
Reverse Branch Target Buffer Poisoning
José Luiz Negreira Castro de Oliveira

joselOliveira11@gmail.com
UFRJ

Diego Leonel Cadette Dutra
ddutra@cos.ufrj.br

UFRJ

Abstract—Memory corruption attacks are widely used to
achieve remote code execution or privilege escalation in ap-
plications. To mitigate these attacks, the operational system
usually randomizes the addresses of pages using Address Layout
Randomization (ASLR). Using speculative execution, modern
CPUs rely on branch predictors to choose the next instruction
to be fetched in the CPU pipeline. This paper presents a new
Spectre v2-based technique for abusing branch predictors to
bypass ASLR on Intel CPUs. Our attack abuses the fact that not
only can the attacker pollute the branch target buffer such as
in a specter-like scenario, but victims can also trigger a branch
misprediction in the attacker process, leading the attacker to
speculatively jump to the same ASLR-protected address. Using
a second cache side channel the attacker can then retrieve the
address, completely bypassing the ASLR for the target process.
Using a real 3rd generation Intel processor hosted on Google’s
cloud, we successfully recovered the victim’s address 40% of the
time, with 100% accuracy when recovered, with each execution
taking around 15 seconds to complete.

I. INTRODUCTION

Since the disclosure of the Spectre and Meltdown vulnerabilities
[1], [2] many other vulnerabilities have been found inside of
modern processors such [3], [4] , specially on the class of
Microarchitecture Data Sampling (MDS). This class of attacks
aims to abuse internal components of the CPU that operate in
an insecure way when speculation [3] or page faults happens
[4].

MDS are usually more reliable since they are able to read
data directly from leaking components such as Line Fill Buffers
(LFB) [3] or special registers inside CPU [5], therefore allowing
the exploit to execute without the need of any information about
the process being exploited or its addresses, that otherwise
would be required when trying to exploit using meltdown or
Spectre(v2) techniques. However the strong relation between
virtual addresses and the success of this class of attacks
may be abused in order to bypass security features such
as ASLR, Position Independent Execution (PIE) or Kernel
Address Layout Randomization (KASLR).

Spectre [1] describes how indirect calls affect the Branch
Target Buffer (BTB) that is shared between processes using
the same core. In the variant 2 of the attack, indirect call
instructions are used to manipulate the BTB in order to achieve
speculative arbitrary execution inside the victim context. In
order to exploit successfully the attacker must know (at least
partially) the source address of the vulnerable instruction and
train the predictor to always jump to a specific destination
inside the victim’s context.

Many other attacks have abused the branch predictor in order
to bypass randomization defenses [6], [7]. In JumpOverASLR

the attack is focused on achieving a collision of the source
address for the branch predictor and then measuring the time of
execution of a specific function to check if a collision happened.
With this exploit it was possible to leak the 12 randomized
bits from KASLR, enough to bypass the mitigation, remaining
only 9 bits needed to bruteforce for user mode randomization.

In Reverse Branch Target Buffer Poisoning (RBTBP) the
indirect branch predictor is abused in order to leak the full 64 bit
address of the call destination, a significant improvement when
compared to JumpOverASLR [7]. The new attack also doesn’t
require any gadgets to be present on the victim’s context, only
the indirect call instruction to be called multiple times, all the
gadgets required for the side channel are placed inside the
attacker’s context.

A. Tested Architecture

The Code was successfully tested on a Intel(R) Xeon(R) CPU @
2.50GHz from Ivy Bridge available in google cloud. However
literature points towards processors from Haswell family also
being vulnerable, although we couldn’t find one to test it yet.
Previous generations have not been tested yet.

B. Threat model

Our Threat model assume that the attacker is able to execute
unprivileged code on the target and tries to escalate to root
user. To do so it exploits a victim’s process running as root or
with permission to sensitive files (e.g. another user process that
can read files from /home). The Operating System (OS) has
support for ASLR and the victim’s program is compiled with
PIE support and contains no address-leaking bugs. Therefore
the base addresses of libraries and the binary sections are
randomized in the virtual address space. We assume that the
spy is able to execute on the same core as the victim that is a
requirement for this exploit since both processes need to share
the same target buffer, that exists only one per core. However
there are many ways of forcing the coresidency within the
same core as the victim [7]. As a requirement, the attacked
application should contain a indirect call instruction, that can
be executed multiple times. The spy processes controlled by
the attacker then try to disclosure the victim’s bases addresses
and is able to use this information to exploit classic memory
corruption bugs or even microarchitectural such as spectre v2.
The attacker it’s able to reverse engineering the binary and see
it’s instructions and partial addresses.

