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de Buenos Aires foi muito importante para a minha formação como doutor.

Um agradecimento especial aos meus amigos do LabAC, por todo o apoio que eu
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para a obtenção do grau de Doutor em Ciências (D.Sc.)

FINURA DE PRECEDÊNCIA EM GRAFOS E ÁRVORES DE
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Novembro/2022
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Programa: Engenharia de Sistemas e Computação

Grafos de intervalo e grafos de intervalo próprio são classes de grafos bem

conhecidas e para as quais existe uma ampla literatura relacionada. Como

consequência, algumas generalizações foram propostas com o passar dos anos, nas

quais grafos em geral são expressos por meio de k grafos de intervalo.

Um exemplo recente desse tipo de generalização são as classes dos grafos k-fino

e k-fino próprio, que generalizam grafos de intervalo e grafos de intervalo próprio,

respectivamente. Neste trabalho, é introduzido uma subclasse dos grafos k-fino

(resp. k-fino próprio), chamada de grafos k-fino de precedência (resp. k-fino próprio

de precedência). Com relação aos grafos k-fino de precedência particionados, é

apresentado um algoritmo polinomial de reconhecimento baseado em árvores PQ.

Considerando os grafos k-fino próprio de precedência particionados, é provado que

o problema de reconhecimento relacionado é NP-completo para um k arbitrário e

polinomial quando k é fixo. Além disso, é apresentado uma caracterização baseada

em grafos de limiar para ambas as classes.

Na década de oitenta, Hamming propôs uma estrutura, denominada de árvore

Hamming-Huffman (AHH), que une compressão de dados e detecção de erros.

Considerando as AHHs, esta tese define uma versão mais restrita desse tipo

de estrutura, denominada [k]-AHH, que admite śımbolos em no máximo k ńıveis

distintos. Neste trabalho, é apresentado um algoritmo polinomial para a construção

de [2]-AHHs ótimas. Para śımbolos com frequências uniformes, é provado que uma

AHH ótima é sempre uma [5]-AHH e que sempre existe uma AHH ótima que também

é uma [4]-AHH. Por fim, considerando os resultados experimentais, é conjecturado

que sempre existe uma AHH uniforme ótima que também é uma [3]-AHH.
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Interval and proper interval graphs are very well-known graph classes, for which

there is a wide literature. As a consequence, some generalizations of interval graphs

have been proposed, in which graphs in general are expressed in terms of k interval

graphs, by splitting the graph in some special way.

As a recent example of such an approach, the classes of k-thin and proper

k-thin graphs have been introduced generalizing interval and proper interval graphs,

respectively. In this work, we introduce a subclass of k-thin graphs (resp. proper

k-thin graphs), called precedence k-thin graphs (resp. precedence proper k-thin

graphs). Concerning partitioned precedence k-thin graphs, we present a polynomial

time recognition algorithm based on PQ trees. With respect to partitioned

precedence proper k-thin graphs, we prove that the related recognition problem

is NP-complete for an arbitrary k and polynomial-time solvable when k is fixed.

Moreover, we present a characterization for these classes based on threshold graphs.

In the eighties, Hamming proposed a data structure, called Hamming-Huffman

tree (HHT), in which both data compression and data error detection are tackled.

Considering Hamming-Huffman trees, we define a restricted version of this

structure, called [k]-HHT, which admits symbol leaves in at most k different levels.

We present an algorithm to build optimal [2]-HHTs. For uniform frequencies, we

prove that an optimal HHT is always a [5]-HHT and that there exists an optimal

HHT which is a [4]-HHT. Then, considering experimental results, we conjecture that

there exists an optimal uniform tree which is a [3]-HHT.
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Chapter 1

Introduction

This thesis tackles problems of two research areas of computer science. The first one

concerns to thinness in graphs, which is a concept that generalizes interval graphs.

In particular, we study a subclass of k-thin (resp. proper k-thin) graphs. The second

problem is related to Hamming-Huffman trees, which is a variation of Huffman trees

that unites both data compression and data error detection.

This chapter aims to present an introduction for both these topics. It describes

some related literature and the outline of the thesis. Furthermore, the list of publi-

cations that resulted from the work of the thesis.

1.1 Thinness in graphs

The class of k-thin graphs has been introduced by Mannino, Oriolo, Ricci and Chan-

dran in [1] as a generalization of interval graphs. Motivated by this work, Bonomo

and de Estrada [2] defined the class of proper k-thin graphs, which generalizes

proper interval graphs. A k-thin graph G is a graph for which there is a k-partition

(V1, V2, . . . , Vk), and an ordering s of V (G) such that, for any triple (p, q, r) of V (G)

ordered according to s, if p and q are in a same part Vi and pr ∈ E(G), then

qr ∈ E(G). Such an ordering and partition are said to be consistent with each other.

For instance, for C4 = v1, v2, v3, v4, v1, both the partitioning V = {{v1}, {v2, v3, v4}}
and the ordering s = v1, v2, v4, v3 are consistent with each other.

A graph G is called a proper k-thin graph if V (G) admits a k-partition

(V1, . . . , Vk), and an ordering s such that both s and its reversal are consistent with

the partition (V1, . . . , Vk). An ordering of this type is said to be strongly consistent

with the partition. For example, for C4 = v1, v2, v3, v4, v1, both the partitioning

V = {{v1, v3}, {v2, v3}} and the ordering s = v1, v2, v3, v4 are strongly consistent

with each other.

The interest on the study of both these classes comes from the fact that some

NP-complete problems can be solved in polynomial time when the input graphs
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belong to them [1–3]. Some of those efficient solutions have been exploited to solve

real world problems as presented in [1].

On a theoretical perspective, defining general graphs in terms of the concept of

interval graphs has been of recurring interest in the literature. Firstly, note that

these concepts measure “how far” a given graph G is from being an interval graph, or

yet, how G can be “divided” into interval graphs, mutually bonded by the existence

of an ordering of the vertices holding a certain property. Namely, the vertices can be

both partitioned and ordered in such a way that, for every part V ′ of the partition

and every vertex v ∈ V (G), the vertex ordering obtained by removing all vertices

except v and those in V ′ that precede v is a canonical ordering of an interval graph.

Characterizing general graphs in terms of the concept of interval graphs, or proper

interval graphs, is not new. A motivation for such an approach is that the class

of interval graphs is well-known, having several hundreds of research studies on an

array of different problems on the class, and formulating general graphs as a function

of interval graphs is a way to extend those studies to general graphs. Given that,

both k-thin and proper k-thin graphs are also generalizations of this kind.

Other generalizations of interval graphs have been proposed. As examples, we

may cite the k-interval and k-track interval graphs. A k-interval is the union of k

disjoint intervals on the real line. A k-interval graph is the intersection graph of

a family of k-intervals. Therefore, the k-interval graphs generalize the concept of

interval graphs by allowing a vertex to be associated with a set of disjoint intervals.

The interval number i(G) of G [4] is the smallest number k for which G has a k-

interval model. Clearly, interval graphs are the graphs with i(G) = 1. A k-track

interval is the union of k disjoint intervals distributed in k parallel lines, where each

interval belongs to a distinct line. Those lines are called tracks. A k-track interval

graph is the intersection graph of k-track intervals. The multitrack number t(G) of

G [5, 6] is the minimum k such that G is a k-track interval graph. Interval graphs

are equivalent to the 1-interval graphs and 1-track interval graphs. The problems of

recognizing k-interval and k-track interval graphs are both NP-complete [7, 8], for

every k ≥ 2.

In this work, we define subclasses of k-thin and proper k-thin graphs called

precedence k-thin and precedence proper k-thin graphs, respectively, by adding the

requirement that the vertices of each class have to be consecutive in the order. In

both cases, when the vertex order is given, it can be proved that a greedy algo-

rithm can be used to find a (strongly) consistent partition into consecutive sets with

minimum number of parts. When, instead, the partition into k parts is given, the

problem turns out to be more interesting. We will call partitioned precedence k-

thin graphs (resp. partitioned precedence proper k-thin graphs) the graphs for which

there exists a (strongly) consistent vertex ordering in which the vertices of each part

2



are consecutive for the given partition. Concerning partitioned precedence k-thin

graphs, we present a polynomial time recognition algorithm. With respect to parti-

tioned precedence proper k-thin graphs, we provide a proof of NP-completeness for

arbitrary k, and a polynomial time algorithm when k is fixed. Also, we provide a

characterization for both classes based on threshold graphs.

The condition of precedence in thinness may favor the solution of some prob-

lems that might be harder for more general graphs. This is due to the fact that

the precedence condition imposes a stronger and richer structure between vertices

belonging to distinct parts of the partition. Property 3, in Section 3.3, is an example

of a consequence of such a richer structure, which can be applied to the Hamiltonian

path problem. If the input graph is a connected precedence proper 2-thin graph,

having a partition for which each part induces a connected graph, it is straightfor-

ward to show that the graph admits a Hamiltonian path. Moreover, this path can

be obtained in polynomial time.

1.2 Hamming-Huffman trees

In information theory, there is a common trade-off that arises in data transmission

processes, in which two goals are usually tackled independently: data compression

and data error detection. Paradoxically, these two goals have conflicting natures:

while data compression shrinks the message as much as possible, data preparation

for error detection adds redundancy to messages so that a receiver can detect cor-

rupted bits, and possibly fix them. Data compression can be achieved using different

strategies, often depending on the type of data being compressed. One of the most

traditional methods is that of Huffman [9], which uses ordered trees, known as

Huffman trees, to encode the symbols of a given message.

