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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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SOBRE A COMPLEXIDADE DO PROBLEMA DE RECONHECIMENTO DE
SET GRAPHS RESTRITO A COGRAFOS E GRAFOS SPLIT

Bruno Bandeira Monteiro

Setembro/2022

Orientador: Márcia Rosana Cerioli

Programa: Engenharia de Sistemas e Computação

Nesta dissertação, tratamos do problema de reconhecimento de set graphs, isto
é, o problema de decidir se um dado grafo é, ou não, um set graph. Este problema,
também conhecido como problema da orientação extensional acíclica (EAO), foi
provado ser NP-completo por A. Tomescu em 2012. Como é de costume, parte
da pesquisa sobre o problema é determinar se esse problema pode ser resolvido
em tempo polinomial quando restrito a certas classes de grafos, e assim, fazer um
mapeamento da complexidade do problema quando restrito a cada classe de grafos.
Primeiro, apresentamos o tema, junto a uma coletânea de resultados relevantes ao
seu desenvolvimento. Segundo, desenvolvemos algumas ferramentas auxiliares para
o reconhecimento de set graphs. Definimos as orientações extensionais-por-camadas
acíclicas e um parâmetro chamado set-deficiency, que mede o quão distante um grafo
está de ser um set graph. Terceiro, usamos as ferramentas descritas na elaboração de
um algoritmo de tempo polinomial para reconhecer set graphs na classe de cografos.
Quarto, provamos que o reconhecimento de set graphs restrito à classe dos grafos
split é NP-completo.
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In this dissertation, we study the set graph recognition problem, i.e., the problem
of deciding whether a given graph is a set graph or not. This problem, also known as
the extensional acyclic orientation problem (EAO), was proved to be NP-complete
by A. Tomescu in 2012. As usual, part of the research on this topic is to determine
whether EAO becomes solvable by polynomial-time algorithms when restricted to
certain graph classes. First, we present the context of the problem, with a collection
of results that are relevant to this line of research. Second, we develop some auxiliary
tools for the recognition of set graphs. We define the layered extensional acyclic
orientations and a graph parameter called set-deficiency, that measures how far
a graph is from being a set graph. Third, we apply the developed tools to reach
a polynomial-time algorithm for recognizing set graphs in the class of cographs.
Fourth, we prove that the recognition of set graphs restricted to split graphs is
NP-complete.
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Chapter 1

Introduction

In this dissertation, we concern ourselves with the class of set graphs. In particular,
we study the set graph recognition problem, i.e., the problem of deciding
whether a given graph is a set graph or not.

A graph is a set graph if it admits an extensional acyclic orientation (eao).
An orientation of a graph is extensional if distinct vertices have distinct out-
neighborhoods, and is acyclic if it has no cycles.

The set graph recognition problem, also known as the extensional

acyclic orientation problem (eao), was first considered by A. Tomescu in [14].
Together with E. Omodeo and A. Policriti, A. Tomescu proved that eao is NP-
complete, even if restricted to bipartite graphs with exactly two leaves; the eao

can be solved in polynomial time in the classes of trees, unicyclic graphs, graphs
admitting hamiltonian paths, claw-free graphs, complete multipartite graphs, block
graphs and (apple,K2,3,dart,K1,1,3)-free graphs; and can be solved in linear time in
classes of graphs with bounded treewidth (see [14] and [11]).

In [10], M. Milanič and A. Tomescu noted that it would be interesting to deter-
mine the time complexity of the eao in certain classes of perfect graphs such as the
threshold graphs, split graphs, cographs and chordal graphs. In this dissertation,
we follow this line of investigation and determine the complexity of eao in all of
these suggested graph classes. More specifically, we prove that eao is polynomial
in the class of cographs, which contains the threshold graphs; and we prove that
the restriction of eao to split graphs is NP-complete. Since the split graphs are a
subclass of the chordal graphs, the eao is also NP-complete in the class of chordal
graphs.

The polynomial-time algorithm for recognizing set graphs in the class of cographs
is based on the following general strategy. We generalize the extensional acyclic
orientation to the broader concept of a layered extensional acyclic orientation (leao).
In terms of leaos, we define the graph parameter set-deficiency, that measures how
far a graph is from being a set graph. Then, we reduce the problem of obtaining

1



an extensional acyclic orientation, for a given graph, to the problem of obtaining
an optimal layered extensional acyclic orientation. A well-known characterization
of the cographs states that a graph is a cograph if and only if every non-trivial
induced subgraph is either disconnected or has a disconnected complement. So,
we present how optimal leaos can be constructed, for a given graph, by combining
optimal leaos of smaller graphs, whenever the given graph is disconnected or has
a disconnected complement. The results lead us to a polynomial-time algorithm
for constructing optimal leaos for cographs. As a corollary, we show that the set

graph recognition problem can be solved in polynomial-time when restricted to
the class of cographs.

To prove that eao remains NP-complete when restricted to the class of split
graphs, we present a polynomial reduction from the total ordering problem

(top) to eao. The total ordering problem was proven to be NP-complete
by Opatrny [12]. However, the main proof given by Opatrny depends on unproved
claims for which complete references are lacking. Thus, we also present a complete
and detailed proof that top is NP-complete, filling in an outline of an alternative
proof also by Opatrny [12].

1.1 Overview

In the last section of Chapter 1, we present the notations and conventions that we
use throughout this text.

In Chapter 2, we introduce the class of set graphs. We present examples and
explore some well-known sufficient or necessary conditions for being a set graph.

In Chapter 3, we define what a layered extensional acyclic orientation (leao) is,
and we define the set-deficiency of a graph, which measures how far a graph is from
being a set graph. Then, we recall the definition of module (of a graph), and prove
some basic results about the leaos and the set-deficiencies of subgraphs induced by
modules.

In Chapters 4 and 5, we show how to construct minimum leaos for graphs by
combining minimum leaos of certain induced subgraphs. Respectively, in Chapter 4
we construct a minimum leao for a graph G that has a disconnected complement
by combining minimum leaos of two subgraphs G1 and G2 such that G is the join
G1 ∧G2; and in Chapter 5, we construct minimum leaos for disconnected graphs by
combining minimum leaos of each connected component of these graphs, provided
these minimum leaos satisfy the special condition of having exactly one sink. Then,
in Section 5.3, we briefly discuss the generality of this special condition. Additionally,
in Section 5.4, we conclude by showing how the presented results can be applied for
solving the set graph recognition problem in polynomial time in the class of
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cographs.
In Chapter 6, we prove that recognizing set graphs in the class of split graphs is

NP-complete. This proof consists of a polynomial-time reduction from the total

ordering problem (top), which was proven to be NP-complete in 1979 by Opa-
trny [12]. Unfortunately, the main proof given by Opatrny depends on unproved
claims for which references are lacking (see Section 6.1). Thus, we also give a de-
tailed proof of the NP-completeness of the total ordering problem, filling an
outline, also given by Opatrny in [12], of an alternative polynomial-time reduction
from 3-sat to top.

In Chapter 7, we conclude with some remarks and some perspectives into possible
future extensions of this work.

1.2 Definitions and Notational Conventions

We assume the reader has familiarity with the basic concepts of Graph Theory,
Computational Complexity Theory, and Set Theory as presented, for example, in
the books [3], [7], and [6], respectively. Next, we review some concepts and fix some
notations that will be used throughout the text. Other local usage concepts will be
reviewed as needed in later sections.

For every set X, we denote by P(X) the power set of X, i.e., the set of all subsets
of X. The natural numbers include 0, i.e., N = {0, 1, 2, 3, . . . }. For all m,n ∈ N,
we denote by [m,n] the set of integers between m and n, including m and n, i.e.,
[m,n] = {i ∈ N : m ≤ i ≤ n}; and we denote by [n] the set of the first n positive
integers, i.e., [n] = [1, n] = {1, . . . , n}. For every set X and every n ∈ N, we denote
by

(
X
n

)
the set of subsets of X with cardinality n, i.e.,

(
X
n

)
= {Y ∈ P(X) : |Y | = n}.

Formally, a graph, G, is a pair (V,E), where V is a non-empty finite set of
vertices, and E ⊆

(
V
2

)
is the set of edges of G. Given, any graph G, we also denote

the set of vertices of G by V (G) and the set of edges of G by E(G).

Definition 1. Given a vertex x ∈ V (G), the neighborhood of x, denoted by NG(x),
is the set of vertices adjacent to x in G, i.e., NG(x) := {y ∈ V (G) : {x, y} ∈ E(G)}.
Given a set X ⊆ V (G), we denote by NG(X) the union of the neighborhoods of the
vertices in X, i.e., NG(X) :=

⋃
{NG(x) : x ∈ X}. When there is no ambiguity, we

write simply N(x) and N(X) instead of NG(x) and NG(X).

Definition 2. Given a vertex x ∈ V (G), the degree of x, denoted by d(x), is the
number of vertices adjacent to x in G, i.e., d(x) := |N(x)|. The maximum degree of
G and the minimum degree of G are denoted, respectively, by ∆(G) and δ(G), i.e.,
∆(G) := max{d(v) : v ∈ V } and δ(G) := min{d(v) : v ∈ V }.
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Definition 3. Given a graph G = (V,E) and a subset of vertices X ⊆ V , the sub-
graph of G induced by X, denoted by G[X], is the graph (X,E ∩P(X)). We denote
the induced subgraph G[V \X] simply by G \X.

Definition 4. Given a graph G = (V,E), the complement of G, denoted by G, is
the graph (V,E), where E =

(
V
2

)
\ E.

We will also need the corresponding concepts and notations for graph orienta-
tions.

Definition 5. Given a graph G = (V,E), a set D ⊆ V 2 is an orientation of G if
there is a bijection dir : E → D such that, for every edge e = {x, y} ∈ E, either
dir(e) = (x, y) or dir(e) = (y, x).

Usually, given a graph G, an orientation D of G, and two vertices x, y ∈ V (G),
we write xy ∈ D, or x → y when D is implicit, instead of (x, y) ∈ D.

Definition 6. Given an orientation D and a vertex x, the out-neighborhood of x

in D is N+
D (x) = {y ∈ V (G) : xy ∈ D}; and the in-neighborhood of x in D is

N−
D (x) = {y ∈ V (G) : yx ∈ D}. When there is no ambiguity, we write simply

N+(x) and N−(x) instead of N+
D (x) and N−

D (x).

Definition 7. Given an orientation D, a vertex x is a sink if N+
D (x) = ∅, and is a

source if N−
D (x) = ∅.

Definition 8. Given a graph G = (V,E), an orientation D of G, and a subset of
vertices X ⊆ V , the restriction of D to the subgraph G[X], denoted by D[X] or D|X ,
is the orientation D ∩X2 of G[X].
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Chapter 2

Set Graphs or Extensional Acyclic
Orientations

In this chapter, we review the definition of set graphs, give some illustrative exam-
ples, and present some known results. Our main objective here is to give the reader
some familiarity with the basic concepts and results that will be used throughout
the text.

Set graphs were first defined by A. Tomescu in his Ph.D. Thesis [14].

Definition 9. Given a graph G and an orientation D of G, a directed cycle in D

is a finite sequence of vertices x1x2 . . . xk such that k > 1, x1 = xk and xixi+1 ∈ D

for every i ∈ [k − 1]. We say that D is acyclic if D has no directed cycles.

Definition 10. An orientation D of a graph G is extensional if, for all x, y ∈ V (G)

with x ̸= y, N+(x) ̸= N+(y). If, otherwise, two distinct vertices x, y ∈ V (G) are
such that N+

D (x) = N+
D (y), we say that x and y collide.

Definition 11. A graph G is a set graph if G admits an extensional acyclic orien-
tation (an eao).

For example, the graphs in Figure 2.1 are set graphs because they admit exten-
sional acyclic orientations – see Figure 2.2. Some graphs are not set graphs. For

Figure 2.1: Set Graphs

instance, no disconnected graph is a set graph.
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Figure 2.2: Extensional acyclic orientations of the set graphs in Figure 2.1

Lemma 12. Every set graph is connected.

Proof. Let G be a set graph. Then, G has an extensional acyclic orientation D.
Since D is acyclic, each connected component of G has a sink. Since every sink has
the same empty out-neighborhood and D is extensional, D has at most one sink.
Therefore, G has exactly one connected component.

Some connected graphs are not set graphs. For instance, the complete bipartite
graph K1,3 (see Figure 2.3) is a connected graph that does not admit an eao (see
Theorem 13, cf. [10]).

Figure 2.3: K1,3

For all m,n ∈ N, we denote by Km,n the complete bipartite graph (X ∪ Y,E)

where X ∩ Y = ∅, |X| = m, |Y | = n and E = {{x, y} : x ∈ X, y ∈ Y }.

Theorem 13. K1,1 and K1,2 are set graphs, but, for every n ≥ 3, K1,n is not a set
graph.

Proof. Let V (K1,n) = {a, b1, b2, . . . , bn} with d(a) = n and d(bi) = 1 for every i ∈ [n],
i.e., a is the center of the star K1,n. If n = 1, then D = {(b1, a)} is an eao of K1,1.
If n = 2, then, D = {(b1, a), (a, b2)} is an eao of K1,2. If n ≥ 3, suppose, for a
contradiction, that K1,n has an extensional orientation D. Then, by extensionality,
N+(b1), N

+(b2), . . . , N
+(bn) are n distinct subsets of {a}. But {a} has only two

subsets – a contradiction.

Set graphs appear naturally from the very conception of sets. But the class of
set graphs, and its recognition problem have only recently been taken as primary
objects of study. From the point of view of the ZFC set theory, all members of a set
are also sets (cf. [6]). Thus, the membership relation, ∈, is a binary relation on any
set X, yielding a directed graph with vertex set X. A set X is transitive if every
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element of X is also a subset of X. Set graphs are the underlying graphs of the
digraphs that represent the reverse of the membership relation on finite transitive
sets. The use of the reverse of the membership relation, instead of the membership
relation itself, is historical and has no significant mathematical consequences. There
is a natural correspondence between extensional acyclic orientations and finite tran-
sitive sets. The condition of extensionality corresponds to the property of sets, also
called extensionality: two sets are equal if and only if they have the same elements.
Similarly, given an extensional orientation D, of a graph G, two vertices are the same
if and only if they have the same out-neighbors. The condition of acyclicity corre-
sponds to the property of sets, of being well founded: there is no infinite descending
sequence · · · ∈ xn ∈ · · · ∈ x2 ∈ x1 in the membership relation. Any infinite walk
on an orientation of a finite graph would require the orientation to have a cycle. In
Lemmas 14 and 15, we show in detail that the two properties of extensionality and
acyclicity are sufficient for characterizing the membership relation of finite transitive
sets.

Lemma 14. Given a finite transitive set X, there is a set graph G with an eao D

and a bijection f : V (G) → X such that, for all x, y ∈ V (G), xy ∈ D if and only if
f(y) ∈ f(x), i.e., D is isomorphic to the reversed membership relation on X.

Proof. Let G = (X, {{x, y} ∈
(
X
2

)
: x ∈ y or y ∈ x}), and D = {(x, y) ∈ X2 :

y ∈ x}. D is acyclic because a cycle in the membership relation would violate the
Axiom of Regularity, postulated in the ZFC set theory (cf. [6]). Next, we prove that
D is extensional. Let x, y ∈ X be such that x ̸= y. Since x and y are distinct sets,
there exists z ∈ x \ y or there exists z ∈ y \ x. Assume w.l.o.g. that z ∈ x \ y.
Since z ∈ x ∈ X and X is transitive, z ∈ X. Since (x, z) ∈ X2 and z ∈ x,
by definition, xz ∈ D. Moreover, since z /∈ y, by the definition of D, yz /∈ D.
Thus, z ∈ N+

D (x) \ N+
D (y). Therefore, D is extensional. Finally, we prove that

D is isomorphic to the reversed membership relation on X. Let f : X → X, be
the identity function, i.e., f(x) = x for every x ∈ X. Then, f is a bijection. Let
x, y ∈ X. Suppose xy ∈ D. Then, by the definition of D, f(y) = y ∈ x = f(x).
So f(y) ∈ f(x). Conversely, suppose f(y) ∈ f(x). Then, y ∈ x, and consequently,
xy ∈ D. Therefore, xy ∈ D if and only if f(y) ∈ f(x) for every x, y ∈ X. This
completes the proof.

Lemma 15. Given a set graph G with an eao D, there is a finite transitive set X
and a bijection f : V (G) → X such that, for all x, y ∈ V (G), xy ∈ D if and only if
f(y) ∈ f(x), i.e., the reversed membership relation on X is isomorphic to D.

Proof. We prove, by induction on n, the stronger statement that if n ≤ |V (G)|, then
there is a subset P ⊆ V (G) with |P | = n such that
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Figure 2.4: Illustration of the construction of a transitive set isomorphic to a given
extensional acyclic orientation

(i) For every x ∈ P , N+
D (x) ⊆ P ;

(ii) There is a transitive set X and a bijection f : P → X such that, for all
x, y ∈ P , xy ∈ D if and only if f(y) ∈ f(x). In this case, as usual, we say that
f is an isomorphism between D[P ] and the reversed membership relation on
X.

Base: Suppose n = 1. Since D is acyclic, it has a sink s. Let P = {s}. Since s is
a sink, N+

D (s) = ∅ ⊆ P , so condition (i) is satisfied. Let X = {∅} and f : P → X

defined by f(s) = ∅. Since ∅ ⊆ X, by definition, X is transitive. Since, by the
definition of orientation, ss /∈ D, and ∅ /∈ ∅, f is an isomorphism.

Induction Hypothesis: Suppose that for every n < |V (G)| there is a set Q ⊂ V (G),
with |Q| = n, satisfying conditions (i) and (ii) with a transitive set XQ and isomor-
phism fQ : Q → XQ.

Step: Let s be a sink of the acyclic orientation D[V (G) \Q]. Let P = Q ∪ {s}. By
the IH, for every x ∈ Q, N+

D (x) ⊆ Q ⊆ P . Besides, since s is a sink of D[V (G) \Q],
N+

D (s) ⊆ Q ⊆ P . Thus, condition (i) is satisfied.
Since N+

D (s) ⊆ Q, every vertex of N+
D (s) is in the domain of fQ. Then, we can

define xs := {fQ(v) : v ∈ N+
D (s)}. Furthermore, let X := XQ ∪ {xs}.

To prove X is transitive, let x ∈ X. Either x ∈ XQ or x = xs. If x ∈ XQ,
x ⊆ XQ ⊆ X because, by IH, XQ is transitive. If x = xs, then x = {fQ(w) : w ∈
N+

D (s)} ⊆ XQ ⊆ X. In any case, x ⊆ X. Thus, X is transitive.
Let f : P → X be such that, for all x ∈ P ,

f(v) =

fQ(v) if v ∈ Q,

xs if v = s.

Note that, since s /∈ Q, f is well-defined.
To prove f is injective, let x, y ∈ P be such that f(x) = f(y). We consider four

cases:

Case 1: Suppose x, y ∈ Q. Then, fQ(x) = f(x) = f(y) = fQ(y), and thus x = y

because, by IH, fQ is injective.
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Case 2: Suppose x = s and y ∈ Q. We prove that this case is contradictory. Let
sQ be a sink of the acyclic orientation D[Q]. Then, by (i), N+

D (sQ) = ∅. Since
D is extensional, sQ is the only sink of D. Thus, the unique sink of D is in Q,
and therefore, s is not a sink of D. We will prove that N+

D (s) = N+
D (y). Let

w ∈ N+
D (s). Then, by definition of xs, fQ(w) ∈ xs = f(s) = f(y). Since y ∈ Q,

f(y) = fQ(y). Then, fQ(w) ∈ fQ(y), and since fQ is an isomorphism, yw ∈ D.
So, w ∈ N+

D (y). Thus N+
D (s) ⊆ N+

D (y). Conversely, let w ∈ N+
D (y). Since fQ

is an isomorphism, fQ(w) ∈ fQ(y). Then, fQ(w) ∈ fQ(y) = f(y) = f(s) = xs.
By the definition of xs, there is w′ ∈ N+

D (s) such that fQ(w
′) = fQ(w). Since

fQ is injective, w′ = w. Thus, w ∈ N+
D (s). Therefore, N+

D (s) = N+
D (y),

contradicting the extensionality of D.

Case 3: Suppose x ∈ Q and y = s. Analogously to Case 2, this case is contradic-
tory.

Case 4: Suppose x = s and y = s. Then, trivially, x = y.

Thus, f is injective.
By definition, f is surjective. To prove that f is surjective, let x ∈ X. Since

X = XQ ∪ {xs}, we consider two cases.