II. BACKGROUND

A. Memory Corruption Exploits and mitigations

Many exploits rely on corrupting internal structures of the
application, such as stack frames metadata or internal variables
[8], [9] as result of improper input handling. These attacks
are usually more common on applications written in low level
languages, such as C.

In order to successfully exploit a memory corruption vul-
nerability e.g., a buffer overflow, the attacker must corrupt the
return address pointer on the stack and make the function return
to another section of the program. This was usually done by
redirecting the program to execute the stack, where a sequence
of specially crafted data to be interpreted as instructions
(shellcode) was placed on the stack. When the return instruction
is executed, the Instruction Pointer (IP) points to the shellcode
placed on the stack to be executed next. This kind of attack
can be used to achieve Remote Code Execution (RCE), or,
if the target application runs at a higher privilege level or is
the kernel itself, the exploit can lead to a privilege escalation
scenario.

In order to prevent these kinds of attacks, many mitigations
have been proposed and implemented, the most common being
randomizations and data execution prevention. On modern
Linux systems, the stack is marked as non executable, avoiding
shellcodes placed on stack to be executed. As a bypass,
attackers started using parts of the application’s code itself
as gadgets in attacks such as Return Oriented Programing
(ROP) and Return to Libc (ret2libc) [9], [10] where the return
instruction jumps to a location in the application or libraries
that would do a malicious action such as opening a shell.

To mitigate Code Reuse attacks, operational systems started
to support randomization of addresses in libraries with ASLR,in
the binary itself with PIE and even the kernel with KASLR.
Without knowing the base address of the code sections, it is
harder for attackers to successfully create a code reuse attack
chain.

ASLR and PIE randomize bits 12-41, meanwhile KASLR
randomizes bits 21-29 [11], [7].

B. Virtual Memory

Physical memory management is an important task of modern
OSs and processors, since they need to execute multiple
programs simultaneously. One process cannot write in another
process’s memory because if that was possible a bugged
program could accidentally crash another program by writing on
the wrong address, or a malware would be able to read memory
from other users on the same machine. Also, programs that were
compiled to use the same addresses should be able to execute
independently at the same time since the compiler is not able to
know exactly what address are being used during the execution
of the program. To achieve transparent memory management,
the OS is responsible for translating virtual addresses chosen
by the compiler into physical addresses used by the Random
Access Memory (RAM) chip.

Pagination is used in order to isolate memory between
processes. Each time a program accesses the memory the virtual
address is translated to physical by querying the pagination
table, a memory region owned by kernel responsible for
storing pointers to the true memory. In order to reduce the
amount of storage used, the pagination mechanism is divided
into levels [12], therefore a single translation operation may
require multiple memory accesses to the pagination table. To
increase the performance of memory accesses, the results of the
most recent translated addresses are cached in the Translation
Lookaside Buffer (TLB), avoiding a new query each time a
memory address is accessed. In addition whenever a switch
occurs, such as changing execution from one process to another,
the CR3 register that points to the base of the table is changed
and the TLB must be flushed to invalidate its entries.

C. Side Channels

Instead of relying on a vulnerability on the algorithm, side
channel attacks exploit the side effects of the execution in order
to exfiltrate data. This side effects can be execution time [13],
power consumption [14] or even wifi radio waves emitted by
the memory bus [15].

In Microarchitecture side channels the attacker uses the
state of internal components of the processor to infere what
operations have been done inside an invisible context such as
other process, kernel, Software Guard Extensions (SGX) or
speculative execution. Some of the covert side channel can be
the cache [16], [17],the TLB [18], [19] , row buffer in memory
[20]. The flush+reload attack consists in measuring the time that
a address takes to be read. To measure it accurately the RDTSC
instruction is used to read the Time Stamp Counter register
before and after the load operation. After the load, the address
is invalidated in the cache with the CLFLUSH instruction. this
avoids that a previous probing affects the next measure, so
the probe only returns low values if that address was accessed
recently by another context e.g. transient instruction.