A Huffman tree assigns each symbol found on the message to be compressed to a

new binary string, such that the total amount of data associated with the message,

using this new encoding scheme, is the smallest as possible. Huffman trees achieve

this goal by observing the frequencies of each symbol in the original message and

assigning smaller codifications to higher-frequency symbols. A relevant aspect of

Huffman trees is that this type of tree is proved to yield optimal codes.

In 1980, Hamming proposed the union of both compression and error detection

features through a data structure called Hamming-Huffman tree [10]. This data

structure compresses data similarly to Huffman trees with the additional feature of

enabling the detection of any 1-bit error due to error transmission. In contrast to

Huffman trees, building optimal Hamming-Huffman trees is still an open problem.

Due to its importance and relevance for practical applications, we aim to study

exact algorithms to build optimal Hamming-Huffman trees. Since the problem is

3



still wide open, our approach is by constraining the number of levels of the tree at

which its leaves can appear. This approach was employed in [11] to study Hamming-

Huffman trees in which the leaves lie at a single level.

Therefore, in this work, we tackle the problem of building optimal Hamming-

Huffman trees in which the leaves lie in exactly k distinct levels. If k ≤ 2, we

provide a polynomial time algorithm to solve the problem. Otherwise, we provide

an algorithm to evaluate a lower bound on the optimal cost of such trees when the

symbols have a uniform probability of occurrence. In this case, we also prove that

there exists an optimal Hamming-Huffman tree having their symbol leaves lying on

at most 4 consecutive levels.

1.3 Published results

This section presents conference participations and journal publications derived from

the work of this doctorate.

1.3.1 Participation in Conferences

2022 Min C. Lin, Fabiano S. Oliveira, Paulo E. D. Pinto, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter

Restricted Hamming-Huffman trees,

10th Latin American Workshop on Cliques in Graphs.

2020 Flavia Bonomo-Braberman, Fabiano S. Oliveira, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter,

A complexidade do reconhecimento de grafos k-fino próprio de precedência,

V Encontro de Teoria da Computação, ETC 2020.

2020 Min C. Lin, Fabiano S. Oliveira, Paulo E. D. Pinto, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter

Two Level Hamming-Huffman Trees,

9th Latin American Workshop on Cliques in Graphs.

2019 Flavia Bonomo-Braberman, Fabiano S. Oliveira, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter,

Reconhecimento de Grafos Fino de Precedência,

IV Encontro de Teoria da Computação, ETC 2019.

2018 Flavia Bonomo-Braberman, Fabiano S. Oliveira, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter,

Sobre Finura Própria de Grafos,

III Encontro de Teoria da Computação.

2018 Fabiano S. Oliveira, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter,

On a Class of Proper 2-thin Graphs,

VIII LATIN AMERICAN WORKSHOP ON CLIQUES IN GRAPHS.
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1.3.2 Publications in Journals and Submitted Papers

2022 Flavia Bonomo-Braberman, Fabiano S. Oliveira, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter

Precedence thinness in graphs,

Discrete Applied Mathematics, Volume 323, P. 76-95, 15 December 2022

2022 Min C. Lin, Fabiano S. Oliveira, Paulo E. D. Pinto, Moysés S. Sampaio Jr., Jayme L. Szwarcfiter

Restricted Hamming-Huffman trees,

RAIRO-Oper. Res., Volume 56, Number 3, P. 1823 - 1839, May-June 2022

2022 Flavia Bonomo-Braberman, Carolina L. Gonzalez, Fabiano S. Oliveira, Moysés S. Sampaio Jr.,

Jayme L. Szwarcfiter

Thinness of product graphs,

Discrete Applied Mathematics, Volume 312, P. 52-71, 15 May 2022

This thesis focus mainly on the results of the papers entitled Precedence thinness in

graphs and Restricted Hamming-Huffman trees. It is worth mentioning that parts of these

works were developed in the course of a scientific visit to the university of Buenos Aires

during September of 2018, where I worked with the professor Flavia Bonomo-Braberman

and the professor Min Chih Lin. Also, this visit resulted in the paper entitled Thinness of

product graphs where other types of (proper) thinness have been defined and the behavior

of (proper) thinness over some graph products have been studied.

1.4 Outline of the work

This work is organized in 5 chapters. Chapter 2 introduces the necessary concepts and

basic terminology employed throughout the text.

Chapter 3 presents some results for the class of precedence k-thin graphs, as described

next. Section 3.1 presents a polynomial time recognition algorithm for the class of prece-

dence k-thin graphs. Section 3.2 proves the NP-completeness for the recognition problem

of precedence proper k-thin graphs. Moreover, it proves that if the number of parts of the

input graph is fixed, then the problem is solvable in polynomial time. Section3.3 presents

a characterization for (proper) k-thin graphs based on threshold graphs.

Chapter 4 presents some results regarding Hamming-Huffman trees, as following de-

scribed. In Section 4.1, the problem of building Hamming-Huffman trees in which all

symbol leaves lie on the same level is tackled. In Section 4.2, the problem of build-

ing Hamming-Huffman trees in which the leaves are distributed in two distinct levels is

discussed. In Section 4.3, its is proved that, for symbols with a uniform probability of

occurrence, there is always an optimal Hamming-Huffman tree such that its symbol leaves

lie on at most four consecutive levels. Also, it is presented an algorithm to evaluate a lower

bound on the cost of such trees. In Section 4.4, some experimental results are presented.

Finally, in Chapter 5, some concluding remarks and proposals concerning the problems

to be further investigated.
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Chapter 2

Preliminaries

All graphs in this work are finite and have no loops or multiple edges. Let G be a graph.

Denote by V (G) its vertex set, by E(G) its edge set. Denote the size of a set S by |S|.
Unless stated otherwise, |V (G)| = n and |E(G)| = m. Let u, v ∈ V (G), u and v are

adjacent if uv ∈ E(G).

Let V ′ ⊆ V (G). The subgraph of G induced by the subset of vertices V ′, denoted by

G[V ′], is the graph G[V ′] = (V ′, E′), where E′ = {uv ∈ E(G) | u, v ∈ V ′}. An induced

subgraph of G is a subgraph of G induced by some subset of V (G). A graph G′ obtained

from G by removing the vertex v ∈ V (G) is G′ = G[V (G) \ {v}].
Let u ∈ V (G). The (open) neighborhood of u, denoted by NG(u), is defined as NG(u) =

{v ∈ V (G) | (u, v) ∈ E(G)}. The closed neighborhood of u is denoted by NG[u] =

{u} ∪ NG(u). Let U ⊆ V (G). Define NG(U) =
⋃
u∈U NG(u) and NG[U ] =

⋃
u∈U NG[u].

When G is clear in the context, it may be omitted from the notation.

We define u, v ∈ V (G) as true twins (resp. false twins) if N [u] = N [v] (resp. N(u) =

N(v)). A vertex v of G is universal if N [v] = V (G). We define the degree of v ∈ V (G),

denoted by d(v), as the number of neighbors of v in G, i.e. d(v) = |N(v)|.
A clique or complete set (resp. stable set or independent set) is a set of pairwise adjacent

(resp. nonadjacent) vertices. We use maximum to mean maximum-sized, whereas maximal

means that such a set is not properly contained in any other set. The use of minimum and

minimal is analogous. A vertex v ∈ V (G) is said to be simplicial if G[N(v)] is a clique.

A coloring of a graph is an assignment of colors to its vertices, each vertex assigned

to a color, such that any two adjacent vertices are assigned different colors. The smallest

number t such that G admits a coloring with t colors (a t-coloring) is called the chromatic

number of G and is denoted by χ(G). A coloring defines a partition of the vertices of the

graph into stable sets, called color classes.

Let G = (V,E), the complement of G is defined as G′ = (V,E′) such that E′ = {uv |
u, v ∈ V and uv 6∈ E}.

A graph G = (V,E) is a comparability graph if there exists an ordering v1, . . . , vn of V

such that, for each triple (r, s, t) with r < s < t, if vrvs and vsvt are edges of G, then so

is vrvt. Such an ordering is a comparability ordering. A graph is a co-comparability graph
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if its complement is a comparability graph.

A tree T is a connected graph that has no cycles. A rooted tree Tv is a tree in which

a vertex v ∈ V (T ) is labeled as the root of the tree, and all vertices, known as nodes of

Tv, are classified in relation to the root. Let u,w ∈ V (Tv), w is a descendant of u if the

path from w to v includes u. The node w is said to be a child of u if it is a descendant of

u and wu ∈ E(Tv). The children of u is defined as the set containing all child nodes of u.

The node u is said to be a leaf of Tv if it has no child in Tv. The subtree Tu of Tv rooted

at the node u is the rooted tree that consists of u as the root and its descendants in Tv as

the nodes.

A directed graph, or digraph, D is formed by a set of vertices V (D) and a set of directed

edges, or arcs, E(D) such that E(D) consists of ordered pairs of V (D). Analogously to

graphs, unless stated otherwise, |V (D)| = n and |E(D)| = m. A directed cycle of a digraph

D is a sequence v1, v2, . . . , vi, 1 ≤ i ≤ n, of vertices of V (D) such that v1 = vi and, for

all 1 ≤ j < i, (vj , vj+1) ∈ E(D). A directed acyclic graph (DAG) D is a digraph with no

directed cycles. A topological ordering of a DAG D is a sequence v1, v2, . . . , vn of V (D)

such that there are no 1 ≤ i < j ≤ n such that (vj , vi) ∈ E(D). Determining a topological

ordering of a DAG can be done in time O(n+m) [12].