Case 1: Suppose x ∈ XQ. Since, by IH, fQ is surjective, there is v ∈ Q such that
fQ(v) = x. Then, by definition, f(v) = fQ(v) = x.

Case 2: Suppose x ∈ xs. Then, by definition, f(s) = xs = x.

In any case, there exists v ∈ P such that f(v) = x. Hence, f is surjective. Therefore,
f is a bijection.

To prove f is an isomorphism, let x, y ∈ P . We consider four cases:

Case 1: Suppose x, y ∈ Q. Then, since, by IH, fQ is an isomorphism, xy ∈ D if
and only if fQ(y) ∈ fQ(x). Since x, y ∈ Q, by definition, f(x) = fQ(x) and
f(y) = fQ(y). Thus, xy ∈ D if and only if f(x) = f(y).

Case 2: Suppose x = s and y ∈ Q. We will prove sy ∈ D if and only if f(y) ∈ f(s).
Suppose sy ∈ D. Since y ∈ N+

D (s), by definition, fQ(y) ∈ xs = f(s). Since
y ∈ Q, by definition, f(y) = fQ(y) ∈ f(s). Conversely, suppose f(y) ∈ f(s).
By definition, f(s) = xs. Then, by definition of xs, since f(y) ∈ xs, there exists
w ∈ N+

D (s) such that fQ(w) = f(y). Since w ∈ N+
D (s) ⊆ Q, by definition,

f(w) = fQ(w). Since f(w) = fQ(w) = f(y), and f is injective, w = y. Then,
y = w ∈ N+

D (s). Therefore, sy ∈ D.

Case 3: Suppose x ∈ Q and y = s. We will prove that xs ∈ D if and only if
f(s) ∈ f(x), by proving that xs /∈ D and f(s) /∈ f(x). Since x /∈ Q and,

9



by condition (i), N+
D (x) ⊆ Q, we have s /∈ N+

D (x). Thus, xs /∈ D. Suppose,
for a contradiction, f(s) ∈ f(x). Since x ∈ Q, by definition, f(s) = fQ(s).
Then, f(s) ∈ fQ(x). Since f(s) ∈ fQ(x) ∈ XQ and, by IH, XQ is transitive,
f(s) ∈ XQ. Since, by IH, fQ is a bijection, there exists w ∈ Q such that
fQ(w) = f(s). Then, we have f(w) = fQ(w) = f(s). But, we have already
proved that f is injective. So, s = w ∈ Q, a contradiction. Thus f(s) /∈ f(x).
Since xs /∈ D and f(s) /∈ f(x), we have xs /∈ D if and only if f(s) /∈ f(x).

Case 4: Suppose x = y = s. Then, by the definition of orientation, ss /∈ D. And,
by the Axiom of Regularity, of ZFC set theory (cf. [6]), f(s) /∈ f(s).

Thus, f is an isomorphism.

Figure 2.4 illustrates the proof of Lemma 15. We start with an acyclic exten-
sional orientation, and at each step, we paint in black the vertices for which f is
already defined (the set P ), and we represent by squares the sinks of the orienta-
tions restricted to the remaining vertices (the sinks of D[G(V ) \ P ], including s).
Specifically, at each step, we pick a vertex s for which every out-neighbor is already
assigned to a set, by f , and we assign it to the set f [N+

D (s)].
Set graphs play an important role in the interface between sets and graphs. It

is often convenient to view graphs from a set theory perspective and, vice versa,
to view sets from a graph theory perspective. This connection between sets and
graphs has been helpful in approaching many kinds of problems of both fields. For
instance, much like Prüfer sequences can be used for counting labeled trees [13],
A. Tomescu used extensional acyclic orientations for counting transitive sets [14].
And conversely, in [10], Milanič and Tomescu gave a simpler proof of a known
theorem from graph theory (stating that every connected claw-free graph with an
even number of vertices admits a perfect matching) by leveraging their result that
connected claw-free graphs admit extensional acyclic orientations, and thus have the
structure of transitive sets.

One of the main problems concerning set graphs is to decide whether a given
graph is a set graph. Now, we present some conditions related to this problem.

First, keep in mind the following property of acyclic orientations:

Lemma 16 (M. Milanič, A. Tomescu [10]). Given an acyclic orientation D of a
graph G and two distinct vertices x, y ∈ V (G), if there is a path in D from x to y,
then N+

D (x) ̸= N+
D (y).

Proof. Suppose there is a path x1x2 . . . xp in D such that x = x1 and y = xp. If
it were the case that N+

D (x) = N+
D (y), then D would have the cycle x2x3 . . . xpx2,

contradicting that D is acyclic. Therefore, N+
D (x) ̸= N+

D (y).
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Recall that a Hamiltonian path, on a graph, is a path that contains every vertex
of the graph, without repetition. A simple sufficient condition for being a set graph
is the following:

Lemma 17 (M. Milanič, A. Tomescu [10]). If a graph G has a Hamiltonian path,
then it is a set graph.

Proof. Let G = (V,E) be a graph with a Hamiltonian path v1 . . . vn. Define the
orientation D := {vivj ∈ V 2 : i < j and {vi, vj} ∈ E}. D is acyclic because directed
edges of D can only move forward in the Hamiltonian path. D is extensional because
given two vertices vi, vj ∈ V , with i < j, vivi+1 . . . vj is a path in D, and thus, by
Lemma 16, N+

D (vi) ̸= N+
D (vj).

However, the converse of Lemma 17 does not hold. In Figure 2.5, below, we have
a set graph (with an eao) that does not admit a Hamiltonian path:

Figure 2.5: A set graph that does not admit a Hamiltonian path

If a graph has a Hamiltonian path, the vertices of degree one (the leaves) must
be endpoints of the Hamiltonian path. Thus, graphs admitting Hamiltonian paths
have at most two vertices of degree one. Therefore, the set graph in Figure 2.5,
which has three vertices of degree one, does not admit a Hamiltonian path.

The set graphs that admit Hamiltonian paths likely do not have a simple charac-
terization, as the problem of recognizing graphs admitting Hamiltonian paths (HP)
restricted to the class of set graphs is NP-complete. In fact, the restriction of HP
to line graphs is NP-complete [2], line graphs are a subclass of K1,3-free graphs (cf.
[1]), and connected K1,3-free graphs are a subclass of set graphs [14] (we prove the
latter inclusion in Theorem 27).

By analyzing some features of the out-neighborhoods of eaos, we reach, in
Lemma 22 a necessary condition for being a set graph. First, let us define what
a nested family of sets is, and prove some intermediary lemmas.

Definition 18. A family of sets F is nested if, for all X, Y ∈ F , X ⊆ Y or Y ⊆ X,
i.e., inclusion is a linear order on F .
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Lemma 19 (M. Milanič, A. Tomescu [10]). Let D be an acyclic orientation of
a graph G = (V,E) and let u, v ∈ V be such that N(u) = N(v). Then,
{N+

D (u), N
+
D (v)} is nested, i.e., N+

D (u) ⊆ N+
D (v) or N+

D (v) ⊆ N+
D (u).

Proof. Suppose N(u) = N(v). Assume, for a contradiction, that there exist w ∈
N+

D (u)\N
+
D (v) and z ∈ N+

D (v)\N
+
D (u). Since N(u) = N(v), we have w ∈ N(v) and

z ∈ N(u). Thus, w ∈ N−
D (v) and z ∈ N−

D (u). But then, we have the cycle wvzuw

in D, contradicting that D is acyclic.

Corollary 20 (M. Milanič, A. Tomescu [10]). Let D be an eao of a graph G = (V,E)

and let u, v ∈ V be distinct vertices. If N(x) = N(y), then |N+
D (u)| ≠ |N+

D (v)|.

Proof. Suppose N(x) = N(y). By Lemma 19, {N+
D (u), N

+
D (v)} is nested. Since

N+
D (u) and N+

D (v) are finite sets such that N+
D (u) ⊆ N+

D (v) or N+
D (v) ⊆ N+

D (u), if
they had the same cardinality, they would be equal, contradicting the extensionality
of D. Thus, |N+

D (u)| ≠ |N+
D (v)|.

A necessary condition for being a set graph is known as the same neighbors
condition:

Definition 21 (A. Tomescu [14]). A graph G satisfies the same neighbors condition
if, for every set X ⊆ V (G), the set Y = {y ∈ V : N(y) = X} has at most |X| + 1

elements.

Lemma 22 (M. Milanič, A. Tomescu [10]). Every set graph satisfies the same neigh-
bors condition.

Proof. Let D be an eao of G. Let X ⊆ V (G), and let Y = {y ∈ V (G) : N(y) =

X}. By Corolary 20, the out-neighborhoods of vertices in Y have pairwise distinct
cardinalities. But these out-neighborhoods are subsets of X, whose cardinalities
range over {0, . . . , |X|}. Thus, |Y | ≤ |X|+ 1.

The converse of Lemma 22 does not hold:

Figure 2.6: Counter-example to the converse of Lemma 22

The graph in Figure 2.6 satisfies the same neighbors condition, but is not a
set graph: Since this graph is a tree, for each vertex v, there is a unique acyclic
orientation such that v is the only sink. To prove that this graph is not a set graph
we verify that, for each vertex v, the acyclic orientation that has v as the only sink
is not extensional. In Figure 2.7, we present, for every vertex v of the graph in
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Figure 2.6, the only acyclic orientation that has v as the only sink. In each case, we
represent v by a square node and we paint in black a pair of vertices that have the
same out-neighborhood.

Figure 2.7: Every acyclic orientation of the graph in Figure 2.6 that only has one
sink

Since the same neighbors condition (of Lemma 22) can be verified in polynomial
time, and the recognition of set graphs is NP-complete, the recognition of set graphs
restricted to the class of graphs satisfying the same neighbors condition is NP-
complete. Thus, it is likely that there is no simple characterization of which graphs
satisfying the same neighbors condition are set graphs.

From Lemmas 17 and 22, one obtains the following generalization of Theorem 13,
characterizing the complete bipartite graphs that are set graphs.

Corollary 23 (M. Milanič, A. Tomescu [10]). For any m,n ∈ N, Km,n is a set
graph if and only if |m− n| ≤ 1.

Proof. Suppose Km,n = (X ∪ Y,E) is a set graph. Since G is bipartite complete,
N(x) = Y and N(y) = X for all x ∈ X and y ∈ Y . Therefore, X = {x ∈
V (G) : N(x) = Y }, and consequently, by Lemma 22, |X| ≤ |Y | + 1. Similarly,
Y = {y ∈ V (G) : N(y) = X}, and consequently, by Lemma 22, |Y | ≤ |X| + 1. So,
|X| − 1 ≤ |Y | ≤ |X|+ 1. Therefore, |m− n| ≤ 1. Conversely, suppose |m− n| ≤ 1.
Assume, X = {x1, . . . , xm} and Y = {y1, . . . , yn}. Suppose w.l.o.g. m ≤ n. Then,
m = n − 1 or m = n. If m = n − 1, then y1x1 . . . ymxmyn is a Hamiltonian path;
and if m = n, then y1x1 . . . ymxm is a Hamiltonian path. Thus, by Lemma 17, Km,n

is a set graph.

The proof given for Lemma 13, that K1,n is not a set graph (for n ≥ 3), hints at
another important necessary condition for being a set graph, known as the cut-set
condition:

Definition 24 (A. Tomescu [14]). A graph G satisfies the cut-set condition if, for
every X ⊆ V (G), the induced subgraph G\X has at most 2|X| connected components.

Lemma 25 (M. Milanič, A. Tomescu [10]). Every set graph satisfies the cut-set
condition.

Proof. Let D be an eao of the set graph G. Let k be the number of connected
components of G. Let G1, . . . , Gk be the connected components of G\X. Since D is
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acyclic, the restricted orientation D[V \X] has a sink in each connected component
of G \X. Let y1, . . . , yk be sinks of each of these connected components. Then, in
D, the out-neighborhoods of y1, . . . , yk must be subsets of X, and must be pairwise
distinct because D is extensional. Thus, X has at least k subsets, i.e., k ≤ 2|X|.

The converse of Lemma 25 does not hold. For instance, K2,4 satisfies the con-
dition that, for every X ⊆ V (K2,4), the graph K2,4 \X has at most 2|X| connected
components (the cut-set condition), but by Corollary 23, K2,4 is not a set graph.

Figure 2.8: K2,4

Moreover, a graph may satisfy both the cut-set condition and the same neighbors
condition and still not be a set graph. For instance, consider the graph in Figure 2.9.
It is easy to verify that the graph in Figure 2.9 satisfies both the cut-set and same

a
xa

b
xb

c
xc

x1

x2

x3

x4

Figure 2.9: Graph satisfying the cut-set and the same-neighbors conditions that is
not a set graph

neighbors conditions. But it is not a set graph, for suppose, for a contradiction,
the graph in Figure 2.9 has an eao D. Since x1, x2, x3, x4 have the same neigh-
borhood {a, b, c}, by Corollary 20, their out-neighborhoods have pairwise distinct
cardinalities. Thus, the out-neighborhoods of x1, x2, x3, x4 are subsets of {a, b, c} of
every possible cardinality, from 0 to 3. Assume, w.l.o.g. that |N+

D (x1)| = 0 and
|N+

D (x2)| = 1. Since x1 is a sink and D is extensional, the vertices xa, xb, xc are not
sinks, and thus are sources. Then, since |N+

D (x2)| = 1, x2 must collide with one of
the vertices xa, xb, xc, contradicting the extensionality of D.

It would be interesting to find a characterization of the graphs satisfying the
cut-set condition that are set graphs, or a characterization of the graphs satisfying
both the same neighbors condition and the cut set condition that are set graphs.
But, to the best of our knowledge, no progress has been made on this matter.

As a corollary of Lemma 17 and Lemma 25, one obtains a characterization of
the trees that are set graphs.
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Corollary 26 (M. Milanič, A. Tomescu [10]). A tree T is a set graph if and only if
∆(T ) ≤ 2, i.e., T is a path.

Proof. Let T be a tree. Suppose T is a set graph. Suppose, for a contradiction,
T has a vertex v ∈ V (T ) such that d(v) ≥ 3. Since T is a tree, T \ {v} has d(v)

connected components. Thus, T \ {v} has at least 3 connected components, while
2|{v}| = 2, contradicting Lemma 25. Thus, ∆(T ) ≤ 2, i.e., T is a path. Conversely,
suppose ∆(T ) ≤ 2. Then, T is a path, and consequently has a Hamiltonian path.
Thus, by Lemma 17, T is a set graph.

The characterization in Corollary 26 gives us a direct proof that the graph in
Figure 2.6 is not a set graph.

Let G and H be graphs. We say that G is H-free if no induced subgraph of G is
isomorphic to H. A. Tomescu proved, in [14], the following theorem.

Theorem 27 (M. Milanič, A. Tomescu [14]). Every connected K1,3-free graph is a
set graph.

Proof. Let G be a connected K1,3-free graph. The proof follows by induction on
|V (G)| = n.
Base: If n = 1, since the orientation D = ∅ is an eao, G is a set graph.
Induction Hypothesis: Suppose that every connected K1,3-free graph on n vertices
is a set graph.
Step: Suppose G is a connected K1,3-free graph with n + 1 vertices. By taking,
for instance, a leaf of a spanning tree of G, let v ∈ V (G) be such that G \ {v} is
connected. Then, G \ {v} is a connected K1,3-free graph with n vertices. By IH,
G \ {v} is a set graph. Let D′ be an eao of G \ {v}. Let s be the unique sink of D′.
We consider two cases, either s ∈ N(v) or not.

Case 1: Suppose s ∈ N(v). Extend D′ to an orientation D of G by setting v

as a sink, i.e., D = D′ ∪ {xv : x ∈ N(v)}. We prove that D is acyclic and
extensional. First, we prove that v is the only sink of D. Let w ∈ V (G)\{v, s}.
Since s is the only sink of D′ and w ̸= s, w is not a sink of D′. And since
D′ ⊆ D, ∅ ≠ N+

D′(w) ⊆ N+
D (w), so w is not a sink of D. Moreover, s is not

a sink of D because, since s ∈ N(v), by the definition of D, sv ∈ D. Thus,
v is the only sink of D. Suppose, for a contradiction, that D has a cicle C.
Since D′ is acyclic, C must contain v, contradicting that v is a sink. Thus,
D is acyclic. Secondly, we prove that D is extensional. Let x, y ∈ V (G) and
suppose x ̸= y. We consider four subcases.

Subcase 1.1: Suppose x, y ∈ V (G) \ {v}. Assume, for a contradiction,
N+

D (x) = N+
D (y). Then, N+

D′(x) = N+
D (x) \ {v} = N+

D (y) \ {v} = N+
D′(y),

contradicting that D′ is extensional.
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Subcase 1.2: Suppose x ∈ V (G) \ {v} and y = v. We have already proved
that v is the only sink of D. So N+

D (x) ̸= ∅ = N+
D (v).

Subcase 1.3: Suppose x = v and y ∈ V (G) \ {v}. This case is analogous to
Subcase 1.2.

Subcase 1.4: Suppose x = v and y = v. Then, x = y, contradicting our
assumption that x ̸= y.

Thus, D is extensional.

Case 2: If s /∈ N(v), extend D′ to an orientation D of G by making v a source,
i.e., D = D′ ∪ {(v, x) : x ∈ N(v)}. First, we prove that s is the unique sink of
D. Let w ∈ V (G) \ {v, s}. Since s is the only sink of D′ and w ̸= s, w is not a
sink of D′. And since D′ ⊆ D, ∅ ≠ N+

D′(w) ⊆ N+
D (w), so w is not a sink of D.

Moreover, v is not a sink because, since G is connected, v is not an isolated
vertex, and since v is a source, vw ∈ D for some w ∈ N(v). Then, s is the
unique sink of D. Since D′ is acyclic, any cycle of D must contain v. But v is
a source. Thus, D is acyclic. It remains to prove that D is extensional. Let
x, y ∈ V (G) and suppose x ̸= y. We consider four subcases:

Subcase 2.1: Suppose x, y ∈ V (G) \ {v}. Since v is a source, v /∈ N+
D (x). So

N+
D (x) = N+

D′ . Analogously, N+
D′(y) = N+

D (y). Since D′ is extensional,
N+

D (x) = N+
D′(x) ̸= N+

D′(y) = N+
D (y).

Subcase 2.2: Suppose w.l.o.g, x ∈ V (G) \ {v} and y = v. Assume, for a
contradiction, that N+

D (x) = N+
D (v). Let w be a sink of D[N(v)]. Since v

is a source and w ∈ N(v), vw ∈ D. And since N+
D (x) = N+

D (v), xw ∈ D.
Since s is the only sink of D and s /∈ N(v), w is not a sink of D. Then, let
z ∈ N+

D (w). We will prove that G[{x, v, z, w}] is a K1,3. We already know
that vw ∈ D, xw ∈ D and wz ∈ D. So w is adjacent to x, v and z. So,
it suffices to prove that x, v, z are pairwise non-adjacent. Firstly, since
N+

D (v) = N+
D (x), v and x are not adjacent because otherwise, vx ∈ D or

xv ∈ D and consequently xx ∈ D or vv ∈ D, contradicting that graphs
have no loops. Secondly, z /∈ N(v) because otherwise, since wz ∈ D, w
would not be a sink of D[N(v)]. Lastly, suppose, for a contradiction, that
z ∈ N(x). Then zx ∈ D because otherwise, z ∈ N+

D (x) = N+
D (v) ⊆ N(v),

contradicting that z /∈ N(v). But, if zx ∈ D, we have the cycle zxwz

in D′, a contradiction. Thus, z /∈ N(x). Therefore, G[{x, v, w, z}] is an
induced K1,3 in G, contradicting that G is K1,3-free.

Subcase 2.3: Suppose x = v and y ∈ V (G) \ {v}. This case is analogous to
Subcase 2.2.
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Subcase 2.4: Suppose x = v and y = v. Then, x = y, contradicting our
assumption that x ̸= y.

This concludes the proof.

It follows from Theorem 27 that K1,3 is the smallest connected graph that does
not admit an eao, as every other connected graph on at most 4 vertices is K1,3-free,
and, consequently, is a set graph.

Note, however, that the property of being a set graph is not hereditary, in the
sense that some connected induced subgraph of a set graph may not be a set graph.
Accordingly, some set graphs are not K1,3-free. In fact, by Lemma 17, every graph
admitting a Hamiltonian path is a set graph. And, as a corollary of the following
lemma, every graph is an induced subgraph of a graph admitting a Hamiltonian
path. Thus, every graph is an induced subgraph of some set graph.