Below is the function used for measuring the load time of a
given address, adapted from flush+reload[16]. The LFENCE
and MFENCE instructions works as serializing instructions,
avoiding the undesired out of order execution in this section.

D. Speculative execution

Modern processors make a heavy use of pipeline architecture
in order to increase the throughput of instructions. Some of the
steps present in moderns pipeline are the instruction fetching
decoding, reorder, schedule and execution [2]. The pipeline
architecture allows the processor to execute multiple steps of the
instruction in parallel, thus optimizing the usage of hardware
by reducing the time spent waiting for the next instruction or
data. Pipeline architecture works perfectly when the stream of
instructions are sequential E.g. add rax,rbx . However, when
the next instruction depends on the result of a still not executed
instruction such as a conditional instruction jz rip+0x10 the
first step of the pipeline responsible from fetching the next
instruction usually make a guess about the execution path taken
therefore making a speculative execution on that address. If the

mfence
lfence
rdtsc
lfence
mov esi, eax
mov eax,[%1]
lfence
rdtsc
sub eax, esi
clflush [%1]
mfence
lfence

Listing 1: The TSC register can be used as fine grain memory
performance measure

branch taken is proven correct later, the results are committed
to the real registers, but if the path taken is wrong, the results
are discarded yielding a result similar to stalling the fetch of
the next instruction.

E. Branch predictors

Intel CPUs distinguish at least 3 types of predictors in [1]:

• Conditional branches occur after a pattern of
if (x) {do_something();} being compiled. The task

of the predictor is to decide whether the branch was taken
or not. This mechanism is usually simple and depends on
the frequency of the branch taken, so in order to train the
predictor is only necessary to execute the desired path
multiple times.

• Direct Calls and jumps e.g., call rax can be generated
by calls of function pointers. Intel predictors uses the
BTB to store the most recent direct and indirect branches
[21].

• Indirect Calls and Jumps e.g., call [rax] are similar to
the direct calls and uses the same BTB but the mechanisms
of prediction are different.

Figure 1: Mechanisms of branch prediction for direct, indirect
and conditional branches. Extracted from Spectre [1].

The CPU also uses another buffer for predicting destinations
of return addresses [22], [2].

It is worth noticing that the indirect predictor uses a subset of
12 Least Significant Bits (LSB) to resolve the full 64 bit address
of the destination. Once the 12 LSB bits are not randomized
by ASLR it is easy to force a collision on the source address
using the indirect branch predictor, therefore this predictor is
not suitable to attacks that exploit collisions on the predictor
such as Jump Over ASLR [7].

F. Out Of Order Execution

Modern processors have more than one execution unit, allowing
them to execute multiple instructions in a single clock cycle. In
order to improve the usage of the execution units, the processor
may change the order of some instructions when scheduling
the operations, as long as the dependencies are respected. The
processor must be aware of the three reorder hazards: Read
After Write, Write After Read and Write After Write. These
patterns contains dependencies that if reordered may change
the output of the code.

G. Spectre

In Spectre variant 2 [1] shows how the branch predictor
can be trained by an attacker to misspredict the destination
address of a jump or call instruction. The attack consists
of placing a branch instruction at a similar location so
they are mapped for the same entry on the target buffer.
An attacker can then jump multiple times to an address A
in the attacker address space. When the attacked program
reaches the branch, the predictor trained by the attacker will
lead to execute speculatively at address A. Address A then
should be chosen to be a spectre gadget, that would leak a
secret into a side channel. An example of a spectre gadget
could be d = getenv_address[secret[x] *4096] , with
the attacker having control, or being able to predict the variable
x, so the libc would be used as side channel. In the original
the following sequence of instructions were found at ntdll.dll
with the dbx and edi controlled by the attacker:

adc edi,dword ptr [ebx+edx+13BE13BDh];
adc dl,byte ptr [edi];

Listing 2: Example of spectre gadget located at ntdll.dll

Since the attacker must know exactly the virtual address of
the spectre gadget in order to exploit variant 2 of spectre is
plausible to assume that randomization based techniques such
as ASLR and PIE work as spectre v2 mitigations.