An ordering s of elements of a set C consists of a sequence e1, e2, . . . , en of all elements

of C. The set C, corresponding to all elements in an ordering s, is denoted by V (s). We

define s̄ as the reversal of s, that is, s̄ = en, en−1, . . . , e1. We say that ei precedes ej in

s, denoted by ei < ej , if i < j. An ordered tuple (a1, a2, . . . , ak) of some elements of C
is ordered according to s when, for all 1 ≤ i < k, ai precedes ai+1 in s. Given orderings

s1 and s2, the ordering obtained by concatenating s1 and s2, i.e., where a precedes a′ if

either a < a′ in s1 or a < a′ in s2 or a ∈ V (s1) and a′ ∈ V (s2), is denoted by s1s2.

2.1 Interval graphs

An interval graph G is a graph in which V (G) is a family of intervals on the real line such

that for any two intervals I, J ∈ V (G), IJ ∈ E(G) if and only if I ∩ J 6= ∅. A family R
of intervals that can be represented by G(V ) is said to be an interval model, or a model,

of G. We say that R is associated with G and vice-versa. It is worth mentioning that an

interval graph can be associated to several models but an interval model can be associated

to a unique graph. Concerning interval graphs, there are some characterizations that are

relevant to this work, which we present next.

Theorem 1 ([13]). A graph G is an interval graph if, and only if, there is an ordering s

of V (G) such that, for any triple (p, q, r) of V (G) ordered according to s, if pr ∈ E(G),

then qr ∈ E(G).

The ordering described in Theorem 1 is said to be a canonical ordering. Figure 2.1(a)

depicts an interval graph in which the vertices are presented from left to right in one of

its canonical orderings. An interval model of this graph is presented in Figure 2.2.

7



(a) (b)

Figure 2.1: (a) Canonical ordering and (b) proper canonical ordering.

Let R be an interval model of an interval graph G. Note that, if we consider a vertical

line that intersects a subset of intervals in R, then these intervals form a clique in G. This

is true because they all contain the point in which this line is defined. Moreover, if the

given line traverses a maximal set of intervals, then the corresponding clique is maximal.

Figure 2.2 depicts an interval model and the vertical lines that correspond to maximal

cliques of the graph in Figure 2.1(a). The following is a characterization of interval graphs

in terms of the maximal cliques of the graph.

Figure 2.2: An interval model and the maximal cliques of the graph in Figure 2.1(a).

Theorem 2 ([14]). A graph G is an interval graph if, and only if, there is an ordering

sC = C1, C2, . . . , Ck of its maximal cliques such that if v ∈ Ci ∩ Cz with 1 ≤ i ≤ z ≤ k,

then v ∈ Cj, for all i ≤ j ≤ z.

The ordering sC described in Theorem 2 is said to be a canonical clique ordering. The

ordering of the maximal cliques depicted in Figure 2.2, read from left to right, represents a

canonical clique ordering. Let v ∈ V (G), we define sC(v) as the index of the first maximal

clique in the ordering sC containing v.

A proper interval graph is an interval graph that admits an interval model in which no

interval properly contains another. There is a characterization of proper interval graphs

which is similar to that presented in Theorem 1, as described next.

Theorem 3 ([14]). A graph G is a proper interval graph if, and only if, there is an

ordering s of V (G) such that, for any triple (p, q, r) of V (G) ordered according to s, if

pr ∈ E(G), then pq, qr ∈ E(G).

The ordering specified in the previous theorem is defined as a proper canonical ordering.

The ordering of the vertices of the graph depicted in Figure 2.1(b) from left to right is

proper canonical. Note that a proper canonical ordering is also a canonical ordering. An

important property of proper canonical orderings is the following:

Lemma 4 ([14]). If G is a connected proper interval graph, then a proper canonical

ordering of G is unique up to reversion and permutation of mutual true twin vertices.
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It can be proved that the vertices of each connected component of an interval graph

constitute a block of consecutive vertices in every canonical ordering of the vertices of

the graph. As a consequence, if a (proper) interval graph G is disconnected, then every

canonical ordering of V (G) consists of a permutation of canonical orderings of each of its

components. For the sake of simplicity, we often refer to (proper) canonical orderings of

V (G) as (proper) canonical orderings of G.

Let s be an ordering of V (G) and sC = C1, C2, . . . , Ck an ordering of the maximal

cliques of G. The sequence s is said to be ordered according to sC if for all u, v ∈ V (G)

such that u < v in s, there are no 1 ≤ i < j ≤ k such that v ∈ Ci \ Cj and u ∈ Cj . As

an example, note that the canonical ordering of the Figure 2.1(a) is ordered according to

the maximal clique ordering sC = C1, C2, . . . , C6 of the Figure 2.2. The following lemma

relates the characterization of canonical orderings and canonical clique orderings.

Lemma 5. Let G be a graph and s be an ordering of V (G). The ordering s is a canonical

ordering of V (G) if, and only if, s is ordered according to a canonical clique ordering of

G.

Proof. Consider sC a canonical clique ordering of G. We will show that it is possible to

build a canonical ordering s from sC , respecting its clique ordering. To achieve this, first

start with an empty sequence s. Iteratively, for each element X of the sequence sC , choose

all simplicial vertices of X, adding them to s in any order and removing them from G.

Note that the removal of the simplicial vertices of X can turn other non simplicial vertices

of G into simplicial ones. Clearly, at the end of the process, s will contain all the vertices

of G. Suppose s is not a canonical ordering, that is, there are p, q, r ∈ V (G), p < q < r in

s, such that pr ∈ E(G) and qr 6∈ E(G). Let Cp, Cq and Cr be the maximal cliques of sC

being processed at moment p, q and r were choose, respectively. Note that Cp < Cq < Cr

in Sc and, as Cp is the last maximal clique in sC that contains p and pr ∈ E(G), r ∈ Cp.
Besides, as qr 6∈ E(G), r 6∈ Cq. Therefore, r ∈ Cp ∩ Cr and r 6∈ Cq. A contradiction with

the fact that sC is a canonical clique ordering. Hence, s is a canonical ordering.

Let s = v1, v2, . . . , vn be a canonical ordering of G. We prove by induction on |V (G)| =
n that s is ordered according to a canonical clique ordering. Clearly, the statement is

true for n = 1. Suppose that the statement is true for any 1 ≤ n′ < n. Let s′ be

the sequence obtained from s by removing vn. Clearly s′ is also a canonical ordering

and, by the induction hypothesis, s′ is ordered according with a canonical clique ordering

s′C = C1, C2, . . . , Ck. Let Ci, with 1 ≤ i ≤ k, be the first clique of s′C such that vn ∈
N(Ci). Let C ′j = {Cj ∩ N(vn)} ∪ {vn}, i ≤ j ≤ k. Note that, as s is a canonical

ordering, for all Cj of s′C , i < j ≤ k, {Cj ∩ N(vn)} ∪ {vn} is a maximal clique of G. If

Ci ⊆ N(vn), then s′C = C1, C2, . . . , C
′
i, C

′
i+1, . . . , C

′
k is a canonical clique ordering that

matches s. Otherwise, s′C = C1, C2, . . . , Ci, C
′
i, C

′
i+1, . . . , C

′
k is a canonical clique ordering

that matches s. Therefore, s is ordered according to a canonical clique ordering of G.
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2.2 PQ trees

A PQ tree [15] T is a data structure consisting of an ordered tree that describes a family

F of permutations of elements from a given set C. In a PQ tree T , the set of leaves is

C and the permutation being represented by T is the sequence of the leaves from left to

right. Regarding internal nodes, they are classified into two types, the P and the Q nodes.

A PQ tree T ′ is equivalent to T if it is obtained from T by any sequence of consecutive

transformations, each consisting of either permuting the children of a P node, or reversing

the children of a Q node. The family F of permutations of elements from C represented

by T is that of permutations corresponding to all PQ trees equivalent to T .

Graphically, in a PQ tree, leaves and P nodes are represented by circles and Q nodes

by rectangles. In representations of schematic PQ trees, a node represented by a circle

over a rectangle will denote that, in any concrete PQ tree conforming the scheme, such a

node is either a P node, or a Q node, or a leaf. Figure 2.3 depicts the described operations.

In Figure 2.3(a), we have a partial representation of a PQ tree. Figure 2.3(b) depicts an

equivalent PQ tree obtained from a permutation of the children of a P node of this tree

and Figure 2.3(c) exemplifies an equivalent PQ tree obtained from the reversion of the

children of a Q node.

(a) (b) (c)

Figure 2.3: A PQ tree (a) and an example of permutations (b) and reversions (c)
of the children of its nodes.

One of the applications from the seminal paper introducing PQ trees is that of recog-

nizing interval graphs. In such an application, each leaf of the PQ tree is a maximal clique

of an interval graph G and the family of permutations the tree represents is precisely all

the canonical clique orderings of G [15]. A PQ tree can be constructed from an interval

graph in time O(n+m) [15].

We will say that a vertex v belongs to a node X of a PQ tree, and naturally denote

by v ∈ X, if it belongs to any leaf that descends from this node. Figure 2.4 depicts a PQ

tree of the interval graph of Figure 2.1(a) according to the maximal cliques in Figure 2.2.

The permutations implicitly represented by this PQ tree are:
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• C1, C2, C3, C4, C5, C6

• C1, C2, C3, C4, C6, C5

• C1, C2, C4, C3, C5, C6

• C1, C2, C4, C3, C6, C5

• C6, C5, C4, C3, C2, C1

• C5, C6, C4, C3, C2, C1

• C6, C5, C3, C4, C2, C1

• C5, C6, C3, C4, C2, C1

Figure 2.4: A PQ tree of
the interval graph of Fig-
ure 2.1(a) according to the
maximal cliques in Figure 2.2.