Definition 28. A vertex v ∈ V (G) is a universal vertex if it is adjacent to every
other vertex in G.

Given a graph G = (V,E), to add a universal vertex to G is to construct the
graph G′ = (V ∪ {u}, E ∪ {{u, v} : v ∈ V }), with some u /∈ V .

Lemma 29. Let G be a graph with n vertices and H be the graph obtained by adding
successively n− 1 universal vertices to G. Then, H admits a Hamiltonian path.

Proof. Let x1, . . . , xn be the n vertices of G, and let y1, . . . , yn−1 be the n− 1 addi-
tional vertices of H. Then, x1y1 . . . xn−1yn−1xn is a Hamiltonian path of H.

Corollary 30. Every graph G is an induced subgraph of a set graph H.

Proof. Let H be the graph obtained by successively adding |V (G)| − 1 universal
vertices to G. Then, by Lemma 29, H admits a Hamiltonian path. By Lemma 17,
H is a set graph. Thus, G is an induced subgraph of the set graph H.

For example, by adding one universal vertex to K1,3 one obtains the graph in
Figure 2.10, that admits a Hamiltonian path.

Figure 2.10: Adding a universal vertex to K1,3 yields a graph with a Hamiltonian
path.
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Figure 2.11: An eao can be obtained from a Hamiltonian path

Following the idea of the proof of Lemma 17, we define an eao, in Figure 2.11,
from the Hamiltonian path in Figure 2.10.

As we saw in Figure 2.5, not every set graph admits a Hamiltonian path. By
successively adding universal vertices to a given graph, we may obtain a set graph
before obtaining a graph that admits a Hamiltonian path. For instance, if we add
one universal vertex to the graph in Figure 2.12, consisting of a K1,3 with an added
isolated vertex, we obtain the graph in Figure 2.13 which does not admit a Hamil-

Figure 2.12: K1,3 ∪K1

Figure 2.13: (K1,3 ∪K1) ∧K1

tonian path. However, it does already admit an extensional acyclic orientation (see
Figure 2.14). Hence, we raise one of the main questions addressed in this text:

Given a graph G, what is the minimum number k such that we obtain a
set graph by successively adding k universal vertices to G?

Clearly, this number is 0 if and only if the given graph is a set graph. Thus, by
computing this number, we are able to decide whether or not a graph is a set graph.
One of the concepts defined in Chapter 3 is the set-deficicency of a graph, which
measures, from another point of view, how far a graph is from being a set graph.
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Figure 2.14: Eao of the graph in Figure 2.13

Later, in Chapter 4, we prove that the set-deficiency coincides with the answer to
the question above. As we shall see, by combining the results of Chapters 3, 4 and
5 we are able to compute this number for any given cograph in polynomial time.
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Chapter 3

Layered Extensional Acyclic
Orientations

In this chapter, we define a generalization of extensional acyclic orientations that we
call layered extensional acyclic orientations (leaos). These are obtained by relaxing
the extensionality condition allowing the graph to be separated into layers and only
requiring the given orientation to be extensional-by-layers (i.e., out-neighborhoods
only need to be distinct between pairs of vertices in the same layer) and downwards
(i.e., directed edges cannot go from a lower to a higher layer). Formally, the layers
of a leao will be given by a labeling function on the vertices. Then, we prove that a
graph admits an eao if and only if it admits a leao with a single layer (Lemma 34).
In this manner, the problem of recognizing set graphs can be reduced to the problem
of finding, for a given graph, the minimum number of layers a leao can have. This
minimum number of layers will be called the set-deficiency of the graph and can be
seen as a measure of how far the graph is from being a set graph.

Definition 31. Given a function ℓ : V (G) → N and an orientation D of a graph
G, we say that the pair L = (ℓ,D) is:
(a) a layered orientation of G. We call the number ℓ(x) the layer of the vertex x,
and we say that x is in the layer ℓ(x). A number n ∈ N is a layer of L if there is a
vertex x ∈ V (G) such that ℓ(x) = n.
(b) extensional-by-layers when for all x, y ∈ V (G), if x ̸= y and ℓ(x) = ℓ(y),
then N+

D (x) ̸= N+
D (y), i.e., pairs of vertices on the same layer have distinct out-

neighborhoods.
(c) downwards if, for all x, y ∈ V (G), if xy ∈ D, then ℓ(x) ≥ ℓ(y), i.e., directed
edges can only connect vertices if they are in the same layer or the first is in a higher
layer than the second.
(d) a layered extensional acyclic orientation (leao) if D is acyclic and L is
extensional-by-layers and downwards.
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In Figure 3.1 we present a few leaos of K1,4, a graph that does not admit an eao,
by Corollary 23. The number labeling a vertex v in the figure corresponds to the
layer ℓ(v) of v.

3
0

1

2
3

0
0

1

2
3

0
0

0

1
2

Figure 3.1: Three different leaos of K1,4

In Figure 3.2, we present examples of layered orientations that are not leaos. The
first is not a leao because it is not acyclic; the second is not extensional-by-layers
(there are two sinks in the layer 0); and the third is not downwards.
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Figure 3.2: Not leaos

Theorem 32. Every graph admits a leao.

Proof. Let G = (V,E) be a graph with V = {v1, . . . , vn}. Define ℓ : V → N such
that, for all i ∈ [n], ℓ(vi) = i− 1 (one vertex per layer). For every edge {x, y} ∈ E,
define xy ∈ D if and only if ℓ(x) > ℓ(y). By definition, L = (ℓ,D) is a leao of G.

Intuitively, the fewer layers a leao has, the closer it is to being an eao.

Definition 33. Given a leao L = (ℓ,D) of a graph G, the height of L, denoted |L|,
is the highest layer of L, i.e., |L| = max ℓ = max{ℓ(v) : v ∈ V (G)}.

Lemma 34. A graph G is a set graph if and only if G admits a leao L such that
|L| = 0.

Proof. Suppose G is a set graph. Then, G has an eao D. Take ℓ : V (G) → N
such that ℓ(v) = 0 for all v ∈ V (G). Then, L := (ℓ,D) is extensional-by-layers
because D is extensional; is downwards because ℓ(u) = 0 ≥ 0 = ℓ(v) for all uv ∈ D;
and D is acyclic because it is an eao. Moreover, |L| = 0 by defintion. Conversely,
suppose G has a leao L = (ℓ,D) such that |L| = 0. D is extensional because (ℓ,D)

is extensional-by-layers and all vertices have the same layer 0. D is acyclic because
(ℓ,D) is a leao. Thus, D is an eao of G.
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We will be mostly interested in leaos that have minimum height, as the height
of a minimum leao can be seen as a measure of how far a graph is from being a set
graph.

Definition 35. A leao L of a graph G is a minimum leao of G if, for every leao L′

of G, |L| ≤ |L′|.

Definition 36. Let G be a graph. The set-deficiency of G, denoted by S∆(G), is
the height of a minimum leao of G, i.e., S∆(G) is the minimum number k such that
G has a leao L with k = |L|.

Of course, the number of vertices of a graph G provides a natural upper bound
for the set-deficiency of G:

Lemma 37. For any graph G, S∆(G) ≤ |V (G)| − 1.

Proof. The leao constructed, for an arbitrary graph G, in the proof of Theorem 32,
has height |V (G)| − 1. Thus, S∆(G) ≤ |V (G)| − 1.

Example 38. We may determine, for instance, the set-deficiency of K1,3. Since
K1,3 is not a set graph (by Theorem 13), S∆(K1,3) ≥ 1. And since K1,3 has a leao
of height 1 (in Figure 3.3), we have S∆(K1,3) = 1.

0

1

2

v1 v2

v3

v4

Figure 3.3: A 2-layers leao of K1,3

The number of connected components of a graph provides a lower bound for its
set-deficiency:

Lemma 39. If a graph G has p connected components, then S∆(G) ≥ p− 1.

Proof. Let (ℓ,D) be a minimum leao of G. Since D is acyclic, each connected
component of G has a sink. Then, D has at least p sinks. Since (ℓ,D) is extensional-
by-layers, the layers of the sinks must be pairwise distinct. Then, we have |{ℓ(v) :
v ∈ V (G)}| ≥ p. And consequently, S∆(G) = max ℓ ≥ p− 1.

For another example, consider the graph Kn having n vertices and no edges.

Lemma 40. S∆(Kn) = n− 1.

Proof. By Lemma 37, S∆(Kn) ≤ n−1. And, since Kn has n connected components,
by Lemma 39, S∆(Kn) ≥ n− 1. Therefore, S∆(Kn) = n− 1.
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Now, we may connect this concept of set-deficiency to the motivation presented
in the end of Chapter 1. It turns out that the set-deficiency of a graph G corresponds
to the minimum number k such that we can obtain a set graph by adding k universal
vertices to G. We will not give a proof of this claim at this point of the text, because
a proof will follow directly from Theorem 58, which will be presented in Chapter 4.

3.1 Leaos of induced subgraphs

Given a leao L = (ℓ,D) of a graph G, we may want to produce a leao for an induced
subgraph G[X]. This may not be as simple as taking (ℓ|X , D ∩X2), the restriction
of L to G[X], as the result of this operation will rarely be extensional-by-layers. For
instance, the layered orientation in Figure 3.4 is a leao, but if we restrict it to the
induced K1,3 (in white), it loses the property of being extensional-by-layers.

0
1

1

0

1

Figure 3.4: A restricted leao may not be a leao

As we have proved in Corollary 30, every graph is an induced subgraph of a
set graph. Thus, an induced subgraph G[X], of a graph G, may have a higher
set-deficiency than G, i.e., it may happen that S∆(G) < S∆(G[X]).

In fact, as the next example shows, the difference S∆(G[X]) − S∆(G) may be
exponential with respect to |V (G) \X|. For instance, in Example 41, we present a
graph G with an induced subgraph G[X] such that S∆(G[X]) = S∆(G)+2|V \X|− 1.

v1

v2

∅

{v1}

{v2}

{v1, v2}

Figure 3.5: Induced subgraphs with high set-deficiency (n = 2)

Example 41. Let X = {v1, . . . , vn} be a set. Let G = (V,E) be the graph such that
V (G) = X ∪ P(X) and E(G) =

(
X∪{∅}

2

)
∪ {{v, Y } : v ∈ X, Y ∈ P(X), and v ∈ Y },

i.e., all pairs of vertices in X are adjacent, every vertex v ∈ X is adjacent to the
vertex ∅ ∈ P(X), no pair of vertices in P(X) are adjacent, and N(Y ) = Y for every
Y ∈ P(X) \ {∅}. Define the orientation D such that, for all vi, vj ∈ X, vi → vj

if and only if i < j; and N+
D (Y ) = Y for every Y ∈ P(X). For illustrations of
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v1

v2

v3

∅ X{v1}

{v2}

{v3}

{v1, v2}

{v2, v3}

{v3, v1}

Figure 3.6: Induced subgraphs with high set-deficiency (n = 3)

the constructed graph and orientation, see Figure 3.5,for n = 2, and Figure 3.6, for
n = 3. The vertices in X are painted in white, and the vertices of P(X) are painted
in black.

We prove that D is an eao. D is acyclic because directed edges between vertices
of X can only go from vi to vj if i < j and every vertex in P(X) is either a
source (the non-empty sets) or a sink (the empty set). D is extensional because if
vi, vj ∈ X and i < j, then vj ∈ N+(vi) \ N+(vj); if vi ∈ X and Y ∈ P(X), then
∅ ∈ N+

D (vi) \ N+
D (Y ); and if Y1, Y2 ∈ P(X) with Y1 ̸= Y2, then N+(Y1) = Y1 ̸=

Y2 = N+(Y2). Thus, S∆(G) = 0. Still, the induced subgraph G[P(X)] consists of
2n isolated vertices. Thus, by Lemma 40, S∆(G[P(X)]) = 2n − 1. As such, we have
S∆(G[P(X)]) = S∆(G) + 2n − 1.

However, if a set of vertices X is a module (cf. Section 3.2) of a graph G, then
we can obtain a leao for G[X], from a given leao of G, using at most |N+

D (X) \X|
additional layers (cf. Lemma 44 in Section 3.3). In the next Section 3.2, we review
the concept of a module, and in Section 3.3 we present some results regarding the
leaos of subgraphs induced by modules.

3.2 Modules

In this section, we review the concept of module of a graph as well as its main
properties. This fundamental concept plays a key role in all of the forthcoming
chapters.

Definition 42. Let G = (V,E) be a graph and let X ⊆ V . We say that X is a
module of G if N(x) \X = N(y) \X for all x, y ∈ X.

The concept of a module generalizes the concept of a set of vertices such that,
for any two vertices in the set, both vertices have the same neighborhood. The key
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difference is that the concept of a module only takes into account the parts of the
neighborhoods outside the module.

c v1

v2

v3v4

v5

v6

v7 v8

v9

Figure 3.7: W9

For instance, consider the wheel graph in Figure 3.7. The set X1 = {vi : i ∈ [9]}
is a module because, for every i ∈ [9], N(vi) \ X1 = {c}. However, the subset
X2 = {v1, v2, v3, v4} is not a module, because v9 ∈ N(v1) \X2 but v9 /∈ N(v2) \X2.
Notice that a subset of a module may not be a module. In contrast, it is the case
that if every vertex in a set X has the same neighborhood and Y ⊆ X, then every
vertex in Y has the same neighborhood.

Given a graph G, the sets ∅, V (G), and {v}, for any v ∈ V (G), are modules.
These modules are called the trivial modules of G.

Aiming to apply these concepts to the study of set graphs, we generalize the key
Lemma 19 from Chapter 1.

Lemma 43. Let D be an acyclic orientation of a graph G = (V,E) and let X ⊆ V

be a module. Then, the set ΓX = {N+
D (v) \X : v ∈ X} is nested.

Proof. Let x, y ∈ X. Suppose, for a contradiction, that there exist z ∈ (N+
D (x)\X)\

(N+
D (y)\X) and w ∈ (N+

D (y)\X)\ (N+
D (x)\X). Since z ∈ N(x)\X, w ∈ N(y)\X

and X is a module, z ∈ N(y) and w ∈ N(x). But, since z /∈ (N+
D (y) \ X) and

z /∈ X, we have z ∈ N−
D (y). Analogously, w ∈ N−

D (x). As in Figure 3.8, we have the
cycle xzywx, contradicting that D is acyclic. Therefore, N+

D (x) \ X ⊆ N+
D (y) \ X

or N+
D (y) \X ⊆ N+

D (x) \X.

X

N+
D (x) \X

N+
D (y) \X

x

y

z

w

Figure 3.8: Illustration for the proof of Lemma 43
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3.3 Leaos of subgraphs induced by modules

In this section, we present two results concerning the leaos of subgraphs induced by
modules that we will use repeatedly for proving, for instance, that certain leaos are
minimum.

Lemma 44. Let G be a graph with a leao L = (ℓ,D) and a module X ⊆ V (G).
Let ℓX : X → N be such that ℓX(x) = ℓ(x) + |N+

D (x) \X| for every x ∈ X; and let
DX = D ∩X2. Then, LX = (ℓX , DX) is a leao of G[X].

Proof. DX is acyclic because DX ⊆ D and D is acyclic.
To prove that LX is extensional-by-layers, let x, y ∈ X be such that x ̸= y and

ℓX(x) = ℓX(y). Then, ℓ(x) + |N+
D (x) \X| = ℓ(y) + |N+

D (y) \X|. We consider three
cases.

Case 1: Suppose ℓ(x) = ℓ(y). Then, |N+
D (x) \X| = |N+

D (y) \X|. By Lemma 43,
{N+

D (z) \ X : z ∈ X} is nested. Thus, N+
D (x) \ X = N+

D (y) \ X. Suppose,
for a contradiction, that N+

DX
(x) = N+

DX
(y). Since N+

DX
(x) = N+

DX
(y) and

N+
D (x) \ X = N+

D (y) \ X, N+
D (x) = N+

DX
(x) ∪ (N+

D (x) \ X) = N+
DX

(y) ∪
(N+

D (y) \ X) = N+
D (y), contradicting that D is extensional-by-layers. Thus,

N+
DX

(x) ̸= N+
DX

(y).

Case 2: Suppose ℓ(x) > ℓ(y). Then, |N+
D (x) \X| < |N+

D (y) \X|. Thus, there is a
vertex z ∈ (N+(y)\X)\ (N+(x)\X). Since X is a module and z ∈ N(y)\X,
then z ∈ N(x) \ X. But since z /∈ N+(x) \ X, we have zx ∈ D. Since L is
downwards and yzx is a path in D, then ℓ(y) ≥ ℓ(z) ≥ ℓ(x), contradicting the
assumption that ℓ(x) > ℓ(y). Therefore, this case is not possible.

Case 3: Suppose ℓ(x) < ℓ(y). This case is analogous to Case 2.

LX is downwards: Let xy ∈ DX . Since DX ⊆ D, xy ∈ D, and since L is
downwards, ℓ(x) ≥ ℓ(y). Suppose, for a contradiction, that |N+

D (x) \X| < |N+
D (y) \

X|. Then, there is a vertex z ∈ (N+
D (y)\X)\ (N+

D (x)\X). Since X is a module and
z ∈ N(y) \ X, then z ∈ N(x) \ X. But z /∈ N+

D (x), so zx ∈ D. Then, the acyclic
orientation D has the cycle xyzx, a contradiction. Thus, we have |N+

D (x) \ X| ≥
|N+

D (y) \X|, and consequently, ℓX(x) = ℓ(x) + |N+
D (x) \X| ≥ ℓ(y) + |N+

D (y) \X| =
ℓX(y).

From Lemma 44, we obtain an upper-bound for the set deficiency of subgraphs
induced by modules.

Theorem 45. Let G = (V,E) be a graph and X ⊆ V (G) be a module of G. Then,
S∆(G[X]) ≤ S∆(G) + |N(X) \X|.
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Proof. Let L = (ℓ,D) be a minimum leao of G. Let ℓX : X → N be such that
ℓX(x) = ℓ(x) + |N+

D (x) \ X| for every x ∈ X, and DX = D ∩ X2. By Lemma 44,
LX = (ℓX , DX) is a leao of G[X]. By definition, |LX | ≤ |L| + |N(X) \X|. Since L

is a minimum leao, S∆(G) = |L|. Hence, S∆(G[X]) ≤ |LX | ≤ S∆(G) + |N(X) \X|,
which concludes the proof.
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Chapter 4

Leaos of Co-Disconnected Graphs

In this chapter we prove some results about the minimum leaos of graphs that have
a disconnected complement. We show how a minimum leao can be constructed,
for a graph with a disconnected complement, from minimum leaos of some of its
subgraphs. This method is one of the two components for the polynomial-time
algorithm we present in Section 5.4 for constructing minimum leaos for cographs.

A graph G is said to be co-disconnected if its complement, G, is disconnected.
Given two disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), the join of G1 and

G2, denoted G1 ∧G2, is the graph obtained by taking the union of G1 and G2 and
making every vertex of G1 adjacent to every vertex of G2, i.e.,

G1 ∧G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {{u, v} : u ∈ V1, v ∈ V2})

Lemma 46. Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs. Then,
G1 ∧G2 = G1 ∪G2.

Proof. Both G1∧G2 and G1 ∪G2 have V1∪V2 as set of vertices. It remains to prove
that u and v are adjacent in G1 ∧ G2 if and only if they are adjacent in G1 ∪G2.
Let u, v ∈ V1 ∪ V2. We consider four cases:

Case 1: Suppose u, v ∈ V1. Then, {u, v} ∈ E(G1∧G2) if and only if {u, v} ∈ E(G1)

if and only if {u, v} /∈ E(G1) if and only if {u, v} /∈ E(G1 ∪G2) if and only if
{u, v} ∈ E(G1 ∪G2).

Case 2: Suppose u, v ∈ V2. Then, {u, v} ∈ E(G1∧G2) if and only if {u, v} ∈ E(G2)

if and only if {u, v} /∈ E(G2) if and only if {u, v} /∈ E(G1 ∪G2) if and only if
{u, v} ∈ E(G1 ∪G2).

Case 3: Suppose u ∈ V1 and v ∈ V2. Then, {u, v} ∈ E(G1 ∧ G2) by definition.
Moreover, by definition, {u, v} /∈ E(G1 ∪ G2) and, consequently, {u, v} ∈
E(G1 ∪G2).
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Case 4: Suppose u ∈ V2 and v ∈ V1. This case is analogous to Case 3.

This concludes the proof.