Figure 2: Context confusion on branches. Extracted from
Spectre [1].

H. Branch predictor and ASLR

In Jump Over ASLR [7] the branch predictor is exploit in
order recover addresses randomized by ASLR and KASLR.
The attack consists on measuring the performance impact of
BTB collisions. Since the direct branch predictor on Haswell
architecture uses the bits 0-30 as source for the hashing [1],
[7], [21] it’s possible to create an executable that will try to
align the 30 LSB of the jump instruction with another victim’s
jump instruction, then if they are truly 0-30 bits aligned, the
attacker code will measure a longer time to execute the code
block.

The kernel with KASLR mitigation enabled only randomizes
bits 21-29 corresponding to the page directory, therefore, only
512 possibilities of addresses need to be tested to recover
kernel address, making this attack very effective, bypassing
KASLR in about 60 ms. In User-level ASLR however, Linux
randomizes bits 12-40th [23] the attack can only recover bits
12-30, remaining 11 bits undisclosed. With 262.144 addresses
(18 bits) needed to test and with test rate of 100 addresses
per second according to the study, the attack on User-level
applications would take roughly 40 minutes to leak the partial
address.

III. ATTACK OVERVIEW

A vulnerable processor to RBTBP meets three requirements.
1) It must be vulnerable to branch target buffer poisoning

(Spectre v2). In the meaning of calls and jumps executed
in context A being able to interfere with executions on
context B, given they share the same branch predictor
components.

2) Must be able to execute Out of Order instructions, since
the final exploit abuses the Out of Order Engine to execute
incorrect branching paths for long periods of time.

3) Must use a poor and predictable hash function to allocate
BTB entries. That means using few and known bits as
input to the hash function that selects the index on BTB
and not checking tags, allowing for an attacker to easily
create a BTB collision, forcing both contexts to use the
same entry. The predictor must also predicts to more bits
than inputted.

Therefore, RBTBP brings a new branch predictor vulnera-
bility to light. If Jump Over ASLR[7] exploits the difficulty
of creating a BTB collision by bruteforcing all possible entry

inputs to the hashing function, our attack uses the ease of
creating collisions that will be predicted to a correct long
address, leaking the full address with a (theoretical) complexity
cost of 1.

According to the the Google Project Zero article[21] and
our tests, Intel processors from the Haswell family meet these
requirements. The indirect branch predictor uses only the first
12 LSB as input and predicts the full 64 bit address of the
destination. Since the 12 LSB are not changed by ASLR, this
predictor is perfect for the purpose of this attack.

This new attack follows the idea of spectre v2 of poisoning
the BTB but instead of training the predictor to achieve transient
execution on victim context, the attacker allows the victim to
poison the BTB and then tries to discover what address was
speculatively executed inside it’s own context. Therefore there
is no need for locating a spectre gadget inside victim’s process,
the only requirement for a vulnerable program is the presence
of a indirect call instruction that can be executed multiple
times.

A. Toy Example

Considering the following vulnerable section:
The steps needed for test the toy example are:

1) Placing an indirect call instruction e.g. call [rdx] on
12 LSB aligned address of another indirect call with the
victim context. If the instructions have different sizes, the
next instruction’s address should match.

2) Placing the "leak gadget" on every possible destination
address that victim could poison BTB to go to.

3) Letting the victim train the predictor
4) Passing "arguments" to leak gadget and then execute the

call instruction.
5) Recovering results from speculative execution from the

side channel.

Figure 3: Memory Layout of the attack

The Leak Gadget is a piece of code that will execute
speculatively and needs to inform to the attacker what is the
address that it is executing.

This gadget Recives 2 arguments, the mask for the selected
bit, present in cl register and the pointer to the probe array.
First it loads the actual address of the first instruction on rax
then selects the desired bit, if the selected bit is 0 it fetches
the first element if probe array. If bit is 1 it fetches the 4096th
element of probearray.

lea rax,[rip - 7] ;load current address
shr rax,cl ;selects the bit using cl arg
and rax,1
shl rax,12 ;loads probearray
mov dl,[rsi+rax] ;or probearray+4096

Listing 3: leaking gadget

After the speculative execution of the gadget it is possible
to know if the selected bit of the address is 0 or 1 based on
the time of response of the two elements in probearray[16].