2.3 Thinness and proper thinness

A graph G is called a k-thin graph if there is a k-partition (V1, V2 . . . , Vk) of V (G) and an

ordering s of V (G) such that, for any triple (p, q, r) of V (G) ordered according to s, if p

and q are in a same part Vi and pr ∈ E(G), then qr ∈ E(G). An ordering and a partition

satisfying that property are called consistent. That is, a graph is k-thin if there is an

ordering consistent with some k-partition of its vertex set. The thinness of G, denoted by

thin(G), is the minimum k for which G is a k-thin graph.

A graph G is said to be a proper k-thin graph if G admits a k-partition (V1, . . . , Vk)

of V (G) and an ordering s of V (G) consistent with the partition and, additionally, for

any triple (p, q, r) of V (G), ordered according to s, if q and r are in a same part Vi

and pr ∈ E(G), then pq ∈ E(G). Equivalently, an ordering s of V (G) such that s and

its reverse are consistent with the partition. Such an ordering and partition are called

strongly consistent. The proper thinness of G, or pthin(G), is the minimum k for which

G is a proper k-thin graph.

Figures 2.5(a) and 2.5(b) depict two 2-partitions of a graph, in which the classes

are represented by distinct colors, and two different vertex orderings. The ordering of

Figure 2.5(a) is consistent with the corresponding partition but not strongly consistent,

while the ordering of Figure 2.5(b) is strongly consistent with the corresponding partition.

Note that k-thin graphs (resp. proper k-thin graphs) generalize interval graphs (resp.

proper interval graphs). The 1-thin graphs (resp. proper 1-thin graphs) are the interval

graphs (resp. proper interval graphs). The parameter thin(G) (resp. pthin(G)) is in a

way a measure of how far a graph is from being an interval graph (resp. proper interval

graph).

For instance, consider the graph C4. Since C4 is not an interval graph, pthin(C4) ≥
thin(C4) > 1. Figure 2.5 proves that thin(C4) = pthin(C4) = 2.

The complexity of deciding whether the thinness of a graph is at most k is NP-

complete (cf [16]). On the other hand, the complexity of recognizing whether a graph is
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proper k-thin, is still an open problem even for a fixed k ≥ 2. For a given vertex ordering,

there are polynomial time algorithms that compute a partition into a minimum number

of classes for which the ordering is consistent (resp. strongly consistent) [2, 3]. However,

given a vertex partition, the problem of deciding the existence of a vertex ordering which

is consistent (resp. strongly consistent) with that partition is NP-complete [2].

A characterization of k-thin or proper k-thin graphs by forbidden induced subgraphs

is only known for k-thin graphs within the class of cographs [2]. Graphs with arbitrary

large thinness were presented in [1], while in [2] a family of interval graphs with arbitrary

large proper thinness was used to show that the gap between thinness and proper thinness

can be arbitrarily large. The relation of thinness and other width parameters of graphs

like boxicity, pathwidth, cutwidth and linear MIM-width was shown in [1, 2]. In [17] the

behavior of (proper) thinness over graph products are studied. Moreover, some other types

of thinness are presented, which differs from each other by the constraints applied to each

partition.

Let G be a graph and s an ordering of its vertices. The graph Gs has V (G) as vertex

set, and E(Gs) is such that for all v < w in s, vw ∈ E(Gs) if and only if there is a vertex z

in G such that v < w < z, zv ∈ E(G) and zw 6∈ E(G). Similarly, the graph G̃s has V (G)

as vertex set, and E(G̃s) is such that for all v < w in s, vw ∈ E(G̃s) if and only if either

vw ∈ E(Gs) or there is a vertex x in G such that x < v < w, xw ∈ E(G) and xv 6∈ E(G).

Theorem 6. [2, 3] Given a graph G and an ordering s of its vertices, a partition of V (G)

is consistent (resp. strongly consistent) with the ordering s if and only if the partition is

a valid coloring of Gs (resp. G̃s), which means that each part corresponds to a color class

in the coloring under consideration.

(a) (b)

Figure 2.5: (a) A consistent ordering and a (b) strongly consistent ordering of V (C4),
for the corresponding 2-partitions.

2.4 Hamming-Huffman trees

An n-cube or a hypercube with dimension n, is the graph Qn having V (Qn) as the set of all

binary strings with size n (and, therefore, |V (Qn)| = 2n). Moreover, (u, v) ∈ E(Qn) if the

binary strings of u and v differ exactly in one position. Let u, v ∈ V (Qn), the Hamming

distance between u and v, denoted by d(u, v), is the number of positions in which the

binary strings of u and v differ.

The parity of a binary string v is the parity of the number of 1’s in v.
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We define the minimum neighborhood over independent sets with size ` of Qn as

ϕ(`, n) = min{|N(L)| | L ⊂ V (Qn), |L| = ` and L is an independent set of Qn}

A strict binary tree is a rooted tree such that each node has either two or zero children.

The level of a node is the number of edges on the path from this node up to the root of

the tree. A full binary tree is a strict binary tree in which all the leaves are at the same

level. The height of a tree is the maximum level over all its nodes.

In the context of data compression techniques, an important data structure is the

Huffman tree. A Huffman tree (HT) T is a rooted strict binary tree in which each edge

(u, v), v being a left (resp. right) child of u, is labeled by 0 (resp. 1) and the set of leaves

of T is Γ, the set of all distinct symbols of which a message M to be sent consists. Given

T , each symbol a of M is sequentially encoded into a binary string c(a). Such encoding is

given by the sequence of 0’s and 1’s found on the edges of the directed path from the root

of T to the leaf corresponding to a. In Figure 2.6(a), for instance, the leaves are encoded,

reading them from left to right, as 00, 010, 011, 10, and 11. Over all possible trees, the

HT for M is a tree T such that its cost

c(T ) =
∑
a∈Γ

p(a)|c(a)|

is minimum, where p(a) stands for the probability of occurrence of a in the message and

|c(a)| is the length of the string c(a). We say that an HT is uniform if all of its symbols have

a uniform probability of occurrence, that is, each symbol has a probability of occurrence

of 1
|Γ| . Figure 2.6(a) depicts a uniform HT T with c(T ) = 2.4 on 5 symbols.

The concept of Hamming-Huffman trees generalizes that of Huffman trees. A

Hamming-Huffman tree (HHT) is a strict binary tree holding the same properties of an

HT, except that the set of leaves is partitioned into symbol and error leaves, such that the

following properties hold:

• every node e of T such that d(c(e), c(a)) = 1, for some symbol leaf a ∈ Γ, is a leaf

of T called an error leaf ;

• every node of T is either an error leaf or an ancestor of a symbol leaf.

HHTs can be applied to detect errors which occurs in the transmission of messages.

Under the assumption that when data is transmitted at most one bit can accidentally be

flipped, HHTs detect such errors during the decoding process: if an error leaf is hit, the

data has been corrupted during transmission. Optimal HHTs are defined exactly the same

as (optimal) HTs. Figure 2.6(b) depicts an optimal uniform HHT T with c(T ) = 3.8 on 5

symbols. In the presented figures, error leaves are colored black.

Although HTs can be built efficiently in a greedy fashion [9], the construction of

optimal HHTs is open since defined by Hamming in the eighties [10]. An approximation

algorithm having time O(n log3 n) was presented in [18, 19] with a low additive error with

respect to the entropy.
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(a)

(b)

Figure 2.6: Examples of (a) uniform Huffman and (b) optimal uniform Hamming-
Huffman trees, for 5 symbols.

Hamming-Huffman trees inspired other codes, such as in [20, 21], in which the authors

proposed a code called even codes. Even codes are obtained by a special type of Huffman

tree in which symbols are allowed to be encoded only with an even number of ones. In

this type of tree, nodes associated with an odd number of ones are either internal nodes

or error leaves.

The authors of that code provided an algorithm to build such a code in time

O(n3 log n). In [22], the algorithm was improved to have time complexity of O(n3). They

also presented two approximation algorithms for even codes having time complexity of

O(n log n), the second achieving a code having cost 16.7% higher than that of Huffman

trees. Related/constrained problems are studied in [23].

Figure 2.7 depicts an optimal Huffman tree, an optimal even tree and an optimal

Hamming-Huffman tree for three symbols with uniform frequencies.

In this work, we will weaken the concept of HHTs to enlarge the number of trees which

could be called HHTs. This is convenient to our algorithms and proofs, without losing the

motivation associated with the application related to detecting error capabilities.

If a tree T is an HHT as previously defined, we will say that T is a strict HHT. The

weaker definition of HHTs is the following. Given a strict binary tree T , in which the set

of leaves is partitioned into symbol and error leaves, T is an HHT if contract(T ) is a strict

HHT, where contract(T ) is a tree transformation defined as follows:

• if T has no sibling error leaves, then no modification to the tree is done.
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(a) (b) (c)

Figure 2.7: Optimal uniform HT(a), uniform even tree (b) and uniform HHT(c) for
three symbols.

• if the sibling node of an error leaf e is an error leaf, remove both e and its sibling

from T and make the node p, parent of e in T , into an error leaf. Let T ′ be the

resulting tree. Apply contract(T ′) recursively to obtain the final transformation.

Figure 2.8(a) presents an HHT T in this weaker sense, and Figure 2.8(b) shows the

strict HHT resulting of contract(T ). Note that contract(T ) can be done in time O(`).

The number of error leaves in HHTs is directly related to the encodings associated with

the symbol leaves. In Figure 2.8(a), symbol leaves are encoded as 000 and 111, resulting

in 6 error leaves, whereas in Figure 2.8(c), symbol leaves are encoded as 000, 011, 101,

and 110, resulting in 4 corresponding error leaves. In this second HHT, two more symbols

are being encoded using the same full binary tree as the one used in the first HHT.