Lemma 47. A graph G is co-disconnected if and only if there are two disjoint graphs
G1 and G2 such that G = G1 ∧G2.

Proof. Suppose G is co-disconnected. Then, G is disconnected. Let G1 be a con-
nected component of G and G2 = G \ V (G1). Then, G1 and G2 are two disjoint
graphs such that G1 ∪G2 = G. Thus, G = G1 ∪G2. By Lemma 46, G = G1 ∧G2.

Conversely, suppose there are two disjoint graphs G1 and G2 such that G =

G1 ∧G2. Then, by Lemma 46, G = G1 ∧G2 = G1 ∪G2, so G = G1 ∪G2. Since G1

and G2 are disjoint graphs, G is disconnected. Therefore, G is co-disconnected.

4.1 Stretching leaos

Before constructing leaos for joins of graphs, we need to introduce the stretching of
leaos. This method will be useful for increasing the amount of (non-empty) layers
of a leao on-demand.

Definition 48. We say that a leao L of a graph G is gapless if, for all k ≤ |L|,
there is a vertex v ∈ V (G) such that ℓ(v) = k.

Lemma 49. If a leao L is minimum, then it is gapless.

Proof. Let L = (ℓ,D) be a minimum leao of a graph G. Assume, for a contradiction,
that L is not gapless. Then, there is a number k ≤ |L| such that, for all v ∈ V (G),
ℓ(v) ̸= k. Define ℓ′ : V → N such that

ℓ′(v) =

ℓ(v) if ℓ(v) < k

ℓ(v)− 1 if ℓ(v) ≥ k

Take L′ := (ℓ′, D). D is acyclic by hypothesis. To prove that L′ is extensional-
by-layers, let x, y ∈ V (G) be such that x ̸= y and ℓ′(x) = ℓ′(y). We consider four
cases.

Case 1: Suppose ℓ(x) < k and ℓ(y) < k. Then, by definition, ℓ(x) = ℓ′(x) =

ℓ′(y) = ℓ(y). Since L is extensional-by-layers, N+
D (x) ̸= N+

D (y).

Case 2: Suppose ℓ(x) ≥ k and ℓ(y) < k. Since k is such that ℓ(x) ̸= k, we have
ℓ(x) > k. Then, by definition, ℓ′(x) = ℓ(x) − 1 ≥ k. Moreover, by definition,
ℓ′(y) = ℓ(y). Hence, ℓ′(x) ≥ k > ℓ(y) = ℓ′(y), contradicting the assumption
that ℓ′(x) = ℓ′(y).
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Case 3: Suppose ℓ(x) < k and ℓ(y) ≥ k. Since k is such that ℓ(y) ̸= k, we have
ℓ(y) > k. Then, by definition, ℓ′(y) = ℓ(y) − 1 ≥ k. Moreover, by definition,
ℓ′(x) = ℓ(x). Hence, ℓ′(y) ≥ k > ℓ(x) = ℓ′(x), contradicting the assumption
that ℓ′(x) = ℓ′(y).

Case 4: Suppose ℓ(x) ≥ k and ℓ(y) ≥ k. Then, by definition, ℓ(x) = ℓ′(x) + 1 =

ℓ′(y) + 1 = ℓ(y). Since L is extensional-by-layers, N+
D (x) ̸= N+

D (y).

In any case, N+
D (x) ̸= N+

D (y). So, L′ is extensional-by-layers. To prove that L′ is
downwards, let x, y ∈ V (G) be such that xy ∈ D. Since L is downwards, ℓ(x) ≥ ℓ(y).
We consider four cases.

Case 1: Suppose ℓ(x) < k and ℓ(y) < k. Then, by definition, ℓ′(x) = ℓ(x) ≥ ℓ(y) =

ℓ′(y).

Case 2: Suppose ℓ(x) ≥ k and k > ℓ(y). Then, by definition, ℓ′(x) = ℓ(x) − 1 ≥
k − 1 ≥ ℓ(y) = ℓ′(y).

Case 3: Suppose k > ℓ(x) and ℓ(y) ≥ k. Then, ℓ(y) > ℓ(x), a contradiction.

Case 4: Suppose ℓ(x) ≥ k and ℓ(y) ≥ k. Then, ℓ′(x) = ℓ(x)− 1 ≥ ℓ(y)− 1 = ℓ′(y).

In any case, ℓ′(x) ≥ ℓ′(y). Thus, L′ is a leao of G. But |L′| = |L| − 1, contradicting
the minimality of L. Hence, L is gapless.

Lemma 50. Let L be a leao of a graph G = (V,E), and let k ∈ N. If L is gapless
and |L| ≤ k < |V |, then there is a gapless leao L∗ with height |L∗| = k.

The general procedure to obtain such a larger leao is straightforward. As long
as we have a gapless leao L such that |L| < |V | − 1, we are guaranteed, by the
pigeonhole principle, to have a layer being shared by more than one vertex. So by
carefully partitioning this layer into two layers, we obtain a new gapless leao with one
extra layer. We iterate this process until we obtain a gapless leao with the particular
desired height. This procedure is more precisely described in Construction 51.

Construction 51. [Stretching a leao]
INPUT: A triple (L, G, k), where L is a gapless leao of the graph G = (V,E) and
k ∈ N is such that |L| ≤ k < |V |.
CONSTRUCTION: The procedure applies recursion on k.
Base: If k = |L|, take L∗ := L.
Recursive step: Suppose |L| < k < |V |. Apply Construction 51 on (L, G, k − 1) to
obtain a gapless leao L∗

rec = (ℓ∗rec, D) such that |L∗
rec| = k − 1.

Since L∗
rec is gapless, |{ℓ∗rec(v) : v ∈ V (G)}| = |L∗

rec|+ 1 = k < |V |. Thus, by the
pigeonhole principle, there is a layer p ≤ |L∗

rec| that has at least two vertices, i.e.,
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|ℓ∗−1
rec (p)| ≥ 2. Let s be a sink of the acyclic orientation D[ℓ∗−1

rec (p)]. Let ℓ∗ : V → N
be defined by:

ℓ∗(x) =

ℓ∗rec(x) if x ∈ ℓ∗−1
rec ([0, p− 1]) ∪ {s},

ℓ∗rec(x) + 1 if x ∈ ℓ∗−1
rec ([p, k − 1]) \ {s},

for every x ∈ V .
OUTPUT: Take L∗ := (ℓ∗, D). In Lemma 52, we prove that L∗ is a gapless leao
with height |L∗| = k. △

Lemma 52. The output L∗ of Construction 51 is a gapless leao with height |L∗| = k.

Proof. If |L| = k, then L∗ = L ia a gapless leao with height k.
Suppose |L| < k. We will prove that L∗ = (ℓ∗, D) is a gapless leao of G with

height k.
By hypothesis, D is acyclic.
To prove that L∗ is extensional-by-layers, let x, y ∈ V (G) be such that x ̸= y

and ℓ∗(x) = ℓ∗(y). We consider three cases.

Case 1: Suppose ℓ∗(x) = ℓ∗(y) < p. Then, ℓ∗rec(x) = ℓ∗(x) = ℓ∗(y) = ℓ∗rec(y). And
since L∗

rec is extensional-by-layers, N+(x) ̸= N+(y).

Case 2: Suppose ℓ∗(x) = ℓ∗(y) = p. Assume, for a contradiction that x ̸= s. We
consider two cases.

Subcase 2.1: If ℓ(x) < p, by definition, ℓ′(x) = ℓ(x) < p, contradicting our
hypothesis that ℓ(x) = p.

Subcase 2.2: If ℓ(x) ≥ p, since x ̸= s, by definition, ℓ′(x) = ℓ(x) + 1 > p,
contradicting our hypothesis that ℓ(x) = p.

Thus, x = s. Analogously, y = s. Then, x = s = y, contradicting that x ̸= y.

Case 3: Suppose ℓ∗(x) = ℓ∗(y) > p. Then, ℓ∗rec(x) = ℓ∗(x)−1 = ℓ∗(y)−1 = ℓ∗rec(y).
And since L∗

rec is extensional-by-layers, N+(x) ̸= N+(y).

To prove that L∗ is downwards, let x, y ∈ V (G) be such that xy ∈ D. Then,
since L∗

rec is downwards, ℓ∗rec(x) ≥ ℓ∗rec(y). We consider four cases:

Case 1: If x, y ∈ ℓ∗−1
rec ([0, p− 1]) ∪ {s}, then ℓ∗(x) = ℓ∗rec(x) ≥ ℓ∗rec(y) = ℓ∗(y).

Case 2: If x, y ∈ ℓ∗−1
rec ([p, k−1])\{s}, then ℓ∗(x) = ℓ∗rec(x)+1 ≥ ℓ∗rec(y)+1 = ℓ∗(y).

Case 3: Suppose x ∈ ℓ∗−1
rec ([0, p − 1]) ∪ {s} and y ∈ ℓ∗−1

rec ([p, k − 1]) \ {s}. Since
ℓ∗rec(x) ≥ ℓ∗rec(y) ≥ p, x /∈ ℓ∗−1

rec ([0, p− 1]), and consequently, x = s. Moreover,
since p = ℓ∗rec(s) = ℓ∗rec(x) ≥ ℓ∗rec(y) ≥ p, we have ℓ∗rec(x) = p = ℓ∗rec(y). But
xy ∈ D and x = s, contradicting that s is a sink of D[ℓ∗−1

rec (p)].
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Case 4: If x ∈ ℓ∗−1
rec ([p, k − 1]) \ {s} and y ∈ ℓ∗−1

rec ([0, p − 1]) ∪ {s}, then ℓ∗(x) =

ℓ∗rec(x) + 1 > ℓ∗rec(y) = ℓ∗(y).

In every possible case, ℓ∗(x) ≥ ℓ∗(x). Thus L∗ is a leao of G. Additionally, to prove
that L∗ is gapless, let i ∈ [0, k]. We consider four cases.

Case 1: Suppose i < p. Since L∗
rec is gapless, there exists a vertex x such that

ℓ∗rec(x) = i. Then, since ℓ∗rec(x) < p, by definition, ℓ∗(x) = ℓ∗rec(x) = i.

Case 2: Suppose i = p. Then, ℓ∗(s) = p = i.

Case 3: Suppose i = p + 1. Since p was taken such that |ℓ∗−1
rec (p)| ≥ 2, there is a

vertex x ∈ ℓ∗−1
rec (p) such that x ̸= s. Then, by definition, ℓ∗(x) = ℓ∗rec(x) + 1 =

p+ 1 = i.

Case 4: Suppose i > p+1. Since i− 1 ≤ k− 1 = |L∗
rec| and L∗

rec is gapless, there is
a vertex x such that ℓ∗rec(x) = i− 1. Since ℓ∗rec(x) = i− 1 > p = ℓ∗rec(s), x ̸= s.
Thus, x ∈ ℓ∗−1

rec ([p, k − 1]) \ {s}. So, by definition, ℓ∗(x) = ℓ∗rec(x) + 1 = i.

Thus, L∗ is a gapless leao of G. Moreover, by definition, |L∗| = |L∗
rec|+ 1 = k.

4.2 Leaos of joins

In this section, we show how a minimum leao of a join G1 ∧G2 can be constructed
from minimum leaos of G1 and G2.

Given two disjoint graphs G1 = (V1, E1), G2 = (V2, E2), we always have
NG1∧G2(v1) \ V1 = V2 and NG1∧G2(v2) \ V2 = V1 for all v1 ∈ V1 and all v2 ∈ V2.
So, V1 and V2 are always modules of G1 ∧G2. Thus, we can apply our results from
Chapter 3 to obtain a lower-bound for S∆(G1∧G2) in terms of S∆(G1) and S∆(G2).

Lemma 53. Let G = G1 ∧ G2, where G1 = (V1, E1) and G2 = (V2, E2). Then,
S∆(G1)− |V2| ≤ S∆(G).

Proof. Since V1 is a module of G, by Theorem 45, S∆(G1) ≤ S∆(G) + |N(V1) \ V1|.
But N(V1) \ V1 = V2. Thus, S∆(G1)− |V2| ≤ S∆(G).

Now, we construct a leao of a co-disconnected graph G1 ∧ G2. Following the
construction, we prove, in Lemma 55, that it is correct, i.e., we prove that the
resulting layered orientation is indeed a leao.

Construction 54. [Leaos for joins]
INPUT: A tuple (G1,L1, G2,L2), where G1 = (V1, E1) and G2 = (V2, E2) are dis-
joint graphs, and L1 = (ℓ1, D1) and L2 = (ℓ2, D2) are gapless leaos of G1 and G2,
respectively, such that |L1| ≥ |L2|.
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CONSTRUCTION: Let k = min{|V2| − 1, |L1|}. Then, k < |V2|. Since, by
Lemma 37, |L2| ≤ |V2| − 1, and |L2| ≤ |L1|, we have |L2| ≤ k. Use Construc-
tion 51 on (L2, G2, k) to obtain a gapless leao L∗

2 of G2 with height |L∗
2| = k.

Let D = D1 ∪D2 ∪D1,2 ∪D2,1 be the orientation of G where

D1,2 = {xy : x ∈ V1, y ∈ V2, ℓ1(x) > ℓ∗2(y)},

D2,1 = {yx : x ∈ V1, y ∈ V2, ℓ1(x) ≤ ℓ∗2(y)}.

Let ℓ : V (G) → N defined by:

ℓ(x) =

max{ℓ1(x)− |V2|, 0} if x ∈ V1

ℓ(x) = 0 if x ∈ V2

OUTPUT: Take L = (ℓ,D). In Lemma 55, we prove that L is a leao of G = G1∧G2

with height |L| = max{|L1| − |V2|, 0} and that D has exactly one sink. △

Lemma 55 (Correctness of Construction 54). In Construction 54, the output L =

(ℓ,D) is a leao of G with height |L| = max{|L1| − |V2|, 0}. Moreover, D has exactly
one sink.

Proof. To prove D is acyclic, suppose, for a contradiction, that there is a cycle
C = x1x2 . . . xpx1 in D. Let g : V1 ∪ V2 → N be the union of ℓ1 and ℓ∗2, that is,

g(x) =

ℓ1(x) if x ∈ V1

ℓ∗2(x) if x ∈ V2

Since V1 ∩ V2 = ∅, g is well-defined. Let xy be an edge of the cycle C. We consider
four cases:

Case 1: If {x, y} ⊆ V1, then ℓ1(x) ≥ ℓ1(y) because L1 is downwards.

Case 2: If {x, y} ⊆ V2, then ℓ∗2(x) ≥ ℓ∗2(y) because L∗
2 is downwards.

Case 3: If x ∈ V1 and y ∈ V2, then ℓ1(x) > ℓ∗2(y) by the definition of D.

Case 4: If x ∈ V2 and y ∈ V1, then ℓ∗2(x) ≥ ℓ1(y) by the definition of D.

In any case, g(x) ≥ g(y) and, in the special Case 3, g(x) > g(y). But C is a cycle, so
we must have g(xi) = g(xj) for all i, j ∈ [p]. Since D1 and D2 are acyclic orientations
of G1 and G2, any cycle in D must have vertices of both V1 and V2. Thus, the cycle
C must have an edge xy such that x ∈ V1 and y ∈ V2 (Case 3 ), but this implies
that g(x) > g(y), a contradiction. Therefore, D is acyclic.

To prove L is extensional-by-layers, let x, y ∈ V (G) be such that x ̸= y and
ℓ(x) = ℓ(y). We consider four cases.
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Case 1: Suppose ℓ(x) = ℓ(y) > 0. Then, {x, y} ⊆ V1 because, by definition,
ℓ(z) = 0 for every z ∈ V2. Since x ∈ V1, ℓ(x) = max{ℓ1(x) − |V2|, 0}. And
since ℓ(x) > 0, ℓ(x) = ℓ1(x) − |V2|. Then, ℓ(x) + |V2| = ℓ1(x). Analogously,
ℓ(y) + |V2| = ℓ1(y). Thus, since ℓ(x) = ℓ(y), we have ℓ1(x) = ℓ1(y). Since L1

is extensional-by-layers, N+
D1
(x) ̸= N+

D1
(y). Suppose, for a contradiction, that

N+
D (x) = N+

D (y). Then, N+
D1
(x) = N+

D (x) ∩ V1 = N+
D (y) ∩ V1 = N+

D1
(y), a

contradiction. Thus, N+
D (x) ̸= N+

D (y).

Case 2: Suppose ℓ(x) = ℓ(y) = 0 and {x, y} ⊆ V1. Suppose w.l.o.g. ℓ1(x) ≥ ℓ1(y).
We consider two subcases:

Subcase 2.1: Suppose ℓ1(x) = ℓ1(y). Then, since L1 is extensional-by-layers,
N+

D1
(x) ̸= N+

D1
(y). Assume, for a contradiction, N+

D (x) = N+
D (y). Then,

N+
D1
(x) = N+

D (x) ∩ V1 = N+
D (y) ∩ V1 = N+

D1
(y), a contradiction. Thus,

N+
D (x) ̸= N+

D (y).

Subcase 2.2: Suppose ℓ1(x) > ℓ1(y). Since ℓ(x) = 0, ℓ1(x) − |V2| ≤ 0. And
since ℓ1(x) ≤ |L1|, we have ℓ1(x) − 1 ≤ min{|V2| − 1, |L1|} = k = |L∗

2|.
Since 0 ≤ ℓ1(y) < ℓ1(x), we have 0 ≤ ℓ1(x)−1. Thus, 0 ≤ ℓ1(x)−1 ≤ |L∗

2|.
Since L∗

2 is a gapless leao, there is a vertex z ∈ V2 such that ℓ∗2(z) =

ℓ1(x)− 1. Then, ℓ1(x) > ℓ∗2(z), and consequently, by the definition of D,
xz ∈ D. And since ℓ∗2(z) = ℓ1(x)− 1 ≥ ℓ1(y), by the definition og D, we
have zy ∈ D. Therefore, z ∈ N+

D (x) \N
+
D (y).

Case 3: Suppose ℓ(x) = ℓ(y) = 0 and {x, y} ⊆ V2. Suppose w.l.o.g. ℓ∗2(x) ≥ ℓ∗2(y).
We consider two subcases:

Subcase 3.1: Suppose ℓ∗2(x) = ℓ∗2(y). Then, since L∗
2 is extensional-by-layers,

N+
D2
(x) ̸= N+

D2
(y). Assume, for a contradiction, N+

D (x) = N+
D (y). Then,

N+
D (x) ∩ V2 = N+

D2
(x) ̸= N+

D2
(y) = N+

D (y) ∩ V2, a contradiction. Thus,
N+

D (x) ̸= N+
D (y).

Subcase 3.2: Suppose ℓ∗2(x) > ℓ∗2(y). Since L1 is a gapless leao and, by
definition, ℓ∗2(x) ≤ |L∗

2| = k ≤ |L1|, there is a vertex z ∈ V1 such that
ℓ1(z) = ℓ∗2(x). Then, xz ∈ D by definition. And since ℓ1(z) = ℓ∗2(x) >

ℓ∗2(y), we have zy ∈ D. Therefore, z ∈ N+
D (x) \N

+
D (y).

Case 4: Suppose ℓ(x) = ℓ(y) = 0 and |{x, y} ∩ V1| = 1. Then N+
D (x) ̸= N+

D (y)

because x and y are adjacent in G1 ∧G2.

To prove that L is downwards, let x, y ∈ V (G) and suppose xy ∈ D. We consider
two cases.

Case 1: Suppose ℓ(y) = 0. Then, ℓ(x) ≥ ℓ(y).
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Case 2: Suppose ℓ(y) > 0. Then, since ℓ(z) = 0 for every z ∈ V2, we have y ∈ V1.
We consider two subcases.

Subcase 2.1: Suppose x ∈ V1. Since {x, y} ⊆ V1, we have xy ∈ D1. Since
L1 is downwards, ℓ1(x) ≥ ℓ1(y). Then, ℓ1(x) − |V2| ≥ ℓ1(y) − |V2|, and
consequently, ℓ(x) = max{ℓ1(x)− |V2|, 0} ≥ max{ℓ1(y)− |V2|, 0} = ℓ(y).

Subcase 2.2: Suppose x ∈ V2. Since 0 < ℓ(y) = max{ℓ1(y) − |V2|, 0}, we
have |V2| < ℓ1(y). Moreover, by definition, ℓ∗2(x) ≤ |L∗

2| = k < |V2|.
Thus, ℓ∗2(x) < ℓ1(y), and consequently, by the definition of D, yx ∈ D,
contradicting our assumption that xy ∈ D.

