
is a yes instance of TCP.

Proof. Assume that X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. Additionally,
assume that g(I, `) = (G,W, `, r).

First, suppose that there exists a truth assignment α : X → {false, true} such
that every clause belonging to C has at least one true literal under α. Then, let S
be the vertex set defined as follows

S = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi | xi ∈ X,α(xi) = false}
∪ {w1

i , w
2
i | xi ∈ X} ∪ {v1j , v2j , v3j | Cj ∈ C} ∪ V (PI) ∪ V (TI),

and let G[S] be the subgraph of G induced by S. We note that G[S] is connected
but may contain cycles. Thus, let T be a spanning tree subgraph of G[S] that
contains all edges of G[S] except for possibly not containing some edges between
the vertices v1j , v2j and v3j , for Cj ∈ C. In other words, T is a spanning tree

subgraph of G[S] such that E(T) ⊇ E(G[S]) \ {vaj vbj | a, b ∈ {1, 2, 3}, Cj ∈ C}.
It is not hard to check that T is a connection tree of G for W with linker set
L(T) = {u1, . . . , u`} and router set

R(T) = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi | xi ∈ X,α(xi) = false}.

Therefore, g(I, `) is a yes-instance of TCP.
Figure 5 depicts the instance g(I, `) = (G,W, `, r) of TCP, obtained from an

instance I = (X, C) of 3-SAT(3) and a non-negative integer `. It also depicts a con-
nection tree T of G for W , obtained from a truth assignment α : X → {false, true}.

Conversely, suppose that g(I, `) is a yes-instance of TCP, and let T be a con-
nection tree of G for W such |L(T)| ≤ ` and |R(T)| ≤ 2p. We note that the path
PI must be in T , since every path of G between the terminal vertex wI and any
other terminal vertex w ∈W \ {wI} contains all the vertices of PI . Consequently,
the graph T ′ = T − PI cannot contain any linker, and all non-terminal vertices
of T ′ must be routers. This, along with the fact that ∆(G) = 3, implies that
NT (v) = NG(v) for each v ∈ V (T ′) \ W . Hence, if t1i ∈ V (T) or t2i ∈ V (T),
then w1

i , t
2
i ∈ NT (t1i) and w2

i , t
1
i ∈ NT (t2i). Analogously, if fi ∈ V (T), then

w1
i , w

2
i ∈ NT (fi). Thus, since T is acyclic, we have that, for each xi ∈ X, either

t1i , t
2
i ∈ V (T) and fi 6∈ V (T), or t1i , t

2
i 6∈ V (T) and fi ∈ V (T). Then, we define a

truth assignment α : X → {false, true} as follows: for each xi ∈ X, α(xi) = false if
and only if fi ∈ V (T). We note that, for each Cj ∈ C, every path of G between the
terminal vertices v1j , v

2
j , v

3
j and any other terminal vertex w ∈W \{v1j , v2j , v3j } must

contain one of the vertices t1i , t
2
i , fi for some xi ∈ X. Moreover, by supposition,

169

20 TITLE WILL BE SET BY THE PUBLISHER

(a) (b)

Figure 5. (a) Graph G and terminal set W (blue square ver-
tices) of the instance g(I, `) of TCP obtained from the instance
I = (X, C) of 3-SAT(3), where X = {x1, x2, x3} and C = {C1 =
{x1, x2, x3}, C2 = {x1, x2, x3}, C3 = {x1, x2, x3}}, and from a
non-negative integer `. (b) Connection tree T of G for W , ob-
tained from the truth assignment α : X → {false, true} such that
α(x1) = true, α(x2) = true and α(x3) = false.

V (T) ⊇ W ⊇ {v1j , v2j , v3j | Cj ∈ C}. Consequently, every clause in C has at least
one true literal under α. Therefore, I is a yes-instance of 3-SAT(3). �

4.2. Fixed number of routers

Now, we consider the case in which the parameter r ≥ 0 is fixed:

Theorem 7. For each r ≥ 0, TCP remains NP-complete when restricted to planar
graphs of maximum degree 3.

To prove Theorem 7, we first show through Propositions 1 and 2 that the
st-Hamiltonian path problem is NP-complete on planar graphs of maximum
degree 3. Then, we present a polynomial-time reduction from this particular case
of st-Hamiltonian path to TCP. The st-Hamiltonian path problem is the
variant of the Hamiltonian path problem that asks whether the input graph has
a Hamiltonian path between two given vertices s and t.

Next proposition is an intermediate step in order to show the NP-completeness
of st-Hamiltonian path on planar graphs of maximum degree 3.

Proposition 1. Hamiltonian cycle remains NP-complete when restricted to
planar graphs of maximum degree 3 that have at least two adjacent vertices of
degree 2 each.

170

TITLE WILL BE SET BY THE PUBLISHER 21

Proof. Itai et al. [19] proved that Hamiltonian cycle is NP-complete on planar
graphs of maximum degree 3. Based on their proof (see Lemma 2.1 [19]), we can
suppose without loss of generality that the input graph G has at least one vertex
of degree 2. Thus, let u ∈ V (G) be such a vertex, and let e = uv be an edge that
has u and v as endpoints, for some v ∈ V (G) \ {u}. Then, we define H as the
graph obtained from G by subdividing e, i.e. by removing e, adding a new vertex
ue and adding the edges uue and uev. We note that H is a graph of maximum
degree 3 that has at least two adjacent vertices of degree 2 each, namely u and ue.
Furthermore, it is immediate that G has a Hamiltonian cycle if and only if H has
a Hamiltonian cycle. �

Proposition 2. st-Hamiltonian path remains NP-complete when restricted to
planar graphs of maximum degree 3 in which s and t have degree 1 each.

Proof. Let G be a planar graph of maximum degree 3. Based on Proposition 1,
assume without loss of generality that G contains two vertices u, v ∈ V (G) such
that uv ∈ E(G) and dG(u) = dG(v) = 2. Then, let H be the graph obtained from
G by adding two new vertices s and t, and by adding the edges su and vt. We
note that H is a graph of maximum degree 3 and that s and t have degree 1 in
H each. Furthermore, it is straightforward that G has a Hamiltonian cycle if and
only if H has a st-Hamiltonian path. �

Below, we finally describe our polynomial-time reduction from st-Hamiltonian
path to TCP. We note that this reduction is slightly similar to the one described in
Construction 3 to prove the NP-completeness of TCP on strongly chordal graphs.

Construction 5 (Reduction from st-Hamiltonian path to TCP on Planar
Graphs of Maximum Degree 3). Let G be a planar graph of maximum degree 3
and s, t ∈ V (G) be distinct vertices of G. Based on Proposition 2, assume without
loss of generality that dG(s) = dG(t) = 1. Moreover, assume that every vertex of G
different from s and t has degree at least 2, otherwise G would certainly not admit
a st-Hamiltonian path, i.e. a Hamiltonian path between s and t. Also, assume that
V (G) = {u1, . . . , un}, for some positive integer n, where s = u1 and t = un. Let r
be a non-negative integer. For each ui ∈ V (G) \ {s, t}, let αi : NG(ui)→ |NG(ui)|
be the bijection such that, for each two distinct vertices uj1 , uj2 ∈ NG(ui), we have
that αi(uj1) < αi(uj2) if and only if j1 < j2. We let G′ be the graph obtained
from G, s, t and r as follows (see Figure 7):

• Add all vertices of G to G′;
• For each vertex ui ∈ V (G) of degree 2 in G, add new vertices v1i , v

2
i , u

1
i , u

2
i

and add the edges uiv
1
i , uiv

2
i , v1i u

1
i and v2i u

2
i (see Figure 6a);

• For each vertex ui ∈ V (G) of degree 3 inG, add new vertices v1i , v
2
i , u

1
i , u

2
i , u

3
i

and add the edges uiv
1
i , uiv

2
i , v1i u

2
i , v

2
i u

2
i , v

1
i u

1
i and v2i u

3
i ; (see Figure 6b)

• For each vertex ui ∈ V (G) and each vertex uj ∈ NG(ui), add the edges
uai u

b
j , where a = αi(uj) and b = αj(ui);

• If r ≥ 1, create the gadget Hr and the terminal set Wr described in
Construction 2, and add the edge ρrs; otherwise, define Wr = ∅.

171

22 TITLE WILL BE SET BY THE PUBLISHER

(a) dG(ui) = 2 (b) dG(ui) = 3

Figure 6. (a) Case in which dG(ui) = 2: vertices v1i , v
2
i , u

1
i , u

2
i .

(b) Case in which dG(ui) = 3: vertices v1i , v
2
i , u

1
i , u

2
i , u

3
i .

For each ui ∈ V (G), let G′i be the subgraph of G′ illustrated in Figure 6, i.e.

the subgraph of G′ induced by {ui, v1i , v2i }∪{uji | j ∈ {1, . . . , dG(ui)}}. Note that,
Hr and, for each ui ∈ V (G), G′i are planar. Additionally, it is not hard to verify
that the input graph G is isomorphic to the graph resulting from G′ − Hr by
identifying every subgraph G′i into the vertex ui. Therefore, since G is planar, we
have that G′ is planar as well. Furthermore, it straightforward that G′ is a graph
of maximum degree 3. Then, we let g(G, s, t, r) = (G′,W, `, r) be the instance of
TCP such that W = V (G) ∪Wr and ` = 4n− 4.

(a) Graph G (b) Graph G′

Figure 7. (a) Graph G of maximum degree 3, with two distinct
vertices s, t ∈ V (G) such that dG(s) = dG(t) = 1. (b) Graph
G′ with terminal set W (blue square vertices) of the instance
g(G, s, t, r) of TCP described in Construction 5, obtained from
G, the vertices s and t, and a non-negative integer r.

Lemma 14. Let G be a graph of maximum degree 3 and s, t ∈ V (G) be two distinct
vertices of G. Assume that s and t have degree 1 in G each. For each r ≥ 0, G

172

TITLE WILL BE SET BY THE PUBLISHER 23

admits a st-Hamiltonian path if and only if the instance g(G, s, t, r) described in
Construction 5 is a yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un}, where s = u1 and t = un, and that
g(G, s, t, r) = (G′,W, `, r). Additionally, for simplicity, consider Wr = V (Hr) =
E(Hr) = ∅ if r = 0.

First, suppose that there exists in G a Hamiltonian path

P = (uj1 , uj2 , . . . , ujn−1
, ujn)

such that s = uj1 and t = ujn . Then, let S be the vertex set defined as follows:

S = V (Hr) ∪ V (P) ∪ {v1i , v2i | i ∈ {2, . . . , n− 1}} ∪ {uαj2
(s)

j2
, u
αjn−1

(t)

jn−1
}

∪ {uaji , ubji+1
| a = αji(uji+1

), b = αji+1
(uji), i ∈ {2, . . . , n− 2}},

where αi denotes the bijection from NG(ui) to |NG(ui)| described in Construc-
tion 5. We note that G′[S] is connected but may contain cycles. More precisely,
every cycle of G′[S] is of the form (ui, v

1
i , u

2
i , v

2
i , ui), and it exists if and only if

dG(ui) = 3 and either S ⊇ {u1i , u2i } or S ⊇ {u2i , u3i }, for ui ∈ V (G) \ {s, t}.
Thus, we let T be the graph obtained from G′[S] by removing, for each vertex
ui ∈ V (G)\{s, t} with dG(ui) = 3, the edge v1i u

2
i if S ⊇ {u1i , u2i }, or the edge v2i u

2
i

if S ⊇ {u2i , u3i }. One can verify that T is a connection tree of G′ for W such that
L(T) = S \ (V (Hr) ∪ V (G)) and R(T) = {ρ1, . . . , ρr}. Therefore, g(G, s, t, r) is a
yes-instance of TCP.

Consider the graph G depicted in Figure 7a and the graph G′ and the terminal
set W depicted in Figure 7b, obtained from G and a non-negative integer r. Fig-
ure 8 illustrates a connection tree T of G′ for W obtained from the st-Hamiltonian
path of G depicted in Figure 8a.

Conversely, suppose that g(G, s, t, r) is a yes-instance of TCP, and let T be a
connection tree of G′ for W such that |L(T)| ≤ 4n − 4 and |R(T)| ≤ r. We note
that R(T) = {ρ1, . . . , ρr}. Consequently, T ′ = T −Hr cannot contain any router,
and all non-terminal vertices of T ′ must be linkers. Moreover, by construction, s
and t have degree 1 in T ′ each. This implies that the vertices u2, . . . , un−1 have
degree exactly 2 in T ′ each, otherwise T would not be connected or W 6⊆ V (T).
Hence, T ′ consists in a path P ′ between s and t of the form

P ′ = (s, ua2j2 , v
c2
j2
, uj2 , v

c′2
j2
, ub2j2 , . . . , u

an−1

jn−1
, v
cn−1

jn−1
, ujn−1

, v
c′n−1

jn−1
, u
bn−1

jn−1
, t),

where, for each i ∈ {2, . . . , n − 2}, ai = αji(uji−1
), bi = αji(uji+1

), and ci, c
′
i ∈

{1, 2} with ci 6= c′i. Therefore, one can verify that (s, uj2 , . . . , ujn−1
, t) is a st-

Hamiltonian path of G. �

173

24 TITLE WILL BE SET BY THE PUBLISHER

(a) st-Hamiltonian
path P

(b) Connection tree T

Figure 8. (a) st-Hamiltonian path P of the graph G depicted in
Figure 7a. (b) Connection tree T of the graph G′ for the terminal
set W depicted in Figure 7b, obtained from P .

5. Concluding remarks

We conclude this work by posing some open questions. First, we ask about the
existence of a graph class G on which Steiner tree is polynomial-time solvable
while TCP remains NP-complete for fixed `. We have shown that, on strongly
chordal graphs, TCP is NP-complete for each r ≥ 0, whereas Steiner tree
is known to be polynomial-time solvable. However, the complexity of TCP on
strongly chordal graphs for fixed ` has not been settled yet. Analogously, we ask
whether there exists a graph class G on which TCP is polynomial-time solvable for
fixed ` while Steiner tree remains NP-complete. We have shown that, on split
graphs, TCP is polynomial-time solvable for fixed r ≥ 1, whereas Steiner tree
is known to be NP-complete. However, up to our knowledge, for fixed `, there is
no known example of such a separating class.

In addition, it is worth mentioning that, in our tractability proof of TCP on
split graphs, only the cases in which r ≥ 1 or W ∩ K 6= ∅ are considered. Such
hypotheses are imperative in our argumentation so as to ensure the connectivity
of the sought connection tree. Thus, we leave as an open question whether TCP
can be solved in polynomial-time on split graphs when r = 0 and W ∩K = ∅.

We also leave as an open question whether TCP parameterized by clique-width
is in XP. Through a parameterized-reduction from Hamiltonian path, we have

174

TITLE WILL BE SET BY THE PUBLISHER 25

shown that TCP parameterized by clique-width is W[1]-hard. Nevertheless, the
question whether TCP is in XP remains unsettled.

Finally, we ask about the complexity of TCP parameterized by the number
of terminal vertices. Even though it is well-known that Steiner tree parame-
terized by the number of terminal vertices is in FPT [12], the complexity of the
corresponding parameterization of TCP is widely open.

References

[1] Benjamin Bergougnoux and Mamadou Kanté. Fast exact algorithms for some connectivity

problems parameterized by clique-width. Theoretical Computer Science, 782:30 – 53, 2019.

[2] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
möbius: Fast subset convolution. In Proceedings of the Thirty-Ninth Annual ACM Sym-

posium on Theory of Computing, STOC ’07, page 67–74, New York, NY, USA, 2007. Asso-
ciation for Computing Machinery.

[3] A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer

London, 2008.
[4] Charles J. Colbourn and Lorna K. Stewart. Permutation graphs: connected domination and

Steiner trees. Discrete Mathematics, 86(1-3):179–189, 1990.

[5] Derek G. Corneil, Helmut Lerchs, and Stewart L. Burlingham. Complement reducible
graphs. Discrete Applied Mathematics, 3(3):163–174, 1981.

[6] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition algorithm for

cographs. SIAM Journal on Computing, 14(4):926–934, 1985.
[7] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph

grammars. Journal of Computer and System Sciences, 46(2):218–270, 1993.

[8] Marek Cygan, Marcin Pilipczuk, Micha l Pilipczuk, and Jakub Onufry Wojtaszczyk. Kernel-
ization hardness of connectivity problems in d-degenerate graphs. Discrete Applied Mathe-

matics, 160(15):2131 – 2141, 2012.

[9] Alessandro D’Atri and Marina Moscarini. Distance-hereditary graphs, Steiner trees, and
connected domination. SIAM Journal on Computing, 17(3):521–538, 1988.

[10] M. C. Dourado, R. A. Oliveira, F. Protti, and U. S. Souza. Design of connection networks
with bounded number of non-terminal vertices. In Proceedings of V Latin-American Work-

shop on Cliques in Graphs, volume 42 of Matemática Contemporânea, pages 39–47, Buenos

Aires, 2014. SBM.
[11] Mitre C. Dourado, Rodolfo A. Oliveira, Fábio Protti, and Uéverton S. Souza. Conexão

de terminais com número restrito de roteadores e elos. In Proceedings of XLVI Simpósio

Brasileiro de Pesquisa Operacional, pages 2965–2976, 2014.
[12] Stuart E. Dreyfus and Robert A. Wagner. The Steiner problem in graphs. Networks,

1(3):195–207, 1971.

[13] Martin Farber. Characterizations of strongly chordal graphs. Discrete Mathematics,
43(2):173 – 189, 1983.

[14] Michael R Fellows, Frances A Rosamond, Udi Rotics, and Stefan Szeider. Clique-width is

np-complete. SIAM Journal on Discrete Mathematics, 23(2):909–939, 2009.
[15] Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-width: on

the price of generality. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 825–834. SIAM, 2009.

[16] Michael R. Garey and David S. Johnson. The rectilinear Steiner tree problem is NP-

complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.
[17] Luisa Gargano, Mikael Hammar, Pavol Hell, Ladislav Stacho, and Ugo Vaccaro. Spanning

spiders and light-splitting switches. Discrete Mathematics, 285(1):83 – 95, 2004.

[18] Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner tree problem, volume 53
of Annals of Discrete Mathematics. Elsevier, 1992.

175

26 TITLE WILL BE SET BY THE PUBLISHER

[19] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid

graphs. SIAM Journal on Computing, 11(4):676–686, nov 1982.
[20] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,

Boston, MA, 1972.

[21] Guohui Lin and Guoliang Xue. On the terminal Steiner tree problem. Information Processing
Letters, 84(2):103–107, 2002.

[22] Giordano Da Lozzo and Ignaz Rutter. Strengthening hardness results to 3-connected planar

graphs. arXiv preprint arXiv:1607.02346, 2016.
[23] Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee. The full Steiner tree problem.

Theoretical Computer Science, 306(1-3):55–67, 2003.

[24] Alexsander A. Melo, Celina M. H. Figueiredo, and Uéverton S. Souza. Connecting terminals
using at most one router. In Proceedings of VII Latin-American Workshop on Cliques in

Graphs, volume 45 of Matemática Contemporânea, pages 49–57. SBM, 2017.
[25] Alexsander A. Melo, Celina M. H. Figueiredo, and Uéverton S. Souza. On undirected two-

commodity integral flow, disjoint paths and strict terminal connection problems. Networks,

77(4):559–571, 2021.
[26] Alexsander A. Melo, Celina M. H. Figueiredo, and Uéverton S. Souza. A multivariate anal-

ysis of the strict terminal connection problem. Journal of Computer and System Sciences,

111:22–41, 2020.
[27] Alexsander A. Melo, Celina M. H. Figueiredo, and Uéverton S. Souza. On the terminal

connection problem. In Proceedings of 47th International Conference on Current Trends

in Theory and Practice of Computer Science, volume 12607 of Lecture Notes in Computer
Science, pages 278–292. Springer-Verlag New York, Inc., 2021.

[28] Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156(1-

3):291–298, 1996.
[29] Haiko Müller and Andreas Brandstädt. The NP-completeness of Steiner tree and dominating

set for chordal bipartite graphs. Theoretical Computer Science, 53(2-3):257–265, 1987.
[30] Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,

65(4):868–884, 2013.

[31] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Dominique Barth. Steiner problems
with limited number of branching nodes. In Proceedings of 20th International Colloquium

on Structural Information and Communication Complexity, volume 8179 of Lecture Notes

in Computer Science, pages 310–321. Springer-Verlag New York, Inc., 2013.
[32] Dimitri Watel, Marc-Antoine Weisser, Cédric Bentz, and Dominique Barth. Directed Steiner

trees with diffusion costs. Journal of Combinatorial Optimization, 32(4):1089–1106, 2016.

[33] Kevin White, Martin Farber, and William Pulleyblank. Steiner trees, connected domination
and strongly chordal graphs. Networks, 15(1):109–124, 1985.

Communicated by (The editor will be set by the publisher).

...

176

Appendix E

Manuscript: Maximum Cut on

Interval Graphs of Interval Count

Four is NP-complete

This appendix contains the manuscript:

Celina M. H. de Figueiredo, Alexsander A. de Melo, Fabiano de Oliveira, Ana Silva.

Maximum Cut on Interval Graphs of Interval Count Four is NP-complete. Pre-

sented in the 46th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS 2021) [35], and submitted in December 2021 to Discrete &

Computational Geometry.

177

https://doi.org/10.4230/LIPIcs.MFCS.2021.38

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Springer Nature 2021 LATEX template

Maximum cut on interval graphs of interval

count four is NP-complete

Celina M.H. de Figueiredo1, Alexsander A. de
Melo1, Fabiano S. Oliveira2 and Ana Silva3*†

1Department, Universidade Federal do Rio de Janeiro, Street,
Rio de Janeiro, 100190, Rio de Janeiro, Brazil.

2Department, Universidade do Estado do Rio de Janeiro, Street,
City, 10587, Rio de Janeiro, Brazil.

3*Departamento de Matemática - Centro de Ciências,
Universidade Federal do Ceará, Av. Mister Hull s/n - Bloco 914,

Fortaleza, 60455-760, Ceará, Brazil.

*Corresponding author(s). E-mail(s): anasilva@mat.ufc.br;
Contributing authors: celina@cos.ufrj.br; aamelo@cos.ufrj.br;

fabiano.oliveira@ime.uerj.br;
†These authors contributed equally to this work.

Abstract

The computational complexity of the MaxCut problem restricted to
interval graphs has been open since the 80’s, being one of the problems
proposed by Johnson on his Ongoing Guide to NP-completeness, and has
been settled as NP-complete only recently by Adhikary, Bose, Mukherjee
and Roy. On the other hand, many flawed proofs of polynomiality for
MaxCut on the more restrictive class of unit/proper interval graphs (or
graphs with interval count 1) have been presented along the years, and
the classification of the problem is still unknown. In this paper, we present
the first NP-completeness proof for MaxCut when restricted to interval
graphs with bounded interval count, namely graphs with interval count 4.

Keywords: maximum cut, interval graphs, interval lengths, interval count,
NP-complete.

MSC Classification: 68Q17 , 68Q25 , 68R10 , 05C62

1

178

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

Springer Nature 2021 LATEX template

2 MaxCut of Interval graphs

1 Introduction

A cut is a partition of the vertex set of a graph into two disjoint parts and
the maximum cut problem (denoted MaxCut for short) aims to determine
a cut with the maximum number of edges for which each endpoint is in a
distinct part. The decision problem MaxCut is known to be NP-complete
since the seventies [1], and only recently its restriction to interval graphs has
been announced to be hard [2], settling a long-standing open problem that
appeared in the 1985 column of the Ongoing Guide to NP -completeness by
David S. Johnson [3]. We refer the reader to a revised version of the table in [4],
where one can also find a parameterized complexity version of said table.

An interval model is a family of closed intervals of the real line. A graph
is an interval graph if there exists an interval model, for which each interval
corresponds to a vertex of the graph, such that distinct vertices are adjacent
in the graph if and only if the corresponding intervals intersect. Ronald L.
Graham proposed in the 80’s the study of the interval count of an interval
graph as the smallest number of interval lengths used by an interval model
of the graph. Interval graphs having interval count 1 are called unit inter-
vals (these are also called proper interval, or indifference). Understanding the
interval count, besides being an interesting and challenging problem by itself,
can be also of value for the investigation of problems that are hard for general
interval graphs, and easy for unit interval graphs (e.g. geodetic number [5, 6],
optimal linear arrangement [7, 8], sum coloring [9, 10]). The positive results for
unit interval graphs usually take advantage of the fact that a representation
for these graphs can be found in linear time [11, 12]. Surprisingly, the recog-
nition of interval graphs with interval count k is open, even for k = 2 [13].
Nevertheless, another generalization of unit interval graphs has been recently
introduced which might be more promising in this aspect. These graphs are
called k-nested interval graphs, for which an efficient recognition algorithm has
firstly appeared in [14]. Recently, a linear time algorithm has been devised
in [15].

In the same way that MaxCut on interval graphs has evaded being solved
for so long, the community has been puzzled by the restriction to unit interval
graphs. Indeed, two attempts at solving it in polynomial time were proposed
in [16, 17] just to be disproved closely after [18, 19]. In this paper, we give the
first classification that bounds the interval count, namely, we prove that Max-
Cut is NP-complete when restricted to interval graphs of interval count 4.
This also implies NP -completeness for the newly generalized class of 4-nested
graphs, and opens the search for a full polynomial/NP-complete dichotomy
classification in terms of the interval count. It can still happen that the prob-
lem is hard even on graphs of interval count 1. We contribute towards filling
the complexity gap between interval and unit interval graphs. We have com-
municated the result at the MFCS 2021 conference [20], and previous versions
of the full proof appeared in the ArXiv [21]. The present paper contains the
improved and much shorter full proof.

179

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 3

Next, we establish basic definitions and notation. Section 2 describes our
reduction and Section 3 discusses the interval count of the interval graph
constructed in [2].

1.1 Preliminaries

In this work, all graphs considered are simple. For missing definitions and
notation of graph theory, we refer to [22]. For a comprehensive study of interval
graphs, we refer to [23].

Let G be a graph. Let X and Y be two disjoint subsets of V (G). We
let EG(X,Y) be the set of edges of G with an endpoint in X and the other
endpoint in Y . A cut of G is a partition of V (G) into two parts A,B ⊆ V (G),
denoted by [A,B]; the edge set EG(A,B) is called the cut-set of G associated
with [A,B]. For each two vertices u, v ∈ V (G), we say that u and v are in a
same part of [A,B] if either {u, v} ⊆ A or {u, v} ⊆ B; otherwise, we say that
u and v are in opposite parts of [A,B]. Denote by mc(G) the maximum size of
a cut-set of G. The MaxCut problem has as input a graph G and a positive
integer k, and it asks whether mc(G) ≥ k.

Let I ⊆ R be a closed interval of the real line. We let `(I) and r(I) denote
respectively the minimum and maximum points of I, which we call the left
and the right endpoints of I, respectively. We denote a closed interval I by
[`(I), r(I)]. We say that an interval I precedes an interval I ′ if r(I) < `(I ′).
The length of an interval I is defined as |I| = r(I)− `(I). An interval model is
a finite multiset M of intervals. The interval count of an interval model M,
denoted by ic(M), is defined as the number of distinct lengths of the intervals
in M. Let G be a graph and M be an interval model. An M-representation
of G is a bijection φ : V (G) → M such that, for every two distinct vertices
u, v ∈ V (G), we have that uv ∈ E(G) if and only if φ(u)∩φ(v) 6= ∅. If such an
M-representation exists, we say that M is an interval model of G. We note
that a graph may have either no interval model or arbitrarily many distinct
interval models. A graph is called an interval graph if it has an interval model.
The interval count of an interval graph G, denoted by ic(G), is defined as
ic(G) = min{ic(M) : M is an interval model of G}. An interval graph is called
a unit interval graph if its interval count is equal to 1.

Note that, for every interval model M, there exists a unique (up to iso-
morphism) graph that admits an M-representation. Thus, for every interval
model M = {I1, . . . , In}, we let GM be the graph with vertex set V (GM) =
{1, . . . , n} and edge set E(GM) = {ij : Ii, Ij ∈ M, Ii ∩ Ij 6= ∅, i 6= j}. Since
GM is uniquely determined (up to isomorphism) from M, in what follows we
may make an abuse of language and use graph terminologies to describe prop-
erties related to the intervals in M. Two intervals Ii, Ij ∈ M are said to be
true twins in GM if they have the same closed neighborhood in GM.

2 Our reduction

The following theorem is the main contribution of this work:

180

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Springer Nature 2021 LATEX template

4 MaxCut of Interval graphs

Theorem 1 MaxCut is NP-complete on interval graphs of interval count 4.