In this work, we approach the problem by defining a constrained version of Hamming-

Huffman trees, namely that of determining an optimal HHT T in which the symbol leaves

are placed in exactly k distinct levels. A tree for which this property holds will be called

a k-Hamming-Huffman tree, or k-HHT. In Chapter 4, the problem of k-HHT is discussed.
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(a)

(b)

(c)

Figure 2.8: Examples of Hamming-Huffman trees.
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Chapter 3

Precedence Thinness

In this chapter, we consider a variation of the concept of (proper) thinness in graphs

by requiring that, given a vertex partition, the (strongly) consistent orderings hold an

additional property. This class is defined as follows.

A graph G is precedence k-thin (resp. precedence proper k-thin), or k-PT (resp. k-

PPT ), if there is a k-partition of its vertices and a consistent (resp. strongly consistent)

ordering s for which the vertices that belong to a same part are consecutive in s. Such

an ordering is called a precedence consistent ordering (resp. precedence strongly consistent

ordering) for the given partition. We define pre-thin(G) (resp. pre-pthin(G)) as the

minimum value k for which G is k-PT (resp. k-PPT). A k-PT (resp. k-PPT) graph is a

k-thin (resp. proper k-thin) graph. Therefore, the class of k-PT (resp. k-PPT) graphs is

a proper subclass of that of k-thin (resp. proper k-thin) graphs.

Figure 3.1 illustrates a graph that is a 2-PPT graph. The convention assumed is that

the strongly consistent ordering being represented consists of the vertices ordered as they

appear in the figure from bottom to top and, for vertices arranged in a same horizontal line,

from left to right. Therefore, the strongly consistent ordering represented in Figure 3.1 is

s = a, b, c, a′, b′, c′. The graph C4 is not 2-PPT, despite pthin(C4) = 2. It can be easily

verified by brute-force that, for all possible 2-partitions of its vertex set and for all possible

orderings s in which the vertices of a same part are consecutive in s, the ordering and the

partition are not strongly consistent.

Figure 3.1: A 2-PPT graph.

If a vertex order s is given, by Theorem 6, any partition which is precedence (strongly)

consistent with s is a valid coloring of Gs (resp. G̃s) such that, additionally, the vertices

on each color class are consecutive according to s. A greedy algorithm can be used to
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find a minimum vertex coloring with this property in polynomial time. Such method is

described next, in Theorem 7.

Theorem 7. Let G be a graph and s be an ordering of V (G). It is possible to obtain a

minimum k-partition V of V (G), in polynomial time, such that s is a precedence (strongly)

consistent ordering with respect to V.

Proof. Consider the following greedy algorithm that obtains an optimum coloring of Gs

(resp. G̃s) in which vertices having a same color are consecutive in s. That is, s is

a precedence consistent (resp. precedence strongly consistent) ordering concerning the

partition defined by the coloring. Color v1 with color 1. For each vi, i > 1, let c be the

last color used. Then color vi with color c if there is no vj , j < i, colored with c such that

vjvi ∈ E(Gs) (resp. vjvi ∈ E(G̃s)). Otherwise, color vi with color c + 1. We show, by

induction on |s| = n, that the algorithm finds an optimal coloring in which each vertex

has the least possible color.

The case where n = 1 is trivial. Suppose that the algorithm obtains an optimum

coloring of Gs (resp. G̃s), for orderings having size less than n. Remove the last vertex

vn from s and Gs (resp. G̃s) and use the given algorithm to color the resulting graph. By

the induction hypothesis, the chosen coloring for v1, v2, . . . , vn−1 is optimal. Moreover, the

colors are non-decreasing and each vertex is colored with the least possible color. Now,

add the removed vertex vn to s and to the graph Gs (resp. G̃s), with its respective edges,

and let the algorithm choose a coloring for it. If the color of vn is equal to the color of vn−1

the algorithm is optimal by the induction hypothesis. Otherwise, vn is colored with a new

color c′. Suppose the chosen coloring is not optimal. That is, it is possible to color v with

an existing color. This implies that there is at least a neighbor vj of vn, in Gs (resp. G̃s),

that can be recolored with a smaller color. This is an absurd because the algorithm has

already chosen the least possible color for all the vertices of Gs \ {vn} (resp. G̃s \ {vn}),
relative to s.

In the following sections, we will deal with the case where the vertex partition is given

and the problem consists of finding the vertex ordering. From now on, we will then simply

call precedence consistent ordering (resp. precedence strongly consistent ordering) to one

that is such for the given partition.

3.1 Precedence thinness for a given partition

In this section, we present an efficient algorithm to precedence k-thin graph recognition for

a given partition. This algorithm uses PQ trees and some related properties to validate

precedence consistent orderings in a greedy fashion, iteratively choosing an appropriate

ordering of the parts of the given partition that satisfies precedence consistence, if one

does exist. Formally, the problem addressed in this section is the following.
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Problem: Partitioned k-PT (Recognition of k-PT graphs for a given

partition)

Input: A natural k, a graph G and a partition (V1, . . . , Vk) of V (G).

Question: Is there a consistent ordering s of V (G) such that the vertices

of Vi are consecutive in s, for all 1 ≤ i ≤ k?

It should be noted that a precedence consistent ordering s of G consists of a concatena-

tion of canonical orderings of each G[Vi], for all 1 ≤ i ≤ k. That is, s = s1s2 . . . sk, where

s1, s2, . . . , sk is a permutation of s′1, s
′
2, . . . , s

′
k and s′i is a canonical ordering of G[Vi], for all

1 ≤ i ≤ k. The following property is straightforward from the definition of a precedence

consistent ordering.

Property 1. Let (V1, V2, . . . , Vk) be a partition of V (G), s a precedence consistent ordering

and 1 ≤ i, j ≤ k. If Vi precedes Vj in s, then, for all u, v ∈ Vi and w ∈ Vj, if uw 6∈ E(G)

and vw ∈ E(G), then u precedes v in s.

Property 1 shows that, for any given consistent ordering s = s1s2 . . . sk, the vertices of

sj impose ordering restrictions on the vertices of si, for all 1 ≤ i < j ≤ k. This relation is

depicted in Figure 3.2. This property will be used as a key part of the greedy algorithm

to be presented later on.

Figure 3.2: Precedence relations among the vertices in a precedence consistent or-
dering.

Let sT = C1, C2, . . . , Cq be an ordering of the maximal cliques of an interval graph G

obtained from a PQ tree T . Recall from Chapter 2 that it is possible to obtain a canonical

ordering s ordered according to sT . Let u, v ∈ V (G). We define T as compatible with the

ordering restriction u < v if there exists a canonical ordering s ordered according to sT

such that u < v in s. The following theorem describes compatibility conditions between a

PQ tree and an ordering restriction u < v.

Theorem 8. Let G be an interval graph and T be a PQ tree of G. Let X be a node of

T with children X1, . . . , Xk and u, v ∈ X. Denote by TX the subtree rooted at X. The

following statements are true.

(i) if v belongs to all leaves of TX , then TX is compatible with u < v (see Figure 3.3(a)).
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(ii) Let Xi, Xj ∈ {X1, . . . , Xk}. If u ∈ Xi, v 6∈ Xi, v ∈ Xj and TX is compatible with

u < v, then Xi precedes Xj in TX (see Figure 3.3(b)).

Proof. Let GX be the graph induced by the union of the leaves of TX .

(i) Let sx be a canonical ordering of GX and s′x the ordering obtained from sx by

moving v to the last position. As v is a universal vertex from GX , s′x is also a

canonical ordering of this graph. Consequently, TX is compatible with u < v.

(ii) Suppose Xj precedes Xi in TX and TX is compatible with u < v. As v 6∈ Xi, then

by Theorem 2, there is no Xz such that Xi precedes Xz and v ∈ Xz. Otherwise,

there would exist three maximal cliques Ci, Cj , Cz such that Cj < Ci < Cz in the

ordering of cliques represented in TX and such that v 6∈ Ci, v ∈ Cj ∩ Cz. Therefore

v < u in any canonical ordering sX of G (Lemma 5), a contradiction because TX is

compatible with u < v. Thus, Xi precedes Xj in TX .

(a) (b)

Figure 3.3: Ordering imposed by Theorem 8 item i (a) and item ii (b).

Theorem 8 can be used to determine the existence of a PQ tree compatible with an

ordering restriction u < v. This task can be achieved by considering as the node X of

Theorem 8, each one of the nodes of a given PQ tree T . If T violates the conditions

imposed by the theorem, T is “annotated” in a way that the set of equivalent PQ trees

is restricted, avoiding precisely the violations. This procedure continues until all nodes

produce their respective restrictions, in which case any equivalent PQ tree allowed by

the “annotated” tree T is compatible with the given ordering restrictions. If there is no

equivalent PQ tree to the “annotated” tree T , which means there is no way to avoid the

violations, then there is no tree which is compatible with such an ordering restriction.

The general idea to “annotate” a PQ tree is to use an auxiliary digraph to represent

required precedence relations among the vertices. This digraph is constructed for each part

and any topological ordering of it results in a precedence consistent ordering concerning

the vertices of this part. Property 1 is applied to determine the ordering restrictions of

the vertices and Theorem 8 to ensure that at the end of the algorithm the vertices are

ordered according to a canonical clique ordering. Such a procedure is detailed next.
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First, the algorithm validates if each part of the partition induces an interval graph.