Therefore, L is downwards.
Thus, L is a leao of G, and by definition, |L| = max{|L1| − |V2|, 0}.
Finally, we prove that D has exactly one sink. Suppose, for a contradiction, that

D has a sink s such that ℓ(s) > 0. Since ℓ(s) > 0 and ℓ(z) = 0 for every z ∈ V2,
s ∈ V1. Then, ℓ(s) = max{ℓ1(s)− |V2|, 0}, and since ℓ(s) > 0, we have ℓ1(s) > |V2|.
Since |L∗

2| = k < |V2| < ℓ1(s), we have ℓ∗2(x) < ℓ1(s) for every x ∈ V2. Then, by
definition of D, V2 ⊆ N+

D (s), contradicting that s is a sink. Thus, for every sink s of
D, ℓ(s) = 0. Therefore, since we have proved that L is extensional-by-layers, D has
at most one sink. But, since D is acyclic, D has a sink. Therefore, D has exactly
one sink.

Finally, using our lower-bound for the set deficiency of a co-disconnected graph
(Lemma 53), we prove that if Construction 54 receives minimum leaos as input, then
it outputs a minimum leao.

Lemma 56. Let G1 and G2 be two graphs with leaos L1 and L2, respectively, such
that |L1| ≥ |L2|. If L1 is minimum and L2 is gapless, then Construction 54 on
(G1,L1, G2,L2) yields a minimum leao L of G = G1 ∧G2.

Proof. By Lemma 55, L is a leao of G with height |L| = max{|L1| − |V (G2)|, 0}.
Since L1 is minimum, |L1| = S∆(G1). So |L| = max{S∆(G1)− |V (G2)|, 0}. On the
other hand, by Lemma 53, S∆(G1) − |V (G2)| ≤ S∆(G). And since, by definition,
0 ≤ S∆(G), we have |L| = max{S∆(G1) − |V (G2)|, 0} ≤ S∆(G). Therefore, L is a
minimum leao of G.

Theorem 57. Let G1 and G2 be two disjoint graphs. If S∆(G1) ≥ S∆(G2), then
S∆(G1 ∧G2) = max{S∆(G1)− |V (G2)|, 0}.

Proof. Let L1 and L2 be minimum leaos of G1 and G2, respectively. Let L be
the leao of G1 ∧ G2 given by Construction 54 on (L1, G1,L2, G2). Then, by
Lemma 55, |L| = max{|L1| − |V (G2)|, 0}. Since L1 is minimum, |L1| = S∆(G1).
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So |L| = max{S∆(G1) − |V (G2)|, 0}. And, since L1 is minimum and L2 is gap-
less, by Lemma 56, L is a minimum leao of G1 ∧ G2. Thus, S∆(G1 ∧ G2) =

max{S∆(G1)− |V (G2)|, 0}.

In particular, applying Theorem 57 we obtain the following characterization of
co-disconnected set graphs.

Theorem 58. Let G1 and G2 be graphs such that S∆(G1) ≥ S∆(G2). Then, the
join G = G1 ∧G2 is a set graph if and only if S∆(G1) ≤ |V (G2)|.

Proof. G is a set graph if and only if S∆(G) = 0 if and only if (by Theorem 57)
max{S∆(G1)− |V (G2)|, 0} = 0 if and only if S∆(G1) ≤ |V (G2)|.

With Theorem 58, it becomes clear that S∆(G) corresponds to the minimum
number n such that we can obtain a set graph by successively adding n universal
vertices to G. Note that adding n universal vertices to G is equivalent to taking the
join G ∧Kn.

Corollary 59. For every graph G, S∆(G) is the minimum number n such that
G ∧Kn is a set graph, i.e., S∆(G) is the minimum number n such that we obtain a
set graph by adding n universal vertices to G.

Proof. Since Kn admits a hamiltonian path, by Lemma 17, it is a set graph. Then,
S∆(G) ≥ 0 = S∆(Kn). Hence, by Theorem 58, G ∧Kn is a set graph if and only if
S∆(G) ≤ |V (Kn)| = n. This concludes the proof.

Example 60. We have already proved, in Lemma 40, that S∆(Kn) = n− 1. Now,
we may also determine the set-deficiency of complete bipartite graphs, generalizing
the characterization of Corollary 23. Note that Km,n is the join Km ∧ Kn. Since
Km,n is isomorphic to Kn,m, let us assume w.l.o.g. that m ≥ n. Then, S∆(Km) =

m−1 ≥ n−1 = S∆(Kn). Hence, by Theorem 57, S∆(Km,n) = max{m−1−n, 0}. In
particular, if m > n, S∆(Km,n) = m− n− 1. Thus, if one is looking for a connected
graph with an arbitrarily large set-deficiency, one may use, for instance, K1,n that,
for any n ≥ 2, has set-deficiency S∆(K1,n) = n− 2.

Corollary 61. If m ≥ n, then S∆(Km,n) = max{m− n− 1, 0}.
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Chapter 5

Leaos of Disconnected Graphs

In this chapter, we prove some results about minimum leaos of disconnected graphs.
The construction presented here is the second component of our algorithm for con-
structing minimum leaos for cographs. Here, we present a method for constructing
minimum leaos for a disconnected graph whenever minimum leaos are given for
every connected component of the given graph, and the orientations of these mini-
mum leaos have exactly one sink each. Not every connected graph has a minimum
leao with only one sink (cf. Section 5.3). However, all the methods presented in
Chapters 4 and 5 for constructing minimum leaos yield such leaos with one sink per
connected component. This will be sufficient for constructing minimum leaos for
every cograph.

5.1 Leaos of disconnected graphs

In this section, we present how a leao of a disconnected graph G can be obtained
from leaos of the connected components of G, whenever certain conditions are met.

Definition 62. We say that a leao L = (ℓ,D) of a connected graph G is a single-sink
leao if D has exactly one sink.

Construction 63. [Leaos for disconnected graphs]
INPUT: A pair (G, {(Gi,Li) : i ∈ [0, k]}), where G is a graph with k + 1 connected
components G0, . . . , Gk and, for each i ∈ [0, k], Li = (ℓi, Di) is a gapless single-sink
leao of Gi.
CONSTRUCTION: Let ℓ : V (G) → N be such that, for every i ∈ [0, k] and v ∈
V (Gi), ℓ(v) = ℓi(v) + i; and let D =

⋃
{Di : i ∈ [0, k]}. Let L := (ℓ,D).

OUTPUT: Take L = (ℓ,D). In Lemma 64, we prove that L is a leao of G, with
height |L| = max{|Li| + i : i ∈ [0, k]}, having exactly one sink per connected
component. △
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Lemma 64 (Correctness of Construction 63). The output L = (ℓ,D) of Construc-
tion 63 is a leao of G with height |L| = max{|Li| + i : i ∈ [0, k]}. Moreover, D has
exactly one sink per connected component of G.

Proof. D is acyclic because in each connected component Gi of G, D[V (Gi)] = Di

is acyclic.
To prove that L is extensional-by-layers, let x, y ∈ V (G) be such that x ̸= y and

ℓ(x) = ℓ(y). We consider two cases:

Case 1: Suppose x, y ∈ V (Gi) for some i ∈ [0, k]. Then, by definition, ℓi(x) =

ℓ(x)− i = ℓ(y)− i = ℓi(y). Since Li is extensional-by-layers, N+
Di
(x) ̸= N+

Di
(y).

But, since Gi is a connected component of G, N+
Di
(x) = N+

D (x) and N+
Di
(y) =

N+
D (y). Therefore, N+

D (x) ̸= N+
D (y).

Case 2: Suppose x ∈ V (Gi) and y ∈ V (Gj) for i, j ∈ [0, k] with i ̸= j. Assume,
for a contradiction, that N+

D (x) = N+
D (y). Since x and y are in different

connected components, we have N+
D (x) = N+

D (y) ⊆ V (Gi)∩V (Gj) = ∅. Since,
by hypothesis, Di and Dj each have unique sinks, x and y are the only sinks
of Di and Dj, respectively. Since Li is gapless, there is a vertex z ∈ V (Gi)

such that ℓi(z) = 0. Since Di is acyclic and x is the only sink of Di, there is a
directed path in Di from z to x. And since Li is downwards, 0 = ℓi(z) ≥ ℓi(x).
Hence, ℓi(x) = 0. Similarly, ℓj(y) = 0. But, by definition, ℓ(x) = ℓi(x) + i = i

and ℓ(y) = ℓj(y) + j = j, and consequently, i = ℓ(x) = ℓ(y) = j, contradicting
the assumption that i ̸= j. Thus, N+

D (x) ̸= N+
D (y).

To prove that L is downwards, let x, y ∈ V (G), and suppose xy ∈ D. By
definition of D, we have xy ∈ Di for some i ∈ [0, k]. Since Li is downwards,
ℓi(x) ≥ ℓi(y). Then, ℓ(x) = ℓi(x) + i ≥ ℓi(y) + i = ℓ(y). Therefore, L is downwards.

Thus, L is a leao of G.
By definition, for any i ∈ [0, k] and v ∈ V (Gi), ℓ(v) = ℓi(v) + i. Hence, |L| =

max{|Li|+ i : i ∈ [0, k]}.
Moreover, by hypothesis, for every connected component Gi, there is only one

sink in D[V (Gi)] = Di.

Corollary 65. Let G be a graph with k connected components G0, . . . , Gk such
that, for every i ∈ [0, k], Gi admits a single-sink minimum leao. Then, S∆(G) ≤
max{S∆(Gi) + i : i ∈ [0, k]}.

Proof. For every i ∈ [0, k], let Li be a single-sink minimum leao of Gi. Then, using
Construction 63 on (G, {(Li, Gi) : i ∈ [0, k]}), we obtain a leao L of G with height
max{|Li| + i : i ∈ [0, k]}. But, since Li is minimum for every i ∈ [0, k], we have
|L| = max{S∆(Gi)+i : i ∈ [0, k]}. Hence, S∆(G) ≤ max{S∆(Gi)+i : i ∈ [0, k]}.
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Now, we provide an example which illustrates Construction 63.

Example 66. Let G be a graph with 3 connected components G0, G1 and G2, as
in Figure 5.1.

G1

v5 v6

v7

v8

v9

G0

v1 v2

v3

v4

G2

v10 v11

v12v13

Figure 5.1: A disconnected graph G

In Figure 5.2, we provide leaos L0,L1,L2 for each of the connected components
of G.
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L2 leao of G2
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Figure 5.2: Leaos of each connected component of G

Construction 63 on (G, {(Gi,Li) : i ∈ [0, 2]}) yields the leao represented in
Figure 5.3, with height 3.
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Figure 5.3: Leao of G, from Construction 5.3 on G0, G1, G2
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However, by reindexing the connected components in the input of Construc-
tion 63, we may obtain a leao of a lower height. Let π be the permutation of
[0, 2] such that π(0) = 1, π(1) = 0 and π(2) = 2. Then, Construction 63 on
(G, {(Gπ(i),Lπ(i)) : i ∈ [0, 2]} yields the leao represented in Figure 5.4, with height 2.
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Figure 5.4: Leao of G, from Construction 5.3 on Gπ(0), Gπ(1), Gπ(2)

5.2 Reordering connected components

The height of the leao obtained from Construction 63 depends on the ordering of the
connected components of the given graph, as shown in Example 66. In this section,
we show how to choose an ordering of the connected components that minimizes the
height of the leao produced by Construction 63.

Definition 67. Let X, Y ⊆ N. We say that a function f : X → Y is decreasing if,
for all x, y ∈ X, if x ≤ y then f(x) ≥ f(y); and is increasing if, for all x, y ∈ X, if
x ≤ y then f(x) ≤ f(y).

Theorem 70 shows that to minimize the height of the leao produced by Con-
struction 63, it suffices to index the connected components in order of decreasing
set-deficiency. To prove this, we need the following lemmas.

Lemma 68. Let f : [0, k] → N be a decreasing function and let g : [0, k] → N be an
injective function. Then, max{f(x)+g(x) : x ∈ [0, k]} ≥ max{f(x)+x : x ∈ [0, k]}.

Proof. The proof goes by induction on k.
Basis: Suppose k = 0. Then, max{f(x) + g(x) : x ∈ [0, 0]} = f(0) + g(0) ≥
f(0) + 0 = max{f(x) + x : x ∈ [0, 0]}.
Induction Hypothesis: Suppose the statement in Lemma 68 holds for some k ∈ N.
Step: Let f : [0, k + 1] → N be a decreasing function, and g : [0, k + 1] → N be an
injective function. Now, we prove that, for all i ∈ [0, k + 1], max{f(x) + g(x) : x ∈
[0, k + 1]} ≥ f(i) + i. Let i ∈ [0, k + 1]. We consider two cases.
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Case 1 : Suppose i ∈ [0, k]. Since f |[0,k] is decreasing and g|[0,k] is injective, by IH,
we have max{f(x) + g(x) : x ∈ [0, k]} ≥ max{f(x) + x : x ∈ [0, k]}. Thus,
since i ∈ [0, k], max{f(x) + g(x) : x ∈ [0, k + 1]} ≥ f(i) + i.

Case 2: Suppose i = k + 1. Since g is injective, g([0, k + 1]) ̸⊆ [0, k]. Then, there
exists j ∈ [0, k + 1] such that g(j) /∈ [0, k]. So, g(j) ≥ k + 1. Since f is
decreasing and j ≤ k + 1, we have f(j) ≥ f(k + 1). Hence, f(j) + g(j) ≥
f(k+1)+k+1. Therefore, max{f(x)+g(x) : x ∈ [0, k+1]} ≥ f(k+1)+k+1 =

f(i) + i.

Thus, max{f(x) + g(x) : x ∈ [0, k + 1]} ≥ max{f(x) + x : x ∈ [0, k + 1]}.

Lemma 69. Let G be a disconnected graph, L = (ℓ,D) be a leao of G, and H

be a connected component of G. Besides, let m := min{ℓ(x) : x ∈ V (H)} and
ℓH : V (H) → N be defined by ℓH(x) = ℓ(x) −m, for every x ∈ V (H). Let DH :=

D ∩ V (H)2. Then, LH := (ℓH , DH) is a leao of H.

Proof. DH is acyclic because DH ⊆ D and D is acyclic.
To prove that LH is extensional-by-layers, let x, y ∈ V (H) be such that x ̸= y

and ℓH(x) = ℓH(y). Then, ℓ(x) = ℓH(x) + m = ℓH(y) + m = ℓ(y). Since L is
extensional-by-layers, N+

D (x) ̸= N+
D (y). Since H is the connected component of x

and y, N+
D (x) = N+

DH
(x) and N+

D (y) = N+
DH

(y). Hence, N+
DH

(x) ̸= N+
DH

(y).
To prove that LH is downwards, let x, y ∈ V (H) and suppose xy ∈ DH . Then

xy ∈ D. And since L is downwards, ℓ(x) ≥ ℓ(y). Thus, ℓH(x) = ℓ(x) − m ≥
ℓ(y)−m = ℓH(y).

Now, we may prove that, in order to minimize the height of the output of Con-
struction 63, it suffices to index the leaos of the connected components from highest
to lowest height.

Theorem 70. Let G be a graph with connected components G0, . . . , Gk. For every
i ∈ [0, k], let Li be a single-sink minimum leao of Gi. If |L1| ≥ · · · ≥ |Lk|, then
Construction 63 on (G, {(Gi,Li) : i ∈ [0, k]}) yields a minimum leao L of G.

Proof. Let L′ = (ℓ′, D′) be a leao of G. Let g : [0, k] → N be defined by g(i) =

min{ℓ′(x) : x ∈ V (Gi)}, for every i ∈ [0, k].
First, we prove that g is injective. Let i, j ∈ [0, k] be such that g(i) = g(j). Then,

by definition, there are vertices x ∈ V (Gi) and y ∈ V (Gj) such that ℓ′(x) = g(i)

and ℓ′(y) = g(j). Since D′ is acyclic, there are paths, in D′, from x to a sink
si ∈ V (Gi) of D′, and from y to a sink sj ∈ V (Gj) of D′. Since L′ is downwards,
g(i) = ℓ′(x) ≥ ℓ′(si) and g(j) = ℓ′(y) ≥ ℓ′(sj). But, by definition of g, ℓ′(si) ≥ g(i)

and ℓ′(sj) ≥ g(j). Thus, ℓ′(si) = g(i) and ℓ′(sj) = g(j). Suppose, for a contradiction,
si ̸= sj. Since ℓ′(si) = g(i) = g(j) = ℓ′(sj) and L′ is extensional-by-layers, N+

D′(si) ̸=
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N+
D′(sj), contradicting that si and sj are sinks of D′. Then, si = sj. Hence, Gi and

Gj are the same connected component. So, i = j. Thus, g is injective.
Since |Li| is decreasing as a function of i ∈ [0, k] and g is injective, by Lemma 68,

max{|Li|+ g(i) : i ∈ [0, k]} ≥ max{|Li|+ i : i ∈ [0, k]}. Besides, for every i ∈ [0, k],
|L′

i| ≥ |Li| because, by hypothesis, Li is minimum. Thus, max{|L′
i| + g(i) : i ∈

[0, k]} ≥ max{|Li| + g(i) : i ∈ [0, k]} ≥ max{|Li| + i : i ∈ [0, k]}. Moreover, by
definition, max{|L′

i| + g(i) : i ∈ [0, k]} = |L′| and max{|Li| + i : i ∈ [0, k]} = |L|.
Hence, |L′| ≥ |L|. We conclude that L is a minimum leao of G.

As a corollary, Theorem 71 simplifies the statement of Theorem 70 in terms of
set-deficiencies.

Theorem 71. Let G be a graph with connected components G0, . . . , Gk such that, for
every i ∈ [0, k], Gi admits a single-sink minimum leao. If S∆(G0) ≥ · · · ≥ S∆(Gk),
then S∆(G) = max{S∆(Gi) + i : i ∈ [0, k]}.

Proof. Suppose S∆(G0) ≥ · · · ≥ S∆(Gk). For every i ∈ [0, k], let Li = (ℓi, Di)

be a single-sink minimum leao of Gi. Use Construction 63 on (G, {(Gi,Li) : i ∈
[0, k]}) to obtain a leao L of G. By definition, |L| = max{|Li| + i : i ∈ [0, k]}.
Moreover, |L| = S∆(G) because, by Lemma 70, L is a minimum leao of G. And, for
every i ∈ [0, k], |Li| = S∆(Gi) because, by hypothesis, Li is minimum. Therefore,
S∆(G) = max{S∆(Gi) + i : i ∈ [0, k]}.

5.3 On the unicity of sinks of minimum leaos

Construction 63, presented in this chapter, requires that the given leaos of the
connected components be single-sink leaos. One may wonder if every connected
graph has a single-sink minimum leao. In Example 72, we will show that there are
connected graphs for which no minimum leao is a single-sink leao.

Let C be the class of all graphs that admit minimum leaos with one sink per
connected component. Since both Constructions 54 and 63 yield minimum leaos
with one sink per connected components, C is closed under the operations of join
and disjoint union. The smallest class of graphs that contains K1 and is closed under
joins and disjoint unions is called the class of cographs (see Section 5.4 and [5]). Thus,
the cographs are a subclass of C.

Note, however, that not every graph is in C. In Example 72, we present a graph
that is not in C, i.e., a graph G such that, for every minimum leao L = (ℓ,D) of G,
there is a connected component of G with more than one sink of D.

Example 72. Consider the graph G in Figure 5.5.
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Figure 5.5: A connected graph that does not admit a single-sink minimum leao

To verify that G does not admit a single-sink minimum leao, we list all of the
possible acyclic orientations of G that have only one sink. Since G is a tree, for
every vertex v ∈ V (G), there is a unique acyclic orientation such that v is the only
sink. In Figure 5.6, we present every acyclic orientation of G that has only one sink.
In each case, we represent, by a square node, the only sink of the orientation and,
by black nodes, a triple of vertices with the same out-neighborhood. Thus proving
that any single-sink leao of G has at least 3 layers.

Figure 5.6: Every acyclic orientation of G having only one sink

Thus, every single-sink leao L of G has height |L| ≥ 2. However, the leao of G
in Figure 5.7 has height 1.

0

1

2

Figure 5.7: A minimum leao of G with height 1 and two sinks

Therefore, the graph in Figure 5.5 does not admit a single-sink minumum leao.

5.4 Minimum leaos of cographs

With the results we have proved so far, we can already produce minimum leaos for
any graph in the class of cographs (or complement-reducible graphs).
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The class of cographs has appeared naturally in many areas of mathematics and,
in fact, was rediscovered independently by many authors (cf. [5]).