B. Measuring the input and output size of the predictor

Just mount the toy example and change addresses to check if
the gadget got executed, lol.

C. ASLR space range

In order to exploit this vulnerability all the possible destination
locations should be filled with the leak gadget. However
in a ubuntu18 system the address range of ASLR for text
sections of the binary covers ,roughly from 0x550000000000
to 0x570000000000, that would require over 2TB of RAM
memory, which is impracticable for current systems.

Although it’s possible to test all the address spaces separately.
First a block of size 4GB is created requesting mmap with
anonymous option, then the page is filled it with gadgets and
the attacker tries to speculate to see if the gadget is executed.
If the gadget is not executed the 4GB window is slided down
on the virtual address space with the mremap call, without
changing the contents in the physical memory. The mremap
call only changes the locations of the pointers to the physical
memory inside the pagination tree, working as an extreme fast
way of changing the virtual address of a block. This way in
roughly 512 iterations to scan the complete address space, the
gadget will collide with the destination predicted and will be
executed, leaking the true destination address of the victim
process.

In the first versions of the exploit, it was not possible to
reliably execute the gadget even if the addresses were aligned
because the translation for the address was not present in TLB.
This was expected since the gadget should never execute in
the normal program flow. It was required to fetch a single
byte of the page containing the gadget, in order to cache the
translation to the TLB and allowing it to execute[18], [19].

However, according with Intel Instruction Set Architecture
(ISA) [24, Chapter 4.10.2.3], "The processor may cache
translations required for prefetches and for accesses that are
a result of speculative execution that would never actually
occur in the executed code path". That means that even if the
translation for the destination address is not present on the
TLB the processor still may execute the pagewalk and cache
the translation for that execution path. . In order to increase the
transient execution time an Out of Order Execution technique
was used. The first step in the instruction pipeline is the fetch
and PreDecode [2]. In this stage the CPU frontend should fetch

our gadget when the malicious call instruction is found. Only
after computing the correct value for the call destination the
path is fixed and the execution is redone. However is possible to
increase the time that takes to correctly compute the destination
address. When placing a sequence of chained memory reads
before evaluating the destination it’s possible to ensure that
the CPU will take thousands of cycles to fix the path. Each
of the pointers was flushed out of cached in the cycle before.
The pointer chain looks like the following code:

mov rcx,%1 ;mask arg for gadget
lea rsi,[%2] ;probe array ptr arg
lea rdx,[%0]
mov rdx,[rdx] ;pointer chain
mov rdx,[rdx]
mov rdx,[rdx]
...
mov rdx,[rdx]
mov rdx,[rdx]
call [rdx] ;mispredicts to gadget
lea rax,[rip - 7]
shr rax,cl
and rax,1
shl rax,12
mov dl,[rsi+rax]

Listing 4: Sequence of instructions fetched by the frontend

This pattern also has a second effect. Due to the dependency
of read after write of the mov rdx,[rdx] instruction, it’s
impossible to perform any parallel execution on that sequence,
but it allows the gadget to execute out of order, even before
the call instruction is resolved.

mov rcx,%1 ;mask arg for gadget
lea rsi,[%2] ;probe array ptr arg
lea rdx,[%0]
mov rdx,[rdx] ;pointer chain
mov rdx,[rdx]
mov rdx,[rdx]
... ;Out of order
lea rax,[rip - 7]
shr rax,cl
and rax,1
shl rax,12
mov dl,[rsi+rax]
...
mov rdx,[rdx]
mov rdx,[rdx]
mov rdx,[rdx]
call [rdx] ;the execution path reverted
...

Listing 5: The gadget instructions already fetched can be
executed out of order since there is no dependency

D. Results

Using 4 GB of memory is possible to test 1.048.576 addresses
at once, but some iterations are needed to be reliable. One
possible explanation is that caching the TLB may take multiple
iterations, with each iteration caching part of the pagination
table into the cache and finally the TLB. We tested with 512
iterations per block, with a result of at least 40% of success
rate into breaking ASLR per execution. Each execution of the
program takes about 15 seconds with a 100% of hit rate when
the address is recovered.