This result is a stronger version of that of Adhikary et al. [2]. To prove
Theorem 1, we present a polynomial-time reduction from MaxCut on cubic
graphs, which is known to be NP-complete [24]. Since our proof is based on
that of Adhikary et al., we start by presenting some important properties of
their key gadget.

2.1 Grained gadget

The interval graph constructed in the reduction of [2] is strongly based on
two types of gadgets, called V-gadgets and E-gadgets. In fact, these gadgets
have the same structure except for the number of intervals of certain kinds
contained in each of them. In this subsection, we present a generalization of
such gadgets, rewriting their key properties to suit our purposes. In order to
discuss the interval count of the reduction of [2], we describe it in details in
Section 3.

Let x and y be two positive integers. An (x, y)-grained gadget is an interval
model H formed by y long intervals (called left long) intersecting in their right
endpoint with other y long intervals (called right long), together with 2x short
intervals, x of which (called left short) intersect exactly the y left long ones,
and x of which (called right short) intersect exactly the y right long ones;
see Figure 1. We write LS(H), LL(H), RS(H) and RL(H) to denote the left
short, left long, right short and right long intervals of H, respectively. And we
omit H when it is clear from the context.

Note that, if H is an (x, y)-grained gadget, then GH is a split graph such
that LS ∪RS is an independent set of size 2x, LL∪RL is a clique of size 2y,
NGH(LS) = LL and NGH(RS) = RL. Moreover, the intervals in LL are true
twins in GH; similarly, the intervals in RL are true twins in GH.

Fig. 1: General structure of an (x, y)-grained gadget.

Let M be an interval model containing an (x, y)-grained gadget H. The
possible types of intersections between an interval I ∈ M \ H and H in our
construction are depicted in Figure 2, with the used nomenclature. More specif-
ically, the cover intersection intersects all the intervals, the weak intersection
to the left (right) intersects exactly the left (right) long intervals, while the

181

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 5

strong intersection to the left (right) intersects exactly the left (right) long and
short intervals. We say thatM respects the structure of H if, for every interval
I ∈M\H, we have that I either does not intersect H, or intersects H as one
of the described possible types in Figure 2.

(a) Covering intersection (b) Weak intersection to
the left

(c) Weak intersection to
the right

(d) Strong intersection to the left (e) Strong intersection to the right

Fig. 2: Interval I ∈M\H (a) covering H, (b-c) weakly intersecting H to the
left and to the right, and (d-e) strongly intersecting H to the left and to the
right.

The advantage of this gadget is that, by manipulating the values of x and
y, we can ensure that, in a maximum cut, the left long and right short intervals
are placed in the same part, opposite to the part containing the left short and
right long intervals, as proved in the following lemma.

Lemma 1 Let x and y be positive integers, H be an (x, y)-grained gadget and M
be an interval model that respects the structure of H. Also, let [A,B] be a maximum
cut of GM, t be the number of intervals in M\H intersecting H, ` be the number
of intervals in M intersecting the left short intervals of H, and r be the number of
intervals in M intersecting the right short intervals of H. If ` and r are odd, y > 2t
and x > t+ 2y, then the following hold:

1. LS(H) ⊆ A and LL(H) ⊆ B, or vice versa;
2. RS(H) ⊆ A and RL(H) ⊆ B, or vice versa; and
3. LL(H) ⊆ A and RL(H) ⊆ B, or vice versa.

Proof First, we prove that all the left short intervals are in the same part of [A,B].
Denote by N the set of intervals inM that intersect the left short intervals. Suppose,
without loss of generality, that B contains more than half of the intervals in N (it
must occur for either A or B since ` is odd). Since LS is an independent set, this

182

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Springer Nature 2021 LATEX template

6 MaxCut of Interval graphs

implies that it is more advantageous to put every left short interval in A. Because r
is also odd, a similar argument holds for the right short intervals.

Now consider the left long intervals and suppose, without loss of generality, that
all the left short intervals are contained in A. Observe that the number of intervals in
M\LS intersecting a left long interval is less than t+ 2y < x. Therefore, it is more
advantageous to put all the left long intervals in the same part of [A,B] opposite to
the left short intervals. This also holds for the right long intervals, analogously.

Finally, let L denote the set of long intervals of H and suppose that L ⊆ A.
Since the short intervals are always opposite to the corresponding long intervals, the
number of edges in the cut incident to L is at most the number of edges between L
andM\H, plus the number of edges between LL and LS, plus the number of edges
between RL and RS. This amounts to at most 2yt+ 2xy edges. Now, if instead we
have LL ⊆ A and RL ⊆ B, then the number of edges in the cut incident to L is at
least the number of edges between LL and LS, plus the number of edges between
RL and RS, plus the number of edges between LL and RL, which amounts to at
least y2 + 2xy. Again the latter is more advantageous since y > 2t. �

We say that (H,M) is well-valued if the conditions of Lemma 1 are sat-
isfied. Moreover, we say that the constructed model M is well-valued if all
its grained gadgets H are well-valued with respect to the model M. Finally,
we say that H is A-partitioned by [A,B] if LS(H) ∪ RL(H) ⊆ A and
RS(H) ∪ LL(H) ⊆ B. Define B-partitioned analogously.

2.2 Reduction graph

In this subsection, we formally present our construction. We will make a reduc-
tion from MaxCut on cubic graphs. So, let G be a cubic graph on n vertices
and m edges. Intuitively, we consider an ordering of the edges of G, and we
divide the real line into m regions, with the j-th region holding the informa-
tion about whether the j-th edge is in the cut-set. For this, each vertex u will
be related to a subset of intervals traversing all the m regions, bringing the
information about which part of the cut contains u. Let πV = (v1, . . . , vn)
be an ordering of V (G), πE = (e1, . . . , em) be an ordering of E(G), and
G = (G, πV , πE).

Fig. 3: General structure of a region of an (n,m)-escalator. The shaded
rectangles represent the (p, q)-grained gadgets Hji .

183

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 7

We first describe the gadgets related to the vertices. Please refer to Figure 3
to follow the construction. The values of p, q used next will be defined later. An
(n,m)-escalator is an interval model D formed by m+1 (p, q)-grained gadgets
for each vi, denoted byH1

i , . . . ,Hm+1
i , together with 2m link intervals, denoted

by L1
i , . . . , L

2m
i , such that L2j−1

i and L2j
i weakly intersect Hji to the right and

weakly intersect Hj+1
i to the left. Additionally, all the grained gadgets are

mutually disjoint, given j ∈ {1, . . . ,m + 1} and i, i′ ∈ {1, . . . , n} with i < i′,
the grained gadget Hji occurs to the left of Hji′ , and Hj

n occurs to the left of

Hj+1
1 for j ∈ {1, . . . ,m}.

Left short intervals

Fig. 4: General structure of the constructed interval modelM(G) highlighting
the intersections between the intervals of the (n,m)-escalator D, the intervals
of the (p′, q′)-grained gadget Ej , and the intervals C1

j , C
2
j , C

3
j , C

4
j .

Now, we add the gadgets related to the edges. Please refer to Figure 4 to
follow the construction. The values of p′, q′ used next will be defined later.
For each edge ej = vivi′ ∈ E(G), with i < i′, create a (p′, q′)-grained gadget
Ej and intervals C1

j , C
2
j , C

3
j , C

4
j in such a way that Ej is entirely contained in

the j-th region (i.e., in the open interval between the right endpoint of Hjn
and the left endpoint of Hj+1

1), C1
j and C2

j weakly intersect Hji to the right

and weakly intersect Ej to the left, and C3
j and C4

j weakly intersect Hj
i′ to the

right and strongly intersect Ej to the left. We call the intervals in {Cij | i ∈
{1, . . . , 4}, j ∈ {1, . . . ,m}} intervals of type C. Denote the constructed model
by M(G) (or simply by M when G is clear from the context), which defines
the reduction graph GM(G).

The following straightforward lemma will be useful in the next section.

Lemma 2 Let G be a graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be orderings
of V (G) and E(G), respectively, and M be the model constructed as before. The
following holds for every grained gadget H:

� M respects the structure of H;
� The number of intervals covering H is even; and

184

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

Springer Nature 2021 LATEX template

8 MaxCut of Interval graphs

� The number of intervals strongly intersecting H to the left and the number
of intervals strongly intersecting H to the right are both even.

Observe that Lemma 2 implies that, in order for the values ` and r in
Lemma 1 to be odd, it suffices to choose odd values for q and q′.

2.3 Proof of Theorem 1: Maximum cut of the reduction
graph

Consider a cubic graph G on n vertices and m = 3n/2 edges, and let
πV = (v1, . . . , vn) be an ordering of V (G), πE = (e1, . . . , em) be an ordering
of E(G) and G = (G, πV , πE). We now prove that mc(G) ≥ k if and only
if mc(GM(G)) ≥ f(G, k), where f is a function defined at the end of this
subsection. As it is usually the case in this kind of reduction, given a cut of
G, constructing an appropriate cut of the reduction graph GM(G) is an easy
task. On the other hand, constructing an appropriate cut [X,Y] of G, from a
given a cut [A,B] of the reduction graph GM(G), requires that the intervals in
M(G) behave in a way with respect to [A,B] so that [X,Y] can be inferred, a
task achieved by appropriately manipulating the values of p, q, p′, q′, as done
in Lemma 1. We start by giving conditions on these values that ensure that
the partitioning of the edge gadget related to an edge ej = vivi′ , with i < i′,
depends solely on the partitioning of Hji′ .

Lemma 3 Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be
orderings of V (G) and E(G), respectively, and M(G) be the model constructed as
before, where G = (G, πV , πE). Also, let [A,B] be a maximum cut of GM(G), and

consider ej = vivi′ , i < i′. If M(G) is well-valued, and q > 4n+ p′ + q′, then

1. If Hji is A-partitioned by [A,B], then {C1
j , C

2
j } ⊆ B; otherwise, {C1

j , C
2
j } ⊆

A; and
2. If Hji′ is A-partitioned by [A,B], then {C3

j , C
4
j } ⊆ B and Ej is A-partitioned

by [A,B]; otherwise, {C3
j , C

4
j } ⊆ A and Ej is B-partitioned by [A,B].

Proof Denote M(G) by M for simplicity. Since M is well-valued, by Lemma 1,

we may assume that Hji is A-partitioned by [A,B], i.e., that LS ∪ RL ⊆ A and

LL ∪ RS ⊆ B. We make the arguments for C1
j and it will be clear that they also

hold for C2
j . Observe first that all the grained gadgets covered by C1

j have a balanced
number of intervals in A and in B. More formally, from the intervals within the
gadgets

⋃n
`=i+1H

j
` , which are all the intervals covered by C1

j , there are exactly
(n− i)(p+ q) intervals in A, and (n− i)(p+ q) intervals in B. Additionally, there are
at most 2(n− i) link intervals intersecting the left of C1

j (these are the link intervals

related to vi′′ for i′′ > i in the (j − 1)-th region, if j > 1), exactly 2(n − i) link
intervals intersecting the right of C1

j (these are the link intervals related to vi′′ for

i′′ > i in the j-th region), and exactly 2i link intervals covering C1
j (these are the

185

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 9

link intervals related to vi′′ for i′′ ≤ i in the j-th region). This is a total of at most
2(n− i) + 2(n− i) + 2i = 4n− 2i < 4n intervals. Therefore, if C1

j is in A, then there

are less than (n− i)(p+ q) + 4n+ q′ edges of the cut incident to C1
j ; while if C1

j is in

B, then there are at least (n− i)(p+ q) + q edges of the cut incident to C1
j . Because

q > 4n+ p′ + q′ ≥ 4n+ q′, if follows that C1
j is in B, and so does C2

j .

Observe that a similar argument can be applied to C3
j , C

4
j , except that we gain

also p′ new edges from the left short intervals of Ej . That is, supposing Hji′ is A-

partitioned by [A,B], if C3
j is in A, then there are less than (n − i′)(p + q) + 4n +

p′ + q′ edges of the cut incident to C3
j ; while if C3

j is in B, then there are at least

(n − i′)(p + q) + q edges of the cut incident to C3
j . It follows again that C3

j , C
4
j are

in B, since q > 4n+ p′ + q′.
Finally, suppose that Hji′ is A-partitioned by [A,B], in which case, from the

previous paragraph, we get that {C3
j , C

4
j } ⊆ B. Observe that, because Ej is either

A-partitioned or B-partitioned, then there will always be exactly (p′ + q′) intervals
of Ej within A and exactly (p′ + q′) within B. This means that the number of edges
in the cut between this gadget and the link intervals covering it do not change if we
just flip sides of every interval within Ej . Therefore, we need to focus only on the

gain between Ej and {C1
j , C

2
j , C

3
j , C

4
j }. It is clear then that it is more advantageous

for Ej to be A-partitioned since in this case we gain at least 2p′ edges (the ones

between C3
j , C

4
j and the left short intervals of Ej), while otherwise we gain at most

2q′ (recall that p′ > q′ since M is well-valued). �

After ensuring that each grained gadget behaves well individually, we also
need to ensure that H1

i can be used to decide in which part of [X,Y] we should
put vi, and for this it is necessary that all gadgets related to vi agree with one
another. In other words, for each vi, we want that the behaviour of the first
gadget H1

i influence the behaviour of the subsequent gadgets H2
i , . . . ,Hm+1

i ,
as well as the behaviour of the gadgets related to edges incident to vi. Given
vi ∈ V (G) and a cut [A,B] of GM(G), we say that the gadgets of vi alternate in

[A,B] if, for every j ∈ {1, . . . ,m}, we get thatHji is A-partitioned if and only if

Hj+1
i is B-partitioned, while L2j−1

i , L2j
i are opposite to the right long intervals

of Hji . Also, we say that [A,B] is alternating partitioned if the gadgets of vi
alternate in [A,B], for every vi ∈ V (G). We add a further condition on the
values of p, q, p′, q′ in order to ensure that every maximum cut is alternating
partitioned. After this, we use the good behaviour of the constructed model in
order to relate the sizes of the maximum cuts in G and in GM(G).

Lemma 4 Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be
orderings of V (G) and E(G), respectively, and M(G) be the model constructed as
before, where G = (G, πV , πE). Also, let [A,B] be a maximum cut of GM(G). If

M(G) is well-valued, q > 4n + p′ + q′, and q > 3(2n2 + n + q′ + 2), then [A,B] is
alternating partitioned.

186

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Springer Nature 2021 LATEX template

10 MaxCut of Interval graphs

Proof By hypothesis, the conditions of Lemmas 1 and 3 are satisfied. Thus, we can
suppose that the obtained properties of those lemmas hold. DenoteM(G) byM for
simplicity, and let Mi be the family of all the intervals related to vertex vi; more
specifically, it contains every interval in some grained gadget Hji , j ∈ {1, . . . ,m+ 1},
every link interval Lji , j ∈ {1, . . . , 2m}, every interval of type Chj that intersects Hji
to the right (this happens if ej has vi as endpoint), and every interval in Ej for ej
incident to vi. We count the number fi of edges of the cut incident to some interval
in Mi and argue that, if the gadgets of vi do not alternate in [A,B], then we can
obtain a bigger cut by rearranging Mi, thus getting a contradiction.

Denote byMi the set of intervalsM\Mi, and by Λ the set of all link intervals.
In what follows, there are some values that must be added to fi that remain the

same, independently of howMi is partitioned; we call these values irrelevant and do
not add them to fi. For instance, recall that every (x, y)-grained gadget has exactly
x+y intervals in A and x+y in B. Thus, because of Lemmas 1 and 3, the number of
edges of the cut between grained gadgets and intervals that cover them is irrelevant.
In what follows, we count the other possible edges.

First, consider j ∈ {1, . . . ,m}; we want to count the maximum number of edges

of the cut incident to L2j
i (which holds analogously for L2j−1

i). Denote by `jA the

number of intervals in Mi ∩ Λ ∩ A that intersect L2j
i ; define `jB similarly. Observe

that `jA + `jB < 4n − 2 since it includes at most 2(n − 1) link intervals in the j-
th region, plus at most 2(n − i) link intervals of the (j − 1)-th region, and at most
2(i − 1) link intervals of the (j + 1)-th region. Additionally, let aj be equal to 1 if

L2j
i is opposite to the right long intervals of Hji , and 0 otherwise; similarly, let bj

be equal to 1 if L2j
i is opposite to the left long intervals of Hj+1

i , and 0 otherwise.

Because L2j
i might also be opposite to C1

j , . . . , C
4
j , observe that the relevant number

of edges of the cut incident to L2j
i is at most q(aj + bj) + `jA + `jB + 4.

Now, let ej be an edge incident to vi and let vi′ be the other endpoint of ej (here
i′ might be smaller than i). We apply Lemma 3 in order to count the edges incident
to Ej ∪ {C1

j , . . . , C
4
j }. First observe that, since Ej is always partitioned according to

C3
j , C

4
j , we have an irrelevant value of 2p′, namely the edges between C3

j , C
4
j and the

left short intervals of Ej . Now, suppose, without loss of generality, that {C1
j , C

2
j } ⊆ A.

If {C3
j , C

4
j } ⊆ A, then there are no relevant edges to be added; otherwise, then we

get 2q′ + 4 edges, those between C1
j , C

2
j and C3

j , C
4
j , and between C1

j , C
2
j and the

left long intervals of Ej . Finally, observe that the edges between {C1
j , . . . , C

4
j } and

Hji are irrelevant because of Lemma 3, and that the edges between {C1
j , . . . , C

4
j } and

the link intervals have been counted previously.
In order to put everything together, let ej1 , ej2 , ej3 be all the edges incident to

vi, and for each h ∈ {1, 2, 3}, write ejh as {vi, vih} (we use set notation because i

is not necessarily smaller than ih). For each h ∈ {1, 2, 3}, let ch be equal to 1 if Hji
and Hjih are partitioned differently, and 0 otherwise. We then get that:

fi ≤ 2
m∑

j=1

(q(aj + bj) + `jA + `jB + 4) +
3∑

h=1

ch(2q′ + 4). (1)

If L2j
i is on the same side as the right long intervals of Hji and the left long

intervals of Hj+1
i , we can increase fi simply by switching the side of L2j

i . Indeed, in

187

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 11

this case we would lose at most max{`jA, `
j
B} + 4 < 4n + 2 edges, while gaining 2q,

a positive exchange since q > 4n. Observe that this implies aj + bj ≥ 1. Note also
that this type of argument can be always applied, i.e., whenever in what follows we
switch side of the intervals in some vertex gadget, we can suppose that this property
still holds.

Consider now j to be minimum such that Hji and Hj+1
i are partitioned in the

same way, say they are both A-partitioned. Note that this implies that aj + bj = 1,

since the right long intervals of Hji are in A, while the left long intervals of Hj+1
i

are in B. We want to switch sides of Hj+1
i , but in order to ensure an increase in the

size of the cut, we need to also switch subsequent grained gadgets in case they were

alternating. For this, let j′ > j be minimum such that Hj
′+1
i and Hj

′

i are either both
A-partitioned or both B-partitioned; if it does not exist, let j′ = m + 1. For each
h ∈ {j+1, . . . , j′}, we switch sides of Hhi , and put L2h−1

i , L2h
i in the side opposite to

the right long intervals ofHhi . Also switch the intervals of type C and intervals in edge
gadgets appropriately; i.e., in a way that Lemma 3 continues to hold. We prove that
we gain at least 2q edges, while losing at most m(8n+4)+6(q′+2) = 6(2n2+n+q′+2)
(recall that m = 3n/2); the result thus follows since q > 3(2n2 + n+ q′ + 2).

Observe first that, concerning intervals L2j−1
i and L2j

i , because now they are in

B, while the right long intervals of Hji and the left long intervals of Hj+1
i are both in

A, we gain at least 2q edges. Now, we count our losses. Concerning intervals L2j−1
i

and L2j
i , we lose at most 2(`jB+4) ≤ 8n+4, namely the edges between these intervals

and link intervals or intervals of type C. As for the intervals L2h−1
i , L2h

i for h ∈ {j+

1, . . . , j′}, by the definition of j′ we know that we lose at most 2(max{`hA, `hB}+4) ≤
8n + 4, while the number of edges of the cut between them and the vertex grained
gadgets can only increase. Hence, concerning the link intervals in Mi, in total we
lose at most m(8n + 4) = 6(2n2 + n). Additionally, observe the upper bound given
by (1) to see that, in the worst case scenario, we have {j1, j2, j3} ⊆ {j + 1, . . . , j′}
and all the values ch were previously equal to 1 (i.e. all three edges ej1 , ej2 , ej3
belonged to the cut), and are now equal to 0 (i.e. none of the three edges ej1 , ej2 ,
ej3 belong to the cut); this leads to a possible loss of at most 6(q′ + 2) edges, as we
wanted to show. �

Now, if [A,B] is an alternating partitioned cut of GM(G), we let Φ(A,B) =
[X,Y] be the cut of G such that, for each vertex vi ∈ V (G), we have
vi ∈ X if and only if H1

i is A-partitioned by [A,B]. Note that [X,Y] is well-
defined and uniquely determined by [A,B] (i.e., Φ is one-to-one). On the other
hand, given a cut [X,Y] of G, there is a unique alternating partitioned cut
[A,B] = Φ−1(X,Y) of GM(G) such that [X,Y] = Φ(A,B) (i.e., Φ is also onto).
Therefore, it remains to relate the sizes of these cut-sets. Basically we can use
the good behaviour of the cuts in GM(G) to prove that the size of [A,B] grows
as a function of the size of Φ(A,B).

Lemma 5 Suppose that all the conditions in Lemmas 1-4 hold, and that q′ ≥ 13n2.
Let Φ(A,B) = [X,Y], and k be a positive integer. Then (below, G denotes GM(G))

|EG(X,Y)| ≥ k if and only if |EG(A,B)| ≥ γ + (2q′ + 4)k,

where γ is a well-defined function on m,n, p, q, p′, q′ (i.e., does not depend on [A,B]).

188

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

Springer Nature 2021 LATEX template

12 MaxCut of Interval graphs

Proof We use the same notation as before and count the number of edges in
EG(A,B). We will count the number of edges of the cut-set separately in the follow-
ing groups:

� among intervals of a vertex/edge grained-gadget;
� between intervals of a vertex grained-gadget and link intervals;
� between intervals of an edge grained-gadget and other intervals;
� among intervals of type C;
� among link intervals;
� between link intervals and intervals of type C; and
� between intervals of a vertex grained-gadget and intervals of type C.

First, we compute the number of edges of the cut-set within a given (x, y)-grained
gadget. By Lemma 1, we get that this is exactly y2 + 2xy. Since there are (m+ 1)n
(p, q)-grained gadgets (the ones related to the vertices), andm (p′, q′)-grained gadgets
(the edge ones), we get a total of:

β1 = n(m+ 1)(q2 + 2pq) +m((q′)2 + 2p′q′).

Now, we count the number of edges of the cut-set between a given vertex grained
gadget H = Hji and link intervals; again, denote the set of link intervals by Λ. If an
interval I covers H, then there are exactly p+ q edges between I and H, since there
are these many intervals of H in each of A and B. And if I intersects H either to
the left or to the right, then there are exactly q edges between I and H, since M is
alternating partitioned (i.e., I is opposite to the corresponding long intervals ofH). It
remains to count how many of each type of intervals there are. If j ∈ {2, . . . ,m}, then
there are exactly 2n− 2 intervals covering H, as well as 2 intervals intersecting H to
the left, and 2 to the right; this gives a total of (2n−2)(p+q)+4q = 2n(p+q)+2(q−p)
edges between H and Λ. If j = 1, then there are 2(i − 1) intervals covering H, and
2 intervals intersecting H to the right, thus giving a total of 2(i − 1)(p + q) + 2q.
Finally, if j = m + 1, then there are 2(n − i) intervals covering H, and 2 intervals
intersecting H to the left, giving a total of 2(n− i)(p+ q) + 2q. Summing up, we get:

β2 =
∑m
j=2

∑n
i=1[2n(p+ q) + 2(q − p)]+∑n

i=1[2(i− 1)(p+ q) + 2q + 2(n− i)(p+ q) + 2q]
= 2(m− 1)n[n(p+ q) + (q − p)] + 2n[(n− 1)(p+ q) + 2q]
= 2n[(m− 1)n(p+ q) + (m− 1)(q − p) + (n− 1)(p+ q) + 2q]
= 2mn[n(p+ q) + q − p].

We count now the number of edges of the cut-set between a given edge gadget
Ej and an interval I intersecting it, and among intervals of type C. As before, if I
covers Ej , then there are exactly (p′ + q′) edges between I and Ej in the cut. If I

strongly intersects Ej to the left, then I ∈ {C3
j , C

4
j } and by Lemma 3 we get that this

amounts to p′. Finally, if I weakly intersects Ej to the left, then this amounts to q′, if
ej is within the cut, or to 0, otherwise. As for the number of edges between intervals
of type C, by Lemma 3 one can see that this is equal to 4|EG(X,Y)|. Summing up,
we get:

2nm(p′ + q′) + 2p′m+ (2q′ + 4)|EG(X,Y)|.
Denote the value 2nm(p′ + q′) + 2p′m by β3, and note that this is independent of
[A,B].

189

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 13

Let us now count the number of edges of the cut-set among link intervals. For
this, denote by Lj the set of link intervals in the j-th region, i.e., Lj = {L2j

i , L
2j−1
i |

i ∈ {1, . . . , n}}. Also, denote by V jA the set of indices i ∈ {1, . . . , n} such that

{L2j−1
i , L2j

i } ⊆ A; define V jB analogously and let a = |V jA| and b = |V jB |. We count

the number of edges of the cut between intervals of Lj , for every j ∈ {1, . . . ,m},
and between intervals of Lj and intervals of Lj+1, for every j ∈ {1, . . . ,m− 1}, and
then we sum up. So consider a region j ∈ {1, . . . ,m}, and observe that, because

[A,B] is alternating partitioned, we get that either j is odd and V jA contains exactly

the indices of the vertices within Y , while V jB contains the indices of the vertices
within X, or j is even and the reverse occurs. More formally: if j is odd, then
V jA = {i ∈ {1, . . . , n} | vi ∈ Y } and V jB = {i ∈ {1, . . . , n} | vi ∈ X}; and if j is even,

then V jA = {i ∈ {1, . . . , n} | vi ∈ X} and V jB = {i ∈ {1, . . . , n} | vi ∈ Y }. In either

case, since for each index in V jA (resp. V jB), there is a pair of intervals in Lj ∩A (resp.

Lj ∩B), we get that the number of edges of the cut between intervals of Lj is equal
to 4|X||Y | = 4ab. Now, suppose j ∈ {1, . . . ,m − 1}; we count the edges of the cut
between Lj and Lj+1. Again because [A,B] is alternating partitioned, we know that if

V jA = {i1, . . . , ia}, then V j+1
B = V jA, while V j+1

A = V jB = {1, · · · , n} \ V jA. Supposing

i1 < . . . < ia, this implies that there are exactly 4 edges between {L2j+1
ia′ , L2j+2

ia′ }
and {L2j−1

ia′′ , L2j
ia′′ } for each a′, a′′ ∈ {1, . . . , a} with a′ < a′′. Summing up we get

that there are 4
∑a
a′=1(a − a′) = 4

a(a−1)
2 = 2a(a − 1) edges between Lj ∩ A and

Lj+1∩B. Analogously we can conclude that there are 2b(b−1) edges between Lj∩B
and Lj+1∩A. Summing up with the previous 4ab, we get 2a2−2a+2b2−2b+4ab =
2[(a+b)2−(a+b)] edges of the cut incident to Lj for every j ∈ {1, . . . ,m−1}. Recall
that a+b = |X|+ |Y | = n to see that this gives us 2n(n−1) edges. Finally, summing
up for all j ∈ {1, . . . ,m − 1} and summing also the edges between link intervals in
Lm, we get that the number of edges of the cut incident to link intervals is equal to:

m−1∑

j=1

2n(n− 1) + 4|X||Y | = n(n− 1)(3n− 2) + 4|X||Y |

Observe that 4(n− 1) ≤ 4|X||Y | ≤ n(n+ 1), and denote the value n(n− 1)(3n− 2)
by β4.

Now, observe that it remains to count the number of edges of the cut-set between
link intervals and intervals of type C, and between intervals of type C and vertex
grained gadgets. We start with the latter. Given an edge ej = vivi′ , with i < i′, there

are exactly n− i vertex grained gadgets covered by C1
j , C

2
j , and n− i′ vertex grained

gadgets covered by C3
j , C

4
j . Together with the q edges between each of these intervals

of type C and the corresponding vertex gadgets (namely, Hji and Hji′), we get a total
of 2(n− i)(p+ q) + 2(n− i′)(p+ q) + 4q. Even though we cannot give a precise value
below, observe that this value can be exactly computed during the construction. The
upper bound is given just to make it explicit that this is a polynomial function. Also,
below, for ej = vivi′ , the value `j denotes i and rj denotes i′.