This step can be accomplished, for each part, in linear time [15]. If at least one of these

parts does not induce an interval graph, then the answer is NO. Otherwise, the algorithm

tries each part as the first of a precedence consistent ordering. For each candidate part

Vi, 1 ≤ i ≤ k, it builds a digraph D to represent the order conditions that the vertices of

Vi must satisfy in the case in which Vi precedes all the other parts of the partition. That

is, Vi must be ordered in such a way that it is according to a canonical clique ordering

and respects the restrictions imposed by Property 1. In this strategy, the vertex set of D

is Vi and its directed edges represent the precedence relations among its vertices. Namely,

(u, v) ∈ E(D) if, and only if, u must precede v in all precedence consistent orderings that

have Vi as its first part. The algorithm uses Property 1 to find all the ordering restrictions

u < v among the vertices of Vi imposed by the others parts, adding the related directed

edges to D. Then, by building a PQ tree T of G[Vi], Theorem 8 is used to transform T into

an equivalent PQ tree T ′ ensuring that all those ordering restrictions u < v are satisfied. If

there is a PQ tree T ′ of G[Vi] that is compatible with all the ordering restrictions imposed

by Property 1, then the algorithm adds directed edges to D according to the canonical

clique ordering represented by T ′. This step is described below in the Algorithm 1 and it

is similar to the one described in Lemma 5. At this point, D is finally constructed and the

existence of a topological ordering for its vertices determines whether Vi can be chosen as

the first part of a precedence consistent ordering for the given partition. If that is the case,

Vi is chosen as the first part and the process is repeated in G \ Vi to choose the next part.

If no part can be chosen at any step, the answer is NO. Otherwise, a feasible ordering of

the parts and of the vertices within each part is obtained and the answer is YES. Next,

the validation of the compatibility of T is described in more detail.

Algorithm 1: Adding edges from a PQ-tree to D

Input: G: an interval graph; D: a digraph; T : a PQ-tree;

procedure addEdgesFromPQTree(G, D, T )
Let sC be the canonical clique ordering relative to T
for each Ci ∈ sC do

Let S be the set of simplicial vertices of Ci
for each v ∈ S do

for each u ∈ Ci+1 do
E(D)← E(D) ∪ {(v, u)}

G← G \ S

For each imposed ordering u < v (that is, (u, v) ∈ E(D)), T is traversed node by

node, applying Theorem 8. As a consequence of such an application, if the order of the

children of some node X of T must be changed to meet some restrictions, directed edges are

inserted on T to represent such needed reorderings. Those directed edges appear among

nodes that are children of a same node in T . At the end, to validate if T is compatible

with all needed reorderings of children of nodes, a topological ordering is applied to the
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children of each node. If there are no cycles among the children of each node, then there is

an equivalent PQ tree T ′ compatible with all the restrictions. In this case, T ′ is obtained

from T applying the sequence of permutations of children of P nodes and reversals of

children of Q nodes which are compliant to the topological orderings. Otherwise, if a

cycle is detected in some topological sorting, then there is no PQ tree of G[Vi] which is

compatible with all the set of restrictions. In other words, Vi cannot be chosen as the first

part in a precedence consistent ordering for the given partition. Algorithm 2 formalizes

the procedure.

To illustrate the execution of Algorithm 2, consider the graph G as defined in Figure 3.4

and the 3-partition V = (V1, V2, V3) of V (G) where V1 = {a, b, c, d, e, f, g, h, i, j, k, l}, V2 =

{a′, b′, c′, d′, e′, f ′, g, h′, i′, j′, k′, l′} e V3 = {a′′, b′′, c′′, d′′, e′′, f ′′, g′′, h′′, i′′, j′′, k′′, l′′}. For the

sake of clearness, in Figure 3.4, the edges with endpoints in distinct parts are depicted in

black, the edges with endpoints in a same part are in light gray and the vertices belonging

to distinct parts are represented with different colors. Moreover, the vertices of each part,

read from the left to right, consist of a canonical ordering of the graph induced by that

part. Each part of V induces the interval graph G′ depicted in Figure 3.5(a). Figure 3.5(b)

depicts a model of G′. In this model, all maximal cliques are represented by vertical lines.

Figure 3.5(c) represents a PQ tree of G′ in which each maximal clique is labeled according

to the model in Figure 3.5(b).

Figure 3.4: A graph G and a 3-partition V = (V1, V2, V3) of its vertices where
V1 = {a, b, c, d, e, f, g, h, i, j, k, l}, V2 = {a′, b′, c′, d′, e′, f ′, g, h′, i′, j′, k′, l′} e V3 = {a′′,
b′′, c′′, d′′, e′′, f ′′, g′′, h′′, i′′, j′′, k′′, l′′}.

Suppose that, at the first step, the algorithm tries to choose V1 as the first part of the

precedence consistent ordering. As mentioned, G[V1] ∼= G′ and, according to the model

in Figure 3.5(b), G[V1] has maximal cliques C1 = {a, b, c}, C2 = {c, d}, C3 = {d, l},
C4 = {e, l}, C5 = {f, g, l}, C6 = {g, j, l}, C7 = {h, i, j, l} and C8 = {i, j, k, l}. Concerning

the edges between V1 and V2 and according to Property 1, the vertex a of V1 must suc-

22



Algorithm 2: Partitioned k-PT

Input: G: a graph; k: a natural number; V : a k-partition (V1, V2, . . . , Vk) of
V (G);

function partitioned-k-PT(G, k, V)
s← ∅
for each Vi ∈ V do

if G[Vi] is not an interval graph then
return (NO, ∅)

while V 6= ∅ do
for each Vi ∈ V do

foundFirstPart ← TRUE
Create a digraph D = (Vi, ∅)
Build a PQ tree Ti of G[Vi]
for each Vj ∈ V such that Vj 6= Vi do

Let S be the set of precedence relations among the vertices of
Vi concerning Vj (Property 1)

for each (u < v) ∈ S do
E(D)← E(D) ∪ {(u, v)}
for each node X of Ti do

Add the direct edges, deriving from (u < v), among
the children of X (Theorem 8)

for each node X of Ti do
Let DX = (V ′, E ′) be the digraph where V ′ is the set of
the children of X and E ′ are the directed edges added
among them

if there is a topological ordering sX of DX then
Arrange the children of X according to sX

else
foundFirstPart← FALSE

if foundFirstPart then
addEdgesFromPQTree(G[Vi], D, Ti)
if there is a topological ordering si of D then

s← ssi
V ← V \ Vi
break

else
foundFirstPart← FALSE

if not foundFirstPart then
return (NO, ∅)

return (YES, s)
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(a)

(b)

(c)

Figure 3.5: An interval graph G′ (a); an interval model (b) and a PQ tree (c) of G′.

ceed all the other vertices of this part in any valid canonical ordering. This requirement

is translated into the corresponding PQ tree through directed edges as depicted in Fig-

ure 3.6(a). Let X be the current node of T . Note that if X is a Q node, then any imposed

ordering of a pair of its children implies an ordering for all of them. In Figure 3.6(a), the

oriented edges deriving from Property 1 are represented in blue and the edges deriving

from the orientation demanded by Q nodes, due to the presence of the blue ones, are

represented in orange. Clearly, there is a valid PQ tree that satisfies such orientations.

Now the algorithm adds the directed edges to the tree deriving from fact that V1 must

also precede V3. Considering the edges between V1 and V3, and according to Property 1,

the vertex f of V1 must succeed all the other vertices of V1 in any valid canonical ordering.

This requirement is translated into the PQ tree in Figure 3.6(a), resulting in the PQ tree

in Figure 3.6(b). Clearly, no PQ tree can satisfy the given orientation due to the directed

cycle in the tree. Then, V1 cannot precede both V2 and V3.

As V1 cannot be chosen as the first part, the algorithm tries another part as the first

of the precedence consistent ordering. Suppose it now chooses V2 as the first part. The

interval graph G[V2] has as maximal cliques C1 = {a′, b′, c′}, C2 = {c′, d′}, C3 = {d′, l′},
C4 = {e′, l′}, C5 = {f ′, g′, l′}, C6 = {g′, j′, l′}, C7 = {h′, i′, j′, l′} and C8 = {i′, j′, k′, l′}.
Note that, as there are no edges between V2 and V3, V2 can precede V3 in any valid
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(a) (b)

(c) (d)

Figure 3.6: The edges added to the PQ tree of Figure 3.5(c) through the example
of execution of the Algorithm 2.

consistent ordering. The algorithm must decide whether V2 can precede V1. According

to the Figure 3.4 and Property 1, the vertices {a′, b′, c′, d′} of V2 must succeed all the

other vertices of the same part in any valid consistent ordering. This requirement is again

translated into directed edges in the PQ tree of V2 as depicted in Figure 3.6(c). Clearly,

there is a PQ tree T ′ satisfying those directed edges. Then, the algorithm adds the

edges deriving from the canonical clique ordering represented by T ′ to D. Figure 3.7(a)

depicts the final state of D once the necessary edges have been added. In this figure,

the edges deriving from Property 1 are presented with an orange color and the edges

related to T ′ are presented in a blue color. For readability, in these figures the edges

that can be obtained by transitivity are omitted. As there are no cycles in D, V2 can

precede V1 and V3. A topological ordering of D leads to the canonical ordering s =

e′, f ′, g′, h′, i′, j′, k′, l′, d′, a′, b′, c′ of G[V2].

After deciding V2 as the first part, the algorithm uses the same process to choose the

second part. Suppose it tries V1 as the second part. Figure 3.6(d) depicts the edges added

to the PQ tree of G[V1]. As there are no cycles in the edges added, there is a tree which is

compatible with the precedence relations associated with V1 < V3. Figure 3.7(b) depicts

the final state of the digraph D related to V1. As there are no cycles in D, V1 can precede
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(a)

(b)

Figure 3.7: Related digraph D when V2 is chosen as the first part (a) and when V1

is chosen as the second part (b) in Algorithm 2.

V3, so the algorithm chooses it as the second part. Finally, the algorithm chooses V3

as the last part and determines that there is a precedence consistent ordering such that

V2 < V1 < V3.