Definition 73. The class of cographs is defined inductively as the smallest class of
graphs such that

(i) K1 is a cograph.

(ii) If G1, . . . , Gk are pairwise disjoint cographs, then the union G1 ∪ · · · ∪Gk is a
cograph, i.e., cographs are closed under disjoint union.

(iii) If G is a cograph, then the complement G is a cograph, i.e., cographs are closed
under complementation.

With many rediscoveries came many characterizations of the cographs. For in-
stance, a graph is a cograph if and only if it is P4-free (cf. [5]), where P4 is the path
with 4 vertices. Another well-known characterization of cographs can be stated in
terms of disconnected and co-disconnected graphs:

Lemma 74 (Corneil et al. [5]). For every graph G the following conditions are
equivalent.

(a) G is a cograph.

(b) For every X ⊆ V (G) such that |X| > 1, G[X] is either disconnected or co-
disconnected, i.e., every non-trivial induced subgraph of G is either discon-
nected or co-disconnected.

Proof. ((a)⇒(b))
First, we prove, by induction on the structure of the class of cographs, that every

cograph satisfies (b).
Let G be a cograph.

Basis: Suppose G = K1. Since K1 does not have non-trivial induced subgraphs, it
trivially satisfies (b).
Induction Hipothesis (Union): Suppose G1, . . . , Gk are pairwise disjoint cographs
that satisfy (b).
Step (Union): Suppose G = G1 ∪ · · · ∪ Gk. Let X ⊆ V (G) be such that |X| > 1.
Let v ∈ X and let i ∈ [k] be such that v ∈ V (Gi). We consider two cases.

Case 1: Suppose X ⊆ V (Gi). Then, G[X] = Gi[X] is disconnected or co-
disconnected because, by IH, Gi satisfies (b).

Case 2: Suppose X ̸⊆ V (Gi). Then, X has vertices of Gi and Gj for some j ̸= i,
and thus, G[X] is disconnected.

44



In any case, G[X] is either disconnected or co-disconnected. Therefore, G satisfies
(b).
Induction Hypothesis (Complement): Suppose H is a cograph satisfying (b).
Step (Complement): Suppose G = H. Let X ⊆ V (G) be such that |X| > 1. Since
G = H, we have G[X] = H[X] = H[X]. Since, by IH, H satisfies (b), H[X] is
disconnected or co-disconnected. If H[X] is disconnected, then G[X] = H[X] is co-
disconnected; and if H[X] is co-disconnected, then G[X] = H[X] is disconnected.
In any case, G[X] is disconnected or co-disconnected. Therefore, G satisfies (b).

Thus, every cograph satisfies (b).
((b)⇒(a))

Conversely, we prove by induction on n that, for every graph G such that
|V (G)| = n, if G satisfies (b), then G is a cograph.

Let G be a graph satisfying (b).
Basis: Suppose |V (G)| = 1. Then, G = K1. Thus, G is a cograph.
Induction Hypothesis: Let n ≥ 1. Suppose that, for every graph H, if H satisfies
(b) and |V (H)| ≤ n, then H is a cograph.
Step: Suppose |V (G)| = n + 1. Since G satisfies (b) and |V (G)| > 1, G is either
disconnected or co-disconnected. We consider both cases.

Case 1: Suppose G is disconnected. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be the
connected components of G. Let i ∈ [k]. Let X ⊆ Vi be such that |X| > 1.
Then, Gi[X] = G[X] is either disconnected or co-disconnected because G

satisfies (b). Therefore, Gi satisfies (b). Since G has more than one connected
component, |Vi| < |V (G)| = n + 1. Then, |Vi| ≤ n, and since G1 satisfies (b),
by IH, Gi is a cograph. Since i is arbitrary, Gi is a cograph for every i ∈ [k].
Since, G = G1 ∪ · · · ∪Gk is a disjoint union of cographs, G is a cograph.

Case 2: Suppose G is co-disconnected. Then, G is a disconnected graph with
|V (G)| = n+1. Since G satisfies (b), G also satisfies (b). Analogously to Case
1, we prove that G is a cograph. Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be the
connected components of G. Let i ∈ [k]. Let X ⊆ Vi be such that |X| > 1.
Then, Gi[X] = G[X] is either disconnected or co-disconnected because G

satisfies (b). Therefore, Gi satisfies (b). Since G has more than one connected
component, |Vi| < |V (G)| = n + 1. Then, |Vi| ≤ n, and since G1 satisfies (b),
by IH, Gi is a cograph. Since i is arbitrary, Gi is a cograph for every i ∈ [k].
Since G = G1 ∪ · · · ∪Gk is a disjoint union of cographs, G is a cograph. Since
G is a cograph, G is a cograph.

In any case G is a cograph. Thus, every graph satisfying (b) is a cograph. This
completes the proof.
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Now, we implement Constructions 54 and 63 to produce an algorithm for con-
structing minimum leaos for cographs.

Construction 75. [Minimum Leaos for cographs]
INPUT: A cograph G.
CONSTRUCTION: The construction applies recursion on n = |V (G)|.
Base: Suppose |V (G)| = 1. Let ℓ : V (G) → N be such that ℓ(v) = 0. Let D := ∅.
Take L := (ℓ,D).
Recursive Step: Suppose |V (G)| > 1. Then, by Lemma 74, the induced subgraph
G[V (G)] = G is disconnected or co-disconnected. We consider both cases.

Case 1: Suppose G is disconnected. Let G0, . . . , Gk be the connected components
of G. For each i ∈ [0, k], apply Construction 75 on Gi to obtain a minimum
leao Li with one sink per connected component. Let π be a permutation
of [0, k] such that |Lπ(0)| ≥ · · · ≥ |Lπ(k)|. Then, apply Construction 63 on
(G, {(Gπ(i),Lπ(i)) : i ∈ [0, k]}) to obtain a minimum leao L of G with one sink
per connected component.

Case 2: Suppose G is co-disconnected. Let H be a connected component of G.
Let G1 := H and let G2 := G \ V (H). Then, G = G1 ∧ G2. For each i ∈ [2],
apply Construction 75 on Gi to obtain a minimum leao Li of Gi with one
sink per connected component. If |L1| ≥ |L2|, then apply Construction 54 on
(G1,L1, G2,L2) to obtain a minimum leao L of G with one sink per connected
component. If |L1| < |L2|, then apply Construction 54 on (G2,L2, G1,L1) to
obtain a minimum leao L of G with one sink per connected component.

OUTPUT: The minimum leao L, of G, with exactly one sink per connected compo-
nent. △

Finally, we have:

Theorem 76. eao restricted to the class of cographs can be solved in polynomial
time.

Proof. Applying Construction 75, we obtain a minimum leao for any given cograph
in polynomial time. Then, a cograph is a set graph if and only if the leao produced
by Construction 75 on that cograph has height 0.
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Chapter 6

NP-Completeness of EAO on Split
Graphs

In this chapter we prove that the recognition problem of set graphs, eao, restricted
to split graphs is NP-complete. More specifically, we present a polynomial-time re-
duction of the Total Ordering Problem (top), known to be NP-Complete [12],
to the recognition problem of set graphs restricted to split graphs. We also provide
a detailed proof of the NP-completeness of top, based on a sketch, given in [12], of
a polynomial-time reduction from the 3-satisfiability problem (3-sat).

To define top, we consider that an order, ≺, on a set X is a binary relation on
X such that, for all x, y, z ∈ X, x ̸≺ x (irreflexive), and if x ≺ y and y ≺ z then
x ≺ z (transitive). Moreover, an order ≺ on a set X is total if, for all x, y ∈ X, if
x ̸= y, then either x ≺ y or y ≺ x.

Definition 77. Let ≺ be an order on a set X and let T ⊆ X3 be a set of triples.
The elements of T are called betweenness restrictions. The order ≺ satisfies a be-
tweenness restriction (a, b, c) ∈ T if either a ≺ b ≺ c or c ≺ b ≺ a, i.e., b is between
a and c in the order ≺. Additionally, ≺ satisfies T if, for every t ∈ T , ≺ satisfies t.

Note that if an order ≺ satisfies a set of betweenness restrictions T , then the
reverse of ≺ is another order that also satisfies T .

Total Ordering Problem (top)
INSTANCE: A pair (X,T ), where X is a finite set and T ⊆ X3 is a set of triples.
QUESTION: Is there a total order ≺ on X that satisfies T?

Example 78. Let X := {a, b, c, d, e} and T := {(a, b, d), (b, c, a), (d, e, c), (c, e, b)}.
The order given by a ≺ c ≺ e ≺ b ≺ d satisfies T , whereas the order given by
c ≺ e ≺ d ≺ b ≺ a does not, since in the latter, (b, c, a) ∈ T is not satisfied.

Let top* denote the restriction of top to the instances (X,T ) such that
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(i) every element of X is involved in some restriction of T , i.e., for every x ∈ X,
there exists t = (a, b, c) ∈ T such that x ∈ {a, b, c}; and

(ii) every triple t ∈ X3 involves three pairwise distinct elements, i.e., for every
(a, b, c) ∈ T , we have |{a, b, c}| = 3.

According to Opatrny [12], top appears naturally in the design of electronic
circuits, as one may desire to arrange pins in a linear fashion having some pins be
placed between certain pairs of other pins. The time complexity of top was posed
as an open problem by R. Karp (cf. [12]), and was solved by Opatrny in [12], where
top is proved to be NP-complete. In the following section, we present a complete
proof that top is NP-complete.

6.1 NP-completeness of TOP (and TOP*)

To prove that top is a NP-complete problem, we will present a polynomial reduction
from the 3-satisfiability problem (the canonical example of NP-completeness) to
top. This reduction was sketched by Opatrny in [12], alongside an alternative reduc-
tion from the problem of 2-colorability of hypergraphs of rank 3, which
was given in detail in the same paper. The reason we insist on presenting a detailed
development of the reduction from 3-SAT to top is the lack of references for the
NP-completeness of the problem of 2-colorability of hypergraphs of rank

3. Unfortunately, the reference [9], given by Opatrny, only applies to hypergraphs
of rank strictly greater than 3. Thus, we decide to develop the alternative sketch
presented by Opatrny into a complete proof.

Definition 79. Let Var be a set of variables. We define the set of literals on Var
by Lit := {x,¬x : x ∈ Var}. We say that a function v : Lit → {0, 1} is a valuation
if v(¬x) = 1 − v(x) for all x ∈ Var. We say that a finite set of literals is a clause.
We say that a valuation v : Lit → {0, 1} satisfies a clause C if there is a literal
α ∈ C such that v(α) = 1. We say that a valuation v satisfies a set of clauses B if
v satisfies every clause in B.

3-SATISFIABILITY (3-SAT)
INSTANCE: A pair (Var, B) such that Var is a finite set of variables with |Var| ≥ 2;
B is a finite set of clauses such that, for every C ∈ B, |C| = 3.
QUESTION: Is there a valuation v that satisfies the set of clauses B?

Theorem 80 (S. Cook [4]). 3-SAT is NP-complete.

Construction 81. Reducing 3-SAT to top*.
INPUT: An instance (Var, B) of 3-SAT.
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PROCEDURE: Let Var = {xi : i ∈ [m]}, B = {Ci : i ∈ [n]} and, for every i ∈ [n],
let Ci = {ai, bi, ci}.

We define the sets X and T ⊆ X3 as follows. Let F,M and, for each i ∈ [n],
Vi, Yi, Zi, Ui be new elements not in Lit. Then,

X := Lit ∪ {Vi, Yi, Zi, Ui : i ∈ [n]} ∪ {F,M}

and

T := {(ai, Vi, bi), (Vi,M,Zi), (Ui, Yi, ci), (Yi,M, F ), (Zi,M, Ui) : i ∈ [n]} ∪
{(x,M,¬x) : x ∈ Var}.

OUTPUT: (X,T ), an instance of top* such that T can be satisfied by a total order
if and only if there is a valuation v : Lit → {0, 1} that satisfies B. △

We prove the correctness of this construction in Lemma 83.

Example 82. Let (Var, B) be an instance of 3-SAT, where Var = {x1, x2, x3} and
B = {{x1,¬x1, x2}, {x1,¬x2,¬x3}}.

Then, Construction 81 on (Var, B) yields (X,T ), where

X = {x1,¬x1, x2,¬x2, x3,¬x3, V1, V2, Y1, Y2, Z1, Z2, U1, U2, F,M}}

and

T =


(x1, V1,¬x1), (V1,M,Z1), (U1, Y1, x2), (Y1,M, F ), (Z1,M, U1),

(x1, V2,¬x2), (V2,M,Z2), (U2, Y2,¬x3), (Y2,M, F ), (Z2,M, U2),

(x1,M,¬x1), (x2,M,¬x2), (x3,M,¬x3)

 .

Note that B is satisfied by any valuation v such that v(x1) = 1. Moreover, the
total order of X given by

F ≺¬x3≺¬x2≺¬x1≺Z2≺Z1≺M≺U1≺Y2≺V1≺U2≺V2≺x1≺Y1≺x2≺x3

satisfies each betweenness restriction of T . In the following Lemma 83, we show
how a total order on X that satisfies T can be constructed from a valuation of v
satisfying B.

Lemma 83 (Correctness of Construction 81). Given an instance (Var, B) of 3-SAT,
the output (X,T ) of Construction 81 on (Var, B) is an instance of top* such that
T can be satisfied by a total order if and only if there is a valuation v : Lit → {0, 1}
that satisfies B.
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Proof. First, note that, by definition, (i) every element of X is in some triple of T ,
and (ii) every triple of T has three pairwise distinct elements of X. Hence, (X,T )

is indeed an instance of top*.
We shall prove that there is a total order on X that satisfies T if and only if

every clause of B is satisfied by v.
To prove the implication from left to right, suppose there is a total order ≺ on X

satisfying T . As we have noted, the reverse of ≺ also satisfies T . Hence, we assume,
without loss of generality, that F ≺ M .

Define the function v : Lit → {0, 1}, such that, for all α ∈ Lit,

v(α) =

1 if M ≺ α

0 if α ≺ M
.

Let x ∈ Var. Since (x,M,¬x) ∈ T and ≺ satisfies T , we have x ≺ M ≺ ¬x or
¬x ≺ M ≺ x. In any case, v(¬x) = 1− v(x). Thus, v is a valuation.

We will prove that v satisfies every clause in B. Let Ci ∈ B. We consider two
cases.

Case 1: Suppose v(ai) = 1 or v(bi) = 1. Then, v satisfies Ci.

Case 2: Suppose v(ai) = 0 and v(bi) = 0. Then, ai ≺ M and bi ≺ M . Since
(ai, Vi, bi) ∈ T , we have ai ≺ Vi ≺ bi ≺ M or bi ≺ Vi ≺ ai ≺ M . In either case,
Vi ≺ M . Since (Vi,M,Zi) ∈ T , we have M ≺ Zi. Since (Zi,M, Ui) ∈ T , we
have Ui ≺ M . Moreover, since (Yi,M, F ) ∈ T and F ≺ M , we have M ≺ Yi.
Thus, Ui ≺ M ≺ Yi. Then, since (Ui, Yi, ci) ∈ T , we have Ui ≺ M ≺ Yi ≺ ci.
Thus, v(ci) = 1 and, consequently, v satisfies Ci.

In any case, v satisfies Ci. Therefore, v satisfies every clause of B.

To prove the converse, suppose there is a valuation v satisfying B. We will define
an injective function from X to R to induce a total order on X from the natural
order of R. Recall that Var = {xi : i ∈ [m]}, B = {Ci : i ∈ [n]} and, for every
i ∈ [n], Ci = {ai, bi, ci}. Define the function f : X → R such that

• f(M) = 0,

• f(F ) = −(m+ 1);

for every i ∈ [m],

• f(xi) =

i if v(xi) = 1,

−i if v(xi) = 0,

• f(¬xi) = −f(xi);

50



and, for every i ∈ [n],

• f(Yi) = max{f(ai), f(bi), f(ci)} − 2−i;

• f(Ui) = max{f(ai), f(bi)} − 3−i;

• f(Vi) = max{f(ai), f(bi)} − 5−i;

• f(Zi) = −f(Vi).

By definition, f is an injective function. Thus, we can define the relation ≺ on
X such that x ≺ y if and only if f(x) < f(y), for all x, y ∈ X such that x ̸= y. By
definition, ≺ is a total order.

It remains to check if ≺ satisfies T . Let i ∈ [n].

• (ai, Vi, bi) is satisfied. Indeed, since f(ai) and f(bi) are distinct inte-
gers, we have min{f(ai), f(bi)} ≤ max{f(ai), f(bi)} − 1. And since,
f(Vi) = max{f(ai), f(bi)} − 5−i, we have min{f(ai), f(bi)} < f(Vi) <

max{f(ai), f(bi)}. Thus, either f(ai) < f(Vi) < f(bi) or f(bi) < f(Vi) < f(ai).

• (Vi,M,Zi) is satisfied. Indeed, since, by definition, f(Zi) = −f(Vi) and
f(Vi) ̸= 0, the signs of f(Vi) and f(Zi) are opposite. And since f(M) = 0, we
have either f(Zi) < f(M) < f(Vi) or f(Vi) < f(M) < f(Zi).

• To show (Ui, Yi, ci) is satisfied, we consider two cases:

Case 1: Suppose max{f(ai), f(bi)} ≤ f(ci). Since f is injective,
max{f(ai), f(bi)} < f(ci). Since max{f(ai), f(bi)} and f(ci) are in-
tegers, max{f(ai), f(bi)} < f(ci) − 2−i. Besides, since f(Yi) =

max{f(ai), f(bi), f(ci)} − 2−i and max{f(ai), f(bi)} ≤ f(ci), we have
f(Yi) = f(ci)− 2−i. Thus,

f(Ui) = max{f(ai), f(bi)} − 3−i

< max{f(ai), f(bi)}

< f(ci)− 2−i = f(Yi)

< f(ci).

Case 2: Suppose f(ci) < max{f(ai), f(bi)}. Since f(ci) and
max{f(ai), f(bi)} are integers, f(ci) < max{f(ai), f(bi)} − 2−i. Thus,

f(ci) < max{f(ai), f(bi)} − 2−i

= max{f(ai), f(bi), f(ci)} − 2−i = f(Yi)

< max{f(ai), f(bi), f(ci)} − 3−i = f(Ui).
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• (Yi,M, F ) is satisfied. Indeed, since Ci is satisfied by v, we have v(α) =

1 for some α ∈ {ai, bi, ci}. Then, 0 < max{f(ai), f(bi), f(ci)}. Since
max{f(ai), f(bi), f(ci)} is an integer, 0 < max{f(ai), f(bi), f(ci)} − 2−i =

f(Yi). Besides, by definition, f(F ) = −(m + 1) < 0 = f(M). Therefore, we
have f(F ) < f(M) < f(Yi).

• (Zi,M, Ui) is satisfied. Indeed, since f(Ui) = max{f(ai), f(bi)} − 3−i and
f(Vi) = max{f(ai), f(bi)} − 5−i, f(Ui) and f(Vi) have the same sign as
max{f(ai), f(bi)}. Then, f(Ui) and f(Vi) have the same sign. Besides,
f(Zi) = −f(Vi). So f(Zi) and f(Vi) have opposite signs. Thus, f(Zi) and
f(Ui) have opposite signs. And since f(M) = 0, either f(Zi) < f(M) < f(Ui)

or f(Ui) < f(M) < f(Zi).

• (xi,M,¬xi) is satisfied. Indeed, since, f(¬xi) = −f(xi) by definition, f(¬xi)

and f(xi) have opposite signs. Moreover, f(M) = 0. Thus, either f(¬xi) <

f(M) < f(xi) or f(xi) < f(M) < f(¬xi).

Therefore, ≺ satisfies T . This concludes the proof.

Theorem 84 (J. Opatrny [12]). top* is NP-complete.

Proof. Note that, given an instance (X,T ) of top* and a total order ≺ of X, we
can verify whether all of the betweenness restrictions of T are satisfied by ≺ in time
O(|X| · |T |). Thus, top* is in NP.

Moreover, Construction 81 is a polynomial-time reduction of 3-SAT to top*.
And since, by Theorem 80, 3-SAT is NP-Complete, we conclude that top* is NP-
complete.

6.2 Reducing TOP* to EAO on Split Graphs

Finally, we arrive at the main point of this chapter. We prove that eao restricted
to split graphs is NP-complete.

First, let us briefly recall what a split graph is.

Definition 85. Given a graph G = (V,E), a set X ⊆ V is a stable set if the
vertices of X are pairwise non-adjacent; and is a clique if the vertices of X are
pairwise adjacent.