β5 =
∑m
j=1[2(n− rj)(p+ q) + 2(n− `j)(p+ q) + 4q]

= m[4n(p+ q)]− 2
∑m
j=1(rj + `j)(p+ q) + 4q

≤ 4m[n(p+ q) + q].

Finally, we count the number of edges of the cut between link intervals and
intervals of type C. This is the only part of the counting that will not be exact.

190

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Springer Nature 2021 LATEX template

14 MaxCut of Interval graphs

Again, consider an edge ej = vivi′ , and first consider the interval C1
j ; we will see

that the arguments hold for C2
j , and that analogous arguments hold for C3

j , C
4
j .

Observe that C1
j intersects exactly the following link intervals: L2j−1

i′′ and L2j
i′′ for

every i′′ ∈ {1, . . . , n}; and L2j−2
i′′ and L2j−3

i′′ for every i′′ ∈ {i + 1, . . . , n}. This is a
total of less than 4n link intervals. Because an analogous argument can be applied
to C2

j , C
3
j , C

4
j , we get a total of 16n possible edges in the cut-set, for each value of

j, totalling 16nm = 24n2.
Let β =

∑5
i=1 βi, and γ = β + 4(n − 1). We now prove that |EG(X,Y)| ≥

k if and only if |EG(A,B)| ≥ γ + (2q′ + 4)k. We have proved that:

γ︷ ︸︸ ︷
β + 4(n− 1) +(2q′ + 4)|EG(X,Y)| ≤ |EG(A,B)|

≤ β + n(n+ 1) + 24n2 + (2q′ + 4)|EG(X,Y)|.
If |EG(X,Y)| ≥ k, then by the first inequality we have that |EG(A,B)| ≥ β + 4(n−
1) + (2q′+ 4)k. On the other hand, if |EG(A,B)| ≥ β+ 4(n− 1) + (2q′+ 4)k, then by

the second inequality we have that |EG(X,Y)| ≥ k− 25n2−3n+4
2q′+4 ≥ k− 26n2

2q′+4 . Since

q′ ≥ 13n2, we get that |EG(X,Y)| > k − 1. �

To finish the proof that the reduction works, we simply need to choose
appropriate values for p, q, p′, q′. Recall all necessary conditions:

� For each (x, y)-grained gadget H in M, let t be the number of intervals in
M\H intersecting H, ` be the number of intervals in M intersecting the
left short intervals, and r be the number of intervals in M intersecting the
right short intervals. Then we want that ` and r are both odd, and that
y > 2t and x > t+ 2y (from Lemma 1);

� q > 4n+ p′ + q′ = α1 (from Lemma 3);
� q > 3(2n2 + n+ q′ + 2) = α2 (from Lemma 4); and
� q′ ≥ 13n2 (from Lemma 5).

By Lemma 2, we know that in order for the values r, ` in the first item to
be odd, it suffices to choose q, q′ to be odd. Observe that n ≥ 4 since G is a
cubic graph. For a given edge gadget Ej , we know that there are exactly 2n+4
intervals in M \ Ej intersecting it, namely the link intervals and intervals of
type C in the j-th region. Hence, if we choose q′ = 13n2 + 1, we satisfy all the
conditions on q′ since 13n2 + 1 > 4n + 8 holds for every n ≥ 4. As for p′, it
suffices to choose 2n+4+2q′+1 = 26n2+2n+7. Now, for a given vertex gadget
Hji , if t is the number of intervals intersecting it, we get that t ≤ 2(n−1)+8 =
2n+ 6. Therefore, in order to satisfy the conditions of Lemma 1, it suffices to
ensure q > 4n+12 ≥ 2t, and p > 2q+2n+6 ≥ 2q+t. The stronger condition is
on q, so we choose it first. We substitute the chosen values of p′ and q′ above,
obtaining α1 = 39n2 + 6n+ 8 and α2 = 45n2 + 3n+ 9. It is straightforward to
verify that, for n ≥ 4, it holds that 47n2 + 1 > max{4n + 12, α1, α2}. Hence,
we choose q to be equal to 47n2 + 1, and as consequence we choose p to be
equal to 94n2 + 2n+ 9. To finish the proof of Theorem 1, it remains to prove
that the interval count of our reduction graph is exactly four, which is done in
the next subsection.

191

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 15

2.4 Proof of Theorem 1: Bounding the interval count

Consider a cubic graph G on n vertices and m = 3n/2 edges, and orderings
πV , πE of the vertex set and edge set of G. Denote the triple (G, πV , πE) by
G. First, we want to prove that the interval count of our constructed interval
model M(G) is at most 4. But observe that the construction of M(G) is
actually not unique, since the intervals are not uniquely defined; e.g., given
such a model, one can obtain a model satisfying the same properties simply by
adding ε > 0 to all points defining the intervals. In what follows, we provide
a construction of a uniquely defined interval model related to G that satisfies
the desired conditions and has interval count 4.

Consider our constructed interval model M(G), and for each j ∈
{1, . . . ,m}, denote by Sj the set of intervals related to the j-th region, i.e.,

Sj = Ej ∪
⋃4
`=1 C

`
j ∪

⋃n
i=1(Hji ∪{L2j

i ∪L2j−1
i }). We show how to accommodate

S1 within the closed interval [0, 6n−2] in such a way that the same pattern can
be adopted in the subsequent regions ofM(G) too, each time starting at mul-
tiples of 4n. More specifically, letting t = 4n, we will accommodate Sj within
[t ·(j−1), 6n−2+t ·(j−1)]. Assume e1 = vivi′ , with i < i′. Below, we describe
exactly which closed interval of the line corresponds to each interval I ∈ S1.

� For each i ∈ {1, . . . , n}, the left long intervals ofH1
i are equal to [2i−2, 2i− 3

2]
and the left short intervals are any choice of q distinct points within the
open interval (2i−2, 2i− 3

2), whereas the right long intervals of H1
i are equal

to [2i − 3
2 , 2i − 1] and the right short intervals are any choice of q distinct

points within the open interval (2i− 3
2 , 2i− 1). Note that open intervals are

used to locate the closed intervals of length zero, but that the short intervals
themselves are not open.

� C1
1 and C2

1 are equal to [2i− 1, 2i+ 2n− 2].
� C3

1 and C4
1 are equal to [2i′ − 1, 2i′ + 2n− 2].

� The left long intervals of E1 are equal to [2n, 4n− 1].
� The left short intervals of E1 are any choice of q′ distinct points in the open

interval (2i + 2n − 2, 2i′ + 2n − 2). Again, the open interval is used just to
locate the closed intervals of length zero.

� The right long intervals of E1 are equal to [4n−1, 4n− 1
2] and the right short

intervals are any choice of q′ distinct points within the corresponding open
interval.

� For each i ∈ {1, . . . , n}, intervals L1
i , L

2
i are equal to [2i− 1, 4n+ 2(i− 1)].

The suitable chosen lengths of the above defined closed intervals are
(see Figure 5, where we denote by Λ the set of link intervals):

1. 0: short intervals of all grained gadgets (dots in Figure 5);
2. 1/2: left long and right long intervals of each H1

i , and right long intervals
of E1 (red intervals in Figure 5);

3. 2n− 1: intervals C1
1 , . . . , C

4
1 , and left long intervals of E1 (blue intervals in

Figure 5);
4. 4n− 1: intervals L1

i and L2
i , for every i ∈ [n] (orange intervals in Figure 5).

192

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Springer Nature 2021 LATEX template

16 MaxCut of Interval graphs

Fig. 5: The closed intervals in S1 ∪
⋃4
i=1H2

i of a graph on 4 vertices. We
consider e1 to be equal to v3v4. Each colour represents a different interval
size. The short intervals are represented by the dots located inside the open
interval. Vertical lines mark the endpoints of the intervals in S1 \Λ, while the
green vertical line marks the beginning of the intervals in S2.

Now, let M′(G) be the interval model where each Sj is defined exactly as
S1, except that we shift all the intervals to the right in a way that point 0 now
coincides with point t ·(j−1). More formally, an interval I in Sj corresponding
to the copy of an interval [`, r] in S1 is defined as [`+ t · (j − 1), r+ t · (j − 1)].
Also, we assign the intervals in the (m+1)-th grained gadgets to be at the end
of this model, using the same sizes of intervals as above; i.e., Hm+1

i is within
the interval [2i− 2 + t ·m, 2i− 1 + t ·m].

We have shown above that M′(G) has interval count 4. The following
lemma shows that the above chosen intervals satisfy the properties imposed in
Subsections 2.1 and 2.2 on our constructed interval model M(G).

Lemma 6 Let G be a cubic graph. Then, there exists an interval model M(G) with
interval count 4 for G = (G, πV , πE), for every ordering πV and πE of the vertex set
and edge set of G, respectively.

Proof DenoteM(G) byM. We need to prove thatM satisfies the conditions of our
construction, namely:

1. For every j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, link intervals L2j
i , L

2j−1
i weakly

intersect Hji to the right and weakly intersects Hj+1
i to the left;

2. For every j ∈ {1, . . . ,m} and i, i′ ∈ {1, . . . , n}, i < i′, the grained gadget
Hji occurs strictly to the left of Hji′ ;

3. For every j ∈ {1, . . . ,m}, grained gadget Ej occurs strictly between the

right endpoint of Hjn and the left endpoint of Hj+1
1 ; and

4. For every ej = vivi′ ∈ E(G), intervals C1
j , C

2
j weakly intersect Hji to the

right and Ej to the right, while C3
j , C

4
j weakly intersect Hji′ to the left and

stronly intersect Ej to the right.

By construction, we know that the right endpoint ofHji is equal to 2i−1+t(j−1),

which is also equal to the left endpoints of L2j−1
i , L2j

i . Also, the left endpoint of

Hj+1
i is equal to 2i− 2 + tj, which is also equal to the right endpoints of L2j−1

i , L2j
i

193

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 17

since t = 4n; hence Item 1 follows. As for Item 2, just note that the right endpoint
of Hji , which is equal to 2i − 1 + t(j − 1), is strictly smaller than the left endpoint

of Hji′ , which is equal to 2i′ − 2 + t(j − 1). Indeed, since i′ ≥ i+ 1, we get 2i′ − 2 ≥
2(i + 1) − 2 = 2i > 2i − 1. Now, observe that Ej is contained in the closed interval

[2n+t(j−1), 4n− 1
2+t(j−1)], that the right endpoint ofHjn is equal to 2n−1+t(j−1),

and the the left endpoint of Hj+1
1 is equal to tj = 4n+ t(j − 1). Item 3 thus follows.

Finally, as we have seen, the right endpoint of Hji is equal to 2i− 1 + t(j− 1), which

is equal to the left endpoints of C1
j , C

2
j ; hence these weakly intersect Hji to the right.

Also, the left endpoint of Ej is equal to 2n + t(j − 1), while the right endpoint of

C1
j , C

2
j is equal to 2(i − 1) + 2n + t(j − 1), and all the left short intervals of Ej are

contained in the open interval [2(i − 1) + 2n + t(j − 1), 2(i′ − 1) + 2n + t(j − 1)].
Therefore we get that C1

j , C
2
j weakly intersect Ej to the left. Analogously, the right

endpoint of Hji′ is equal to 2i′ − 1 + t(j − 1), which is equal to the left endpoints

of C3
j , C

4
j ; hence they weakly intersect Hji′ to the right. Finally, the right endpoint

of C3
j , C

4
j is equal to 2(i′ − 1) + 2n + t(j − 1), and all the left short intervals of Ej

are contained in the open interval [2(i− 1) + 2n+ t(j − 1), 2(i′ − 1) + 2n+ t(j − 1)].
Also, the left endpoint of the right long intervals of Ej is equal to 4n− 1 + t(j − 1),

which is strictly bigger than 2(i′ − 1) + 2n+ t(j − 1) since i′ ≤ n. Therefore, C3
j , C

4
j

strongly intersect Ej to the left, finishing the proof of Item 4. �

We have just shown that, for any orderings πV and πE , there exists a model
M(G) of interval count 4, where G = (G, πV , πE). On the other hand, we
prove in the remainder of this section that any graph isomorphic to GM(G)

has interval count at least 4. For this, we show that all such graphs contain
as an induced subgraph a certain graph of interval count 4, which we denote
by H4. Next, we define the family {Hk}k≥2 and prove in a more general way
that ic(Hk) = k for every k ≥ 2.

Let P5 = (u1, . . . , u5) be a path on 5 vertices. For every graph H ′, we
let P5 ◦ H ′ be the graph obtained from the disjoint union of P5 with H ′

by making u3, the central vertex of P5, adjacent to every vertex of H ′. In
other words, P5 ◦H ′ is the graph with vertex set V (P5)∪ V (H ′) and edge set
E(P5) ∪ E(H ′) ∪ {u3v | v ∈ V (H ′)}. Then, for every k ≥ 2, we let Hk be the
graph defined recursively as follows (see Figure 6):

� H2 = K1,3;
� Hk = P5 ◦Hk−1 for k > 2.

(a) H2 = K1,3 (b) H3 = P5 ◦H2 (c) H4 = P5 ◦H3 (d) Hk = P5 ◦Hk−1

Fig. 6: Graph Hk for k ≥ 2.

194

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

Springer Nature 2021 LATEX template

18 MaxCut of Interval graphs

Lemma 7 For every k ≥ 2, ic(Hk) = k.

Proof The proof is by induction on k. Since H2 = K1,3 and ic(K1,3) = 2 c.f. [25],
we obtain that the lemma holds for k = 2. As inductive hypothesis, suppose that
ic(Hk′) = k′ for some k′ ≥ 2. We prove that ic(Hk′+1) = k′ + 1.

First, note that, if MP5
= {I1, . . . , I5} is an interval model of a P5, then the

precedence relation among the intervals of I1, . . . , I5 is either that of Figure 7 (i.e.,
I1 precedes I3, which precedes I5, and I2 precedes I4), or the reverse of the order
presented in the figure c.f. [25]. Let M be an interval model of Hk′+1. Since Hk′+1

contains a P5 as an induced subgraph, assume without loss of generality that M ⊃
MP5

and that, with respect to M, I1 precedes I3, I3 precedes I5, and I2 precedes
I4. This implies that

`(I3) ≤ r(I2) < `(I4) ≤ r(I3). (2)

By construction, the only vertex of P5 which is adjacent to the vertices of Hk′ is
its central vertex u3. Consequently, ifMHk′ ⊂M is the interval model of Hk′ , then

there cannot be any intersection betweenMHk′ andMP5
\ {I3}, i.e., I ′ ∩ Ii = ∅ for

each I ′ ∈MHk′ and each i ∈ {1, . . . , 5}, with i 6= 3. Hence, it follows from (2) that

min{`(I ′) | I ′ ∈MHk′ } > r(I2) and max{r(I ′) | I ′ ∈MHk′ } < `(I4).

Figure 7 illustrates this fact. As a result, I3 ⊃ I ′ for every I ′ ∈MHk′+1
. This, along

Fig. 7: Interval model MHk′+1
of Hk′+1.

with the inductive hypothesis that ic(Hk′) = k′, implies that ic(Hk′+1) ≥ k′+ 1. On
the other hand, it is straightforward that ic(Hk′+1) ≤ k′ + 1 (for instance, consider
the model illustrated in Figure 7). Therefore, ic(Hk′+1) = k′ + 1. �

Now, we finally show that, if G′ is a graph isomorphic to our reduction
graph GM(G), then G′ has an H4 as an induced subgraph. LetM′ be an inter-
val model of G′. Note thatM′ holds the same intersection properties ofM(G)
described in Section 2.2, otherwise G′ would not be isomorphic to GM(G).
Consequently, there exist orderings π′V and π′E of the vertex set and edge set
of G, respectively, for which M′ can be defined as a composition of vertex
grained gadgets Hji for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m + 1}, edge grained

gadgets Ej for j ∈ {1, . . . ,m}, link intervals L2j−1
i , L2j

i for i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}, and intervals C1

j , C
2
j , C

3
j , C

4
j for j ∈ {1, . . . ,m}. Additionally,

since the input graph G is cubic, there exists an edge ej = (vi, vi′) ∈ E(G)
such that, with respect to π′V and π′E , 1 < i < i′. Thus, let (see Figure 4):

� I1 (resp. I2) be a right short (resp. long) interval of Hj1;
� I3 be the link interval L2j−1

1 ;

195

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 19

� I4 (resp. I5) be a left long (resp. short) interval of Hj+1
1 ;

� I ′1 (resp. I ′2) be a right short (resp. long) interval of Hji ;
� I ′3 be the interval C1

j ;
� I ′4 (resp. I ′5) be a left long (resp. short) interval of Ej ;
� J1, J2 and J3 be three left short intervals of Hji+1; and

� J be a left long interval of Hji+1.

We note that the intervals described above exist and are well-defined in M′.
Moreover, the interval graph related to the model comprised by such intervals
is isomorphic to H4. More specifically, observe first that J = {J, J1, J2, J3}
models K1,3. Then, notice that P = {I1, . . . , I5} and P ′ = {I ′1, . . . , I ′5} model
paths on 5 vertices, in this order. Finally observe that I ′3 is adjacent to every
I ∈ J , while there are no edges between J and P ′ \ {I ′3}; hence, J ∪ P ′ is a
model for H3. Similarly, I3 is adjacent to every I ∈ J ∪ P ′, while there are
no edges between J ∪ P ′ and P \ {I3}; hence J ∪ P ′ ∪ P is a model for H4.
Therefore, G′ has an H4 as an induced subgraph, as we wanted to prove.

3 The interval count of Adhikary et al.’s
construction

We provided in Section 2 a reduction from the MaxCut problem having as
input a cubic graph G into that of MaxCut in an interval graph G′ having
ic(G′) ≤ 4. Although our reduction requires the choice of orderings πV and
πE of respectively V (G) and E(G) in order to produce the resulting interval
model, we have established that we are able to construct an interval model with
interval count 4 regardless of the particular choices for πV and πE (Lemma 6).
Our reduction was based on that of [2], strengthened in order to control the
interval count of the resulting model.

This section is dedicated to discuss the interval count of the original reduc-
tion [2]. Although the interval count was not of concern in [2], in order to
contrast the reduction found there with the presented in this work, we inves-
tigate how interval count varies in the original reduction considering different
vertex/edge orderings. First, we establish that the original reduction yields an
interval model corresponding to a graph G′ such that ic(G′) = O(4

√
|V (G′)|).

Second, we exhibit an example of a cubic graph G for which a choice of πV
and πE yields a modelM′ with interval count Ω(4

√
|V (G′)|), proving that this

bound is tight for some choices of πV and πE . For bridgeless cubic graphs,
we are able in Lemma 9 to decrease the upper bound by a constant factor,
but to the best of our knowledge O(4

√
|V (G′)|) is the tightest upper bound.

Before we go further analysing the interval count of the original reduction, it
is worthy to note that a tight bound on the interval count of a general inter-
val graph G as a function of its number of vertices n is still open. It is known
that ic(G) ≤ b(n + 1)/2c and that there is a family of graphs G for which
ic(G) = (n − 1)/3 [13, 23]. That is, the interval count of a graph can achieve
Θ(n).

196

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Springer Nature 2021 LATEX template

20 MaxCut of Interval graphs

In the original reduction, given a cubic graph G, an interval graph G′ is
defined through the construction of one of its modelsM, described as follows:

1. let πV = (v1, v2, . . . , vn) and πE = (e1, e2, . . . , em) be arbitrary orderings of
V (G) and E(G), respectively;

2. for each vi ∈ V (G), ej ∈ E(G), let G(vi) and G(ej) denote respectively a
(p, q)-grained gadget and a (p′, q′)-grained gadget, where:

� q = 200n3 + 1, p = 2q + 7n, and
� q′ = 10n2 + 1, p′ = 2q′ + 7n;

3. for each vk ∈ V (G), insert G(vk) in M such that G(vi) is entirely to the
left of G(vj) if and only if i < j. For each ek ∈ E(G), insert G(ek) in M
entirely to the right of G(vn) and such that G(ei) is entirely to the left of
G(ej) if and only if i < j;

4. for each ej = (vi, vi′) ∈ E(G), with i < i′, four intervals I1i,j , I
2
i,j , I

1
i′,j , I

2
i′,j

are defined in M, called link intervals, such that:

� I1i,j and I2i,j (resp. I1i′,j and I2i′,j) are true twin intervals that weakly
intersect G(vi) (resp. G(vi′)) to the right;

� I1i,j and I2i,j (resp. I1i′,j and I2i′,j) weakly intersect (resp. strongly intersect)
G(ej) to the left.

By construction, therefore, I1i,j and I2i,j (resp. I1i′,j and I2i′,j) cover all inter-
vals in grained gadgets associated to a vertex v` with ` > i (resp. ` > i′) or
an edge e` with ` < j.

Note that the number of intervals inM is invariant under the particular choices
of πV and πE and, therefore, so is the number of vertices of G′. Let n′ =
|V (G′)|. Since G is cubic, m = 3n

2 . By construction,

n′ = n(2p+ 2q) +m(2p′ + 2q′) + 4m = 1200n4 + 90n3 + 25n2 + 21n

and thus n = Θ(4
√
n′). Since the set of intervals covered by any link interval

depends on πV and πE , distinct sequences yield distinct resulting graphs G′

having distinct interval counts.
We show next that ic(G′) = O(4

√
n′). Note that

� the intervals of all gadgets G(vi) and G(ej) can use only two interval lengths
(one for all short intervals, another for all the long intervals);

� for each ej = vivi′ ∈ E(G), with i < i′, both intervals I1i,j and I2i,j may be
coincident in any model, and therefore may have the same length. The same
holds for both intervals I1i′,j and I2i′,j .

Therefore, ic(G′) ≤ 2m+2 = 3n+2 = Θ(4
√
n′). Therefore, the NP-completeness

result derived from the original reduction in [2] can be strengthened to state
that MaxCut is NP-complete for interval graphs G having interval count
O(4

√
|V (G)|).

197

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 21

Second, we show that there is a resulting model M′ produced in the
reduction, defined in terms of particular orderings πV , πE for which ic(M′) =
Ω(4
√
n′). Consider the cubic graph G depicted in Figure 8(a) which consists

of an even cycle (v1, v2, . . . , vn) with the addition of the edges (vi, vi+n
2

) for
all 1 ≤ i ≤ n/2. For the ordering πV = (vn, vn−1, . . . , v1) and any order-
ing πE in which the first n edges are the edges of the cycle (v1, v2, . . . , vn),
in this order, the reduction yields a model M′ for which there is a chain
I11,1 ⊂ I12,2 ⊂ . . . ⊂ I1n,n of nested intervals (see Figure 8(b)), which shows that

ic(M′) ≥ n, and thus ic(M′) = Ω(4
√
n′).

(a) (b)

Fig. 8: (a) A cubic graph G, and (b) a chain of nested intervals in the
model M′.

It can be argued from the proof of NP-completeness for MaxCut when
restricted to cubic graphs [24] that the constructed cubic graph may be
assumed to have no bridges. This fact was not used in the original reduction
of [2]. In an attempt to obtain a model M having fewer lengths for bridgeless
cubic graphs, we have derived Lemma 9. Although the number of lengths in
this new upper bound has decreased by the constant factor of 4/9, it is still
Θ(n) = Θ(4

√
n′).

The proof of Lemma 9 will employ the following result:

Lemma 8 (Petersen, 1891) Every cubic bridgeless graph admits a perfect matching.

Lemma 9 Let G be a cubic bridgeless graph with n = |V (G)|. There exist particular
orderings πV of V (G) and πE of E(G) such that:

1. there is a resulting modelM produced in the original reduction of MaxCut
such that ic(M) ≤ 4n

3 + 3.
2. for all such resulting models M, we have that ic(M) ≥ 5 if G is not a

Hamiltonian graph.

Proof Let G be a cubic bridgeless graph with V (G) = {v1, v2, . . . , vn}. By Lemma 8,
G admits a perfect matching M . Let H = G \M . Therefore, H is 2-regular and,
therefore, H consists of a disjoint union of cycles C1, C2, . . . , Ck, for some k ≥ 1.

198

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

Springer Nature 2021 LATEX template

22 MaxCut of Interval graphs

For all 1 ≤ i ≤ k, let πiV = vi1, v
i
2, . . . , v

i
ki

be an ordering of the vertices of Ci, with

ki = |Ci|, such that (vij , v
i
j+1) ∈ E(Ci) for all 1 ≤ j ≤ ki, where viki+1 = vi1. Let πiE

be the ordering (vi1, v
i
2), (vi2, v

i
3), . . . , (viki−1, v

i
ki

), (vi1, v
i
ki

) for all 1 ≤ i ≤ k. Let πM
be any ordering of the edges of M such that (vi, vr) < (vj , vs) in πM only if vi < vj
in πV . Finally, let πV be the ordering of V (G) obtained from the concatenation of
the orderings π1V , π

2
V , . . . , π

k
V , and πE be the ordering of E(G) obtained from the

concatenation of the orderings π1E , π
2
E , . . . , π

k
E , πM .

In order to prove (2.), assume G is not a Hamiltonian graph. Therefore k > 1.
Observe that there is the following chain of nested intervals I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ I5,
where

� I1 is the leftmost interval in RS(G(v23)),
� I2 is an interval in RL(G(v23)),
� I3 is a link interval corresponding to both G(v22) and G(v21v

2
2),

� I4 is a link interval corresponding to both G(v21) and G(v21v
2
k2

), and
� I5 is a link interval corresponding to both G(v11) and G(e), where e is the

edge of M incident to v11 ,

since `(I5) < `(I4) < `(I3) < `(I2) < `(I1) < r(I1) < r(I2) < r(I3) < r(I4) < r(I5).
Thus, for all such resulting models M, we have that ic(M) ≥ 5.

In order to prove (1.), we show that there exists an interval modelM, produced
by the original reduction of MaxCut considering orderings πV and πE , such that
ic(M) ≤ 4n

3 + 3, where n = |V (G)|. Let L1 be the set of all link intervals of the

grained gadgets corresponding to edges of M , that is, L1 = {I1i,k, I2i,k, I1j,k, I2j,k : ek =
(i, j) ∈ M}. Moreover, let L2 be the set of all link intervals of the grained gadgets
corresponding to the edges (vi1, v

i
ki

) of Ci and the vertex vi1 for all 1 ≤ i ≤ k, that is,

L2 = {I1vi1,k, I
2
vi1,k

: 1 ≤ i ≤ k , ek = (vi1, v
i
ki

) ∈ Ci}. Note that |L2| = k ≤ n/3 and

|L1| = 4 · |M | = 2n. Let L = L1 ∪ L2. Let M′ =M\ L. We claim that ic(M′) ≤ 3.
Since each pair of true twins I1j,k, I

2
j,k and I1i,k, I

2
i,k in L1 can have the same length in

M, it follows from this claim that ic(M) ≤ |L1|+ |L2|
2 + ic(M′) ≤ n

3 +n+3 = 4n
3 +3,

holding the result. It remains to show that the claim indeed holds.
To prove the claim, letM′′ be the interval model obtained fromM′ by removing

all intervals corresponding to the grained gadgets (or, in other words, by keeping
only the intervals corresponding to link intervals). It is easily seen that M′′ is a
proper interval model, that is, no interval is properly contained in another. Therefore,
the interval graph corresponding to M′′ is a proper interval graph and M′′ can be
modified so that their intervals have all a single length. Since it is possible to bring
all grained gadgets back to M′′ using two more lengths, we have that ic(M′) ≤ 3,
as claimed. �

As a concluding remark, we note that the interval count of the inter-
val model M produced in the original reduction is highly dependent on the
assumed orderings of V (G) and E(G), and may achieve ic(M) = Ω(4

√
n′).

The model M′ produced in our reduction enforces that ic(M′) = 4 which is
invariant for any such orderings. On the perspective of the problem of inter-
val count 2 and beyond, for which very little is known, our NP-completeness
result on a class of bounded interval count graphs is also of interest.