Concerning the complexity of the given strategy, each time one of the k parts is tried

to be the first, we build a new digraph D, a new PQ tree T and obtain the precedence

relations according to Property 1. Enumerating all the precedence relations requires at

most O(n3) steps, which is the time that it takes to iterate over all triples of vertices of

the graph. Moreover, each one of these relations must be mapped to D, which takes time

O(1), and T . First, note that the number of nodes of T is asymptotically bounded by its

number of leaves, that is, by the number of maximal cliques of the part being processed.

As the number of maximal cliques is bounded by the number of vertices of the given part,

the number of nodes of T is O(n). Consequently, it is possible to model a precedence

relation of type u < v into T , using Theorem 8, in time O(n2). To achieve this, first T is

traversed, in order to decide which nodes contain (resp. not contain) u and v. A traversal

of T can be done in time O(n), and T can be constructed in O(n + m) time. Additional

steps will be necessary and generate new traversals in T following the tree levels, with the

purpose to add the necessary directed edges among the vertices that are children of the

same node. This step can be done in∑
v∈V (T )

d2(v) ≤
∑

v∈V (T )

d(v)|V (T )| = O(|E(T )||V (T )|) = O(|V (T )|2) = O(n2)

as |E(T )| = O(|V (T )|) and |V (T )| = O(n). Aiming to verify the existence of a compatible
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tree, the algorithm applies a topological ordering to the children of each node of T , which

takes overall time O(n(n + m)). Then, the ordering in T is translated to D through

directed edges. By using the Algorithm 1, this step requires no more than O(n2 + m)

operations. Finally, a topological ordering is applied to D. Thus, the algorithm has

O(k2(n+m+ n3n2 + n2 + nm+ n2 +m+ n+m)) = O(k2n5)

time complexity.

3.2 Precedence Proper Thinness for a Given Par-

tition

In this section, we discuss precedence proper thinness for a given partition. First, we prove

that this problem is NP-complete for an arbitrary number of parts. Then, we propose a

polynomial time algorithm for a fixed number of parts based on the one presented in

Section 3.1. Formally, we will prove that the following problem is NP-complete.

Problem: Partitioned k-PPT (Recognition of k-PPT graphs for a given

partition)

Input: A natural k, a graph G and a partition (V1, . . . , Vk) of V (G).

Question: Is there a strongly consistent ordering s of V (G) such that the

vertices of Vi are consecutive in s, for all 1 ≤ i ≤ k?

The NP-hardness of the previous problem is accomplished by a reduction from the

problem Not all equal 3-SAT, which is NP-complete [24]. The details are described

in Theorem 9.

Problem: Not all equal 3-SAT

Input: A formula ϕ on variables x1, . . . , xr in conjunctive normal form,

with clauses C1, . . . , Cs, where each clause has exactly three lite-

rals.

Question: Is there a truth assignment for x1, . . . , xr such that each clause

Ci, i ∈ {1, . . . , s}, has at least one true literal and at least one

false literal?

Theorem 9. Recognition of k-PPT graphs for a given partition is NP-complete, even if

the size of each part is at most 2.

Proof. A given precedence strongly consistent ordering for the partition of V (G) can be

easily verified in polynomial time. Therefore, this problem is in NP.

Given an instance ϕ of Not all equal 3-SAT, we define a graph G and a partition

of V (G) in which each part has size at most two. The graph G is defined in such a way

that ϕ is satisfiable if, and only if, there is a precedence strongly consistent ordering of

V (G) for the partition. The graph G is constructed as follows.
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For each variable xi appearing in the clause Cj , create the part

Xij = {xTij , xFij}

For each variable xi, create the parts

XT
i = {xTi } and XF

i = {xFi }

The edges of the graph between these parts are (xTi , x
T
ij) and (xFi , x

F
ij) for every i, j

such that variable xi appears in clause Cj .
Notice that in any strongly consistent ordering, part Xij must be between parts XF

i

and XT
i . Moreover, if xFi < xTi , then xFij < xTij , and conversely. In particular, in any valid

vertex order, for each i ∈ {1, . . . , r}, either xFij < xTij for every j ∈ {1, . . . , s} or xTij < xFij

for every j ∈ {1, . . . , s}.
The Partitioned k-PPT instance will be such that if there is a precedence strongly

consistent ordering for the vertices with respect to the given parts, then the assignment

xi ← (xFi < xTi ) (that is, xi is true if xFi precedes xTi in such an ordering and xi is false

otherwise) satisfies ϕ in the context of Not all equal 3-SAT and, conversely, if there

is a truth assignment satisfying ϕ in that context, then there exists a strongly consistent

ordering for the Partitioned k-PPT instance in which xFi < xTi if xi is true and xTi < xFi

otherwise.

In what follows, if the k-th literal `ij of Cj is the variable xi (resp. ¬xi), we denote by

Oij the ordered part {xFij , xTij} (resp. {xTij , xFij}).
Given a 2-vertex ordered part C, we denote by C1 and C2 the first and second elements

of C. By ±C, we denote “either C or C̄”.

For each clause Cj = `1j ∨`2j ∨`3j , we add the 2-vertex ordered parts Y1j , Y2j , and Y3j ,

and the edges (O2
1j , Y

1
1j), (O1

1j , Y
1

2j), (O2
1j , Y

1
2j), (O1

2j , Y
2

1j), (O1
2j , Y

1
1j), (O2

2j , Y
1

2j), (O2
2j , Y

2
2j),

(O1
2j , Y

1
3j), (O1

2j , Y
2

3j), (O1
3j , Y

2
1j), (O2

3j , Y
2

1j), (O1
3j , Y

2
2j), (O2

3j , Y
2

2j), (O2
3j , Y

1
3j), (O2

3j , Y
2

3j).

These edges ensure the following properties in every strongly consistent ordering of the

graph with respect to the defined partition.

1. Since (O2
1j , Y

1
1j) is the only edge between O1j and Y1j , their only possible relative

positions are O1j < Y1j and its reverse Ȳ1j < Ō1j .

2. Since (O1
1j , Y

1
2j) and (O2

1j , Y
1

2j) are the edges between O1j and Y2j , their possible

relative positions are ±O1j < Y2j and Ȳ2j < ±O1j .

3. Since (O1
2j , Y

1
1j) and (O1

2j , Y
2

1j) are the edges between O2j and Y1j , their possible

relative positions are Ō2j < ±Y1j and ±Y1j < O2j .

4. Since (O2
2j , Y

1
2j) and (O2

2j , Y
2

2j) are the edges between O2j and Y2j , their possible

relative positions are O2j < ±Y2j and ±Y2j < Ō2j .

5. Since (O1
2j , Y

1
3j) and (O1

2j , Y
2

3j) are the edges between O2j and Y3j , their possible

relative positions are Ō2j < ±Y3j and ±Y3j < O2j .
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6. Since (O1
3j , Y

2
1j) and (O2

3j , Y
2

1j) are the edges between O3j and Y1j , their possible

relative positions are ±O3j < Ȳ1j and Y1j < ±O3j .

7. Since (O1
3j , Y

2
2j) and (O2

3j , Y
2

2j) are the edges between O3j and Y2j , their possible

relative positions are ±O3j < Ȳ2j and Y2j < ±O3j .

8. Since (O2
3j , Y

1
3j) and (O2

3j , Y
2

3j) are the edges between O3j and Y3j , their possible

relative positions are O3j < ±Y3j and ±Y3j < Ō3j .

Notice that, by items 1 and 6 (resp. 2 and 7), the vertices of Y1j (resp. Y2j) are forced

to lie between those of O1j and those of O3j . More precisely, the possible valid orders are

O1j < Y1j , Y2j < ±O3j and their reverses ±O3j < Ȳ2j , Ȳ1j < Ō1j .

By items 3 and 4, the vertices of O2j are forced to be between those of Y1j and those

of Y2j . More precisely, the possible valid orders are ±Y1j < O2j < ±Y2j and their reverses

±Y2j < Ō2j < ±Y1j .

By items 3 and 5, the vertices of Y1j and Y3j are forced to be on the same side with

respect to the vertices of O2j , either Ō2j < ±Y1j ,±Y3j or ±Y1j ,±Y3j < O2j .

Hence, taking also into account item 8, the possible valid orders are

• O1j < Y1j ,±Y3j < O2j < Y2j < Ō3j

• O1j < Y2j < Ō2j < Y1j ,±Y3j < Ō3j

• O1j < Y2j < Ō2j < Y1j < O3j < ±Y3j

and their reverses,

• O3j < Ȳ2j < Ō2j < Ȳ1j ,±Y3j < Ō1j

• O3j < Ȳ1j ,±Y3j < O2j < Ȳ2j < Ō1j

• ±Y3j < Ō3j < Ȳ1j < O2j < Ȳ2j < Ō1j

and will correspond to truth assignments that make true, respectively,

a) `1j ∧ `j2 ∧ ¬`3j

b) `1j ∧ ¬`2j ∧ ¬`3j

c) `1j ∧ ¬`2j ∧ `3j

d) ¬`1j ∧ ¬`2j ∧ `3j

e) ¬`1j ∧ `2j ∧ `3j

f) ¬`1j ∧ `2j ∧ ¬`3j
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Suppose first that there is a precedence strongly consistent ordering of V (G) with

respect to its vertex partition. Define a truth assignment for variables x1, . . . , xr as xi ←
(xFi < xTi ), for i ∈ {1, . . . , r}.