IV. DISCUSSION

A. Future works

The possibility of filling the entire address space with Copy on
Write pages also was tested but with no speculative execution
being measured. Changing the memory layout of the attack for
this technique would allow to skip the part of remmaping of
the attack and reduce the complexity to a true cost 1, however
the implementation of this technique was not successful by the
authors.

It was not possible to test the impacts on a hyperthread
environment. The Processors used in the tests present on Cloud
based provider may implement restrictions on the scheduling
on the same core as mitigations for new MDS class attacks.

It looks like it’s possible to extend the attack to architectures
that uses more than 12 bit as input for the hashing function
of BTB. However before this attack can be implemented it’s
necessary to locate a collision in BTB using collision attacks
as described before [7].

B. Mitigations

1) Avoiding Spectre v2: Several mitigations for avoiding
spectre were proposed[25], such as preventing branch poisoning
with Indirect Branch Restricted Speculation (IBRS),Single
Thread Indirect Branch Prediction (STIBP), Indirect Branch
Predictor Barrier (IBPB) that prevents branch poisoning across
multiple contexts or retpotlines, that changes jumps and calls
instructions to returns. Instructions such as lfence and mfence
before jumps are not effective to mitigate RBTBP since there
is no speculation based execution on the victim side.

2) Enhancing hashing functions on branch predictors: The
simple input of 12 LSB to the hashing function of the BTB
makes very easy to force collisions with other contexts since
none of those inputs are randomized. When a larger input is
used on the hashing function it forces the attack to at least
bruteforce each possible input to detect a collision with the
victim context, greatly increasing the amount of time to perform
the full attack.

3) Reducing the amount of destination bits stored: Other
mitigation is to use the partial address of the source as
destination, with the predictor storing only the least significant
half of the destination address. This ensures that only half
of the bits can be leaked if the destination is disclosed. The
indirect branch predictor in Haswell architectures uses bits 0-30
as input for the BTB and reuses source address 31-63 to create
the full destination address. Our tests also showed that more

recent Intel CPU deprecated the usage of the vulnerable indirect
branch predictor and started to use the "direct" predictor for
both branches, although still vulnerable to source collision
based attacks [7] it limits the amount of bits predicted to only
30, rendering RBTBP useless.

ACKNOWLEDGMENT

The authors would like to thanks Epic Leet Team (ELT) Capture
The Flag Team and Security Incident Response Group (GRIS)
from Rio de Janeiro Federal University (UFRJ) for the support
during the research and revision phase of this project.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[3] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[4] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, “ZombieLoad: Cross-privilege-boundary data sampling,”
in CCS, 2019.

[5] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida,
“CrossTalk: Speculative Data Leaks Across Cores Are Real,”
in S&P, May 2021, intel Bounty Reward. [Online]. Available:
Paper=https://download.vusec.net/papers/crosstalk_sp21.pdfWeb=https:
//www.vusec.net/projects/crosstalkCode=https://github.com/vusec/
ridlPress=https://bit.ly/3frdRuV

[6] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
Speculative Probing: Hacking Blind in the Spectre Era. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1871–1885.
[Online]. Available: https://doi.org/10.1145/3372297.3417289

[7] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–13.

[8] A. One, “Smashing the stack for fun and profit,” Phrack Magazin, vol. 7,
no. 49, 1996.

[9] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 1, mar 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[10] c0ntex, “Bypassing non-executable-stack during exploitation using return-
to-libc.”

[11] J. Ganz and S. Peisert, “Aslr: How robust is the randomness?” in 2017
IEEE Cybersecurity Development (SecDev), 2017, pp. 34–41.

[12] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces, 1st ed. Arpaci-Dusseau Books, August 2018.

[13] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” in 12th USENIX Security Symposium (USENIX
Security 03). Washington, D.C.: USENIX Association, Aug.
2003. [Online]. Available: https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical

[14] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based Power Side-Channel Attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021.

[15] M. Guri, “Air-fi: Generating covert wi-fi signals from air-gapped
computers,” 2020.

[16] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, l3 cache Side-Channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 719–732. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

[17] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” 2016.