199

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 23

Acknowledgements

We thank Vinicius F. Santos who shared Reference [2], and anonymous referees
for many valuable suggestions, including improving the interval count from 5
to 4.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

References

[1] Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-
complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976).
https://doi.org/10.1016/0304-3975(76)90059-1

[2] Adhikary, R., Bose, K., Mukherjee, S., Roy, B.: Complexity of maxi-
mum cut on interval graphs. In: Buchin, K., de Verdière, É.C. (eds.) 37th
International Symposium on Computational Geometry, SoCG 2021, June
7-11, 2021, Buffalo, NY, USA (Virtual Conference). LIPIcs, vol. 189, pp.
7–1711. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.7

[3] Johnson, D.S.: The NP-completeness column: An ongoing guide. J.
Algorithms 6(3), 434–451 (1985). https://doi.org/10.1016/0196-6774(85)
90012-4

[4] de Figueiredo, C.M.H., de Melo, A.A., Sasaki, D., Silva, A.: Revising
Johnson’s table for the 21st century. Discret. Appl. Math. (2021). https:
//doi.org/10.1016/j.dam.2021.05.021

[5] Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing
minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D.
(ed.) LATIN 2012: Theoretical Informatics - 10th Latin American Sym-
posium, Arequipa, Peru, April 16-20, 2012. Proceedings. Lecture Notes
in Computer Science, vol. 7256, pp. 279–290. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29344-3 24

[6] Chakraborty, D., Das, S., Foucaud, F., Gahlawat, H., Lajou, D., Roy, B.:
Algorithms and complexity for geodetic sets on planar and chordal graphs.
In: Cao, Y., Cheng, S., Li, M. (eds.) 31st International Symposium on
Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong
Kong, China (Virtual Conference). LIPIcs, vol. 181, pp. 7–1715. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs.ISAAC.2020.7

200

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Springer Nature 2021 LATEX template

24 MaxCut of Interval graphs

[7] Cohen, J., Fomin, F.V., Heggernes, P., Kratsch, D., Kucherov, G.: Opti-
mal linear arrangement of interval graphs. In: Kralovic, R., Urzyczyn,
P. (eds.) Mathematical Foundations of Computer Science 2006, 31st
International Symposium, MFCS 2006, Stará Lesná, Slovakia, August
28-September 1, 2006, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4162, pp. 267–279. Springer, Berlin, Heidelberg (2006). https:
//doi.org/10.1007/11821069 24

[8] Jinjiang, Y., Sanming, Z.: Optimal labelling of unit interval
graphs. Applied Math. 10(3), 337–344 (1995). https://doi.org/10.1007/
bf02662875

[9] Nicoloso, S., Sarrafzadeh, M., Song, X.: On the sum coloring problem on
interval graphs. Algorithmica 23(2), 109–126 (1999). https://doi.org/10.
1007/PL00009252

[10] Marx, D.: A short proof of the NP-completeness of minimum sum inter-
val coloring. Oper. Res. Lett. 33(4), 382–384 (2005). https://doi.org/10.
1016/j.orl.2004.07.006

[11] Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple
linear time recognition of unit interval graphs. Inf. Process. Lett. 55(2),
99–104 (1995). https://doi.org/10.1016/0020-0190(95)00046-F

[12] de Figueiredo, C.M.H., Meidanis, J., de Mello, C.P.: A linear-time algo-
rithm for proper interval graph recognition. Inf. Process. Lett. 56(3),
179–184 (1995). https://doi.org/10.1016/0020-0190(95)00133-W

[13] Cerioli, M.R., de S. Oliveira, F., Szwarcfiter, J.L.: The interval count of
interval graphs and orders: a short survey. J. Braz. Comput. Soc. 18(2),
103–112 (2012). https://doi.org/10.1007/s13173-011-0047-1

[14] Cerioli, M.R., Oliveira, F.S., Szwarcfiter, J.L.: On counting interval
lengths of interval graphs. Discret. Appl. Math. 159(7), 532–543 (2011).
https://doi.org/10.1016/j.dam.2010.07.006

[15] Klav́ık, P., Otachi, Y., Sejnoha, J.: On the classes of interval graphs of lim-
ited nesting and count of lengths. Algorithmica 81(4), 1490–1511 (2019).
https://doi.org/10.1007/s00453-018-0481-y

[16] Bodlaender, H.L., Kloks, T., Niedermeier, R.: SIMPLE MAX-CUT for
unit interval graphs and graphs with few p4s. Electron. Notes Discret.
Math. 3, 19–26 (1999). https://doi.org/10.1016/S1571-0653(05)80014-9

[17] Boyaci, A., Ekim, T., Shalom, M.: A polynomial-time algorithm for the
maximum cardinality cut problem in proper interval graphs. Inf. Process.
Lett. 121, 29–33 (2017). https://doi.org/10.1016/j.ipl.2017.01.007

201

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Springer Nature 2021 LATEX template

MaxCut of Interval graphs 25

[18] Bodlaender, H.L., de Figueiredo, C.M.H., Gutierrez, M., Kloks, T., Nie-
dermeier, R.: Simple max-cut for split-indifference graphs and graphs
with few p4’s. In: Ribeiro, C.C., Martins, S.L. (eds.) Experimental and
Efficient Algorithms, Third International Workshop, WEA 2004, Angra
Dos Reis, Brazil, May 25-28, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 3059, pp. 87–99. Springer, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24838-5 7

[19] Kratochv́ıl, J., Masaŕık, T., Novotná, J.: U-bubble model for mixed unit
interval graphs and its applications: The maxcut problem revisited. In:
Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2020, August 24-28,
2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 57–15714. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs.MFCS.2020.57

[20] de Figueiredo, C.M.H., de Melo, A.A., de S. Oliveira, F., Silva, A.:
Maximum cut on interval graphs of interval count four is NP-complete.
In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2021, August
23-27, 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp. 38–13815. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.MFCS.2021.38

[21] de Figueiredo, C.M.H., de Melo, A.A., de S. Oliveira, F., Silva, A.: Maxi-
mum cut on interval graphs of interval count five is NP-complete. CoRR
abs/2012.09804 (2020) https://arxiv.org/abs/2012.09804

[22] Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in
Mathematics. Springer, New York (2008). https://doi.org/10.1007/
978-1-84628-970-5

[23] Fishburn, P.C.: Interval graphs and interval orders. Discret. Math. 55(2),
135–149 (1985). https://doi.org/10.1016/0012-365X(85)90042-1

[24] Berman, P., Karpinski, M.: On some tighter inapproximability results
(extended abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M.
(eds.) Automata, Languages and Programming, 26th International Col-
loquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1644, pp. 200–209. Springer,
Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 17

[25] Roberts, F.: Indifference graphs, F. Harary (Ed.), Proof Techniques in
Graph Theory. Academic Press, New York (1969)

202

Appendix F

Manuscript: MaxCut on

Permutation Graphs is

NP-complete

This appendix contains the manuscript:

Celina M. H. de Figueiredo, Alexsander A. de Melo, Fabiano de Oliveira, Ana Silva.

MaxCut on Permutation Graphs is NP-complete. Submitted in March 2022 to

Journal of Graph Theory [36].

203

MaxCut on Permutation Graphs is NP-complete

Celina M. H. de Figueiredoa, Alexsander A. de Meloa, Fabiano S. Oliveirab,
Ana Silvac,d

aFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
bRio de Janeiro State University, Rio de Janeiro, Brazil

cFederal University of Ceará, Ceará, Brazil
dUniversitá degli Studi di Firenze, Italy

Abstract

In this paper, we prove that the MaxCut problem is NP-complete on permu-
tation graphs, settling a long-standing open problem that appeared in the 1985
column of the Ongoing Guide to NP-completeness by David S. Johnson.

1. Introduction

A cut is a partition of the vertex set of a graph into two disjoint parts, and
the maximum cut problem (denoted by MaxCut, for short) aims to determine
a cut with the maximum number of edges for which each endpoint is in a dis-
tinct part. The decision problem MaxCut is known to be NP-complete since5

the seventies [1], and only recently its restriction to interval graphs has been
announced to be hard by Adhikary, Bose, Mukherjee, and Roy [2]. This settles
a long-standing open problem from the Ongoing Guide to NP-completeness by
David S. Johnson [3].

In his column, David S. Johnson presented a two-page summary table, with10

a column for each of the ten most famous NP-complete graph problems, and a
row for each of thirty selected graph class. Among those graph classes, special
emphasis was given to subclasses of perfect graphs and of intersection graphs
having broad algorithmic significance. The emphasis was on the restrictions
themselves and how they affect the complexity of the considered NP-hard prob-15

lems. The discussion had focus on the particularly fertile domain of graph
theory, where the central open problem at that time was the recognition of
perfect graphs.

Many important graph classes are defined or can be characterized by a ge-
ometric intersection model. Two particularly well-studied examples are sub-20

classes of perfect graphs: the classes of interval graphs and of permutation
graphs [4, 5, 6]. In their respective models, the intersecting objects are line

Email addresses: celina@cos.ufrj.br (Celina M. H. de Figueiredo),
aamelo@cos.ufrj.br (Alexsander A. de Melo), fabiano.oliveira@ime.uerj.br (Fabiano S.
Oliveira), anasilva@mat.ufc.br (Ana Silva)

Preprint submitted to Journal of Graph Theory July 12, 2022

204

segments in the plane, with different restrictions imposed on their positions. In
interval graphs, each line segment must have its endpoints on a single line, while
in permutation graphs, their endpoints must lie on two distinct parallel lines.25

Besides selecting the recognition of perfect graphs as the famous open prob-
lem, in his column, David S. Johnson selected only two others as open and may
well be hard problems: Hamiltonian circuit restricted to permutation graphs
and edge-coloring restricted to planar graphs. Today, we know that recognition
of perfect graphs and Hamiltonian circuit restricted to permutation graphs can30

both be solved in polynomial time. On the other hand, edge-coloring restricted
to planar graphs remains a challenging open problem. Please, refer to [7] for
an updated summary table. Surprisingly, after 35 years, the only new resolved
entry for permutation graphs is Hamiltonian circuit.

The present paper settles a long-standing open problem proposed by John-35

son, by providing the first entry of Johnson’s table for permutation graphs
resolved as NP-complete.

Theorem 1. MaxCut is NP-complete on permutation graphs.

Our proof is based on Adhikary et al.’s construction used to prove the NP-
completeness of MaxCut on interval graphs [2]. It is interesting to notice that,40

among the problems selected by Johnson, MaxCut is the only one classified as
NP-complete for interval graphs and for permutation graphs. Despite that, the
interval graph constructed by Adhikary et al. is not a permutation graph, and
our constructed permutation graph is not an interval graph. Thus, we leave as
an open question the complexity of MaxCut on permutation interval graphs.45

Our paper is organized as follows. In Section 1.1, we present the basic con-
cepts and notations. In Section 2, we present the main gadget in the reduction
of Adhikary et al. [2], which also plays an important role in our reduction. In
Section 3, we present the construction of Adhikary et al. [2] and show that it
does not lead to a permutation graph. The presentation of their construction50

is also useful in Section 4, where we finally present the proof of Theorem 1. In
Section 5, we prove that our constructed permutation graph is not an interval
graph, and propose the complexity of MaxCut on permutation interval graphs
as an open problem.

1.1. Preliminaries55

In this work, all graphs considered are simple. For missing definitions and
notation of graph theory, we refer to [8].

Let G be a graph. We say that a subset K ⊆ V (G) is a clique if every two
distinct vertices in K are adjacent, and that a subset S ⊆ V (G) is a stable set if
no two vertices in S are adjacent. Let X and Y be two disjoint subsets of V (G).60

We say that X is complete to Y if every vertex in X is adjacent to every vertex
in Y , and that X is anti-complete to Y if there are no edges between X and Y .
We let EG(X,Y) be the subset of E(G) with an endpoint in X and the other
endpoint in Y . A cut of G is a partition of V (G) into two parts A,B ⊆ V (G),
denoted by [A,B]; the edge set EG(A,B) is called the cut-set of G associated65

2

205

with [A,B]. For each two vertices u, v ∈ V (G), we say that u and v are in a
same part of [A,B] if either {u, v} ⊆ A or {u, v} ⊆ B; otherwise, we say that
u and v are in opposite parts of [A,B]. Denote by mc(G) the maximum size of
a cut-set of G. The MaxCut problem has as input a graph G and a positive
integer k, and it asks whether mc(G) ≥ k.70

Let π and π′ be two permutations of a same set, say V . A graph G is called
the intersection graph related to {π, π′} if V (G) = V and, for each two vertices
u, v ∈ V (G), uv ∈ E(G) if and only if u <π v and v <π′ u. In this case, we also
say that {π, π′} is a permutation model of G. A graph is a permutation graph
if it is the intersection graph related to a permutation model.75

Given two permutations π and γ of disjoint subsets X and Y , respectively,
we write πγ to denote the permutation of X ∪ Y given by the concatenation of
π with γ. Also, we write ←−π to denote the reverse of the permutation π, that
is, if π = (v1, . . . , vi), then ←−π = (vi, . . . , v1). In order to simplify the notation,
given a set Z, we sometimes use the same symbol, Z, to denote also a chosen80

permutation of the elements of Z; in such cases,
←−
Z represents the reverse of the

chosen permutation for Z.
An interval model is a finite multiset M of closed intervals of the real line.

Let G be a graph and M be an interval model. An M-representation of G
is a bijection φ : V (G) → M such that, for every two distinct vertices u, v ∈85

V (G), we have that uv ∈ E(G) if and only if φ(u) ∩ φ(v) 6= ∅. If such an M-
representation exists, we say thatM is an interval model of G and that G is an
interval graph.

We write i ∈ [n] to mean i ∈ {1, . . . , n}.

2. Grained gadget90

In this section, we present the notion of grained gadgets, which was defined
in [9] as a generalization of the so-called V -gadgets and E-gadgets, these latter
introduced by Adhikary et al. [2] in order to prove the NP-completeness of
MaxCut on interval graphs.

Let x and y be positive integers. An (x, y)-grained gadget is a split graph H95

formed by a clique K ′∪K ′′ of size 2y and a stable set S′∪S′′ of size 2x with K ′

being complete to S′, K ′′ being complete to S′′, and satisfying |K ′| = |K ′′| = y
and |S′| = |S′′| = x. Figure 1 depicts an interval representation of an (x, y)-
grained gadget. One can readily verify that the intersection graph related to the

pair of permutations {K ′S′S′′K ′′, S′←−K ′′←−K ′S′′} (see Figure 2) is an (x, y)-grained100

gadget. Thus, grained gadgets are interval graphs and permutation graphs.
Let H be an (x, y)-grained gadget and G be a supergraph of H. For each

vertex u ∈ V (G) \ V (H), we say that (see Figure 3): u covers H if V (H) ⊆
NG(u); u weakly intersects H if either NG(u)∩V (H) = K ′ or NG(u)∩V (H) =
K ′′; and that u strongly intersects H if either NG(u) ∩ V (H) = K ′ ∪ S′ or105

NG(u) ∩ V (H) = K ′′ ∪ S′′. Moreover, we say that G respects the structure of
H if, for each vertex u ∈ V (G) \ V (H), either NG(u) ∩ V (H) = ∅ or u satisfies
one of the previous conditions.

3

206

Figure 1: Interval representation of an (x, y)-grained gadget c.f.[9].

Figure 2: A permutation model of a grained gadget.

The next lemma establishes the key property of grained gadgets with respect
to the MaxCut problem. Intuitively, it states that, for suitable values of x and110

y, if G is a supergraph that respects the structure of an (x, y)-grained gadget,
then, in any maximum cut [A,B] of G, the vertices belonging to K ′ ∪ S′′ are
placed in a same part of [A,B], opposite to the part containing the vertices
belonging to K ′′ ∪ S′.

Lemma 1 ([10]). Let x and y be positive integers, H be an (x, y)-grained gadget115

and G be a supergraph that respects the structure of H. Also, let [A,B] be a
maximum cut of G, t be the number of vertices in V (G) \ V (H) adjacent to
some vertex of H, ` be the number of vertices of G adjacent to some vertex in
S′, and r be the number of vertices of G adjacent to some vertex in S′′. If ` and
r are odd, y > 2t and x > t+ 2y, then each of the following holds:120

1. S′ ⊆ A and K ′ ⊆ B, or vice versa;

2. S′′ ⊆ A and K ′′ ⊆ B, or vice versa;

3. K ′ ⊆ A and K ′′ ⊆ B, or vice versa.

In the remainder of the text, when a grained gadget H is not clear in the
context, we write S′(H), S′′(H), K ′(H) and K ′′(H) to denote the stable sets125

S′ and S′′ and the cliques K ′ and K ′′ of H, respectively.

3. Adhikary et al.’s reduction

In this section, we present the construction given by Adhikary et al. [2] of
an interval graph that proves NP-completeness of MaxCut in this class. As
we see in Section 4, the general idea behind their construction can also be used130

to obtain a permutation graph instead. Nevertheless, the question of whether
their construction is also permutation might arise. We prove here that this is
not the case.

4

207

(a) Covering
intersection (b) Weak intersection (c) Strong intersection

Figure 3: Vertex u ∈ V (G)\V (H) (a) covering H, (b) weakly intersecting H, and (c) strongly
intersecting H. The set K′ ∪K′′ is a clique and the set S′ ∪S′′ is a stable set. A line between
sets, or between u and some set, means that all the edges occur.

Given a cubic graph G, let πV = (v1, v2, . . . , vn) and πE = (e1, e2, . . . , em)
be arbitrary orderings of V (G) and E(G), respectively. Define the values: q =135

200n3 + 1, p = 2q + 7n, q′ = 10n2 + 1, and p′ = 2q′ + 7n. An interval graph G′

is defined through the construction of one of its interval models M, described
as follows (observe Figure 4 to follow the construction):

1. Add to M a (p, q)-grained gadget Hi for each vertex vi ∈ V (G). These
gadgets should be pairwise disjoint, with Hi appearing completely to the140

left of Hi+1 for every i ∈ [n− 1];

2. Add toM a (p′, q′)-grained gadget Ej for each edge ej ∈ E(G). Likewise,
these gadgets should be pairwise disjoint, with Ej appearing completely to
the left of Ej+1 for every j ∈ [m− 1]. Additionally, E1 appears completely
to the right of Hn, without intersecting it;145

3. Finally, for each edge ej = vivi′ ∈ E(G), with i < i′, add four intervals
L1
i,j , L

2
i,j , L

1
i′,j , L

2
i′,j , called link intervals, such that:

� L1
i,j and L2

i,j (resp. L1
i′,j and L2

i′,j) weakly intersect Hi (resp. Hi′)
to the right of Hi (resp. Hi′);

� L1
i,j and L2

i,j (resp. L1
i′,j and L2

i′,j) weakly intersect (resp. strongly150

intersect) Ej to the left of Ej .

Figure 4: Adhikary et al.’s interval model M, with e1 = v1v2, e2 = v1vn, and em = v2vn.

As claimed, we show that the constructed graph G′ is not a permutation
graph. This is because G′ contains the graph X34 depicted in Figure 5a as an
induced subgraph, and such a graph is a forbidden subgraph for comparability
graphs cf. [11, 12], in turn a known superclass of permutation graphs. To see155

that this claim holds, observe Figure 5b. Given an edge ej = vivi′ ∈ E(G), with
i < i′, it shows the intervals in the grained gadgets of vi, vi′ and ej , as well as

5

208

some link intervals related to ej . The adjacencies can be easily checked to be
as in the graph of Figure 5a.

(a) (b)

Figure 5: (a) Forbidden induced subgraph X34 for comparability graphs cf.[12]. (b) X34 as
an induced subgraph in Adhikary et al.’s construction.

In the next section, we show that a modification of Adhikary et al.’s con-160

struction gives us the desired permutation graph.

4. Our reduction

Let G be a cubic graph, and consider πV = (v1, v2, . . . , vn) and πE =
(e1, e2, . . . , em) arbitrary orderings of V (G) and E(G), respectively. The values
of p, q, p′, q′ are not the same as in Section 3 and are presented later. Again,165

for each vertex vi, create a (p, q)-grained gadget, Hi, and for each edge ej , cre-
ate a (p′, q′)-grained gadget Ej . For simplicity, denote the sets S′(Hi), S′′(Hi),
K ′(Hi) and K ′′(Hi) by S′i, S

′′
i ,K

′
i,K

′′
i , respectively. Similarly, denote the sets

S′(Ej), S′′(Ej), K ′(Ej) and K ′′(Ej) by S
′e
j , S

′′e
j ,K

′e
j ,K

′′e
j , respectively.

Recall that for each i ∈ [n], the permutation model of Hi consists of the pair170

of permutations {π1
i , π

2
i } where π1

i = K ′iS
′
iS
′′
i K
′′
i and π2

i = S′i
←−
K ′′i
←−
K ′iS

′′
i . Analo-

gously, for each j ∈ [m], the permutation model of Ej consists of the pair of per-

mutations {γ1j , γ2j } where γ1j = K
′e
j S

′e
j S

′′e
j K

′′e
j and γ2j = S

′e
j

←−−
K

′′e
j

←−−
K

′e
j S

′′e
j . Now,

for each edge ej = vivi′ , with i < i′, add four new vertices L1
i,j , L

2
i,j , L

1
i′,j , L

2
i′,j ,

called link vertices. In what follows, we modify some of the grained gadget175

permutations in order to make L1
i,j , L

2
i,j (resp. L1

i′,j , L
2
i′,j) weakly intersect Hi

(resp. Hi′) and strongly intersect (resp. weakly intersect) Ej .
If vi is incident to edges j1, j2, j3, with j1 < j2 < j3, then modify one of the

permutations defining Hi to include the link vertices related to vi as follows:

π1
i = K ′iS

′
iS
′′
i CiK

′′
i ,

where Ci denotes the permutation L1
i,j1
L2
i,j1
L1
i,j2
L2
i,j2
L1
i,j3
L2
i,j3

.
Similarly, for each edge ej = vivi′ , i < i′, we modify one of the permutations

defining Ej to include the link vertices related to ej as follows:180

γ1j = K
′e
j L

2
i′,jL

1
i′,jS

′e
j L

2
i,jL

1
i,jS

′′e
j K

′′e
j .

We do not modify π2
i and γ2j , and keep denoting by π2

i the permutation

S′i
←−
K ′′i
←−
K ′iS′′i , and by γ2j the permutation S

′e
j

←−−
K

′′e
j

←−−
K

′e
jS

′′e
j . Finally, let G′ be

6

209

the permutation graph related to {Π,Π′}, where:

Π = π1
1 . . . π

1
nγ

2
1 , . . . , γ

2
m, and

Π′ = π2
1 . . . π

2
nγ

1
1 , . . . , γ

1
m.

Figure 6 illustrates our permutation model {Π,Π′}, focusing on the vertex
grained gadgets Hi and Hi′ , the edge grained gadget Ej , and the link vertices
L1
i,j , L

2
i,j and L1

i′,j , L
2
i′,j related to an edge ej = vivi′ , with i < i′.

Figure 6: Vertex and edge grained gadgets, and link vertices related to an edge ej = vivi′ ,
with i < i′, in our permutation model {Π,Π′}.

We remark that the main difference of our permutation graph from the
Adhikary et al.’s interval graph is the fact that, in Adhikary et al.’s interval185

graph, the link vertices form a clique, whereas, as we show in Section 5, some
link vertices are not adjacent in our permutation graph. Additionally, for an
edge ej = vivi′ ∈ E(G), with i < i′, the link vertices L1

i,j , L
2
i,j (resp. L1

i′,j , L
2
i′,j)

weakly intersect (resp. strongly intersect) Ej in Adhikary et al.’s interval graph,
whereas in our permutation graph the link vertices L1

i,j , L
2
i,j (resp. L1

i′,j , L
2
i′,j)190

strongly intersect (resp. weakly intersect) Ej .
Before our proof, we make some observations about the constructed graph

in order to improve the proof’s readability. Note that, for each link vertex L
and grained gadget H, either the relative order between L and V (H) in Π is the
reverse of their relative order in Π′, in which case L is complete to V (H), or the195

relative order is the same in both Π and Π′, in which case L is anti-complete to
V (H), or L is related to H according to one of the ways described below.

� L ∈ {L1
i,j , L

2
i,j} and H = Hi: in this case only the relative orders between

L and K ′′i are reversed in Π and Π′, i.e., L is complete to K ′′i and anti-
complete to V (Hi) \K ′′i ;200

� L ∈ {L1
i,j , L

2
i,j} and H = Ej , with ej = vivi′ , i < i′: in this case the

relative orders between L and K
′e
j ∪ S

′e
j are reversed in Π and Π′, i.e., L

is complete to K
′e
j ∪ S

′e
j and anti-complete to V (Ej) \ (K

′e
j ∪ S

′e
j); or

� L ∈ {L1
i′,j , L

2
i′,j} and H = Ej , with ej = vivi′ , i < i′: in this case only

the relative orders between L and K
′e
j are reversed in Π and Π′, i.e., L is205

complete to K
′e
j and anti-complete to V (Ej) \K

′e
j .

Proof of Theorem 1. Consider the reduction graph G′ and its permutation
model {Π,Π′} as previously defined. For each ej = vivi′ ∈ E(G), let

L(ej) = {L1
i,j , L

2
i,j , L

1
i′,j , L

2
i′,j};

7

210

and for each vi ∈ V (G), let

L(vi) = {L1
i,j , L

2
i,j | ej is incident to vi}.

Also, denote the set of link vertices by L, i.e. L =
⋃m
j=1 L(ej).

We postpone the assignment of the actual values for p, q, p′, q′ and, in ad-
dition to the conditions necessary for the application of Lemma 1, we also ask
that q > 6n+ p′ and p′ > 2q′ > 9n2.210

In what follows, we prove that there exists a bijective relation f between the
maximum cuts of the input graph G and the maximum cuts of our permutation
graph G′. Then, we prove that, for each maximum cut [X,Y] of G,

|EG(X,Y)| ≥ k if and only if |EG′(A,B)| ≥ φ(n,m, k),

where [A,B] = f(X,Y) and φ is a well-defined function. Theorem 1 immediately
follows.

Let [A,B] be a maximum cut of G′. In order to define f , we first prove some
properties relating the partitioning of vertex and edge grained gadgets of G′ in
[A,B] with the partitioning of the link vertices of G′ in [A,B]. More specifically,215

we prove that the two following properties hold:

1. For each vertex vi ∈ V (G), if K ′′i ⊆ A, then {L1
i,j , L

2
i,j} ⊆ B for each edge

ej ∈ E(G), with ej = vivi′ and i < i′;
2. For each edge ej ∈ E(G), with ej = vivi′ and i < i′, if {L1

i,j , L
2
i,j} ⊆ B,

then S
′e
j ⊆ A.220

Proof of Property 1. Let vi ∈ V (G) and suppose that K ′′i ⊆ A. For the
sake of contradiction, suppose that there exists a link vertex L ∈ L(vi) ∩ A.
Then, let [A′, B′] be the cut obtained from [A,B] by setting A′ = A \ {L} and
B′ = B∪{L}. Observe that there is a loss of at most |L|+max{p′, q′} = |L|+p′
edges between L and L, and between L and the vertices of the edge grained225

gadget related to L, say Ej , since K
′e
j and S

′e
j are always in opposite parts of the

cut. On the other hand we gain all the edges between L and the vertices in K ′′i .
Therefore, we get an increase of the cut-set of at least q edges, and a decrease
of less than |L| + max{p′, q′} = 6n + p′ edges. It follows from the hypothesis
q > 6n + p′ that |EG′(A′, B′)| is bigger than |EG′(A,B)|, contradicting the230

maximality of [A,B].
Proof of Property 2. Consider an edge ej ∈ E(G), with ej = vivi′ and

i < i′, and suppose that {L1
i,j , L

2
i,j} ⊆ B. Observe that, because the relative

orders among the edge and vertex grained gadgets themselves are the same in
Π and Π′, there are no edges between Ej and any other grained gadgets of235

G′, i.e., the only vertices outside of Ej that can be adjacent to the vertices of
Ej are those in L. Moreover, Lemma 1 tells us that the vertices belonging to

K
′e
j ∪ S

′′e
j are placed in a same part of [A,B], opposite to the part containing

the vertices belonging to K
′′e
j ∪ S

′e
j . More formally, either K

′e
j ∪ S

′′e
j ⊆ B and

K
′′e
j ∪S

′e
j ⊆ A, or K

′e
j ∪S

′′e
j ⊆ A and K

′′e
j ∪S

′e
j ⊆ B. As a result, switching the240

vertices of Ej of part of the cut does not change, and therefore cannot decrease,

8

211

the number of edges between the vertices of Ej and the vertices belonging to

L\L(ej) in the cut-set. Consequently, if S
′e
j ⊆ A, then we obtain that there are

at least 2p′ edges in the cut-set that are incident to vertices of Ej ; these are the

edges between L1
i,j , L

2
i,j and the vertices belonging to S

′e
j . On the other hand, if245

S
′e
j ⊆ B, then we obtain that there are at most 4q′ edges in the cut-set that are

incident to vertices of Ej ; these are the edges between the vertices belonging to

L(ej) and the vertices belonging to K
′e
j . Therefore, since p′ > 2q′, we get that

S
′e
j ⊆ A as we wanted to prove.