Definition 86. A graph G = (V,E) is a split graph if there is a partition {S,Q} of
V such that S is a stable set and Q is a clique of G.

The strategy for reducing top* to eao is the following. Note that any acyclic
orientation of a graph induces a total order on each of its cliques. Given the sets X
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and T of an instance of top*, we will construct a split graph GT = (S ∪ Q,E) by
putting the elements of X in the clique Q, and defining the vertices of S and the
edges between S and Q in such a way as to force any total order of Q contained in
an eao of G to satisfy every betweenness restriction of T .

We begin by constructing a split graph Gt that contains, in its clique, the el-
ements involved in a single betweenness restriction t = (a, b, c), and is such that,
every eao of Gt satisfying certain conditions will contain a total order of {a, b, c}
satisfying t (see Lemma 88).

Construction 87. INPUT: A triple t = (a, b, c) of pairwise distinct elements.
PROCEDURE: Let Qt := {a, b, c, t} and St := {sit : i ∈ [4]} ∪ {qt, rt} be a set of
new elements. Define the split graph Gt := (St ∪ Qt, Et), in which St is a stable
set, Qt is a clique, and is such that N(sit) = Qt for each i ∈ [4], N(qt) = {b, t} and
N(rt) = {a, c, t} (see Figure 6.1).
OUTPUT: The split graph Gt. △

t

a

b

c

s1t s2t

s3t s4t

rt

qt

Figure 6.1: Gt given by Construction 87

Lemma 88. Let t = (a, b, c) be a triple such that a, b and c are pairwise distinct,
and let Gt be given by Construction 87 on t. If D is an eao of Gt such that t is a
sink and qt, rt are sources, then either {ab, bc} ⊆ D or {cb, ba} ⊆ D, i.e., the order
of Qt contained in D satisfies the betweenness restriction t.

Proof. Let D be an eao of Gt such that t is a sink and qt, rt are sources.
Since N(sit) = Qt for every i ∈ [4], by Lemma 19, {N+

D (s
i
t) : i ∈ [4]} is nested.

Then, there is a permutation π of [4] such that N+
D (s

π(1)
t ) ⊆ N+

D (s
π(2)
t ) ⊆ N+

D (s
π(3)
t ) ⊆

N+
D (s

π(4)
t ). Since t is a sink and t ∈ Qt = N(s

π(1)
t ), we have t ∈ N+

D (s
π(1)
t ). Addition-

ally, for all i, j ∈ [4] if i ̸= j, since N(sit) = Qt = N(sjt), by Corollary 20, |N+
D (s

i
t)| ≠

|N+
D (s

j
t)|. So 1 ≤ |N+

D (s
π(1)
t )| < |N+

D (s
π(2)
t )| < |N+

D (s
π(3)
t )| < |N+

D (s
π(4)
t )| ≤ 4. Hence,
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|N+
D (s

π(i)
t )| = i for each i ∈ [4]. Then, for some permutation τ of {a, b, c}, we have

N+
D (s

π(1)
t ) = {t}

N+
D (s

π(2)
t ) = {t, τ(a)}

N+
D (s

π(3)
t ) = {t, τ(a), τ(b)}

N+
D (s

π(4)
t ) = {t, τ(a), τ(b), τ(c)}.

Next, we prove that τ(b) = b. The roles of the vertices qt and rt are to eliminate
the alternative possibilities of having τ(b) = a or τ(b) = c. Suppose, for a contra-
diction, that τ(b) ∈ {a, c}. Since τ is a permutation and τ(b) ̸= b, either τ(a) = b

or τ(c) = b. We consider two cases.

Case 1: Suppose τ(a) = b. Since, by hypothesis, qt is a source, N+
D (qt) = N(qt) =

{b, t}. Then, N+
D (qt) = {b, t} = {t, τ(a)} = N+

D (s
π(2)
t ), contradicting the

extensionality of D.

Case 2: Suppose τ(c) = b. Since τ is a permutation of {a, b, c}, we have
{τ(a), τ(b)} = {τ(a), τ(b), τ(c)} \ {τ(c)} = {a, b, c} \ {b} = {a, c}. So, since rt

is a source, N+
D (rt) = {a, c, t} = {t, τ(a), τ(b)} = N+

D (s
π(3)
t ), contradicting the

extensionality of D.

In both cases we have a contradiction. Thus, τ(b) = b.
Since τ(c)s

π(3)
t τ(b)s

π(2)
t τ(a) is a path in D and D is acyclic, τ(c)τ(b) ∈ D and

τ(b)τ(a) ∈ D. Since τ(b) = b, we have τ(c)b ∈ D and bτ(a) ∈ D. If τ(a) = a, then
τ(c) = c and we have {cb, ba} ⊆ D. And if τ(a) = c, then τ(c) = a and we have
{ab, bc} ⊆ D. In any case, either {ab, bc} ⊆ D or {cb, ba} ⊆ D.

So far, we have established a method for encoding a single betweenness restriction
into the structure of a split graph. To enforce all of the restrictions of T at once,
we will define a split graph GT with the following properties: (i) Gt is an induced
subgraph of GT for every t ∈ T ; (ii) any eao D of GT , when restricted to Gt, is
an eao of Gt such that t is a sink and qt, rt are sources (the conditions for applying
Lemma 88 are met); (iii) if T can be satisfied by some total order of X, then GT

admits an eao.
Note that, by Lemma 88, properties (i) and (ii) ensure that, if GT admits an

eao D, then T is satisfied by a total order of X; while property (iii) ensures the
converse. GT will be constructed by taking the union

⋃
t∈T Gt and adding some

auxiliary structure to ensure that the resulting graph is in fact a split graph, and
that the properties (i), (ii) and (iii) hold.

Construction 89. INPUT: An instance of top*, (X,T ), where X = {xi : i ∈ [n]}
and T = {ti : i ∈ [p]} for some n, p ∈ N.
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PROCEDURE: For each t ∈ T , let Gt = (St ∪ Qt, Et) be the split graph given
by Construction 87 on t. Recall that, for every t = (at, bt, ct) ∈ T , St = {sit : i ∈
[4]}∪{qt, rt} is a stable set, Qt = {at, bt, ct, t} is a clique, N(sit) = Qt for each i ∈ [4],
N(qt) = {bt, t} and N(rt) = {at, ct, t}.

Let X ′ = {x′
i : i ∈ [n]} be a copy of X; T ′ = {t′i : i ∈ [p]} be a copy of T ; and

d−, d+ and d be three additional elements. Define the split graph AT with stable set
X ′ ∪ T ′ ∪ {d−, d+}, clique X ∪ T ∪ {d}, such that N(x′

i) = {xi} for every x′
i ∈ X ′,

and, for every v ∈ T ′ ∪ {d−, d+}, N(v) = T ∪ {d} (see Figure 6.2).
OUTPUT: The graph GT :=

⋃
{Gt : t ∈ T} ∪ AT . △

Note that the vertices of GT can be partitioned into the stable set ST :=
⋃
{St :

t ∈ T} ∪X ′ ∪ T ′ ∪ {d+, d−} and the clique QT := X ∪ T ∪ {d}. Thus, GT is a split
graph. Moreover, since |St| = 6 for each t ∈ T , |X| = |X ′| = n and |T | = |T ′| = p,
the graph GT has 2n + 8p + 3 vertices. By Theorem 95, we will conclude that GT

is a set graph if and only if X admits a total order satisfying T .

x1

x2

x3
x4 x5

x6

x7

d

t1 t2
t3

t4

x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7

d−

d+
t′1 t′2

t′3

t′4

Figure 6.2: AT (for |X| = 7 and |T | = 4)

Lemma 90. Let GT be given by Construction 89 and let D be an eao of GT . Then,
the sink of D is in T ′ ∪ {d−, d+}.

Proof. Since N+
D (v) = T ∪ {d} for all v ∈ T ′ ∪ {d−, d+}, {|N+

D (v)| : v ∈ T ′ ∪
{d−, d+}} ⊆ [0, |T ∪ {d}|] = [0, p + 1]. Besides, for all u, v ∈ T ′ ∪ {d−, d+}, since
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N(u) = T ∪ {d} = N(v), by Corollary 20, if u ̸= v, then |N+
D (v)| ≠ |N+

D (w)|. So,
since |T ′∪{d−, d+}| = p+2, we have |{|N+

D (v)| : v ∈ T ′ ∪{d−, d+}}| = p+2. Thus,
{|N+

D (v)| : v ∈ T ′∪{d−, d+}} = [0, p+1]. Hence, there is a vertex v ∈ T ′∪{d−, d+}
such that |N+

D (v)| = 0, i.e., v is a sink. Since D is extensional, the only sink of D is
v ∈ T ′ ∪ {d−, d+}.

Lemma 91. Let GT be given by Construction 89, let D be an eao of GT and t =

(a, b, c) ∈ T . Then, there are permutations π and τ , respectively, of [4] and {a, b, c},
such that

N+
D (s

π(1)
t ) = {t}

N+
D (s

π(2)
t ) = {t, τ(a)}

N+
D (s

π(3)
t ) = {t, τ(a), τ(b)}

N+
D (s

π(4)
t ) = {t, τ(a), τ(b), τ(c)}.

Proof. By Lemma 90, St does not have sinks. So 1 ≤ |N+
D (s

i
t)| ≤ |Qt| = 4 for

all i ∈ [4]. Since N(sit) = Qt for all i ∈ [4], by Lemma 19, {N+
D (s

i
t) : i ∈ [4]} is

nested. Thus, there is a permutation π : [4] → [4] such that N(s
π(1)
t ) ⊆ N(s

π(2)
t ) ⊆

N(s
π(3)
t ) ⊆ N(s

π(4)
t ). By Corollary 20, for all i, j ∈ [4], if i ̸= j, |N+

D (s
i
t)| ≠ |N+

D (s
j
t)|.

So we have 1 < |N+
D (s

π(1)
t )| < |N+

D (s
π(2)
t )| < |N+

D (s
π(3)
t )| < |N+

D (s
π(4)
t )| < |Qt| = 4.

Therefore, |N+
D (s

π(i)
t )| = i for all i ∈ [4]. Thus, there is a permutation τ : Qt → Qt

such that

N+
D (s

π(1)
t ) = {τ(t)}

N+
D (s

π(2)
t ) = {τ(t), τ(a)}

N+
D (s

π(3)
t ) = {τ(t), τ(a), τ(b)}

N+
D (s

π(4)
t ) = {τ(t), τ(a), τ(b), τ(c)}.

Suppose, for a contradiction, that t /∈ N+
D (s

π(1)
t ). Then, N+

D (s
π(1)
t ) = {x} for some

x ∈ {a, b, c}. But, by Lemma 90, there are no sinks in X ′, so N+
D (x

′) = N(x′) =

{x} = N+
D (s

π(1)
t ), contradicting the extensionality of D. Therefore, t ∈ N+

D (s
π(1)
t ),

and so τ(t) = t. Thus, τ |Qt\{t} is a permutation of {a, b, c} satisfying the statement
in Lemma 91.

In the following Lemmas 92 and 93, we prove that if DT is an eao of GT and
t ∈ T , then Dt = DT ∩ (St ∪Qt)

2 is an eao of Gt in which t is a sink and qt and rt

are sources.

Lemma 92. Let GT be given by Construction 89 and let t = (a, b, c) ∈ T . If D is
an eao of GT , then Dt = D ∩ (St ∪Qt)

2 is an eao of Gt.
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Proof. First, we prove that Dt is extensional. Let x, y ∈ St ∪Qt be such that x ̸= y.
We consider four cases.

Case 1: Suppose x, y ∈ St. Since N+
D (x) ⊆ N(x) = Qt ⊆ St ∪ Qt, we have

N+
Dt
(x) = N+

D (x). Analogously, N+
Dt
(y) = N+

D (y). Since D is extensional,
N+

D (x) ̸= N+
D (y). Therefore, N+

Dt
(x) ̸= N+

Dt
(y).

Case 2: Suppose x ∈ St and y ∈ Qt. We consider two subcases.

Subcase 2.1: Suppose y ̸= t. Then, y ∈ Qt \ {t} = {a, b, c}. By Lemma 91,
there is a permutation π : [4] → [4] such that, for all i ∈ [4], |N+

D (s
π(i)
t )| =

i. Moreover, N+
D (s

π(1)
t ) = {t}. Since y /∈ {t} = N+

Dt
(s

π(1)
t ) and, since

y ∈ Qt = N(s
π(1)
t ), we have ys

π(1)
t ∈ D ∩ (St ∪ Qt)

2 = Dt. Since St is a
stable set, sπ(1)t and x are not adjacent in Gt. So s

π(1)
t /∈ N+

Dt
(x). Then,

s
π(1)
t ∈ N+

Dt
(y) \N+

Dt
(x).

Subcase 2.2: Suppose y = t. Then, N+
Dt
(x) ̸= N+

Dt
(y) because x and y are

adjacent in Gt.

Case 3: Suppose x ∈ Qt and y ∈ St. Analogously to Case 2, N+
Dt
(x) ̸= N+

Dt
(y).

Case 4: If x, y ∈ Qt, then N+
Dt
(x) ̸= N+

Dt
(y) because x and y are adjacent in Gt.

Therefore, Dt is extensional.
Dt is acyclic because D is acyclic and Dt ⊆ D.

Lemma 93. Let GT be given by Construction 89, let D be an eao of GT and t ∈ T .
Let Dt = D ∩ (St ∪ Qt)

2 be the restriction of D to Gt. Then, t is a sink of Dt and
qt, rt are sources of Dt.

Proof. Let t = (a, b, c). By Lemma 91, there are permutations π and τ of [4] and
{a, b, c}, respectively, such that

N+
D (s

π(1)
t ) = {t}

N+
D (s

π(2)
t ) = {t, τ(a)}

N+
D (s

π(3)
t ) = {t, τ(a), τ(b)}

N+
D (s

π(4)
t ) = {t, τ(a), τ(b), τ(c)}.

First, we show that t is a sink of Dt. Suppose, for a contradiction, that t /∈
N+

D (rt). By Lemma 90, rt is not a sink, so there exists x ∈ N(rt) \ {t} = {a, c}
such that rtx ∈ D. Since t /∈ N+

D (rt), we have trt ∈ D. Then, xsπ(1)t trtx is a cycle
in D, a contradiction. Therefore, t ∈ N+

D (rt). Analogously, t ∈ N+
D (qt). Moreover,

suppose for a contradiction, that, for some x ∈ {a, b, c} we have tx ∈ D. Then, we
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have the cycle xs
π(1)
t tx in D, a contradiction. Hence, for every x ∈ {a, b, c}, since x

is adjacent to t, we must have xt ∈ D. Then, for every v ∈ St ∪ Qt \ {t}, we have
t ∈ N+

D (v). Hence, t is a sink of Dt.
Secondly, we show that qt and rt are sources of D. We have already shown

that t ∈ N+
D (qt) and t ∈ N+

D (rt). If b /∈ N+
D (qt), then N+

D (qt) = {t} = N+
D (s

π(1)
t ),

contradicting that D is extensional. Therefore, N+
D (qt) = {t, b}, i.e., qt is a source.

Suppose, for a contradiction, that rt is not a source. Since t ∈ N+
D (rt), we consider

three cases, one for each proper subset of N(rt) = {t, a, c} that contains t:

Case 1: Suppose N+
D (rt) = {t}. Then, N+

D (rt) = {t} = N+
D (s

π(1)
t ), contradicting

that D is extensional.

Case 2: Suppose N+
D (rt) = {t, a}. Since D is extensional, {t, a} = N+

D (rt) ̸=
N+

D (s
π(2)
t ) = {t, τ(a)}, so τ(a) ̸= a; and, again, since D is extensional and we

have already established that qt is a source, {t, b} = N+
D (qt) ̸= N+

D (s
π(2)
t ) =

{t, τ(a)}, so τ(a) ̸= b. Hence, τ(a) = c. Since c ∈ N(rt) but c /∈ N+
D (rt), we

have crt ∈ D; rta ∈ D by hypothesis; since a ∈ Qt = N(s
π(2)
t ) but N(s

π(2)
t ) =

{t, τ(a)} and τ(a) = c, we have as
π(2)
t ∈ D; since N(s

π(2)
t ) = {t, τ(a)} and

τ(a) = c, we have s
π(2)
t c ∈ D. Thus, crtas

π(2)
t c is a cycle in D, a contradiction.

Case 3: Suppose N+
D (rt) = {t, c}. Since D is extensional, {t, c} = N+

D (rt) ̸=
N+

D (s
π(2)
t ) = {t, τ(a)}, so τ(a) ̸= c; and, again, since D is extensional and we

have already established that qt is a source, {t, b} = N+
D (qt) ̸= N+

D (s
π(2)
t ) =

{t, τ(a)}, so τ(a) ̸= b. Hence, τ(a) = a. Since a ∈ N(rt) but a /∈ N+
D (rt), we

have art ∈ D; rtc ∈ D by hypothesis; since c ∈ Qt = N(s
π(2)
t ) but N(s

π(2)
t ) =

{t, τ(a)} and τ(a) = a, we have cs
π(2)
t ∈ D; since N(s

π(2)
t ) = {t, τ(a)} and

τ(a) = a, we have s
π(2)
t a ∈ D. Thus, artcs

π(2)
t a is a cycle in D, a contradiction.

In any case, we reach a contradiction. Thus, rt is a source of D. Since qt and rt are
sources of D and Dt ⊆ D, qt and rt are sources of Dt.

Lemmas 88, 92 and 93 tell us that if the split graph GT given by Construction 89
on an instance (X,T ) of top* admits an eao D, then D contains a total order of
X satisfying T . It remains to prove that, conversely, X only admits a total order
satisfying T if GT admits an eao.

Lemma 94. Let (X,T ) be an instance of top* and let GT be the split graph given
by Construction 89 on (X,T ). If T is satisfied by some total order on X, then GT

admits an eao.

Proof. Suppose T is satisfied by a total order ≺ on X. Define the orientation D of
GT as follows:
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• The edges between vertices of the clique Q are oriented as follows:

– For each xi, xj ∈ X, xi → xj if and only if xi ≺ xj.

– For each xi ∈ X and v ∈ T ∪ {d}, xi → v.

– For each ti, tj ∈ T , ti → tj if and only if i < j.

– For each ti ∈ T , ti → d.

• For every t ∈ T with t = (at, bt, ct), let τt be the permutation of {at, ct} such
that τt(at) ≺ bt ≺ τt(ct). Then, the edges between the stable set St and the
clique Qt are oriented as such:

– qt and rt are sources, i.e., N+(qt) = {t, bt} and N+(rt) = {t, at, ct};

– N+(s1t ) = {t};

– N+(s2t ) = {t, τt(ct)};

– N+(s3t ) = {t, bt, τt(ct)};

– N+(s4t ) = {t, τt(at), bt, τt(ct)}.

• For each i ∈ [n], N+(x′
i) = {xi}, i.e., every vertex in X ′ is a source.

• The edges between the stable set T ′ ∪ {d−, d+} and the clique T ∪ {d} are
defined such that, for all i, j ∈ [p],

– t′i → tj if i < j, and tj → t′i if j ≤ i;

– t′i → d;

– d+ → tj → d−;

– d+ → d → d−.

First, we prove that D is acyclic. Note that the vertices in X ′ ∪ {qt, rt : t ∈
T} ∪ {d+} are sources and d− is the sink of D. Thus, no directed cycle contains
vertices of X ′ ∪ {qt, rt : t ∈ T} ∪ {d−, d+}. Since N+(d) = {d−} and d− is a sink, d
cannot be in a cycle of D.

Suppose, for a contradiction, that D has a cycle C containing a vertex in T . Let
i ∈ [p] be maximal such that ti is in the cycle C. Let u1 be the vertex after ti in C.
Then u1 ∈ N+

D (ti) ⊆ T ∪ T ′ ∪ {d−, d+, d}. But, as we have proved above, no vertex
in {d−, d+, d} can be in a cycle of D. So u1 ∈ T ∪ T ′. Then, we consider two cases.

Case 1: Suppose u1 ∈ T . Then, u1 = tj for some j ∈ [p]. Since titj ∈ D, we have
j > i, contradicting the maximality of i.
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Case 2: Suppose u1 ∈ T ′. Then, u1 = t′j for some j ∈ [p]. Since tit
′
j ∈ D, we have

j ≥ i. Let u2 be the vertex after u1 in C. Then, u2 ∈ N+
D (t

′
j) ⊆ T ∪{d}. Since

d cannot be in a cycle of D, we have u2 ∈ T . Then, u2 = tk for some k ∈ [p].
Since t′jtk ∈ D, we have k > j. Then, u2 = tk is a vertex in C with k > j ≥ i,
contradicting the maximality of i.