Paper=https://download.vusec.net/papers/crosstalk_sp21.pdf Web=https://www.vusec.net/projects/crosstalk Code=https://github.com/vusec/ridl Press=https://bit.ly/3frdRuV
Paper=https://download.vusec.net/papers/crosstalk_sp21.pdf Web=https://www.vusec.net/projects/crosstalk Code=https://github.com/vusec/ridl Press=https://bit.ly/3frdRuV
Paper=https://download.vusec.net/papers/crosstalk_sp21.pdf Web=https://www.vusec.net/projects/crosstalk Code=https://github.com/vusec/ridl Press=https://bit.ly/3frdRuV
https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/2133375.2133377
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

[18] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks,” in USENIX Security, Aug. 2018, pwnie Award
Nomination for Most Innovative Research. [Online]. Available:
Paper=https://download.vusec.net/papers/tlbleed_sec18.pdfSlides=https:
//www.usenix.org/sites/default/files/conference/protected-files/
security18_slides_gras.pdfWeb=https://www.vusec.net/projects/
tlbleedCode=https://github.com/vusec/tlbkitPress=https://goo.gl/eepq1y

[19] ——, “TLBleed: When Protecting Your CPU Caches is
not Enough,” in Black Hat USA, Aug. 2018. [Online].
Available: Slides=https://i.blackhat.com/us-18/Thu-August-9/
us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.
pdfWeb=https://vusec.net/projects/tlbleed

[20] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks,” 08 2016.

[21] “Reading privileged memory with a side-channel,”
https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, accessado em: 03/01/2022.

[22] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
Proceedings of the 12th USENIX Conference on Offensive Technologies,
ser. WOOT’18. USA: USENIX Association, 2018, p. 3.

[23] H. Marco Gisbert and I. Ripoli, “On the effectiveness of full-aslr on
64-bit linux,” Nov. 2014, in-depth Security Conference 2014 (DeepSec)
; Conference date: 18-11-2014 Through 21-11-2014. [Online]. Available:
https://deepsec.net/archive/2014.deepsec.net/index.html

[24] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3. Santa Clara, USA: Intel Corporation, 2016, iSBN 325384-060US.

[25] Speculative Execution Side Channel Mitigations. Santa Clara, USA:
Intel Corporation, 2018, iSBN 336996-003.

Paper=https://download.vusec.net/papers/tlbleed_sec18.pdf Slides=https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_gras.pdf Web=https://www.vusec.net/projects/tlbleed Code=https://github.com/vusec/tlbkit Press=https://goo.gl/eepq1y
Paper=https://download.vusec.net/papers/tlbleed_sec18.pdf Slides=https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_gras.pdf Web=https://www.vusec.net/projects/tlbleed Code=https://github.com/vusec/tlbkit Press=https://goo.gl/eepq1y
Paper=https://download.vusec.net/papers/tlbleed_sec18.pdf Slides=https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_gras.pdf Web=https://www.vusec.net/projects/tlbleed Code=https://github.com/vusec/tlbkit Press=https://goo.gl/eepq1y
Paper=https://download.vusec.net/papers/tlbleed_sec18.pdf Slides=https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_gras.pdf Web=https://www.vusec.net/projects/tlbleed Code=https://github.com/vusec/tlbkit Press=https://goo.gl/eepq1y
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf Web=https://vusec.net/projects/tlbleed
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf Web=https://vusec.net/projects/tlbleed
Slides=https://i.blackhat.com/us-18/Thu-August-9/us-18-Gras-TLBleed-When-Protecting-Your-CPU-Caches-is-Not-Enough.pdf Web=https://vusec.net/projects/tlbleed
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://deepsec.net/archive/2014.deepsec.net/index.html

	I Introduction
	I-A Tested Architecture
	I-B Threat model

	II Background
	II-A Memory Corruption Exploits and mitigations
	II-B Virtual Memory
	II-C Side Channels
	II-D Speculative execution
	II-E Branch predictors
	II-F Out Of Order Execution
	II-G Spectre
	II-H Branch predictor and ASLR

	III Attack Overview
	III-A Toy Example
	III-B Measuring the input and output size of the predictor
	III-C ASLR space range
	III-D Results

	IV Discussion
	IV-A Future works
	IV-B Mitigations
	1 Avoiding Spectre v2
	2 Enhancing hashing functions on branch predictors
	3 Reducing the amount of destination bits stored

	References