We are now ready to prove the existence of the bijective relation f . For each250

maximum cut [X,Y] of G, let f(X,Y) be the cut [A,B] of G′ defined as follows:

� For each vertex vi ∈ V (G), if vi ∈ X, then add K ′i ∪ S′′i ∪ L(vi) to A and
K ′′i ∪ S′i to B; do the opposite otherwise.

� For each ej ∈ E(G), with ej = vivi′ and i < i′, if L1
i,j ∈ A, then add

K
′e
j ∪ S

′′e
j to A and K

′′e
j ∪ S

′e
j to B; and do the opposite otherwise.255

Based on Properties 1 and 2, one can readily verify that f is well-defined and
is a bijective relation, as desired.

Now, we count the number of edges in EG′(A,B) as a function of n, m, p,
q, p′, q′ and of the size of the cut-set EG(X,Y). First, consider vi ∈ V (G). By
construction, we know that there are 2pq + q2 edges in the cut-set between the
vertices of Hi. Additionally, there are exactly 6 link vertices weakly intersecting
Hi, while all other link vertices are either complete or anti-complete to V (Hi).
Observe also that the number of link vertices complete to V (Hi) is exactly equal
to 6(i− 1); these are the link vertices related to {v1, . . . , vi−1}. This gives us a
total of 6[q + (i − 1)(p + q)] edges between the vertices of Hi and the vertices
belonging to L in the cut-set. Summing up these values for every vi ∈ V (G),
we get a total of

α1 = n[2pq+ q2 + 6q] + 6
n∑

i=1

((i− 1)(p+ q)) = n[2pq+ q2 + 6q+ 3(p+ q)(n−1)]

edges in the cut-set EG′(A,B) incident to vertex grained gadgets. Now, let
ej ∈ E(G), with ej = vivi′ and i < i′. By construction, we know that there are
2p′q′+(q′)2 edges of the cut-set between vertices of Ej , and 2p′ edges of the cut-
set between L1

i,j , L
2
i,j and the vertices of Ej . Additionally, note that there are

exactly 4(m−j) link vertices that cover and, therefore, are complete to Ej ; these
are the link vertices related to {ej+1, . . . , em}. This gives us a total of 4(m −
j)(p′+q′) edges between the vertices of Ej and the vertices belonging to L\L(ej).
Finally, suppose without loss of generality that L1

i,j ∈ A (the count is analogous

if it is in B). If vi′ ∈ X, then we know that {L1
i′,j , L

2
i′,j} ⊆ A and hence there

are no edges in the cut-set between vertices L1
i′,j , L

2
i′,j and the vertices of Ej .

Otherwise, observe that it follows that ej ∈ EG(X,Y) and {L1
i′,j , L

2
i′,j} ⊆ B,

9

212

and hence we get additional 2q′ edges in the cut-set; these additional edges are
between the link vertices L1

i′,j , L
2
i′,j and the vertices belonging to K

′e
j . Summing

up these values for every ej ∈ E(G), we get a total of α2 + 2q′|EG(X,Y)| edges
in the cut-set EG′(A,B) incident to edge grained gadgets, where

α2 = m[2p′q′ + (q′)2 + 2p′] +
∑m
j=1 (4(m− j)(p′ + q′))

= m[2p′q′ + (q′)2 + 2p′ + 2(p′ + q′)(m− 1)].

Finally, observe that there are at most |A ∩ L| · |B ∩ L| edges of the cut-
set between link vertices. Note also that |A ∩ L| = 6|Y | since each vertex in
Y is related to 6 link vertices, which are all placed in A. Similarly, we have260

|B ∩ L| = 6|X|. This gives us at most 36|X| · |Y | ≤ 9n2 edges in the cut-set
between link vertices. Putting everything together, we get:

α1 + α2 + 2q′|EG(X,Y)| ≤ |EG′(A,B)| ≤ α1 + α2 + 2q′|EG(X,Y)|+ 9n2.

By setting φ(n,m, k) to α1 + α2 + 2q′k, and knowing that p, q, p′, q′ will be
chosen as functions of n andm, we want to prove, as stated in the beginning, that
|EG(X,Y)| ≥ k if and only if |EG′(A,B)| ≥ φ(n,m, k). If |EG(X,Y)| ≥ k, then265

the first inequality gives us that |EG′(X,Y)| ≥ α1 +α2 + 2q′k = φ(n,m, k). On
the other hand, if |EG′(A,B)| ≥ φ(n,m, k) = α1 + α2 + 2q′k, then the second
inequality gives us that |EG(X,Y)| ≥ k − 9n2/2q′. Because we assume that
2q′ > 9n2, it follows that k − 9n2/2q′ > k − 1 and hence |EG(X,Y)| ≥ k.

It only remains to set the values of p, q, p′, q′. Observe that:270

� For every grained gadget H, the total number of vertices in V (G′) \ H
adjacent to H is at most 6n (these are exactly the link vertices).

� For every vertex grained gadget H, the total number of vertices adjacent
to some vertex u ∈ S′(H) is exactly q+2h, for some positive integer h (this
is because the number of link vertices adjacent to the vertices in S′(H) is275

always even). The same holds for the number of vertices adjacent to the
vertices in S′′(H). We then get that the parity of ` and r in the conditions
of Lemma 1 applied to H depends only on the parity of q.

� Similarly, if H is an edge grained gadget, then the parity of the total
number of vertices adjacent to some u ∈ S′(H) ∪ S′′(H) is equal to the280

parity of q′.

Therefore, the necessary conditions of Lemma 1 translate to: q > 12n and
q′ > 12n; p > 2q+ 6n and p′ > 2q′+ 6n; and q and q′ are odd. Additionally, we
need to ensure: q > 6n+ p′ and p′ > 2q′ > 9n2. Hence, consider:

� q′ = 5n2 + 1;285

� p′ = 11n2 + 6n;

� q = 12n2 + 12n+ 1;

10

213

� p = 25n2 + 30n.

Since n ≥ 4, one can verify that the values described above satisfy all the
required conditions. This, therefore, concludes the proof of Theorem 1.290

5. MaxCut on permutation interval graphs is an open problem

In this paper, we have presented a proof of NP-completeness for the Max-
Cut problem when constrained to permutation graphs. Surprisingly enough,
we found that the main gadget in the reduction recently presented by Adhikary
et al. [2] for interval graphs is also a permutation graph. Additionally, in Sec-295

tion 3, we have seen that being permutation is not a property that holds for the
full construction of Adhikary et al. [2]. On the other hand, since the grained
gadgets play an important role in our reduction too, one could wonder whether
our construction instead is in the intersection between interval and permutation
graphs. The answer to that is no as we argue next.300

Let G be a cubic graph, and consider arbitrary orderings of V (G) and E(G),
(v1, . . . , vn) and (e1, . . . , em), respectively. Let j1, j2, j3 be the indices of the
edges incident to v1, with j1 < j2 < j3. Also, let vi be the other endpoint of ej2 .
We present a C4 in G′, the graph constructed in Section 4; it thus follows that
G′ is not chordal, and hence also not interval [5]. Observe Figure 7 to follow305

our argument. Let a be equal to L1
1,j1

, b be any vertex in K ′′i , c be equal to

L1
i,j2

, and d be any vertex in K
′e
j1

. Since j1 < j2 and 1 < i, we know that the
relative order between a and c in Π is the same as in Π′; hence ac /∈ E(G′). Also,
the relative order in Π between a and any vertex of Hi is reversed in Π′, the
same holds between c and any vertex belonging to K ′′i ; hence {ab, bc} ⊆ E(G′).310

Similarly, the relative order between a and any vertex belonging to K
′e
j1

in Π
is reversed in Π′, and the same holds between c and any vertex of Ej1 ; hence
{ad, cd} ⊆ E(G′). Finally, since j1 < j2, the relative order between b and d in
Π is the same as in Π′, and therefore bd /∈ E(G′), thus finishing our argument.

Figure 7: Existence of a C4 = (a, b, c, d) as an induced subgraph in our permutation graph.

The previous paragraph tells us that for any chosen orderings of V (G) and315

E(G), the graph constructed in Section 4 contains a C4. Since it is known that
the class of C4-free co-comparability graphs is precisely the class of interval
graphs [13], and that the class of permutation graphs is equal to the class of
comparability co-comparability graphs [14], we get that interval permutation
graphs are exactly the class of C4-free permutation graphs.320

A good question is whether there is a construction that produces a permu-
tation graph that is also C4-free (and hence interval). Up to our knowledge, the

11

214

largest class in the intersection of permutation and interval graphs for which the
complexity is known is the class of the trivially perfect graphs, on which Max-
Cut is polynomial-time solvable thanks to the algorithm given for cographs [15],325

a subclass of permutation graphs that is a superclass of trivially perfect graphs.

References

[1] M. R. Garey, D. S. Johnson, L. J. Stockmeyer, Some simplified NP-
complete graph problems, Theor. Comput. Sci. 1 (3) (1976) 237–267.
doi:10.1016/0304-3975(76)90059-1.330

[2] R. Adhikary, K. Bose, S. Mukherjee, B. Roy, Complexity of maximum cut
on interval graphs, in: 37th International Symposium on Computational
Geometry, SoCG 2021, Vol. 189 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 7:1–7:11. doi:10.4230/LIPIcs.SoCG.

2021.7.335

[3] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algo-
rithms 6 (3) (1985) 434–451. doi:10.1016/0196-6774(85)90012-4.

[4] P. C. Fishburn, Interval graphs and interval orders, Discret. Math. 55 (2)
(1985) 135–149. doi:10.1016/0012-365X(85)90042-1.

[5] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of340

Discrete Mathematics, Vol 57), North-Holland Publishing Co., NLD, 2004.

[6] J. P. Spinrad, Efficient Graph Representations, Fields Institute mono-
graphs, American Mathematical Society, Providence, RI, 2003.

[7] C. M. de Figueiredo, A. A. de Melo, D. Sasaki, A. Silva, Revising Johnson’s
table for the 21st century, Discret. Appl. Math. (2021). doi:10.1016/j.345

dam.2021.05.021.

[8] J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathemat-
ics, Springer, New York, 2008. doi:10.1007/978-1-84628-970-5.

[9] C. M. H. de Figueiredo, A. A. de Melo, F. de S. Oliveira, A. Silva, Maximum
cut on interval graphs of interval count four is NP-complete, in: 46th Inter-350

national Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, Vol. 202 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 38:1–38:15. doi:10.4230/LIPIcs.MFCS.2021.38.

[10] C. M. H. de Figueiredo, A. A. de Melo, F. de S. Oliveira, A. Silva, Maximum
cut on interval graphs of interval count four is NP-complete (2020). arXiv:355

2012.09804.

[11] T. Gallai, Transitiv orientierbare graphen, Acta Mathematica Hungarica
18 (1-2) (1967) 25–66.

12

215

[12] H. N. de Ridder et al., Graphclass: comparability graphs. informa-
tion system on graph classes and their inclusions (isgci), https://www.360

graphclasses.org/classes/gc_72.html, accessed: 2022-02-17.

[13] P. C. Gilmore, A. J. Hoffman, A characterization of comparability graphs
and of interval graphs, Canadian Journal of Mathematics 16 (1964)
539–548.

[14] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identifi-365

cation of permutation graphs, Canadian Journal of Mathematics 23 (1971)
160–175.

[15] H. L. Bodlaender, K. Jansen, On the complexity of the maximum cut prob-
lem, in: Annual Symposium on Theoretical Aspects of Computer Science,
Springer, 1994, pp. 769–780.370

13

216

Appendix G

Manuscript: Computing the

Zig-Zag Number of Directed

Graphs

This appendix contains the manuscript:

Mitre C. Dourado, Celina M. H. de Figueiredo, Alexsander A. de Melo, Mateus de

Oliveira Oliveira, Uéverton S. Souza. Computing the Zig-Zag Number of Directed

Graphs . Published in Discrete Applied Mathematics 312 (2022) [50].

217

https://doi.org/10.1016/j.dam.2021.09.013
https://doi.org/10.1016/j.dam.2021.09.013

Discrete Applied Mathematics 312 (2022) 86–105

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Computing the zig-zag number of directed graphs
Mitre C. Dourado a, Celina M.H. de Figueiredo a, Alexsander A. de Melo a,∗,
Mateus de Oliveira Oliveira c, Uéverton S. Souza b

a Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
b Fluminense Federal University, Niterói, Brazil
c University of Bergen, Bergen, Norway

a r t i c l e i n f o

Article history:
Received 29 June 2020
Received in revised form 12 June 2021
Accepted 15 September 2021
Available online 2 October 2021

Keywords:
Zig-zag number
Directed graphs
Directed width measure
NP-completeness
Computational complexity

a b s t r a c t

The notion of zig-zag number was introduced as an attempt to provide a unified
algorithmic framework for directed graphs. Nevertheless, little was known about the
complexity of computing this directed graph invariant. We prove that deciding whether
a directed graph has zig-zag number at most k is in NP for each fixed k ≥ 0. Although for
most of the natural decision problems this is an almost trivial result, settling k-zig-zag
number in NP is surprisingly difficult. In addition, we prove that 2-zig-zag number is
already an NP-hard problem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Structural graph parameters, such as treewidth, cutwidth and cliquewidth, have been crucial in the development
of parameterized complexity theory. Indeed, many problems that are hard on general graphs become tractable when
parameterized by such parameters [5,6]. However, one of the limitations of these parameters is the fact that they do not
take the direction of edges into account. For instance, directed acyclic graphs (DAGs) in general have unbounded width
with respect to any of the parameters mentioned above. Nevertheless, certain problems can be solved efficiently on DAGs
by using straightforward algorithms. For instance, Directed Hamiltonian path can be solved in linear time on DAGs with
a depth-first search algorithm.

Building on this observation, Johnson, Robertson, Seymour and Thomas [12] initiated a quest for the development of
width measures that explicitly take the direction of edges into consideration. In particular, they defined in [12] the notion
of directed treewidth and showed that some linkage problems that are NP-hard on general directed graphs can be solved
in polynomial time on directed graphs of constant directed treewidth. Additionally, a directed analog of the notion of
pathwidth was also defined by Reed, Thomas, and Seymour around the same time (see for instance cf. [1]).

The introduction of directed treewidth and directed pathwidth motivated the development of many other width
measures for directed graphs that focus on distinct algorithmic or structural properties [2,3,7,9,10,15,16]. A general
algorithmic framework for directed width measures was developed in [13] with the introduction of the notion of zig-zag
number of a directed graph, and subsequently generalized in [14] with the definition of the notion of tree-zig-zag number
of a directed graph.

∗ Corresponding author.
E-mail addresses: mitre@dcc.ufrj.br (M.C. Dourado), celina@cos.ufrj.br (C.M.H. de Figueiredo), aamelo@cos.ufrj.br (A.A. de Melo),

mateus.oliveira@uib.no (M. de Oliveira Oliveira), ueverton@ic.uff.br (U.S. Souza).

https://doi.org/10.1016/j.dam.2021.09.013
0166-218X/© 2021 Elsevier B.V. All rights reserved.

218

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

It was shown in [13] that if G is a class of directed graphs expressible by a monadic-second order logic formula ϕ and
there is a positive integer p such that each directed graph in G can be cast as a union of p directed paths, then, given a
decomposition of a directed graph G of zig-zag number at most k, one can count in time f (ϕ, p, k) · |G|

O(p·k) the number of
subgraphs of G isomorphic to some member of G, for some computable function f . Since directed path decompositions of
width d can be efficiently converted into decompositions of zig-zag number O(d), the counting problem described above
can also be solved in time f (ϕ, p, d) · |G|

O(p·d) on directed graphs of directed pathwidth at most d. These results were
subsequently generalized in [14] to their respective counterparts for directed graphs of tree-zig-zag number at most k
and of directed treewidth at most d. The results in [13] and in [14] were the first algorithmic metatheorems relating the
monadic-second order logic of graphs to directed pathwidth and directed treewidth, respectively.

In a seminal paper analyzing the algorithmic potential of directed width measures, Ganian et al. [8] defined a width
measure to be algorithmically useful if it satisfies the following properties: (1) every graph problem expressible in MSO1
logic admits an XP-time algorithm when parameterized by the measure and (2) for each constant k, the class of graphs of
width at most k is closed under taking directed topological minors. Interestingly, it was shown in [8] that, under standard
complexity theoretic assumptions, any width measure satisfying properties (1) and (2) behaves essentially in the same
way as the usual notion of undirected treewidth (see Theorems 6.6 and 6.7 of [8] for precise statements). We note that any
directed width measure that is constant on DAGs, including zig-zag number, tree-zig-zag number and most of the width
measures defined so far, fail to satisfy property (1) since 3-coloring is MSO1 definable and NP-complete on DAGs. Despite
of this fact, zig-zag number and tree-zig-zag number have been proved to be algorithmically relevant, by establishing
through the metatheorems presented in [13,14] a unified algorithmic framework to solve problems on directed graphs
of low directed pathwidth and of low directed treewidth, respectively. Another interesting aspect of zig-zag number and
tree-zig-zag number is the fact that they can be regarded as graph invariants with challenging theoretical open problems,
from the perspectives of computational complexity and graph theory.

In fact, several complexity questions with respect to computing zig-zag number and tree-zig-zag number of a directed
graph remain open. In particular, the computational complexity of the problem of determining whether a directed graph
has zig-zag number at most k, even for constant k, has remained open since the introduction of this notion in [13].

We show in Section 3 that determining whether a directed graph G has zig-zag number at most k can be solved non-
deterministically in time |G|

O(k), implying that this problem lies in NP for each fixed k. While the respective statement
is almost trivial with respect to other directed width measures, such as directed pathwidth, which is known to be in
P [18], our proof settling k-zig-zag number in NP turned out to be an interesting quest. This is due to the fact that the
definition of zig-zag number, which we formally present in Section 2, involves the alternation of an existential and a
universal quantifiers. Thus, a naive application of the definition would only lead to a Σ P

2-upper bound for the problem.
To circumvent this, and settle the problem in NP, our proof may be regarded as a way of redefining the property of a
directed graph having zig-zag number at most k in a purely existential fashion.

On the other hand, through a polynomial-time reduction from Positive not all equal 3SAT, we prove in Section 4
that deciding whether a directed graph has zig-zag number at most 2 is an NP-hard problem. It is worth noting that
this intractability result does not affect the applicability of the algorithmic metatheorem presented in [13], since for each
k ∈ N, directed path decompositions of width k can be converted efficiently into linear orderings of zig-zag number
O(k) [13], and directed path-decompositions of width k, whenever exist, can be constructed in time nO(k) [18].

Besides these proposed results, we analyze in Section 5 how zig-zag number and directed treewidth are related to
each other. We prove that there are directed graphs of constant directed treewidth but unbounded zig-zag number. As
a consequence, with the results of [14], we obtain that the family of directed graphs of constant tree-zig-zag number is
strictly richer than the family of directed graphs of constant zig-zag number.

2. Preliminaries

A directed simple graph (or, simply directed graph) is a pair G = (V , E) comprising a non-empty vertex set V and an
edge set E ⊆ {(u, v) : (u, v) ∈ V × V , u ̸= v}. In what follows, we may write n or |G| to denote the number of vertices of
G, and we may write V (G) and E(G) to refer to the vertex set and to the edge set of G, respectively.

For each positive integer n, we let [n] .
= {1, 2, . . . , n}. Let G be a directed graph on n vertices. For each bijection

π : V (G) → [n], we let <π⊆ V (G) × V (G) be the linear order associated with π such that, for each u, v ∈ V (G), u <π v if
and only if π (u) < π (v). Analogously, we let >π⊆ V (G)×V (G) be the linear order such that, for each u, v ∈ V (G), u >π v
if and only if π (u) > π (v). Let X, Y ⊆ V (G) be two non-empty sets. We write X <π Y to denote that u <π v for each
u ∈ X and each v ∈ Y . We define X >π Y similarly. Moreover, for any non-empty set X ⊆ V (G), we write minπ X to
denote the unique vertex u ∈ X such that {u} <π X \ {u}. We define maxπ X similarly.

The zig-zag number of a directed graph. Let n be a positive integer, G be a directed graph on n vertices and π : V (G) →

[n] be a bijection. For simplicity, assume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj.
For a proper subset X ⊂ V (G), we let EG(X) denote the subset of edges of G with one endpoint in X and another

endpoint in V (G) \ X . An edge cut (or simply cut) of G is defined as a subset S ⊆ E(G) such that, for some X ⊂ V (G),
S = EG(X). For each i ∈ [n−1], we let SG(π, i)

.
= EG({u1, . . . , ui}) be the ith cut of G with respect to π . Then, the cutwidth of

G with respect to π is defined as cw(G, π) .= maxi∈[n−1]|SG(π, i)|, and the cutwidth of G is defined as the minimum cw(G, π)
over all bijections π : V (G) → [n].

87

219

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 1. Directed graph G, bijection π : V (G) → [|G|], where i < j iff ui <π uj , and directed paths P1 and P2 (in bold), such that zn(G, π, P1) = 1 and
zn(G, π, P2) = 2, respectively.

Let P be a directed path of G. We let zn(G, π, P) be the maximum number of edges of P that are part of the cut SG(π, i),
where the maximum is taken over all i ∈ [n − 1]. More formally,

zn(G, π, P) .= max
i∈[n−1]

|E(P) ∩ SG(π, i)|.

Then, we let zn(G, π) be the maximum zn(G, π, P) over all directed paths P of G. Finally, we define the zig-zag number of
G, denoted by zn(G), as the minimum zn(G, π) over all bijections π : V (G) → [n].

Fig. 1 exemplifies a directed graph G and a bijection π : V (G) → [|G|] such that zn(G, π) = 2. In fact, one can verify
that zn(G) = zn(G, π) = 2.

It is straightforward from the definition of zig-zag number that a directed graph has zig-zag number 0 if and only if it
does not contain any edge. Moreover, one can verify that every directed acyclic graph with at least one edge has zig-zag
number 1. Indeed, it is known that a directed graph G is directed acyclic if and only if it admits a topological ordering, i.e.
a linear order <π such that u <π v for each (u, v) ∈ E(G). Thus, one can verify that, if G is a directed acyclic graph and π
corresponds to a topological ordering of G, then zn(G, π) = 1. In other words, graphs of zig-zag number at least 2 must
contain directed cycles. On the other hand, every directed graph G with a directed cycle of length at least 3 necessarily
has zig-zag number greater than or equal to 2. Indeed, in this case, for each bijection π : V (G) → [|G|], there always exist
three distinct vertices a, b, c ∈ V (G) such that ⟨a, b, c⟩ is a directed path of G, where a <π b and c <π b. Intuitively, the
zig-zag number of a directed graph measures how much its directed cycles are nested.

Next, we formally define the Zig-zag number problem.

Input: A directed graph G and a non-negative integer k.
Question: Is zn(G) ≤ k? In other words, does there exist a bijection π : V (G) → [|G|] such that, for every

directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

Zig-zag number

In particular, for each fixed non-negative integer k, we define k-zig-zag number as the decision problem that, given a
directed graph G, asks whether zn(G) ≤ k. More formally:

Input: A directed graph G.
Question: Is zn(G) ≤ k? In other words, does there exist a bijection π : V (G) → [|G|] such that, for every

directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

k-zig-zag number

3. NP-membership for fixed k

In this section, we prove that k-zig-zag number is in NP for each fixed k. We remark that a naive application of the
definition of zig-zag number of a directed graph naturally leads to a Σ P

2-upper bound. To circumvent this and settle
k-zig-zag number in NP, we show how to replace the inner universal quantifier, which iterates over all directed paths,
with an XP-time deterministic computation corresponding to a guessed linear order of the vertices of the input graph
and the integer k. More specifically, we prove the following theorem.

Theorem 1. Let G be a directed graph and k be a non-negative integer. One can non-deterministically decide in time |G|
O(k)

whether zn(G) ≤ k.

In order to prove Theorem 1, we reduce the problem of deciding whether zn(G, π) ≥ k + 1, for a guessed bijection
π : V (G) → [|G|], to the Reachability problem in a suitably defined directed acyclic graph, denoted by DG(π, k), which we
call compatibility graph of the triple (G, π, k). The formal definition of such a graph is properly given later on. Next, we
describe how this section is organized.

88

220

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

In Section 3.1, we define the concept of compatible subcut sequence of a directed graph G with respect to a bijection
π : V (G) → [|G|]. Based on this concept, we provide a necessary and sufficient condition for zn(G, π) ≥ k + 1.
Considering such a condition, we formally define in Section 3.2 the notion of compatibility graph and, then, we introduce
a characterization relating the existence of the compatible subcut sequences of interest to the existence of directed paths
with |G| − 1 vertices in the compatibility graph of (G, π, k). The proof of this characterization is presented in Section 3.3.

3.1. Compatible subcut sequence

Let G be a directed graph on n vertices and π : V (G) → [n] be a bijection. For simplicity, assume throughout this section
that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj.

The cut sequence of G with respect to π is defined as the sequence

γG,π
.
= ⟨SG(π, 1), . . . , SG(π, n − 1)⟩.

For each i, j ∈ [n − 1], with i < j, and each two subcuts S ′

i ⊆ SG(π, i) and S ′

j ⊆ SG(π, j), we say that S ′

i is compatible with
S ′

j , and we denote this fact by S ′

i ≺G,π S ′

j , if for each e = (u, v) ∈ E(G) the two conditions below are observed.

(1) If e ∈ S ′

i , and either π (u) > j or π (v) > j, then e ∈ S ′

j .
(2) If e ∈ SG(π, i) \ S ′

i , then e ̸∈ S ′

j .

Intuitively, condition (1) says that, if e belongs to the subcut S ′

i and either the order of u or the order of v, with respect
to π , is greater than j, then e must belong to the subcut S ′

j . On the other hand, condition (2) says that if e belongs to the
cut SG(π, i) but does not belong to the subcut S ′

i , then e cannot belong to the subcut S ′

j .
A compatible subcut sequence of γG,π is a sequence of subcuts

γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩

such that S ′

i ⊆ SG(π, i) for each i ∈ [n − 1], and S ′

j ≺G,π S ′

j+1 for each j ∈ [n − 2]. A neat idea behind the definition of
compatible subcut sequence is to focus on neighboring subcuts S ′

j and S ′

j+1 for each j ∈ [n− 2]. We let Γ (γG,π) be the set
of all compatible subcut sequences of γG,π .

The next proposition establishes that the compatibility conditions (1) and (2) described above are sufficient to ensure
that, if S ′

i and S ′

j are two subcuts in a same compatible subcut sequence, then there do not exist any inconsistency with
respect to the edges that belong to S ′

i and to S ′

j . More specifically, provided that S ′

i and S ′

j are two subcuts in a same
compatible subcut sequence, for any edge e belonging simultaneously to the cuts SG(π, i) and SG(π, j), we have that e
belongs to S ′

i if and only if it belongs to S ′

j .

Proposition 1. Let G be a directed graph, π : V (G) → [|G|] be a bijection and γ ′
= ⟨S ′

1, . . . , S
′

|G|−1⟩ ∈ Γ (γG,π). For each edge
e ∈ E(G) and each i ∈ [|G| − 1], if e ∈ SG(π, i) \ S ′

i , then e ̸∈ S ′

j for any j ∈ [|G| − 1].

Proof. Let i, j ∈ [|G| − 1], with i ̸= j, and e = (u, v) be an edge in SG(π, i). The proof is split into two cases.
First, assume that i < j. Note that i < |G| − 1, otherwise j < i. Moreover, we have by hypothesis that S ′

l ≺G,π S ′

l+1 for
each l ∈ {i, . . . , |G| − 2}. Thus, if e ∈ SG(π, l)\S ′

l , then e ̸∈ S ′

l+1 for each l ∈ {i, . . . , |G| − 2}. This inductively implies that, if
e ∈ SG(π, i) \ S ′

i , then either e ̸∈ SG(π, l) or e ∈ SG(π, l) \ S ′

l for each l ∈ {i + 1, . . . , |G| − 1}. In particular, if e ∈ SG(π, i) \ S ′

i ,
then e ̸∈ S ′

j .
Now, assume that i > j. We prove that, if e ∈ S ′

j , then e ∈ S ′

i . Thus, additionally assume that e ∈ S ′

j . Since e ∈ SG(π, j)
and e ∈ SG(π, i), either π (u) > l or π (v) > l for each l ∈ {j, . . . , i}. This and the hypothesis that S ′

l ≺G,π S ′

l+1 imply that,
if e ∈ S ′

l , then e ∈ S ′

l+1 for each l ∈ {j, . . . , i − 1}. Therefore, since e ∈ S ′

j , we inductively obtain that e ∈ S ′

l for each
l ∈ {j, . . . , i}. In particular, e ∈ S ′

i . □

Let γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ be a compatible subcut sequence in Γ (γG,π). The width of γ ′ is defined as

ω(γ ′) .= max
i∈[n−1]

|S ′

i |.