In both cases, we reach a contradiction. Therefore, no cycle of D contains vertices
of T . Since N+(t′i) ⊆ T ∪ {d} for all t′i ∈ T ′, no cycle of D contains vertices of T ′.

Suppose, for a contradiction, that D has a cycle C containing a vertex in X. Let
x ∈ X be maximal, with respect to ≺, such that x is in C, i.e., for all y ∈ X such
that x ̸= y, if C contains y, then y ≺ x. Let u1 be the vertex after x in C. Then,
u1 ∈ N+

D (x) ⊆ X ∪ (
⋃
{St : t ∈ T}) ∪ T ∪ {d}. Since we have already proved that

the vertices of T ∪ {d} are not in any cycle of D, we have u1 ∈ X ∪ (
⋃
{St : t ∈ T}.

We consider two cases.

Case 1: Suppose u1 ∈ X. Then, u1 = y for some y ∈ X. Since xy ∈ D, x ≺ y,
contradicting the maximality of x.

Case 2: Suppose u1 ∈ St for some t ∈ T . Since qt and rt are sources, u1 /∈ {qt, rt}.
Then, u1 = sit for some i ∈ [4]. Let u2 be the following vertex, after u1 in
C. Since u2 ∈ N+

D (s
i
t) ⊆ Qt and t cannot be in a cycle, u2 ∈ Qt \ {t}. Since

xu1 = xsit ∈ D and N(sit) = Qt, we have x ∈ Qt. We consider four cases.

Case 1: Suppose u1 = s1t . Then, N+
D (u1) = N+

D (s
1
t ) = {t}. But u1u2 ∈ D.

So u2 = t, contradicting that C does not have vertices in T .

Case 2: Suppose u1 = s2t . Then, N+
D (u1) = N+

D (s
2
t ) = {t, τt(ct)}. Since

u1u2 ∈ D and u2 ̸= t, we have u2 = τt(ct). Since xs2t ∈ D, we have
x ∈ N−

D (s
2
t ) = N(s2t ) \N+

D (s
2
t ) = Qt \N+

D (s
2
t ) = {τt(at), bt}. And since τt

is such that τt(at) ≺ bt ≺ τt(ct), we have x ≺ τt(ct) = u2, contradicting
the maximality of x in C.

Case 3: Suppose u1 = s3t . Then, N+
D (u1) = N+

D (s
3
t ) = {t, bt, τt(ct)}. Since

u1u2 ∈ D and u2 ̸= t, we have u2 ∈ {bt, τt(ct)}. Since xs3t ∈ D, we have
x ∈ N−

D (s
3
t ) = N(s3t ) \ N+

D (s
3
t ) = Qt \ N+

D (s
3
t ) = {τt(at)}. So x = τt(at).

And since τt is such that τt(at) ≺ bt ≺ τt(ct) and we have u2 ∈ {bt, τt(ct)},
we have x = τt(at) ≺ u2 contradicting the maximality of x in C.

Case 4: Suppose u1 = s4t . Then, N+
D (u1) = N+

D (s
4
t ) = {t, τt(at), bt, τt(ct)}.

Since xu1 ∈ D and, by definition, u1 = s4t is a source, we have a contra-
diction.

In any case, we reach a contradiction. Therefore, no cycle of D contains vertices of
X. Since N+(sit) ⊆ X ∪ T , no cycle of D contains sit, for any t ∈ T and i ∈ [4].
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Since no vertex of V (GT ) = T ∪ T ′ ∪ {d−, d+, d} ∪X ∪X ′ ∪
⋃
{St : t ∈ T} can be

in a cycle of D, we conclude that D is acyclic.
Now, we prove that D is extensional. We will prove that (i) if x, y ∈ S are

distinct, then N+
D (x) ̸= N+

D (y), (ii) if x ∈ S and y ∈ Q are distinct, then N+
D (x) ̸=

N+
D (y) and (iii) if x, y ∈ Q are distinct, then N+

D (x) ̸= N+
D (y).

(i) Recall that S =
⋃
{St : t ∈ T} ∪X ′ ∪ T ′ ∪ {d+, d−}. Let u, v ∈ S be such that

u ̸= v. We consider ten cases, organized according to the following table.

u ∈
⋃
{St : t ∈ T} u ∈ X ′ u ∈ T ′ u = d+ u = d−

v ∈
⋃
{St : t ∈ T} 1 2* 3* 3* 4*
v ∈ X ′ 2 5 6* 6* 7*
v ∈ T ′ 3 6 8 9* 10*
v = d+ 3 6 9 - 10*
v = d− 4 7 10 10 -

In the above table we consider all of the 25 possible configurations for the vertices
u, v ∈ S. Cells with a number k ∈ [10] indicate that Case k, in the list below, proves
that N+

D (u) ̸= N+
D (v) for the corresponding configuration of u and v. Certain cells

contain k* for some k ∈ [10], indicating that Case k proves N+
D (u) ̸= N+

D (v) in
the analogous configuration in which u and v are swapped, one for the other. Cells
containing "-" indicate that the corresponding configuration is not consistent with
the hypothesis that u ̸= v.

Case 1: Suppose u, v ∈
⋃
{St : t ∈ T}.

Subcase 1.1: Suppose u, v ∈ St for some t ∈ T .

Subcase 1.1.1: Suppose u = sit and v = sjt for some i, j ∈ [4]. Since
u ̸= v, we have i ̸= j. Then, N+

D (u) ̸= N+
D (v) because, by definition,

|N+
D (s

i
t)| = i ̸= j = |N+

D (s
j
t)|.

Subcase 1.1.2: Suppose u = sit and v = rt for some i ∈ [4]. We consider
two cases.

Subcase 1.1.2.1: Suppose i ̸= 3. Then N+
D (u) ̸= N+

D (v) because, by
definition, |N+

D (s
i
t)| = i ̸= 3 = |N+

D (rt)|.

Subcase 1.1.2.2: Suppose i = 3. Then, by definition, N+
D (s

3
t ) =

{t, bt, τt(ct)} and N+
D (rt) = {t, at, ct}. Therefore, bt ∈ N+

D (u) \
N+

D (v).

Subcase 1.1.3: Suppose u = sit and v = qt. We consider two cases.

Subcase 1.1.3.1: Suppose i ̸= 2. Then, N+
D (u) ̸= N+

D (v) because,
by definition, |N+

D (s
i
t)| = i ̸= 2 = |N+

D (qt)|.
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Subcase 1.1.3.2: Suppose i = 2. Then, by definition, N+
D (s

2
t ) =

{t, τt(ct)} and N+
D (qt) = {t, bt}. Since, by definition, τt is a per-

mutation of {at, ct}, τt(ct) ∈ {at, ct}. So τt(ct) ̸= bt. Therefore,
bt ∈ N+

D (qt) \N
+
D (rt) = N+

D (v) \N
+
D (u).

Subcase 1.1.4: Suppose u = rt and v = qt. Then, N+
D (u) ̸= N+

D (v)

because, by definition |N+
D (rt)| = 3 ̸= 2 = |N+

D (qt)|.

Subcase 1.2: Suppose u ∈ Sti and v ∈ Stj for some ti, tj ∈ T such that ti ̸= tj.
Then, ti ∈ N+

D (u) \N
+
D (v).

Case 2: Suppose u ∈ (
⋃
{St : t ∈ T}) and v ∈ X ′. Let t ∈ T be such that u ∈ St.

Then, t ∈ N+
D (u) \N

+
D (v).

Case 3: Suppose u ∈ (
⋃
{St : t ∈ T}) and v ∈ T ′∪{d+}. Then, d ∈ N+

D (v)\N
+
D (u).

Case 4: Suppose u ∈ (
⋃
{St : t ∈ T}) and v = d−. Let t ∈ T be such that u ∈ St.

Then, t ∈ N+
D (u) \N

+
D (v).

Case 5: Suppose u, v ∈ X ′. Then, u = x′
i and v = x′

j for some i, j ∈ [n].
Since u ̸= v, we have i ̸= j. Then, N+

D (x
′
i) = {xi} ≠ {xj} = N+

D (x
′
j). So

N+
D (u) ̸= N+

D (v)

Case 6: Suppose u ∈ X ′ and v ∈ T ′ ∪ {d+}. Then, d ∈ N+
D (v) \N

+
D (u).

Case 7: Suppose u ∈ X ′ and v = d−. Then, N+
D (u) ̸= N+

D (v) because |N+
D (u)| = 1

and |N+
D (v)| = 0.

Case 8: Suppose u, v ∈ T ′. Then, u = t′i and v = t′j for some i, j ∈ [p]. Since u ̸= v,
i ̸= j. Recall that, by definition, for all r, s ∈ [p], t′rts ∈ D if and only if r < s.
So, if i < j, then tj ∈ N+

D (t
′
i) \N+

D (t
′
j); and if j < i, then ti ∈ N+

D (t
′
j) \N+

D (t
′
i).

In any case, N+
D (u) ̸= N+

D (v).

Case 9: Suppose u ∈ T ′ and v = d+. Let i ∈ [p] be such that u = t′i. By definition,
tit

′
i ∈ D. So, ti ∈ N+

D (d+) \N
+
D (t

′
i).

Case 10: Suppose u ∈ T ′ ∪ {d+} and v = d−. Then, d ∈ N+
D (u) \N

+
D (v).

Thus, if u, v ∈ S are distinct, then N+
D (u) ̸= N+

D (v).

(ii) Let u ∈ S and v ∈ Q. Recall that S =
⋃
{St : t ∈ T} ∪X ′ ∪ T ′ ∪ {d+, d−} and

Q = X∪T∪{d}. We consider two cases: u ∈
⋃
{St : t ∈ T}∪X ′ or u ∈ T ′∪{d+, d−}.

Case 1: Suppose u ∈
⋃
{St : t ∈ T} ∪X ′.

Subcase 1.1: Suppose v ∈ X ∪ T . Then, d ∈ N+
D (v) \N

+
D (u).

Subcase 1.2: Suppose v = d. Then, d− ∈ N+
D (v) \N

+
D (u).
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Case 2: Suppose u ∈ T ′ ∪ {d+, d−}.

Subcase 2.1: Suppose v ∈ X. Since (X,T ) is an instance of top*, there is
a restriction t = (at, bt, ct) ∈ T such that v ∈ {at, bt, ct}. Since N(s1t ) =

Qt = {t, at, bt, ct} and N+
D (s

1
t ) = {t}, we have vs1t ∈ D. And since

N+
D (u) ⊆ T ∪ {d}, s1t ∈ N+

D (v) \N
+
D (u).

Subcase 2.2: Suppose v ∈ T ∪ {d}. Then, N+
D (u) ̸= N+

D (v) because u and v

are adjacent.

Thus, if u ∈ S and v ∈ Q, then N+
D (u) ̸= N+

D (v).

(iii) Let u, v ∈ Q. Then, N+
D (u) ̸= N+

D (v) because u and v are adjacent.
Thus, D is extensional.
We conclude that D is an eao of GT .

Finally, we apply all of the previous lemmas to prove the main theorem of this
section.

Theorem 95. Let (X,T ) be an instance of top*. Then, the split graph GT , given by
Construction 89, is a set graph if and only if there is a total order of X satisfying T .

Proof. Suppose GT is a set graph. Let D be an eao of GT . Let ≺ be the relation on
X such that, for all x, y ∈ X, x ≺ y if and only if xy ∈ D.

First, we prove that ≺ is a total order on X. Since D is an orientation, for all
x ∈ X, xx /∈ D, so ≺ is irreflexive. Suppose x, y, z ∈ X are such that x ≺ y and
y ≺ z. Then, xy ∈ D and yz ∈ D. Since X is a clique, x and z are adjacent.
So, xz ∈ D or zx ∈ D. But, if zx ∈ D, we would have the cycle xyzx in D, a
contradiction. Thus, xz ∈ D, and so x ≺ z. Therefore, ≺ is transitive. Since ≺ is
irreflexive and transitive, ≺ is an order on X. Since X is a clique, for every x, y ∈ X,
either xy ∈ D or yx ∈ D. Thus, ≺ is a total order on X.

Next, we prove that ≺ satisfies every betweenness restriction of T . Let t =

(a, b, c) ∈ T . Since D is an eao of GT , then, by Lemma 92, Dt := D ∩ (St ∪Qt)
2 is

an eao of Gt. By Lemma 93, t is a sink of Dt and qt, rt are sources of Dt. Then, by
Lemma 88, either {ab, bc} ⊆ Dt ⊆ D or {cb, ba} ⊆ Dt ⊆ D. Then, either a ≺ b ≺ c

or c ≺ b ≺ a. So ≺ satisfies t. Since t is arbitrary, ≺ satisfies all of the restrictions
in T .

Conversely, suppose (X,T ) is satisfied by some total order ≺. Then, by
Lemma 94, GT is a set graph. This completes the proof.

Theorem 96. eao restricted to split graphs is NP-complete.

Proof. First we prove that eao is in NP. Let D be an orientation of a graph G =

(V,E). If D is acyclic, then it has a sink s ∈ V and D[V \ {s}] is an acyclic
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orientation of G \ {s}. Conversely, if s ∈ V is a sink of D and D[V \ {s}] is an
acyclic orientation of G \ {s}, then D must be acyclic. Therefore, acyclicity can be
verified recursively in linear time. Extensionality can be verified in quadratic time
by comparing all pairs of out-neighborhoods in the orientation. Hence, eao is in
NP.

Secondly, we prove that eao restricted to split graphs is NP-hard. Let (X,T )

be an instance of top*, and let GT be the split graph given by Construction 89. By
Theorem 95, GT is a set graph if and only if there is a total order of X satisfying
T . Moreover, by definition, GT is a split graph with 2|X|+ 8|T |+ 3 vertices. Thus,
Construction 89 is a polynomial-time reduction of top* to eao restricted to split
graphs. Since, by Lemma 84, top* is NP-complete, we conclude that eao restricted
to split graphs is NP-complete.
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Chapter 7

Conclusion

In this dissertation, we have studied the time complexity of the set graph recog-

nition problem (eao). We have developed an approach for recognizing set graphs
in the class of cographs, and have proved that eao restricted to split graphs is
NP-complete. In this chapter, we discuss how these results have been and can be
extended further.

In Chapter 2 we have described the class of set graphs, as defined by A. Tomescu,
and have discussed some of its basic properties. In particular, we have shown the
necessity of the cut-set condition and the same neighbors condition for being a set
graph. A question that remains open from this discussion is that of finding possible
characterizations of the graphs satisfying both the cut-set condition and the same
neighbors condition that are not set graphs.

In Chapter 3, we have introduced the two main concepts on which we base our
approach for recognizing set graphs in the class of cographs: the layered extensional
acyclic orientation and the set-deficiency. Then, by generalizing some lemmas from
Chapter 2 to the context of leaos, we have proved some basic results concerning set-
deficiencies. In particular, we have shown that if X is a module of a graph G, then
S∆(G[X]) is bounded above by S∆(G)+ |N(X)\X|. If, however, X is not a module,
S∆(G[X]) is not similarly bounded. In fact, we have presented an example of a graph
G and a subset X ⊂ V (G) such that S∆(G[X]) = S∆(G)+2|N(X)\X| in Example 41.
It remains an open problem to find a tight upper bound for S∆(G[X]) in terms of
S∆(G) and |N(X) \ X|, i.e., to find a minimal function f : N2 → N such that for
every graph G and every subset X ⊆ V (G), S∆(G[X]) ≤ f(S∆(G), |N(X) \ X|).
We conjecture that (S∆(G) + 1)2|N(X)\X| − 1 is a tight upper bound for S∆(G[X]),
but further thought on this is needed.

In Chapter 4, we have presented how a minimum leao can be constructed for
the join of two disjoint graphs from minimum leaos of the two given graphs. By
applying Theorem 57 of Chapter 4, one is able to solve the following problem in
linear time:
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set-deficiency of joins (sdj)
INSTANCE: (G1, G2,S∆(G1),S∆(G2)), where G1 and G2 are disjoint graphs.
TASK: Compute S∆(G1 ∧G2).

One may wonder if similar results can be obtained for other graph operations
such as, for instance, the cartesian product of graphs. It is left as a future work to
determine whether the following problem can be solved in polynomial time:

set-deficiency of cartesian products
INSTANCE: (G1, G2,S∆(G1),S∆(G2)), where G1 and G2 are disjoint graphs.
TASK: Compute S∆(G1 ×G2).

The more problems of this type we can solve in polynomial time, the larger the
class of graphs in which set graphs can be recognized in polynomial time.

Another operation of interest is that of vertex substitution. Given two disjoint
graphs G1 and G2, and a vertex v ∈ V (G), the substitution of v for G2 in G1 is
obtained by removing v from G1 and joining every vertex of G2 to every vertex
of NG1(v), and is denoted by G1(v → G2). A. Tomescu has proved, in [14], that
the class of set graphs is closed under vertex substitutions, i.e., if G1 and G2 are
set graphs and v ∈ V (G1), then G1(v → G2) is a set graph. In the context of
set-deficiencies, we have the following problem.

set-deficiency of vertex substitutions (sds)
INSTANCE: (G,H, v,S∆(G),S∆(H)), where G and H are disjoint graphs and v ∈
V (G).
TASK: Compute S∆(G(v → H)).

It can be shown that, if there is a polynomial-time algorithm that solves sds,
then set graphs can be recognized in polynomial time in the class of split graphs.
However, by Theorem 96, eao restricted to split graphs is NP-complete. Hence, sds

is NP-hard. More details and the complete proofs of these claims will be presented
in a subsequent publication, currently in preparation.

In the first two sections of Chapter 5, we have presented how a minimum leao can
be constructed for a given graph from single-sink minimum leaos of each connected
component of the graph. In Section 5.3, we have briefly shown that not every graph
admits a single-sink minimum leao. Hence, it is left for a future work to find a
polynomial-time algorithm for computing, in general, the set-deficiency of a graph
from the given set-deficiency of each connected component, i.e., an algorithm that
solves the following general problem:

set-deficiency of unions (sdu)
INSTANCE: (G,CC(G),S∆|CC(G)), where G is a graph, CC(G) is the set of con-
nected components of G and S∆|CC(G) : CC(G) → N is the function such that, for
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every H ∈ CC(G), S∆|CC(G)(H) = S∆(H).
TASK: Compute S∆(G).

In Section 5.4, we have applied our polynomial-time algorithms, for solving sdj

and partially solving sdu, to obtain a polynomial-time algorithm for recognizing
set graphs in the class of cographs. This solution relies on a well-known structural
characterization of cographs in terms of disconnected and co-disconnected graphs.
A larger class of graphs, that of P4-sparse graphs, admits a similar characterization
(see [8]), in terms of disconnected, co-disconnected graphs and spiders. Using this
characterization, we were able to extend our methods, for recognizing set graphs
in polynomial time, to the class of P4-sparse graphs. The details of this additional
result are currently being written, and will be presented in a subsequent publication.

In Chapter 6, we have proved that the recognition of set graphs in the class
of split graphs is an NP-complete problem. Unresolved questions tangential to this
have appeared, but of a general interest and not particular to the study of set graphs.
The main proof, given by Opatrny in [12], that top is NP-complete uses a reduction
from the problem of 2-colorability of hypergraphs of rank 3. Opatrny,
then, points to a paper by L. Lovász [9] as a reference for the NP-completeness
of 2-colorability of hypergraphs of rank 3. The book [7], by Garey and
Johnson, reaffirms the NP-completeness of 2-colorability of hypergraphs of

rank 3 (see the problem named set splitting, in [7]), and also points to [9] for
a proof. However, the proof by L. Lovász, in [9], only applies to hypergraphs of
rank strictly greater than 3. Hence, the time complexity of the 2-colorability

of hypergraphs of rank 3 remains elusive.
In some classes of graphs, in which the problem of set graph recognition

can be solved in polynomial time, the more general problem, of determining the
set-deficiency of the graph, remains of unknown complexity. For instance, Corol-
lary 26 states that a tree is a set graph if and only if it is a path. So, set graph

recognition in the class of trees is trivial. But it remains an interesting open
problem to find an efficient method for computing the set-deficiency, or a minimum
leao, of an arbitrary tree.

The class of set graphs has been an interesting and rich object of study. As we
have pointed in this final chapter, the theory of layered extensional acyclic orienta-
tions can be extended much further, and has already allowed us to better understand
the set graph recognition problem.
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