If E ′
=

⋃
i∈[n−1] S

′

i ̸= ∅, then we define G[γ ′
]
.
= G[E ′

] as the directed graph induced by E ′. In particular, we remark that
γG,π is a compatible subcut sequence itself of width cw(G, π) and that G[γG,π] consists in the directed graph obtained
from G by removing all of its isolated vertices.

The next lemma states that deciding whether zn(G, π) ≥ k+1 is equivalent to deciding whether there is a compatible
subcut sequence of γG,π of width at least k + 1, whose associated directed graph is a directed path.

Lemma 1. Let G be a directed graph, π : V (G) → [|G|] be a bijection and k be a non-negative integer. Then, zn(G, π) ≥ k+ 1
if and only if there is a compatible subcut sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ ∈ Γ (γG,π) such that ω(γ ′) ≥ k + 1 and G[γ ′
] is a

directed path.

89

221

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 2. A compatibility graph.

Proof. First, suppose that zn(G, π) ≥ k + 1, and let P be a directed path of G such that zn(G, π, P) ≥ k + 1. Consider
the sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ of subcuts such that S ′

i = E(P) ∩ SG(π, i) for each i ∈ [|G| − 1]. We prove that γ ′ is
a compatible subcut sequence of γG,π . In other words, we prove that S ′

i ≺G,π S ′

i+1 for each i ∈ [|G| − 2]. Note that, if for
some i ∈ [|G| − 2] there exists an edge e ∈ SG(π, i) \ S ′

i , then e ∈ E(G) \ E(P) and, consequently, e ̸∈ S ′

i+1. Now, suppose
that for some i ∈ [|G| − 2] there exists an edge e = (u, v) ∈ S ′

i such that either π (u) > i + 1 or π (v) > i + 1. Clearly,
e ∈ E(P). Moreover, note that e ∈ SG(π, i + 1). Thus, e ∈ S ′

i+1, otherwise e ∈ SG(π, i + 1) \ S ′

i+1, which would imply that
e ∈ E(G) \ E(P). Therefore, γ ′ is indeed a compatible subcut sequence of γG,π . Additionally, one can straightforwardly
verify that ω(γ ′) ≥ k + 1 and G[γ ′

] is a directed path.
Conversely, suppose that there exists a compatible subcut sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ of γG,π such that ω(γ ′) ≥ k+1
and G[γ ′

] is a directed path. Thus, there exists i ∈ [|G| − 1] such that |S ′

i | ≥ k + 1. As a result, if P = G[γ ′
], then

zn(G, π, P) ≥ |S ′

i | ≥ k + 1. Therefore, zn(G, π) ≥ zn(G, π, P) ≥ k + 1. □

3.2. Compatibility graph

In this section, we define the notion of compatibility graph. Intuitively, each directed path with |G| − 1 vertices of the
compatibility graph DG(π, k) corresponds to a compatible subcut sequence γ ′ of γG,π satisfying the conditions described
in Lemma 1. More specifically, the vertices of DG(π, k) consist in special tuples which, along with the directed edges
between them, define a dynamic programming table. This table stores all the information needed to guarantee that, if
there is a directed path in DG(π, k) with |G| − 1 vertices, then there exists a compatible subcut sequence γ ′ of γG,π such
that ω(γ ′) ≥ k + 1.

In order to capture the above property, we partition the vertex set of DG(π, k) into |G|−1 distinct levels, such that each
level i ∈ [|G| − 1] is associated with the cut SG(π, i) and there is a directed edge in DG(π, k) from a vertex u to a vertex v
only if u belongs to a level i and v belongs to the level i + 1, and some additional constraints (described in Section 3.2.2)
are satisfied. The vertices in the level i = 1 are called initial, the vertices in a level i ∈ [|G| − 1] \ {1, |G| − 1} are called
intermediary, and the vertices in the level i = |G| − 1 are called final. We note that, by definition, the initial vertices of
DG(π, k) have in-degree 0 and the final vertices of DG(π, k) have out-degree 0. Fig. 2 illustrates the partitioning of the
vertex set of the compatibility graph DG(π, k) into these |G| − 1 distinct levels.

One can alternatively regard DG(π, k) as an acyclic finite automaton — with transition set defined by the adjacency
relation described in Section 3.2.2. From this perspective, the initial vertices represent the initial states of the automaton
and the final vertices represent the final states of the automaton.

The following immediate observation provides the basis for the definition of compatibility graph.

Observation 1. A directed graph P is a directed path if and only if it satisfies the following four conditions:

(DP1) P has exactly one vertex, called source vertex, with in-degree 0 and out-degree 1;
(DP2) P has exactly one vertex, called target vertex, with in-degree 1 and out-degree 0;
(DP3) All the other vertices of P have in-degree 1 and out-degree 1;
(DP4) P is weakly connected.

In particular, for a compatible subcut sequence γ ′ of γG,π , we have that G[γ ′
] is a directed path if and only if it satisfies

Conditions (DP1)–(DP4). Based on that, and aiming at devising a dynamic programming method that determines whether
there exists a compatible subcut sequence γ ′ such that G[γ ′

] is a directed path and that, more generally, satisfies the
conditions described in Lemma 1, we define the set BG(π, k). This set consists of all tuples of the form

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
,

where i ∈ [n − 1], S ′

i is a subcut of SG(π, i) with cardinality at most k + 1, Si is either an empty set or a partition of S ′

i ,
φi, ϕi, τi ∈ {0, 1, 2} are ternary flags and ψi ∈ {0, 1} is a boolean flag. We remark that, for each i ∈ [n − 1], there are at
most nO(k) distinct tuples ui ∈ BG(π, k). Indeed, for each i ∈ [n− 1], the cut SG(π, i) has at most 2i(n− i) ≤ n2/2 directed

90

222

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 3. Example of a compatible subcut sequence: γ ′
= ⟨S ′

1, . . . , S
′

11⟩, where S ′

1 = ∅, S ′

2 = {e1}, S ′

3 = {e1, e2, e3}, S ′

4 = {e1, e2, e3, e4, e5}, S ′

5 = {e1, e2, e5},
S ′

6 = {e1, e2}, S ′

7 = {e1, e2, e6}, S ′

8 = {e6}, S ′

9 = ∅, S ′

10 = ∅, and S ′

11 = {e7}.

edges, which is the maximum possible number of directed edges between the vertices belonging to {u1, . . . , ui} and the
vertices belonging to {ui+1, . . . , un}. Thus, SG(π, i) has at most

(n2/2
k+1

)
= O(n2k+2) distinct subcuts S ′

i of cardinality at most
k + 1, and each such a subcut S ′

i admits at most (k + 1)O(k) distinct partitions.
Let i ∈ [n − 1] and pi =

(
1, S ′

1, φ1, ϕ1, S1, τ1, ψ1
)
, . . . ,

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

be a sequence of tuples, such that S ′

j is
compatible with S ′

j+1 for each j ∈ [i − 1]. Then, let Hi be the subgraph of G with vertex set V (Hi) = {u1, . . . , ui} ∪ Xi and
edge set E(Hi) = S ′

1 ∪ · · · ∪ S ′

i , where Xi denotes the set of endpoints of the edges in S ′

1 ∪ · · · ∪ S ′

i . Note that Hi may contain
isolated vertices.

Intuitively, the ternary flag φi (the ternary flag ϕi, resp.) informs whether there exist zero, one, or more than one
vertices from {u1, . . . , ui} that are source vertices (target vertices, resp.) of Hi.

The partition Si represents the set of all non-trivial weakly connected components of Hi, restricted to the subcut S ′

i , that
are defined by only taking into account the vertices from {u1, . . . , ui}. In other words, two edges e, e′

∈ S ′

i belong to a
same part of Si if and only if there exists an undirected path of Hi between an endpoint of e and an endpoint of e′ that
only uses vertices from {u1, . . . , ui}. For instance, consider the compatible subcut sequence γ ′ illustrated in Fig. 3. In this
example, S1 = ∅, S2 = {{e1}}, S3 = {{e1} , {e2, e3}}, S4 = {{e1} , {e2, e3} , {e4, e5}}, S5 = {{e1} , {e2, e5}}, S6 = {{e1} , {e2}},
S7 = {{e1} , {e2} , {e6}}, S8 = {{e6}}, S9 = ∅, S10 = ∅, and S11 = {{e7}}.

The ternary flag τi informs whether there exist zero, one, or more than one non-trivial weakly connected components of
Hi that do not contain any of the vertices from {ui+1, . . . , un}. For instance, consider again the compatible subcut sequence
γ ′ illustrated in Fig. 3. In this example, τi = 0 for each i ∈ {1, . . . , 7}, τ8 = 1, and τi = 2 for each i ∈ {9, 10, 11}.

Finally, the boolean flag ψi informs whether or not there exists a subcut of width k + 1 among the subcuts S ′

1, . . . , S
′

i .

3.2.1. Initial, final and intermediary tuples
Now, we present the formal definitions of the notions of initial, final and intermediary tuples, which precisely comprise

the vertex set of DG(π, k). More specifically, the initial tuples correspond to the initial vertices of DG(π, k), the final
tuples correspond to the final vertices of DG(π, k), and the intermediary tuples correspond to the intermediary vertices
of DG(π, k).

Let u =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
be a tuple in BG(π, k).

We say that u is initial if i = 1 and the following conditions are satisfied:

1. The vertex u1 has at most one in-edge and at most one out-edge in S ′

1;
2. If u1 has no in-edge and one out-edge in S ′

1, then φ1 = 1 and ϕ1 = 0;
3. If u1 has one in-edge and no out-edge in S ′

1, then φ1 = 0 and ϕ1 = 1;
4. If u1 has one in-edge and one out-edge in S ′

1 or does not have any incident edge in S ′

1, then φ1 = 0 and ϕ1 = 0;
5. If S ′

1 = ∅, then S1 = ∅; otherwise, S1 =
{
S ′

1

}
;

6. τ1 = 0;
7. If |S ′

1| = k + 1, then ψ1 = 1; otherwise, ψ1 = 0.

On the other hand, we say that u is final if i = n − 1 and the following conditions are satisfied:

1. The vertex un has at most one in-edge and at most one out-edge in S ′

n−1;
2. If un has no in-edge and one out-edge in S ′

n−1, then φn−1 = 0 and ϕn−1 = 1;
3. If un has one in-edge and no out-edge in S ′

n−1, then φn−1 = 1 and ϕn−1 = 0;
4. If un has one in-edge and one out-edge in S ′

n−1 or does not have any incident edge in S ′

n−1, then φn−1 = 1 and
ϕn−1 = 1;

5. |Sn−1| ≤ 2, and if |Sn−1| = 1, then |S ′

n−1| = 1;
6. τn−1 ≤ 1, and if τn−1 = 1, then S ′

n−1 = ∅;
7. ψn−1 = 1.

Intuitively, the tuple u is called initial (final, resp.) if i = 1 (i = n− 1, resp.) and the values assigned to the parameters
S ′

i , φi, ϕi, Si, τi and ψi establish a valid configuration with respect to the semantic of each parameter itself and with respect
to Conditions (DP1)–(DP4).

91

223

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 4. Connectedness rules. (Red) dotted lines represent non-edges, (black) thicker lines represent non-mandatory edges, and (blue) normal style
lines represent mandatory edges.

Finally, we say u is intermediary if i ∈ [n − 1] \ {1, n − 1}.

3.2.2. Compatibility relation
Let u =

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
and v =

(
j, S ′

j , φj, ϕj, Sj, τj, ψj
)
be a pair of tuples from BG(π, k). We say that u is

compatible with v, and we denote such a fact by u ⇝ v, if j = i + 1, S ′

i ≺G,π S ′

j , and u and v satisfy the Vertex degree,
Connectedness and Minimum subcut width rules, which are presented below.

Vertex degree rules.

1. The vertex uj has at most one in-edge and at most one out-edge in S ′

i ∪ S ′

j .
2. If uj has no in-edge and one out-edge in S ′

i ∪ S ′

j , then φj = min {2, φi + 1} and ϕj = ϕi.
3. If uj has one in-edge and no out-edge in S ′

i ∪ S ′

j , then φj = φi and ϕj = min {2, ϕi + 1}.
4. If uj has one in-edge and one out-edge in S ′

i ∪ S ′

j or does not have any incident edge in S ′

i ∪ S ′

j , then φj = φi and
ϕj = ϕi.

Connectedness rules.

1. If S ′

i \ S ′

j = ∅ and uj has no incident edge in S ′

j (see Fig. 4(a)), then τj = τi and Sj = Si.
2. If S ′

i \ S ′

j = ∅ but uj has some incident edge in S ′

j (see Fig. 4(b)), then τj = τi and Sj = Si ∪
{
S ′

j \ S ′

i

}
.

3. If S ′

i \S
′

j ̸= ∅ and S ′

j ̸= ∅ (see Figs. 4(c) and 4(d)), then τj = τi and Sj = (Si \Q′

j)∪Qj, where Q′

j denotes the collection
of all sets in Si that have at least one edge in S ′

i with uj as an endpoint, i.e.

Q′

j =
{
Q ∈ Si :Q ∩ (S ′

i \ S ′

j) ̸= ∅
}
,

and Qj denotes the singleton collection whose set comprises all edges in S ′

j with uj as an endpoint, along with all
edges in S ′

j that belong to a set of Q′

j , i.e.

Qj =

{
(S ′

j \ S ′

i) ∪
(⋃

Q∈Q′
j
Q ∩ S ′

j

)}
.

In this case, we further require Qj ̸= ∅.
Informally, Q′

j represents the set of non-trivial weakly connected components restricted to S ′

i that have at least
one edge in S ′

i with uj as an endpoint. Since, when considering the subcut S ′

j , all such components contain uj as
a common vertex, they actually form a single non-trivial weakly connected component restricted to S ′

j . This single
component is represented by Qj, which, besides the edges that are already present in S ′

i , contains all the edges in
S ′

j with uj as an endpoint.
4. If S ′

i \ S ′

j ̸= ∅ but S ′

j = ∅ (see Fig. 4(e)), then τj = min {2, τi + 1} and Sj = ∅.

Minimum subcut width rule.

(1) If ψi = 1 or |S ′

j | = k + 1, then ψj = 1.

92

224

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

We notice that, for any sequence ⟨u1, . . . , un−1⟩ of tuples from BG(π, k), such that ui is compatible with ui+1 for each
i ∈ [n − 2], there exists a unique associated compatible subcut sequence γ ′

∈ Γ (γG,π). Thus, the intuition behind the
Vertex degree and Connectedness rules is ensuring that, if γ ′ is the subcut sequence associated with a directed path
⟨u1, . . . , un−1⟩ in DG(π, k), then G[γ ′

] satisfies Conditions (DP1)–(DP4). And, the intuition behind the Minimum subcut
width rule is ensuring that the width of any such compatible subcut sequences γ ′ is at least k + 1.

Now, we are finally able to formally define the notion of compatibility graph and then prove Theorem 1.
For each directed graph G, each bijection π : V (G) → [|G|] and each non-negative integer k, we define the compatibility

graph of the triple (G, π, k) as the directed acyclic graph DG(π, k) with vertex set

V = {u ∈ BG(π, k) : u is initial, intermediary or final}

and edge set

E = {(u, v) ∈ V × V : u ⇝ v} .

Lemma 2 states that deciding whether there exists a compatible subcut sequence of γG,π of width at least k+1 whose
associated directed graph is a directed path is equivalent to deciding whether there exists a directed path of DG(π, k)
with n − 1 vertices. Then, based on this characterization and on Lemma 1, we prove in Lemma 3 that deciding whether
zn(G, π) ≥ k + 1 is reducible to the Reachability problem in DG(π, k).

Section 3.3 is devoted to present the proof of Lemma 2.

Lemma 2. Let G be a directed graph, π : V (G) → [|G|] be a bijection and k be a non-negative integer. There exists a compatible
subcut sequence γ ′

∈ Γ (γG,π) such that ω(γ ′) ≥ k + 1 and G[γ ′
] is a directed path if and only if there exists a directed path

of DG(π, k) with |G| − 1 vertices.

Lemma 3. Given a directed graph G, a bijection π : V (G) → [|G|] and a non-negative integer k, one can deterministically
decide in time |G|

O(k) whether zn(G, π) ≤ k.

Proof. First, we construct the directed graph DG(π, k). Note that, for each tuple

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k),

the subcut S ′

i has at most k+1 distinct elements. As a result, one can easily check in time polynomial in k if ui is an initial,
an intermediary or a final tuple. Moreover, since there are |G|

O(k) distinct tuples in BG(π, k), the vertex set of DG(π, k) can
be determined in time |G|

O(k)
·poly(k) = |G|

O(k). Regarding the edge set of DG(π, k), we have by definition that there exists
a directed edge from a vertex ui =

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
to a vertex uj =

(
j, S ′

j , φj, ϕj, Sj, τj, ψj
)
of DG(π, k) if and only if ui

is compatible with uj, i.e., j = i+ 1, S ′

i ≺G,π S ′

j , and u and v satisfy the Vertex degree, Connectedness and Minimum subcut
width rules. Since |S ′

i | ≤ k+1 and |S ′

j | ≤ k+1, the satisfaction of the Vertex degree, Connectedness and Minimum subcut
width rules by u and v can be clearly checked in time polynomial in k. In addition, one can verify whether S ′

i ≺G,π S ′

j in
time polynomial in |G|. Thus, it can be checked in time poly(|G|, k) whether there should exist in DG(π, k) a directed edge
from u to v. This implies that the edge set of DG(π, k) can be determined in time |G|

O(k)
· |G|

O(k)
· poly(|G|, k) = |G|

O(k).
Therefore, DG(π, k) can be wholly constructed in time |G|

O(k).
Then, by using an algorithm for the Reachability problem, we decide in time linear in the number of vertices and

edges of DG(π, k), i.e. in time |G|
O(k), whether there is a directed path of DG(π, k) with |G| − 1 vertices. By Lemmas 1 and

2, such a path exists if and only if zn(G, π) ≥ k + 1. Therefore, we can decide in time |G|
O(k) whether zn(G, π) ≤ k. □

As a result, we obtain that deciding whether zn(G) ≤ k is in NP for each fixed k ≥ 0, concluding thereby the proof of
Theorem 1.

3.3. Proof of Lemma 2

Assume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Consider the following
auxiliary claim.

Claim 1. Let p = ⟨u1, . . . , un−1⟩ be a sequence of tuples such that

1. for each i ∈ [n − 1], ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k);
2. u1 is initial;
3. for each i ∈ [n − 2], ui ⇝ ui+1;

and let γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ be the compatible subcut sequence corresponding to p. Then, for each ℓ ∈ [n − 2], we have that
any two edges e, e′

∈ S ′

ℓ belong to a same part of Sℓ if and only if there exists in G[γ ′
] an undirected path between x and

y that only contains vertices from {u1, . . . , uℓ}, where x and y denote the endpoints of e and e′, respectively, that belong to
{u1, . . . , uℓ}.

93

225

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Proof of claim. The proof is by induction on ℓ.
Base case. Suppose that ℓ = 1. In this case, x = y. Then, trivially, there exists in G[γ ′

] an undirected path between
x and y that only contains vertices from {u1, . . . , uℓ}. Moreover, it follows from the fact that u1 is an initial tuple that
S1 =

{
S ′

ℓ

}
. Thus, e and e′ belong to a same part of S1.

Inductive hypothesis. Suppose that there exists ι ∈ [|G| − 1] such that the claim holds for each ℓ ∈ [ι− 1].
Inductive step. Suppose that ℓ = ι > 1. First, consider x = y, and let i = π (x) ≤ ι. Similarly to the base case, there

trivially exists an undirected path of G[γ ′
] between x and y that only contains vertices from {u1, . . . , uι}. Moreover, since

ui−1 ⇝ ui, it follows from the Connectedness rules that e and e′ belong to a same part of Si. As a result, we obtain that
e and e′ also belong to a same part of Sι. Thus, in what follows, consider x ̸= y. Additionally, assume without loss of
generality that π (x) < π (y).

First, we prove that, if e and e′ belong to a same part of Sι, then there is in G[γ ′
] an undirected path between x and

y that only contains vertices from {u1, . . . , uι}. Thus, suppose e and e′ belong to a same part of Sι. Note that, if e and
e′ belong to a same part of Si for some i < ι, then the result immediately follows from the inductive hypothesis. Thus,
assume that ι is the least integer j ∈ {π (y), . . . , n − 1} such that e and e′ belong to a same part of Sj.

Consider ι = π (y). Since uι−1 ⇝ uι, it follows from the Connectedness rules that there exists an edge e′′
∈ S ′

ι−1 \ S ′
ι

such that e and e′′ belong to a same part of Sι−1, otherwise e and e′ would belong to distinct parts of Sι. Then, let z be
the endpoint of e′′ that belongs to {u1, . . . , uι−1}. By the inductive hypothesis, there exists in G[γ ′

] an undirected path
between x and z that only contains vertices from {u1, . . . , uι−1}. Moreover, since ι = π (y) and e′′

∈ S ′

ι−1 \ S ′
ι , we have that

y is an endpoint of e′′. Therefore, there exists in G[γ ′
] an undirected path between x and y that only contains vertices

from {u1, . . . , uι}.
Now, consider ι > π (y). By the Connectedness rules, there exist two distinct edges e′′

x , e
′′
y ∈ S ′

ι−1 \ S ′
ι , such that e

and e′′
x belong to a same part of Sι−1 and e′ and e′′

y belong to a same part of Sι−1, otherwise e and e′ would belong to
distinct parts of Sι. Then, let zx and zy be the endpoints of e′′

x and e′′
y , respectively, that belong to {u1, . . . , uι−1}. By the

inductive hypothesis and by the minimality of ι, there exist in G[γ ′
] two vertex-disjoint undirected paths Px = ⟨x, . . . , zx⟩

and Py = ⟨zy, . . . , y⟩ that only contain vertices from {u1, . . . , uι−1}, where Px is a path between x and zx, and Py is a path
between zy and y. Therefore, since z ′′

x and z ′′
y are both neighbors of uι, Px + ⟨uι⟩ + Py = ⟨x, . . . , zx, uι, zy, . . . , y⟩ is an

undirected path between x and y that only use vertices from {u1, . . . , uι}.
Now, we prove the converse part, i.e. if there is in G[γ ′

] an undirected path between x and y that only contains vertices
from {u1, . . . , uι}, then e and e′ belong to a same part of Sι. Thus, suppose that there is in G[γ ′

] an undirected path P
between x and y that only contains vertices from {u1, . . . , uι}. Also, assume that ι is the least integer in {π (y), . . . , n − 1}
holding such a property.

Consider ι = π (y). In this case, one can verify that there exists exactly one edge e′′ in the set E(P) ∩ S ′

ι−1 \ S ′
ι . Let z be

the endpoint of e′′ that belongs to {u1, . . . , uι−1}. Note that, P − y = P − uι is an undirected path between x and z that
only contains vertices from {u1, . . . , uι−1}. By the inductive hypothesis, e and e′′ belong to a same part of Sι−1. Therefore,
we obtain by Connectedness rule 3 that e and e′ belong to a same part of Sι.

Now, consider ι > π (y). In this case, there exist exactly two distinct edges e′′
x , e

′′
y in the set E(P) ∩ S ′

ι−1 \ S ′
ι . Let zx and

zy be the endpoints of e′′
x and e′′

y , respectively, that belong to {u1, . . . , uι−1}. Note that, P − uι consists of two undirected
path Px and Py that only contain vertices from {u1, . . . , uι−1}, where Px is an undirected path between x and zx, and Py is
an undirected path between zy and y. Thus, it follows from the inductive hypothesis that e and e′′

x belong to a same part
of Sι−1, and that e′ and e′′

y belong to a same part of Sι−1. Therefore, by Connectedness rule 3, e and e′ belong to a same
part of Sι. ■

Now, we are finally able to properly prove Lemma 2.
First, suppose that there exists γ ′

= ⟨S ′

1, . . . , S
′

n−1⟩ ∈ Γ (γG,π) such that P = G[γ ′
] is a directed path and ω(γ ′) ≥ k+1.

Let u1 =
(
1, S ′

1, φ1, ϕ1, S1, τ1, ψ1
)
be the initial tuple in BG(π, k) obtained from the subcut S ′

1. We notice that, given the
subcut S ′

1, the parameters φ1, ϕ1, S1, τ1 and ψ1 are uniquely determined according to the definition of initial tuple. Thus,
u1 is well-defined. Additionally, note that, according to the Vertex degree, Connectedness and Minimum subcut width
rules, for each i ∈ {2, . . . , n − 1} and each tuple

ui−1 =
(
i − 1, S ′

i−1, φi−1, ϕi−1, Si−1, τi−1, ψi−1
)

∈ BG(π, k),

there exists exactly one tuple ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k) such that ui−1 is compatible with (i.e. ui−1 ⇝ ui).
Consequently, there exists a unique sequence ⟨u1, . . . , un−1⟩ of tuples from BG(π, k) that can be obtained from γ ′ and

satisfies the conditions of u1 being initial and of ui being compatible with ui+1 for each i ∈ [n − 2].
We claim that such a sequence ⟨u1, . . . , un−1⟩ corresponds to a directed path of DG(π, k) with n− 1 vertices. To prove

this, we just need to show that the tuple un−1 =
(
n − 1, S ′

n−1, φn−1, ϕn−1, Sn−1, τn−1, ψn−1
)
is final.

Since by hypothesis P is a directed path, every vertex of P has in-degree at most one and out-degree at most one.
Moreover, P contains exactly one source vertex uι ∈ V (P) for some ι ∈ [n]. Thus, one can verify that: if ι < n, then φi = 0
for each i ∈ [ι − 1] and φj = 1 for each j ∈ {ι, . . . , n − 1}; and, if ι = n, then φi = 0 for each i ∈ [n − 1]. Similarly, P
contains exactly one target vertex uι′ ∈ V (P) for some ι′ ∈ [n]. Thus, one can verify that: if ι′ < n, then ϕi = 0 for each
i ∈ [ι′ − 1] and ϕj = 1 for each j ∈

{
ι′, . . . , n − 1

}
; and, if ι′ = n, then ϕi = 0 for each i ∈ [n− 1]. As a result, if ι ̸= n and

ι′ ̸= n, then φn−1 = 1 and ϕn−1 = 1. On the other hand, note that ι ̸= ι′. Hence, if ι = n and ι′ < n, then φn−1 = 0 and
ϕn−1 = 1; and if ι < n and ι′ = n, then φn−1 = 1 and ϕn−1 = 0.

94

226

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Moreover, since ω(γ ′) ≥ |S ′
ι | = k + 1 for some ι ∈ [n − 1], one can easily verify that ψi = 0 for each i ∈ [ι − 1] and

ψj = 1 for each j ∈ {ι, . . . , n − 1}.
Now, let a and b be the least and the greatest integers in [n − 1], respectively, such that S ′

a ̸= ∅ and S ′

b ̸= ∅. Since
by hypothesis ω(γ ′) ≥ k + 1 ≥ 1, such integers a and b are well-defined. Thus, it follows from the fact that P is weakly
connected that the following properties hold.

1. For each i ∈ [a − 2], S ′

i \ S ′

i+1 = ∅ and ui+1 has no incident edge in S ′

i+1, which implies τi+1 = τi = 0.
2. S ′

a−1 \ S ′
a = ∅ but ua has some incident edge in S ′

a, which implies τa = τa−1 = 0.
3. For each i ∈ {a, . . . , b − 1}, S ′

i+1 ̸= ∅, which implies τi+1 = τi = 0. In particular, if b = n− 1, then τn−1 = 0. On the
other hand, if b < n− 1, then S ′

b \ S ′

b+1 ̸= ∅ and S ′

b+1 = ∅, which implies τb+1 = τb + 1 = 1; moreover, S ′

i−1 \ S ′

i = ∅

and S ′

i = ∅ for each i ∈ {b + 2, . . . , n − 1}, which implies τi = τi−1 = 1.

As a result, we obtain that τn−1 ≤ 1, and that τn−1 = 1 implies S ′

n−1 = ∅.
Since un has at most one in-edge and at most one out-edge in S ′

n−1, it is immediate that |S ′

n−1| ≤ 2 and |Sn−1| ≤ 2.
Moreover, it follows from Claim 1 that |Sn−1| = 1 implies |S ′

n−1| = 1, otherwise P would not be a directed path.
Now, we prove the converse of Lemma 2. Suppose that there is in DG(π, k) a directed path p = ⟨u1, . . . , un−1⟩ with

n − 1 vertices. One can verify that, for each i ∈ [n − 1], ui necessarily consists in a tuple in BG(π, k) of the form

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
.

Note that, γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ ∈ Γ (γG,π). Moreover, it follows from the definition of DG(π, k) that the tuple un−1 is final.
As a result, ψn−1 = 1, and thus ω(γ ′) ≥ k + 1, since by the Minimum subcut width rule we have that ψn−1 = 1 if and
only if |S ′

i | = k + 1 for some i ∈ [n − 1]. Thus, it just remains to prove that G[γ ′
] is a directed path. We prove in the

following claims that G[γ ′
] satisfies each of Conditions (DP1)–(DP4), respectively.

Claim 2. G[γ ′
] contains exactly one source vertex.

Proof of claim. Since un−1 is final, either φn−1 = 0 or φn−1 = 1.
Suppose that φn−1 = 1. By the Vertex degree rules, φi ≤ φi+1 for each i ∈ [n − 2]. Hence, there exists ι ∈ [n − 1] such

that φi = 0 for each i ∈ [ι − 1] and φj = 1 for each j ∈ {ι, . . . , n − 1}. Since u1 is initial, if ι = 1, then uι has no in-edge
and one out-edge in S ′

1. On the other hand, if ι > 1, then, by the Vertex degree rules, uι has no in-edge and one out-edge
in S ′

ι−1 ∪ S ′
ι . Consequently, uι is a source vertex of G[γ ′

]. Moreover, one can verify that, for any i ∈ [n] \ {ι}, there is no
vertex ui that has in-degree 0 and out-degree 1 in G[γ ′

], otherwise φn−1 = 2. Therefore un is the only source vertex of
G[γ ′

].
Now, suppose that φn−1 = 0. Then, un has no in-edge and one out-edge in S ′

n−1, otherwise un−1 would not be final.
Thus, un is a source vertex of G[γ ′

]. In addition, note that φi = 0 for each i ∈ [n− 1], otherwise φn−1 ̸= 0. As a result, we
obtain that, for any i ∈ [n − 1], there is no vertex ui that has in-degree 0 and out-degree 1 in G[γ ′

]. Therefore un is the
only source vertex of G[γ ′

]. ■

Claim 3. G[γ ′
] contains exactly one target vertex.

Proof of claim. The proof of this claim is analogous to the proof of Claim 2, following from the fact that ϕi ≤ ϕi+1 for
each i ∈ [n − 2], and from the fact that either ϕn−1 = 0 or ϕn−1 = 1, since un−1 is a final tuple. ■

Claim 4. Let s and t be the source and target vertices of G[γ ′
], respectively, and let u ∈ V (G[γ ′

])\{s, t}. Then, u has in-degree 1
and out-degree 1 in G[γ ′

].

Proof of claim. By hypothesis u1 is initial, un−1 is final and ui ⇝ ui+1 for each i ∈ [n − 2]. This implies that every vertex
of G[γ ′

] has in-degree at most 1 and out-degree at most 1. Moreover, it follows from the uniqueness of s and from the
uniqueness of t that the vertex u is neither a source vertex nor a target vertex of G[γ ′

]. Therefore, since G[γ ′
] does not

contain isolated vertices, we obtain that u necessarily has in-degree 1 and out-degree 1 in G[γ ′
]. ■

Claim 5. G[γ ′
] is a weakly connected graph.

Proof of claim. For the sake of contradiction, suppose that G[γ ′
] is not weakly connected. Then, there exist two distinct

vertices ui, uj ∈ V (G[γ ′
]) such that there is no undirected path between them in G[γ ′

]. Let ui′ be a vertex of G[γ ′
] such

that there exists in G[γ ′
] an undirected path between ui and ui′ , for some i′ ∈ {1, . . . , n} \ {i}. And, let uj′ be a vertex

of G[γ ′
] such that there exists in G[γ ′

] an undirected path between uj and uj′ , for some j′ ∈ {1, . . . , n} \ {j}. Note that,
such vertices ui′ and uj′ necessarily exist, since by definition G[γ ′

] does not contain any isolated vertices. Assume without
loss of generality that i′ > i and j′ > j. Additionally, assume that i′ is the greatest integer belonging to {i + 1, . . . , n} that
holds the property of existing in G[γ ′

] an undirected path between ui and ui′ . Analogously, assume that j′ is the greatest

95

227

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 5. Proof that G[γ ′
] is weakly connected. (Red) dotted lines represent non-edges, (black) thicker lines represent possibly existing edges, (blue)

waved lines represent undirected paths, and (blue) normal style lines represent mandatory edges. In these illustrations, we assume that ι = i′ (the
case ι = j′ is symmetric).

integer belonging to {j + 1, . . . , n} that holds the property of existing in G[γ ′
] an undirected path between uj and uj′ . Let

ι = min
{
i′, j′

}
. By the maximalities of i′ and j′, there is no edge in S ′

ι that has uι as an endpoint, i.e.{
(x, y) ∈ S ′

ι : x = uι or y = uι
}

= ∅. (1)

Moreover, one can readily verify that S ′

ι−1 \ S ′
ι ̸= ∅. We split the remainder of this proof into two cases.

Case 1. Suppose that
{
i, . . . , i′

}
∩

{
j, . . . , j′

}
̸= ∅ (see Fig. 5(a)). Note that, necessarily S ′

ι ̸= ∅. Then, it follows from Eq. (1)
and from Claim 1 that there is no part Q ∈ Sι−1 such that Q ∩ (S ′

ι−1 \ S ′
ι) ̸= ∅ and Q ∩ S ′

ι ̸= ∅, otherwise there would
exist in G[γ ′

] an undirected path between ui and uj. Thus, Qι = ∅. Therefore, since S ′

ι−1 \ S ′
ι ̸= ∅ and S ′

ι ̸= ∅, we obtain by
Connectedness rule 3 that uι−1 is not compatible with uι.

Case 2. Suppose that
{
i, . . . , i′

}
∩

{
j, . . . , j′

}
= ∅ (see Fig. 5(b)). It follows from Eq. (1) and from Claim 1 that there is

no part Q ∈ Sι−1 such that Q ∩ (S ′

ι−1 \ S ′
ι) ̸= ∅ and Q ∩ S ′

ι ̸= ∅, otherwise i′ or j′ would not be maximum with respect
to the aforementioned properties. Thus, Qι = ∅. However, possibly S ′

ι = ∅. First, suppose that S ′
ι ̸= ∅. Then, as in the

previous case, it follows from the fact that S ′

ι−1 \ S ′
ι ̸= ∅ and from the Connectedness rules that the tuple uι−1 is not

compatible with the tuple uι. On the other hand, suppose that S ′
ι = ∅. Then, τι ≥ 1. As a result, τl = τl−1 ≥ 1 for each

l ∈
{
ι+ 1, . . . ,max

{
i′, j′

}
− 1

}
, and τl = 2 for each l ∈

{
max

{
i′, j′

}
, . . . , n − 1

}
. In particular, we obtain that:

1. either n > max
{
i′, j′

}
, and then τn−1 = 2;

2. or n = max
{
i′, j′

}
, and then S ′

n−1 ̸= ∅ and τn−1 = 1.

In either case, un−1 is not a final tuple. Therefore, G[γ ′
] is weakly connected. ■

By the previous claims, we obtain that G[γ ′
] is indeed a directed path, and thereby we conclude the proof of Lemma 2.

4. NP-hardness

In this section, we prove that 2-zig-zag number is an NP-hard problem. For that, we present a polynomial-time
reduction from Positive not all equal 3SAT, which is a well-known NP-complete problem [17], defined next.

Input: Set X of variables and a collection C of clauses over X such that each clause has no negative
literal and exactly three positive literals.

Question: Is there a truth assignment α : X → {0, 1} such that each clause in C has at least one true literal
and at least one false literal under α?

Positive not all equal 3SAT (PNAE 3SAT)

Construction 1. Let I = (X, C) be an instance of PNAE 3SAT with variable set X and clause set C. We let GI be the directed
graph obtained from I as follows.

• For each variable xi ∈ X, add the vertices u1
i , u

2
i and u3

i , and add the edges
(
u1
i , u

2
i

)
,
(
u2
i , u

3
i

)
and

(
u3
i , u

1
i

)
.

• For each clause Cj ∈ C, add the vertices v1j , v
2
j and v3j , and add the edges

(
v1j , v

2
j

)
,
(
v2j , v

3
j

)
and

(
v3j , v

1
j

)
. Moreover,

assuming Cj =
{
xl1 , xl2 , xl3

}
with l1 < l2 < l3, add the edges

(
u1
l1
, v1j

)
,
(
u3
l1
, v1j

)
,
(
u1
l2
, v2j

)
,
(
u3
l2
, v2j

)
,
(
u1
l3
, v3j

)
and(

u3
l3
, v3j

)
.

For each variable xi ∈ X, we let Hi denote the subgraph of GI induced by the vertices in
{
u1
i , u

2
i , u

3
i

}
. And, for each clause

Cj ∈ C, we let H̃j denote the subgraph of GI induced by the vertices in
{
v1j , v

2
j , v

3
j

}
. We remark that Hi and H̃j are directed

cycles of length 3.

Fig. 6 exemplifies the directed graph GI , described in Construction 1.
We establish in Lemmas 4 and 6 that there exists a satisfying truth assignment for an instance I of PNAE 3SAT if

and only if there exists a linear order of zig-zag number at most 2 for the vertices of GI . The central idea of our proof

96

228

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 6. Directed graph GI obtained from the instance I = (X, C) of PNAE 3SAT where X = {x1, x2, x3, x4} and C = {C1 = {x1, x2, x3} , C2 = {x2, x3, x4}}.

Fig. 7. Case in which the clause Cj =
{
xl1 , xl2 , xl3

}
has exactly one true literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

is to explore the possible internal relative orderings of the vertices of each directed cycle of GI and, for each clause
Cj =

{
xl1 , xl2 , xl3

}
∈ C, the possible ordered relative placements among the subgraphs Hl1 , Hl2 , Hl3 , and H̃j.

Lemma 4. Let I = (X, C) be an instance of PNAE 3SAT. If I is a yes instance of PNAE 3SAT, then zn(GI) ≤ 2.

Proof. Let α : X → {0, 1} be a truth assignment such that each clause in C has at least one true literal and at least one
false literal under α. In what follows, we define from α a linear order <π of the vertices of GI such that zn(GI , π) ≤ 2.

Throughout this proof, consider X =
{
x1, . . . , x|X |

}
and C =

{
C1, . . . , C|C|

}
.

For each variable xi ∈ X , set{
u1
i <π u2

i <π u3
i if α(xi) = 1

u1
i >π u2

i >π u3
i otherwise.

Let V ′

0
.
=

{
u1
i , u

2
i , u

3
i :α(xi) = 0

}
and V ′

1
.
=

{
u1
i , u

2
i , u

3
i :α(xi) = 1

}
. Then, for each y ∈ V ′

0 and each z ∈ V (GI)\V ′

0, set y <π z.
And, for each y ∈ V ′

1 and each z ∈ V (GI) \ V ′

1, set y >π z.
Let Cj be a clause in C. Assume that Cj =

{
xl1 , xl2 , xl3

}
with l1 < l2 < l3. There are two cases to be considered. First,

suppose that Cj has exactly one true literal under α, say lq for some q ∈ {1, 2, 3}. Then, set

v
p
j <π v

q
j <π v

r
j ,

where p = q mod 3 + 1 and r = (q + 1) mod 3 + 1. Now, suppose that Cj has exactly two true literals under α. Thus, Cj
has exactly one false literal under α, say lq for some q ∈ {1, 2, 3}. Then, set

v
p
j >π v

q
j >π v

r
j ,

where p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.
Finally, for each pair of distinct variables xi, xi′ ∈ X with i < i′, such that α(xi) = α(xi′), set up

i <π uq
i′ for each

p, q ∈ {1, 2, 3}. And, for each pair of distinct clauses Cj, Cj′ ∈ C with j < j′, set vpj <π v
q
j′ for each p, q ∈ {1, 2, 3}.

One can readily verify that <π is indeed a linear order of the vertices of GI .
Now, we prove that zn(GI , π) ≤ 2. For the sake of contradiction, suppose that there exists a directed path P in GI

such that zn(GI , π, P) ≥ 3. Assume without loss of generality that P is a minimal path with respect to the property that
zn(GI , π, P) ≥ 3. Recall that, for each variable xi ∈ X , Hi is a directed cycle of length 3. Similarly, for each clause Cj ∈ C,
H̃j is a directed cycle of length 3. Consequently, P is neither a subgraph of Hi nor a subgraph of H̃j, for any xi ∈ X and
any Cj ∈ C, otherwise zn(GI , π, P) < 3. Moreover, every edge of GI is either an edge of one of these subgraphs Hi and H̃j
or is an edge from a vertex of Hi to a vertex of H̃j, for some xi ∈ X and some Cj ∈ C. As a result, there exists precisely
one variable xi ∈ X and there exists precisely one clause Cj ∈ C such that V (P) ∩ V (Hi) ̸= ∅ and V (P) ∩ V (H̃j) ̸= ∅. More
specifically, P consists in a directed path on at most 4 vertices (by its minimality) from a vertex of Hi to a vertex of H̃j
that only contains vertices belonging to V (Hi) ∪ V (H̃j). Assume that Cj =

{
xl1 , xl2 , xl3

}
with l1 < l2 < l3.

First, consider the case in which Cj has exactly one true literal under α, and let xlq be such a literal for some q ∈ {1, 2, 3}.
Thus, vpj <π v

q
j <π v

r
j , where p = q mod 3+1 and r = (q+1) mod 3+1. Consequently, if i = lq, then u1

i <π u2
i <π u3

i and
V (Hi) >π V (H̃j), which implies zn(GI , π, P) < 3 (see Fig. 7(a)). On the other hand, if i = lp or i = lr , then u1

i >π u2
i >π u3

i
and V (Hi) <π V (H̃j), which also implies zn(GI , π, P) < 3 (see Figs. 7(b) and 7(c)).

Now, consider the case in which Cj has exactly two true literals under α, and let lq be the only false literal of Cj under
α for some q ∈ {1, 2, 3}. Thus, vpj >π v

q
j >π v

r
j , where p = q mod 3 + 1 and r = (q + 1) mod 3 + 1. If i = lq, then

u1
i >π u2

i >π u3
i and V (Hi) <π V (H̃j), which implies zn(GI , π, P) < 3 (see Fig. 8(a)). On the other hand, if i = lp or i = lr ,

then u1
i <π u2

i <π u3
i and V (Hi) >π V (H̃j), which also implies zn(GI , π, P) < 3 (see Figs. 8(b) and 8(c)).

97

229

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 8. Case in which the clause Cj =
{
xl1 , xl2 , xl3

}
has exactly one false literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

Fig. 9. Case 1: u2
i <π u1

i <π u3
i . (a) v

q
j <π u1

i . (b) v
q
j >π u1

i .

Therefore, such a path P does not exist in GI , and consequently we obtain that zn(GI) ≤ zn(GI , π) ≤ 2. □

Lemma 5. Let I = (X, C) be an instance of PNAE 3SAT, π : V (GI) → [|GI |] be a bijection such that zn(GI , π) ≤ 2, and let
xi ∈ X. If Cj ∈ C is a clause containing xi as a literal, then either V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j). Furthermore, if there
exists a clause Cj ∈ C containing xi as a literal such that V (Hi) <π V (H̃j), then V (Hi) <π V (H̃j′) for every other clause Cj′ ∈ C
containing xi as a literal.

Proof. Let Cj ∈ C be a clause containing xi as a literal. For the sake of contradiction, suppose that neither V (Hi) <π V (H̃j)
nor V (Hi) >π V (H̃j). Then, either there exist two vertices vpj , v

p′

j ∈ V (H̃j) such that{
v
p
j

}
<π V (Hi) <π

{
v
p′

j

}
, (2)

or there exists a vertex vpj ∈ V (H̃j) such that, for some pair a, b ∈ {1, 2, 3} with a ̸= b,

ua
i <π v

p
j <π ub

i . (3)

Hence, based on inequalities (2) and (3), one can verify that in either case there exist two (not necessarily distinct) vertices
v
p
j , v

p′

j ∈ V (H̃j) such that

v
p
j <π max πV (Hi) and v

p′

j >π min πV (Hi) (4)

In particular, we note that, vpj = v
p′

j if and only if the second case – the one described by inequality (3) – holds.
Additionally, since by hypothesis xi is a literal of Cj, there exists a vertex vqj ∈ V (H̃j) such that

(
u1
i , v

q
j

)
,
(
u3
i , v

q
j

)
∈ E(GI).

It is worth mentioning that, possibly, vpj ̸= v
q
j and vp

′

j ̸= v
q
j . If v

p
j ̸= v

q
j , then there exists a directed path P ′

1 = ⟨v
q
j , . . . , v

p
j ⟩

in H̃j from v
q
j to vpj that has at least one edge. Analogously, if vp

′

j ̸= v
q
j , then there exists a directed path P ′

2 = ⟨v
q
j , . . . , v

p′

j ⟩

in H̃j from v
q
j to vp

′

j that has at least one edge.
We split the remainder of this proof into three main cases.
(Case 1). Suppose that u2

i <π u1
i <π u3

i . If v
q
j <π u1

i , then P = ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 9(a)). Similarly, if vqj >π u1
i , then P = ⟨u2

i , u
3
i , u

1
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 9(b)).
For the remainder cases, let vrj ∈ V (H̃j) such that

(
v
q
j , v

r
j

)
∈ E(GI). Note that, by construction, such a vertex vrj exists

and, besides that, is well-defined.
(Case 2). Suppose that u3

i <π u2
i <π u1

i . If v
q
j <π u2

i , then P = ⟨u2
i , u

3
i , u

1
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 10(a)). Assume that vqj >π u2
i . If v

q
j >π u1

i , then we obtain from (4) that vpj ̸= v
q
j . Consequently,

the path P = ⟨u1
i , u

2
i , u

3
i , v

q
j , . . . , v

p
j ⟩ — obtained by concatenating P ′′

= ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ with P ′

1 — is a directed path of GI

such that zn(GI , π, P) ≥ 3 (see Fig. 10(b)). Assume that vqj <π u1
i . If v

r
j >π v

q
j , then P = ⟨u3

i , u
1
i , v

q
j , v

r
j ⟩ is a directed path

of GI such that zn(GI , π, P) = 3 (see Fig. 10(c)). Otherwise, if vrj <π v
q
j , then P = ⟨u1

i , u
2
i , u

3
i , v

q
j , v

r
j ⟩ is a directed path of

GI such that zn(GI , π, P) = 3 (see Fig. 10(d)).
(Case 3). Suppose that u1

i <π u3
i <π u2

i . If v
q
j >π u3

i , then P = ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 11(a)). Assume that vqj <π u3
i . If v

q
j <π u1

i , then we obtain from (4) that vp
′

j ̸= v
q
j . Consequently,

the path P = ⟨u1
i , u

2
i , u

3
i , v

q
j , . . . , v

p′

j ⟩ — obtained by concatenating P ′′
= ⟨u1

i , u
2
i , u

3
i , v

q
j ⟩ with P ′

2 — is a directed path of GI

such that zn(GI , π, P) ≥ 3 (see Fig. 11(b)). Assume that vqj >π u1
i . If v

r
j <π v

q
j , then P = ⟨u3

i , u
1
i , v

q
j , v

r
j ⟩ is a directed path

98

230

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 10. Case 2: u3
i <π u2

i <π u1
i . (a) v

q
j <π u2

i . (b) v
q
j >π u2

i and vqj >π u1
i . (c) u2

i <π v
q
j <π u1

i and vrj >π v
q
j . (d) u2

i <π v
q
j <π u1

i and vrj <π v
q
j .

Fig. 11. Case 3: u1
i <π u3

i <π u2
i . (a) v

q
j >π u3

i . (b) v
q
j <π u3

i and vqj <π u1
i . (c) u1

i <π v
q
j <π u3

i and vrj <π v
q
j . (d) u1

i <π v
q
j <π u3

i and vrj >π v
q
j .

Fig. 12. Case in which u3
i <π u1

i <π u2
i . (a) v

q
j >π u1

i . (b) v
q
j <π u1

i .

Fig. 13. Case in which u1
i <π u2

i <π u3
i . (a) v

q
j >π u2

i . (b) v
q
j <π u2

i and vqj <π u1
i . (c) u1

i <π v
q
j <π u2

i and vrj <π v
q
j . (d) u1

i <π v
q
j <π u2

i and
vrj >π v

q
j .

Fig. 14. Case in which u2
i <π u3

i <π u1
i . (a) v

q
j <π u3

i . (b) v
q
j >π u3

i and vqj >π u1
i . (c) u3

i <π v
q
j <π u1

i and vrj >π v
q
j . (d) u3

i <π v
q
j <π u1

i and
vrj <π v

q
j .

of GI such that zn(GI , π, P) = 3 (see Fig. 11(c)). Otherwise, if vrj >π v
q
j , then P = ⟨u1

i , u
2
i , u

3
i , v

q
j , v

r
j ⟩ is a directed path of

GI such that zn(GI , π, P) = 3 (see Fig. 11(d)).
One can readily verify that the case in which u3

i <π u1
i <π u2

i is symmetric to Case 1 (see Fig. 12), the case in which
u1
i <π u2

i <π u3
i is symmetric to Case 2 (see Fig. 13), and the case in which u2

i <π u3
i <π u1

i is symmetric to Case 3 (see
Fig. 14). Additionally, note that, regardless of the existence of the vertex vpj , Case 1 and consequently the case in which
u3
i <π u1

i <π u2
i do not consist in valid configurations, otherwise zn(G, π) ≥ 3 even if V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j).

Thus, V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j), otherwise zn(G, π) ≥ 3. Particularly, one can further verify that if
u3
i <π u2

i <π u1
i or u2

i <π u3
i <π u1

i , then necessarily V (Hi) <π V (H̃j). Analogously, we have that if u1
i <π u3

i <π u2
i

or u1
i <π u2

i <π u3
i , then V (Hi) >π V (H̃j). Therefore, if V (Hi) <π V (H̃j), then V (Hi) <π V (H̃j′) for every other clause Cj′ ∈ C

containing xi as a literal. □

Lemma 6. Let I = (X, C) be an instance of PNAE 3SAT. If zn(GI) ≤ 2, then I is a yes instance of PNAE 3SAT.

Proof. Let π : V (GI) → [|GI |] be a bijection such that zn(GI , π) ≤ 2. It follows from Lemma 5 that, for each variable
xi ∈ X and each clause Cj ∈ C, if V (Hi) >π V (H̃j), then V (Hi) >π V (H̃j′) for each clause Cj′ ∈ C containing xi as a literal.

99

231

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 15. (a) and (c) α(xl1) = α(xl2) = α(xl3) = 1. (b) and (d) α(xl1) = α(xl2) = α(xl3) = 0. (a) and (b) vpj <π v
q
j <π v

r
j . (c) and (d) vpj >π v

q
j >π v

r
j .

Thus, we let α : x → {0, 1} be the truth assignment defined as follows: for each variable xi ∈ X , α(xi) = 1 if and only if
V (Hi) >π V (H̃j) for each clause Cj ∈ C.

Now, we prove that each clause in C has at least one true literal and at least one false literal under α. For the sake of
contradiction, suppose that there exists a clause Cj =

{
xl1 , xl2 , xl3

}
in C such that α(xl1) = α(xl2) = α(xl3). Let q ∈ {1, 2, 3},

p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.
Suppose that α(xl1) = α(xl2) = α(xl3) = 1. Thus,

{
u1
l1
, u1

l2
, u1

l3

}
>π V (H̃j). Consequently, if v

p
j <π v

q
j <π vrj ,

then P = ⟨u1
lp , v

p
j , v

r
j , v

q
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(a)); on the other hand, if

v
p
j >π v

q
j >π v

r
j , then P = ⟨u1

lq , v
q
j , v

p
j , v

r
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(c)).

Suppose that α(xl1) = α(xl2) = α(xl3) = 0. Thus,
{
u1
l1
, u1

l2
, u1

l3

}
<π V (H̃j). Consequently, if v

p
j <π v

q
j <π vrj ,

then P = ⟨u1
lq , v

q
j , v

p
j , v

r
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(b)); on the other hand, if

v
p
j >π v

q
j >π v

r
j , then P = ⟨u1

lp , v
p
j , v

r
j , v

q
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(d)).

Therefore, each clause in C has at least one true literal and at least one false literal under α, and consequently I is a
yes instance of PNAE 3SAT. □

Theorem 2. 2-zig-zag Number is NP-complete.

Proof. By Theorem 1, 2-zig-zag Number is in NP. It follows from Lemmas 4 and 6 that I is a yes instance of PNAE
3SAT if and only if zn(GI) ≤ 2. Therefore, since GI can be constructed in time polynomial in |I|, 2-zig-zag Number is
NP-complete. □

5. Zig-zag number and directed treewidth

It was proved in [13] that directed graphs of constant directed pathwidth have constant zig-zag number, and that
there exist directed graphs of constant zig-zag number but unbounded directed pathwidth. Hence, the family of directed
graphs of constant zig-zag number properly contains the family of directed graphs of constant directed pathwidth.

Nevertheless, it is unknown whether or not a similar result would hold with respect to zig-zag number and directed
treewidth. In this section, we prove that there exist directed graphs of constant directed treewidth but unbounded zig-zag
number. More specifically, we prove the following theorem.

Theorem 3. There exist directed graphs on n vertices of constant directed treewidth but zig-zag number Ω(log n).

We remark that, although it was shown in [2] that there are directed graphs of constant directed treewidth but
unbounded directed pathwidth, this result cannot be directly used to conclude the respective statement relating directed
treewidth and zig-zag number.

Another interesting aspect of our result follows from the fact that directed graphs of constant directed treewidth
have constant tree-zig-zag number [14]. Consequently, there are directed graphs of constant tree-zig-zag number but
unbounded zig-zag number. Therefore, considering the fact that directed graphs of constant zig-zag number have constant
tree-zig-zag number [14], we obtain that the family of directed graphs of constant tree-zig-zag number is strictly richer
than the family of directed graphs of constant zig-zag number.

5.1. Basic definitions

A directed graph G is called bidirected if, for each two distinct vertices u, v ∈ V (G), (u, v) ∈ E(G) if and only if
(v, u) ∈ E(G). Note that, bidirected graphs may be regarded as undirected graphs. Based on that, we say that a pair
of edges (u, v) and (u, v) of a bidirected graph G is a bidirected edge between u and v. A directed graph H is called an
undirected minor of a bidirected graph G if H can be obtained from G by deleting vertices and edges, and by contracting
bidirected edges.

An undirected tree decomposition of a directed graph G is a pair
(
T , {Xt}t∈V (T)

)
satisfying the following conditions:

1. T is a undirected tree;
2.

⋃
t∈V (T) Xt = V (G);

100

232

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

3. for each edge (u, v) ∈ E(G), there exists a node t ∈ V (T) such that {u, v} ⊆ Xt ;
4. for each vertex u ∈ V (G), the graph T [{t ∈ V (T) : u ∈ Xt}] is connected.

In particular,
(
T , {Xt}t∈V (T)

)
is called an undirected path decomposition of G if T is an undirected path. The width of an

undirected tree decomposition
(
T , {Xt}t∈V (T)

)
is defined as the integer maxt∈V (T)|Xt | − 1. The undirected treewidth of a

directed graph G is defined as the minimum width over all tree decompositions of G, and the undirected pathwidth of G
is defined as the minimum width over all path decompositions of G.

Throughout this section we are mainly concerned with bidirected graphs. Thus, based on Lemmas 7 and 8, stated next,
it suffices to define only the notions of undirected pathwidth and of undirected treewidth. For the definitions of directed
pathwidth and directed treewidth, we refer to Refs. [12,15,18].

Lemma 7 ([1]). If G is a bidirected graph, then the directed pathwidth of G is equal to its undirected pathwidth.

Lemma 8 ([12]). If G is a bidirected graph, then the directed treewidth of G is equal to its undirected treewidth.

For the sake of simplicity, we also omit the formal definition of tree-zig-zag number, and we refer to Ref. [14].
Informally, the tree-zig-zag number of a directed graph G is defined similarly to the zig-zag number of G except for,
instead of linear orders, considering binary arboreal orders. That is to say, partial orders <π⊆ V (G) × V (G) such that, for
each vertex v ∈ V (G), the following conditions hold: the set {u ∈ V (G) : u <π v} is linearly ordered by <π and there are
at most two vertices v′

∈ V (G) with v <π v′ such that, for any u ∈ V (G), u <π v′ if and only if u <π v.

5.2. Directed vertex separation number

Let G be a directed graph on n vertices and π : V (G) → [n] be a bijection. Assume that V (G) = {u1, . . . , un} and, for
each ui, uj ∈ V (G), i < j if and only if ui <π uj. The directed vertex separation number of G with respect to π is defined as
the maximum number of vertices in {ui+1, . . . , un} that have some out-neighbor in {u1, . . . , ui}, where the maximum is
taken over all i ∈ [n − 1]. More formally,

dvsn(G, π) .= max
i∈[n−1]

|
{
v ∈ {ui+1, . . . , un} :N+

G (v) ∩ {u1, . . . , ui} ̸= ∅
}
|,

where N+

G (v) denotes the out-neighborhood of v in G. The directed vertex separation number of G, denoted by dvsn(G), is
defined as the minimum dvsn(G, π) over all bijections π : V (G) → [n].

Lemma 9 ([19]). Let G be a directed graph. The directed pathwidth of G is equal to the directed vertex separation number of G.

Lemma 10. If G1 and G2 are two directed graphs over a same vertex set X, and π : X → [|X |] is a bijection, then
dvsn(G1 ∪ G2, π) ≤ dvsn(G1, π) + dvsn(G2, π).

Proof. Assume that X = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Let i ∈ [n − 1]. Suppose
that there exist ℓ1 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1
(v) ∩ {u1, . . . , ui} ̸= ∅. Analogously, suppose that

there exist ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G2
(v) ∩ {u1, . . . , ui} ̸= ∅. As a result, there exist at most

ℓ1 + ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1
(v) ∩ {u1, . . . , ui} ̸= ∅ or N+

G2
(v) ∩ {u1, . . . , ui} ̸= ∅. In other

words, there exist at most ℓ1 + ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1∪G2
(v) ∩ {u1, . . . , ui} ̸= ∅. Therefore,

dvsn(G1 ∪ G2, π) ≤ dvsn(G1, π) + dvsn(G2, π). □

Lemma 11. Let G be a directed graph, P be a directed path of G, and let H be the directed graph such that V (H) = V (G) and
E(H) = E(P). Then, for each bijection π : V (G) → [|G|], dvsn(H, π) ≤ zn(H, π) ≤ zn(G, π).

Proof. The second inequality follows from the fact that H is a subgraph of G. Now, we prove that the first inequality holds.
Assume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Let i ∈ [n − 1]. Since the set of
edges of H induces a directed path, it follows from the definition of zig-zag number that there exist at most zn(H, π) edges
in the cut SH (π, i). As a result, there exist at most zn(H, π) vertices v ∈ {ui+1, . . . , un} such that N+

H (v)∩ {u1, . . . , ui} ̸= ∅.
Therefore, dvsn(H, π) ≤ zn(H, π). □

Lemma 12. Let p be a positive integer, G be a directed graph and π : V (G) → [|G|] be a bijection. If G can be described as
the union of p directed paths, then dvsn(G, π) ≤ p · zn(G, π).

Proof. Suppose that there are p directed paths P1, . . . , Pp such that G =
⋃

i∈[p] Pi. For each i ∈ [p], let Hi be the directed
graph with vertex set V (Hi) = V (G) and edge set E(Hi) = E(Pi). Note that, G =

⋃
i∈[p] Hi. It follows from Lemma 11 that,

for each i ∈ [p], dvsn(Hi, π) ≤ zn(Hi, π). Therefore, by Lemma 10, dvsn(G, π) ≤ p · zn(G, π). □

101

233

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 16. Directed paths P1 and P2 obtained by Algorithm 1, respectively.

5.3. Proof of Theorem 3

Let Bn be a rooted oriented complete binary tree on n vertices. For each non-leaf vertex u ∈ V (Bn), we write left(u) to
denote the left child of u in Bn, and we write right(u) to denote the right child of u in Bn.

We let Bn be the bidirected graph with vertex set V (Bn) = V (Bn) × {0, 1, 2} obtained by the union of two suitable
directed paths P1 and P2, recursively defined in Algorithm 1, and their respective reverse directed paths P ′

1 and P ′

2. More
specifically, if r is the root of Bn, then P1 and P2 are defined as the directed paths returned by the function calls

• Construct-Path(Bn, P = ⟨⟩, u = r, idx = 1) and
• Construct-Path(Bn, P = ⟨⟩, u = r, idx = 2)

of Algorithm 1, respectively, and P ′

1 is the reverse directed path of P1 and P ′

2 is the reverse directed path of P2. Therefore,
Bn can be decomposed into four directed paths. Fig. 16 illustrates P1 and P2.

Algorithm 1: Construction of directed graph Bn.
function Construct-Path(Bn, P, u, idx)

1 a = (idx − 1) mod 3; b = idx mod 3; c = (idx + 1) mod 3
2 P := P + ⟨(u, a) , (u, b)⟩ // concatenates P with the sequence ⟨(u, a) , (u, b)⟩
3 if u is not a leaf of Bn then
4 P := Construct-Path(Bn, P, left(u), idx)
5 P := Construct-Path(Bn, P, right(u), idx)
6 P := P + ⟨(u, c)⟩ // concatenates P with the sequence ⟨(u, c)⟩
7 return P

Lemma 13. The complete binary tree Bn is an undirected minor of Bn.

Proof. First, we note that, for each i ∈ {1, 2}, if there exists a directed edge (u, v) in the directed path Pi, then there exists
the directed edge (v, u) in the reverse directed path P ′

i of Pi. This implies that, whenever (u, v) is a directed edge in Pi for
some i ∈ {1, 2}, Bn contains a bidirected edge between the nodes u and v. As a result, in order to show the existence of a
bidirected edge in Bn between nodes u and v, it is enough to show that either (u, v) or (v, u) is a directed edge in Pi for
some i ∈ {1, 2}.

102

234

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 17. Tree decomposition T = (T ,X) of Bn , where the rounded squares represent the bags of the nodes of T .

Based on that, we now remark that, for each node t ∈ V (Bn), there exist in Bn a bidirected edge between the nodes
(t, 0) and (t, 1), and a bidirected edge between the nodes (t, 1) and (t, 2). Indeed, this follows from the facts that (t, 1)
immediately succeeds (t, 0) in the directed path P1, and that (t, 2) immediately succeeds (t, 1) in the directed path P2. In
addition, it follows from construction of P1 that, for each non-leaf node t ∈ V (Bn), there exist in Bn an edge between the
nodes (t, 1) and (left(t), 0), and an edge between the nodes (right(t), 2) and (t, 2). Similarly, it follows from construction
of P2 that, for each non-leaf node t ∈ V (Bn), there exist in Bn an edge between the nodes (t, 2) and (left(t), 1), and an
edge between the nodes (right(t), 0) and (t, 0).

Thus, let contr(Bn) denote the bidirected graph obtained from Bn by contracting, for each node t ∈ V (Bn), the bidirected
edge between (t, 0) and (t, 1), and the bidirected edge between (t, 1) and (t, 2). By the discussion above, contr(Bn) is a
subgraph of Bn. Therefore, Bn is an undirected minor of Bn. □

Lemma 14. zn(Bn) = Ω(log n).

Proof. By Lemma 13, Bn is an undirected minor of Bn. As a result, we obtain that the undirected pathwidth of Bn is at least
the undirected pathwidth of Bn cf. [4]. Moreover, it is well-known that complete binary trees on n vertices have undirected
pathwidth Θ(log n) cf. [2,14]. Thus, since Bn is a bidirected graph, it follows from Lemma 7 that the directed pathwidth
of Bn is Ω(log n). Consequently, by Lemma 9, dvsn(Bn) = Ω(log n). Moreover, by construction, Bn can be described as the
union of 4 directed paths. Then, it follows from Lemma 12 that zn(Bn) ≥

dvsn(Bn)
4 . Therefore, zn(Bn) = Ω(log n). □

Lemma 15. For each positive integer n, Bn has directed treewidth at most 8.

Proof. Based on Lemma 8, it suffices to prove that Bn admits a undirected tree decomposition T = (T ,X) of width 8,
where X = (Xt)t∈V (T).

We define T simply as the complete binary tree obtained from Bn by removing all its leaves. Then, for each node
t ∈ V (T), we define the bag of t as the set Xt = {t, left(t), right(t)} × {0, 1, 2}. Fig. 17 illustrates the tree decomposition
T = (T ,X). One can verify that T is a tree decomposition of Bn of width 8.

Based on Lemmas 14 and 15, we conclude the proof of Theorem 3.

6. Concluding remarks

We have shed new light on the time complexity of computing the zig-zag number of a directed graph. Nonetheless,
some questions still remain open.

More specifically, we have proved that one can non-deterministically decide whether a directed graph G admits zig-
zag number at most k in time |G|

O(k), concluding that k-zig-zag number is in NP for each fixed k ≥ 0. Nevertheless,
it remains unknown whether k-zig-zag number admits a non-deterministic FPT-time algorithm. Another interesting
question concerns to determine whether Zig-zag number is also in NP for non-fixed k. It is worth mentioning that, to settle
k-zig-zag number in NP, we have actually proved that, given a directed graph G and a bijection π : V (G) → [|G|], deciding
whether zn(G, π) ≤ k is polynomial-time solvable for fixed k. However, for non-fixed k, deciding whether zn(G, π) ≤ k is
coNP-complete. As a matter of fact, given a bipartite directed graph G with bipartition V (G) = X ∪Y , if π : V (G) → [|G|] is
defined in such a way that x <π y for each x ∈ X and each y ∈ Y , then deciding whether zn(G, π) ≥ |G| − 1 is equivalent
to deciding whether G admits a Hamiltonian path, which is a well-known NP-complete problem [11].

Another intriguing question concerns to determine whether 1-zig-zag number is polynomial-time solvable. As already
mentioned, every directed acyclic graph has zig-zag number at most 1, and every directed graph containing directed cycles
of length at least 3 must have zig-zag number at least 2. However, there exist directed graphs that are not directed acyclic

103

235

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

Fig. 18. (a) Example of directed graph G that is not directed acyclic and has zig-zag number 1. (b) Example of directed graph G that does not
contain directed cycles of length at least 3 and yet has zig-zag number 2.

but still have zig-zag number at most 1 (see Fig. 18(a)). Note that, such graphs can only contain directed cycles that are
digons, i.e. directed cycles of length 2. Nevertheless, this is not a sufficient condition for a directed graph to have zig-zag
number at most 1. In fact, there exist directed graphs that only contain directed cycles that are digons and yet have
zig-zag number at least 2 (see Fig. 18(b)). A property that seems to be useful to resolve this problem is the fact that, for
every directed graph G, zn(G) ≤ 1 if and only if there exists a bijection π : V (G) → [|G|] such that, for each three distinct
vertices a, b, c ∈ V (G), with (a, b) , (b, c) ∈ E(G), either a <π b <π c or c <π b <π a.

Motivated by the NP-hardness of 2-zig-zag number, we additionally ask whether k-zig-zag number is NP-hard for
k ≥ 3. In particular, determining whether k-zig-zag number is polynomially reducible to (k + 1)-zig-zag number is an
elusive open problem. Generally, such a reduction must consist in constructing a directed graph H from a given directed
graph G, such that zn(H) = zn(G) + 1. However, since for distinct bijections π : V (G) → [|G|] there might exist distinct
directed paths P of G such that zn(G, π, P) = zn(G, π), it is not obvious at all how G should be modified so as to produce
a directed graph with zig-zag number exactly one unit greater than zn(G). Indeed, consider for instance the operation
of adding a universal vertex, i.e. a vertex that is an out-neighbor and an in-neighbor of all the other vertices. There exist
directed graphs G such that the addition of a universal vertex results in a directed graph with zig-zag number strictly
greater than zn(G) + 1; while there also exist directed graphs G such that the addition of a universal vertex results in a
directed graph with zig-zag number equal to zn(G).

It is worth mentioning that, even if k-zig-zag number is proved to be NP-hard for every k ≥ 3, zig-zag number is
still a directed width measure of important theoretical and algorithmic interest. Indeed, besides the fact that zig-zag
number is asymptotically upper bounded by directed pathwidth, there possibly exist efficient approximation algorithms
with constant approximation factors for the k-zig-zag number problem, which remains an open question. Motivated by
that, we ask for the existence of such approximation algorithms.

Finally, other important questions that are still open concern the establishment of relations between zig-zag number
and distinct width measures. We have proved that there exist directed graphs of constant directed treewidth but
unbounded zig-zag number. However, it is unknown whether the family of directed graphs of constant directed
treewidth contains the family of directed graphs of constant zig-zag number. We remark that a counter-example for
such containment would also imply the existence of directed graphs of constant tree-zig-zag number but unbounded
directed treewidth, closing an open question from [14]. Related to this, we ask for the existence of a characterization of
zig-zag number in terms of pursuit games.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by CAPES, Brazil (Finance Code: 001 and Grant Number : PDSE 88881.187636/2018-01),
CNPq, Brazil (Grant Numbers: 303546/2016-6, 407635/2018-1, 140399/2017-8, and 303726/2017-2), FAPERJ, Brazil (Grant
Numbers: E-26/202.793/2017 and E-26/203.272/2017), Bergen Research Foundation, and by the Research Council of
Norway (Grant Number: 288761).

References

[1] J. Barát, Directed path-width and monotonicity in digraph searching, Graphs Comb. 22 (2) (2006) 161–172.
[2] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, J. Obdrzálek, The DAG-width of directed graphs, J. Combin. Theory Ser. B 102 (4) (2012)

900–923.
[3] D. Berwanger, E. Grädel, L. Kaiser, R. Rabinovich, Entanglement and the complexity of directed graphs, Theoret. Comput. Sci. 463 (2012) 2–25.
[4] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1–2) (1998) 1–45.
[5] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inform. and Comput. 85 (1) (1990) 12–75.
[6] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst.

33 (2) (2000) 125–150.
[7] R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, P. Rossmanith, On digraph width measures in parameterized algorithmics, in: IWPEC,

in: LNCS, vol. 5917, 2009, pp. 185–197.

104

236

M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

[8] R. Ganian, P. Hliněný, J. Kneis, D. Meister, J. Obdržálek, P. Rossmanith, S. Sikdar, Are there any good digraph width measures? J. Combin. Theory
Ser. B 116 (2016) 250–286.

[9] H. Gruber, M. Holzer, Finite automata, digraph connectivity, and regular expression size, in: ICALP, in: LNCS, vol. 5126, 2008, pp. 39–50.
[10] P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games, and orderings, Theoret. Comput. Sci. 399 (3) (2008) 206–219.
[11] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Comput. 11 (4) (1982) 676–686.
[12] T. Johnson, N. Robertson, P.D. Seymour, R. Thomas, Directed tree-width, J. Combin. Theory Ser. B 82 (1) (2001) 138–154.
[13] M. de Oliveira Oliveira, Subgraphs satisfying MSO properties on z-topologically orderable digraphs, in: IPEC, in: LNCS, vol. 8246, Springer, 2013,

pp. 123–136.
[14] M. de Oliveira Oliveira, An algorithmic metatheorem for directed treewidth, Discrete Appl. Math. 204 (2016) 49–76.
[15] B.A. Reed, Introducing directed tree width, in: CTW, in: ENDM, vol. 3, 1999, pp. 222–229.
[16] M.A. Safari, D-width: A more natural measure for directed tree width, in: MFCS, in: LNCS, vol. 3618, 2005, pp. 745–756.
[17] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC’78,

ACM, 1978, pp. 216–226.
[18] H. Tamaki, A polynomial time algorithm for bounded directed pathwidth, in: WG, in: LNCS, vol. 6986, 2011, pp. 331–342.
[19] B. Yang, Y. Cao, Digraph searching, directed vertex separation and directed pathwidth, Discrete Appl. Math. 156 (10) (2008) 1822–1837.

105

237

Appendix H

Abstracts of Additional Works

This appendix contains one-page abstracts of five additional works published during

the doctoral studies. The first abstract corresponds to the work developed during

the Master’s thesis [39], but presented and fully published during the doctorate. The

second abstract corresponds to current work recently presented [37]. The remaining

three abstracts register and acknowledge the very fruitful visit to the University of

Bergen [42–44].

1. Alexsander A. de Melo, Celina M. H. de Figueiredo, Uéverton S. Souza. On

Undirected Two-commodity Integral Flow, Disjoint Paths and Strict Termi-

nal Connection Problems. Presented in the IX Latin and American Algo-

rithms, Graphs and Optimization Symposium (2017), and published in Net-

works (2021) [40].

2. Celina M. H. de Figueiredo, Raul Lopes, Alexsander A. de Melo, Ana Silva.

Parameterized algorithms for Steiner Tree and Dominating Set: bounding the

leafage by the vertex leafage. Presented in the 16th International Conference

and Workshops on Algorithms and Computation (WALCOM 2022) [37].

3. Alexsander A. de Melo and Mateus de Oliveira Oliveira. On the Width of

Regular Classes of Finite Structures. Presented in the 27th International Con-

ference on Automated Deduction (CADE 2021) as a recipient of the Woody

Bledsoe Award [42], and submitted in April 2022 to Theoretical Computer

Science.

4. Alexsander A. de Melo and Mateus de Oliveira Oliveira. Symbolic Solutions

for Symbolic Constraint Satisfaction Problems. Presented in the 17th Interna-

tional Conference on Principles of Knowledge Representation and Reasoning

(KR 2020) [44].

5. Alexsander A. de Melo and Mateus de Oliveira Oliveira. Second-Order Finite

Automata. Presented in the 15th International Computer Science Symposium

238

https://doi.org/10.1002/net.21976
https://doi.org/10.1002/net.21976
https://doi.org/10.1002/net.21976
https://doi.org/10.1007/978-3-030-96731-4_21
https://doi.org/10.1007/978-3-030-96731-4_21
https://doi.org/10.1007/978-3-030-29436-6_2
https://doi.org/10.1007/978-3-030-29436-6_2
https://doi.org/10.24963/kr.2020/6
https://doi.org/10.24963/kr.2020/6
https://doi.org/10.1007/s00224-022-10085-w
https://doi.org/10.1007/s00224-022-10085-w

in Russia (CSR 2020) as an invited paper [43], and accepted for publication

in Theory of Computing Systems.

239

On Undirected Two-commodity Integral Flow, Disjoint Paths

and Strict Terminal Connection Problems*

Alexsander A. de Melo1 Celina M. H. de Figueiredo1 Uéverton dos Santos Souza2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{aamelo, celina}@cos.ufrj.br

2Federal Fluminense University, Niterói, Brazil
ueverton@ic.uff.br

Abstract

Even, Itai and Shamir (1976) proved simple two-commodity integral flow is NP-complete
both in the directed and undirected cases. In particular, the directed case was shown to be
NP-complete even if one demand is unitary, which was improved by Fortune, Hopcroft and
Wyllie (1980) who proved the problem is still NP-complete if both demands are unitary. The
undirected case, on the other hand, was proved by Robertson and Seymour (1995) to be
polynomial-time solvable if both demands are constant. Nevertheless, the complexity of the
undirected case with exactly one constant demand has remained unknown. We close this
forty-year complexity gap, by showing the undirected case is NP-complete even if exactly
one demand is unitary. As a by product, we obtain the NP-completeness of determining
whether a graph contains 1+d pairwise vertex-disjoint paths, such that one path is between
a given pair of vertices and d paths are between a second given pair of vertices. Addition-
ally, we investigate the complexity of another related network design problem called Strict
terminal connection.

Keywords. multicommodity integral flow, unitary demand, disjoint paths, terminal ver-
tices, router vertices, connection tree, Steiner tree

*The authors acknowledge that this work was partially supported by the Brazilian research agencies CAPES,
CNPq and FAPERJ.

1

240

Parameterized algorithms for Steiner Tree and Dominating Set:

bounding the leafage by the vertex leafage*

Celina M. H. de Figueiredo1 Raul Lopes2

Alexsander A. de Melo1 Ana Silva2

1Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
{aamelo, celina}@cos.ufrj.br

2Universidade Federal do Ceará, Fortaleza, Brazil
raul@alu.ufc.br,anasilva@mat.ufc.br

Abstract

Chordal graphs are intersection graphs of subtrees of a tree, while interval graphs are
intersection graphs of subpaths of a path. Undirected path graphs are an intermediate class
of graphs, defined as the intersection graphs of paths of a tree. It is known that Dominat-
ing Set, Connected Dominating Set, and Steiner Tree are W[2]-hard on chordal
graphs, when parameterized by the size of the solution, and are polynomial-time solvable on
interval graphs. As for the undirected path graphs, all these problems are known to be NP-
complete, but no classification in the parameter tractability complexity theory is known,
apart from the trivial XP classification. In this paper, we prove that Dominating Set,
Connected Dominating Set, and Steiner Tree are FPT for undirected path graphs
when parameterized by the size of the solution. We also prove that they continue to be FPT
for general chordal graphs when parameterized by the size of the solution plus the vertex
leafage of the graph, provided a tree model with optimal vertex leafage is given. Finally, we
show a relation between the parameterization of Min-LC-VSP problems by the leafage of
the graph versus the vertex leafage plus the size of a solution.

Keywords. Chordal graphs, Undirected Path graphs, Dominating Set, Steiner Tree, FPT
algorithms

*Celina M. H. de Figueiredo was partially funded by CNPq grants 302823/2016-6 and 407635/2018-1, CAPES
Finance Code 001, and FAPERJ CNE E-26/202.793/2017. Raul Lopes was partially funded by FUNCAP
Pronem 4543945/2016. Alexsander A. de Melo was partially funded by CNPq grant 140399/2017-8 and CAPES
Finance Code 001. Ana Silva was partially funded by CNPq grants 303803/2020-7 and 437841/2018-9, and
FUNCAP/CNPq grant 0112-00061.01.00/16.

1

241

On the Width of Regular Classes of Finite Structures*

Alexsander Andrade de Melo1 Mateus de Oliveira Oliveira2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
aamelo@cos.ufrj.br

2University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

Abstract

In this work, we introduce the notion of decisional width of a finite relational structure
and the notion of decisional width of a regular class of finite structures. Our main result
states that given a first-order formula ψ over a vocabulary τ , and a finite automaton F over
a suitable alphabet B(Σ, w, τ) representing a width-w regular-decisional class of τ -structures
C, one can decide in time f(τ,Σ, ψ, w) · |F| whether some τ -structure in C satisfies ψ. Here,
f is a function that depends on the parameters τ,Σ, ψ, w, but not on the size of the automa-
ton F representing the class. Therefore, besides implying that the first-order theory of any
given regular-decisional class of finite structures is decidable, it also implies that when the
parameters τ , ψ, Σ and w are fixed, decidability can be achieved in linear time on the size of
the input automaton F . Building on the proof of our main result, we show that the problem
of counting satisfying assignments for a first-order logic formula in a given structure A of
width w is fixed-parameter tractable with respect to w, and can be solved in quadratic time
on the length of the input representation of A.

Keywords. Automatic Structures, Width Measures, First Order Logic

*Alexsander Andrade de Melo acknowledges support from the Brazilian National Council for Scientific and
Technological Development (CNPQ 140399/2017-8) and from the Brazilian Federal Agency for Support and
Evaluation of Graduate Education (CAPES 88881.187636/2018-01). Mateus de Oliveira Oliveira acknowledges
support from the Bergen Research Foundation, from the Research Council of Norway (288761) and from the
Sigma2 network (NN9535K).

1

242

Symbolic Solutions for Symbolic Constraint Satisfaction
Problems*

Alexsander Andrade de Melo1 Mateus de Oliveira Oliveira2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
aamelo@cos.ufrj.br

2University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

Abstract

A fundamental drawback that arises when one is faced with the task of deterministically certi-
fying solutions to computational problems in PSPACE is the fact that witnesses may have super-
polynomial size, assuming that NP6=PSPACE. Therefore, the complexity of such a deterministic
verifier may already be super-polynomially lower-bounded by the size of a witness. In this work,
we introduce a new symbolic framework to address this drawback. More precisely, we introduce
a PSPACE-hard notion of symbolic constraint satisfaction problem where both instances and so-
lutions for these instances are implicitly represented by ordered decision diagrams (i.e. read-once,
oblivious, branching programs). Our main result states that given an ordered decision diagram D of
length k and width w specifying a CSP instance, one can determine in time f(w,w′) · k whether
this instance has a solution which can be encoded by an ODD of width w′. Intuitively, while the
parameter w quantifies the complexity of the instance, the parameter w′ quantifies the complexity
of a prospective solution. We show that CSPs of constant width can be used to formalize natural
PSPACE hard problems, such as reachability of configurations for Turing machines working in non-
deterministic linear space. For such problems, our main result immediately yields an algorithm that
determines the existence of solutions of width w in time g(w) · n, where g : N → N is a suitable
computable function, and n is the size of the input.

*Alexsander Andrade de Melo acknowledges support from the Brazilian National Council for Scientific and Technolog-
ical Development (CNPQ 140399/2017-8) and from the Brazilian Federal Agency for Support and Evaluation of Graduate
Education (CAPES 88881.187636/2018-01). Mateus de Oliveira Oliveira acknowledges support from the Bergen Research
Foundation, from the Research Council of Norway (288761) and from the Sigma2 network (NN9535K).

1

243

Second-Order Finite Automata*

Alexsander Andrade de Melo1 Mateus de Oliveira Oliveira2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
aamelo@cos.ufrj.br

2University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

Abstract

Traditionally, finite automata theory has been used as a framework for the representa-
tion of possibly infinite sets of strings. In this work, we introduce the notion of second-order
finite automata, a formalism that combines finite automata with ordered decision diagrams,
with the aim of representing possibly infinite sets of sets of strings. Our main result states
that second-order finite automata can be canonized with respect to the second-order lan-
guages they represent. Using this canonization result, we show that sets of sets of strings
represented by second-order finite automata are closed under the usual Boolean operations,
such as union, intersection, difference and even under a suitable notion of complementation.
Additionally, emptiness of intersection and inclusion are decidable.

We provide two algorithmic applications for second-order automata. First, we show that
several width/size minimization problems for deterministic and nondeterministic ODDs are
solvable in fixed-parameter tractable time when parameterized by the width of the input
ODD. In particular, our results imply FPT algorithms for corresponding width/size min-
imization problems for ordered binary decision diagrams (OBDDs) with a fixed variable
ordering. Previously, only algorithms that take exponential time in the size of the input
OBDD were known for width minimization, even for OBDDs of constant width. Second, we
show that for each k and w one can count the number of distinct functions computable by
ODDs of width at most w and length k in time h(|Σ|, w) ·kO(1), for a suitable h : N×N→ N.
This improves exponentially on the time necessary to explicitly enumerate all such functions,
which is exponential in both the width parameter w and in the length k of the ODDs.

Keywords: Second-Order Finite Automata, Ordered Decision Diagrams, Fixed-Parameter
Tractability

*Alexsander Andrade de Melo acknowledges support from the Brazilian National Council for Scientific and
Technological Development (CNPQ 140399/2017-8) and from the Brazilian Federal Agency for Support and
Evaluation of Graduate Education (CAPES 88881.187636/2018-01). Mateus de Oliveira Oliveira acknowledges
support from the Bergen Research Foundation, from the Research Council of Norway (288761) and from the
Sigma2 network (NN9535K).

1

244

	List of Figures
	Introduction
	An Overview of the Selected Problems
	Connection Problems
	Maximum Cut
	Zig-Zag Number

	Preliminaries

	Connection Problems
	Connection Tree
	Separating Graph Classes
	Split Graphs
	Rooted Directed Path Graphs

	Graphs of Bounded Clique-Width
	Parameterization by clique-width
	Cographs

	Concluding Remarks

	Maximum Cut
	Basic Definitions
	Grained Gadgets
	Adhikary et al.’s Reduction
	Interval Graphs of Bounded Interval Count
	Reduction Graph
	Maximum Cut of the Reduction Graph
	Bounding the Interval Count

	Permutation Graphs
	Reduction Graph
	Maximum Cut of the Reduction Graph

	Concluding Remarks

	Zig-Zag Number
	The Zig-Zag Number of a Directed Graph
	NP-Membership for Fixed k
	Compatible Subcut Sequence
	Compatibility Graph

	NP-Hardness
	Concluding Remarks

	Conclusion
	References
	Manuscript: Revising Johnson’s Table for the 21st Century
	Manuscript: A Multivariate Analysis of the Strict Terminal Connection Problem
	Manuscript: The Strict Terminal Connection Problem on Chordal Bipartite Graphs
	Manuscript: On the Computational Difficulty of the Terminal Connection Problem
	Manuscript: Maximum Cut on Interval Graphs of Interval Count Four is NP-complete
	Manuscript: MaxCut on Permutation Graphs is NP-complete
	Manuscript: Computing the Zig-Zag Number of Directed Graphs
	Abstracts of Additional Works