As observed above, if the value of xi is true (resp. false), then for every j ∈ {1, . . . , s},
the part Xij is ordered xFij x

T
ij (resp. xTij x

F
ij). So, for each clause Cj , the part corresponding

to its k-th literal will be ordered as Okj if the literal is assigned true and as Ōkj if the literal

is assigned false. Since for each valid order of the vertices there exist k, k′ ∈ {1, 2, 3} such

that the part corresponding to the k-th literal is ordered Okj and the part corresponding

to the k′-th literal is ordered Ōk′j , the truth assignment satisfies the instance ϕ of Not

all equal 3-SAT.

Suppose now that there is a truth assignment for variables x1, . . . , xr that satisfies the

instance ϕ of Not all equal 3-SAT. Define the order of the vertices in the following

way. The first r vertices are {xFi : xi is true} ∪ {xTi : xi is false}, and the last r vertices

are {xTi : xi is true} ∪ {xFi : xi is false}. Between these first and last r vertices, place all

the parts Xij , Y1j ,Y2j and Y3j associated with each clause Cj , j = 1, . . . , s. In particular,

the parts Xij , Y1j , Y2j and Y3j are ordered accordingly to which of the conditions (a)–(f)

is satisfied. By the analysis above, this is a precedence strongly consistent ordering of the

vertices of G, with respect to the defined parts.

As an example of the NP-completeness reduction presented in Theorem 9, Figure 3.8

depicts the instance of the Partitioned k-PPT problem built from the instance ϕ =

{(x1 ∨ x2 ∨ ¬x3)} of Not all equal 3-SAT problem. In this example, the sequence

s = xF1 , x
F
2 , x

F
3 , x

F
11, x

T
11, Y

1
11, Y

2
11, Y

1
31, Y

2
31, x

F
21, x

T
21, Y

1
21, Y

2
21, x

F
31, x

T
31, x

T
1 , x

T
2 , x

T
3 , related to

the true assignment x1 = x2 = x3 = T , is a solution to (G,ϕ).

Figure 3.8: Instance of the Partitioned k-PPT problem built from the instance
ϕ = {(x1 ∨ x2 ∨ ¬x3)} of Not all equal 3-SAT problem.

The remaining of this section is dedicated to discuss a polynomial time solution to a

variation of the Partitioned k-PPT problem. This variation consists in considering a

fixed number of parts for V (G), that is, k is removed from the input and taken as a constant

for the problem. The strategy that will be adopted is the same used for Partitioned

k-PT problem. It is not difficult to see that Property 1 is not sufficient to describe the

requirements that must be imposed in the ordering of vertices in a precedence strongly
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consistent ordering. This is so because, unlike what occurs in a precedence consistent

ordering, in a precedence strongly consistent ordering the vertices of each part Vi may

impose an ordering to vertices that belong to parts that precede and succeed Vi. Given

this fact, we observe the following property to describe such relation.

Property 2. Let (V1, V2, . . . , Vk) be a partition of V (G), s a precedence strongly consistent

ordering and 1 ≤ i, j ≤ k. If Vi precedes Vj in s, then for all u, v ∈ Vi and w ∈ Vj, if

uw 6∈ E(G) and vw ∈ E(G), then u precedes v in s. Moreover, for all u ∈ Vi and w, x ∈ Vj,
if uw 6∈ E(G) and ux ∈ E(G), then x precedes w in s.

Figure 3.9: Precedence relations among the vertices in a precedence strongly con-
sistent ordering.

Notice that the greedy strategy used in Section 3.1 does not work in the problem being

considered. This is so because, according to Property 2 and visually depicted in Figure 3.9,

the ordering of vertices of Vi in a precedence strongly consistent ordering s is influenced by

both the parts that precede and succeed Vi in s. Despite this, the method described in the

Section 3.1 to validate whether a part can precede a set of parts is also useful to present a

solution to this problem. In the given solution, the addition of edges from a PQ-tree to the

digraph D (Algorithm 1) has to be specialized for the case of proper interval graphs, which

is provided in Algorithm 3. In this algorithm, when the simplicial vertices are determined

for each maximal clique, the ones that have appeared first in the clique ordering will be

chosen first in the final ordering. The time complexity of Algorithm 3 remains the same

as that of Algorithm 1. The strategy to solve the Partitioned k-PPT problem, for a

fixed k, is described next.

Let G be a graph, V = (V1, V2, . . . , Vk) a partition of V (G) and s a precedence strongly

consistent ordering of V (G) for the given partition. Clearly, for all 1 ≤ i ≤ k, G[Vi] must

be a proper interval graph for s to be a precedence strongly consistent ordering. Verifying

whether G[Vi] is a proper interval graph can be accomplished in linear time. If one of the

parts does not induce a proper interval graph, then the answer is NO. Otherwise, each

part has a PQ tree associated to it.

For a given sequence sV of parts of V, suppose that Vj < Vi < Vz in sV , for 1 ≤
j, i, z ≤ k. Let Ti be a PQ tree of G[Vi]. Notice that, considering the Property 2, if we

apply Theorem 8 to get the ordering constraints imposed by Vj and Vz to Ti, and add the

directed edges to Ti in the same way that has been done in Section 3.1 and Ti can meet
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Algorithm 3: Adding edges from a PQ-tree to D

Input: G: a proper interval graph; D: a digraph; T : a PQ-tree;

procedure addEdgesFromPQTree(G, D, T )
Let sC be the canonical clique ordering relative to T
for each Ci ∈ sC do

Let S be the set of simplicial vertices of Ci
for each vj ∈ S do

for each vz ∈ S such that sC(vj) < sC(vz) do
E(D)← E(D) ∪ {(vj, vz)}

for each vz ∈ Ci+1 do
E(D)← E(D) ∪ {(vj, vz)}

G← G \ S

the constraints, then Ti is compatible to being at that position. That is, the vertices of Vi

can precede the vertices of Vz and succeed the vertices of Vj in any precedence strongly

consistent ordering. We show that for any sV , it is possible to verify whether there is a

strongly consistent ordering s in which the ordering of the parts in s is precisely sV .

To solve the problem, we will test all k! possible permutations sV = V ′1 , V
′

2 , . . . , V
′
k

among the parts of V and validate, using a digraph and PQ trees, if each part V ′i can

precede V ′z and succeed V ′j , for all 1 ≤ j < i < z ≤ k. This validation is done exactly

as described in Section 3.1, except for using Property 2 instead of Property 1. If there is

some s that satisfies this condition, then there is a precedence strongly consistent ordering

with respect to s and G is a k-PPT graph concerning V. Otherwise, G is not a k-PPT

graph with respect to V. Algorithm 4 formalizes the procedure.

Concerning the time complexity of the algorithm, first note that the creation of the

directed edges derived from Property 2 related to V ′j (resp V ′z ) in Ti can be done in O(n5)

time. Also, for each Vi we apply this property considering all the other parts, that is, O(k)

times, and therefore O(k2) times overall considering each Vi. As this operation must be

executed for all k! possible permutations, and considering the analysis of this same method

in Section 3.1, the given strategy yields a worst case time complexity of O(k!k2n5) = O(n5)

as k is fixed.

We end this section by mentioning an even more restricted case of the problem.

Namely, the recognition of k-PPT graphs for a fixed number of parts such that each

part induces a connected graph. Note that, as each part induces a connected graph, the

proper interval graph induced by each part has a unique proper canonical ordering up to

reversion or mutual true twins permutation. This fact implies that the PQ tree related

to each one of these proper interval graphs is formed by one node of type Q, which is the

root, that has all the maximal cliques as its children. That is, there are only two possible

configurations for each one of these PQ trees. As the number of possible configurations is

a constant, this property leads to a more efficient algorithm. Instead of using Theorem 8

to map restrictions to the PQ tree in order to obtain a compatible tree, the algorithm can
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Algorithm 4: Partitioned k-PPT

Input: G: a graph; V : a k-partition (V1, V2, . . . , Vk) of V (G) for some fixed
k

function Partitioned-k-PPT(G, V)
for each Vi ∈ V do

if G[Vi] is not a proper interval graph then
return (NO, ∅)

for each permutation sV of V do
s← ∅
foundV alidPermutation← TRUE
for each Vi ∈ sV do

Create a digraph D = (Vi, ∅)
Build a PQ tree Ti of G[Vi]
for each Vj ∈ sV such that Vj 6= Vi do

Let S be the set of precedence relations among the vertices of
Vi concerning Vj (Property 2)

for each (u < v) ∈ S do
E(D)← E(D) ∪ {(u, v)}
for each node X of Ti do

Add the direct edges, deriving from (u < v), among
the children of X (Theorem 8)

for each node X of Ti do
Let D = (V ′, E ′) be the digraph where V ′ is the set of the
children of X and E ′ are the directed edges added among
them

if there is a topological ordering s of D then
Arrange the children of X according to s

else
foundV alidPermutation← FALSE

if foundValidPermutation then
addEdgesFromPQTree(G[Vi], D, Ti)
if there is a topological ordering si of D then

s← ssi
else

foundV alidPermutation← FALSE
break

if foundValidPermutation then
return (YES, s)

return (NO, ∅)
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check both configurations of the PQ tree independently. As the step which uses Theorem 8

is no longer required, this approach leads to an algorithm that yields a worst case time

complexity of O(k!k22kn3) = O(n3). This strategy is presented in Algorithm 5.

Algorithm 5: Partitioned k-PPT

Input: G: a graph; V : a k-partition (V1, V2, . . . , Vk) of V (G), for some fixed
k, such that G[Vi] is connected for all 1 ≤ i ≤ k

function Partitioned-k-PPT(G, V)
for each Vi ∈ V do

if G[Vi] is not a proper interval graph then
return (NO, ∅)

for each permutation sV of V do
s← ∅
foundV alidPermutation← TRUE
for each Vi ∈ sV do

foundV alidTree← FALSE
Build a PQ tree Ti of G[Vi]
Let T ′i be the PQ tree obtained from Ti by reversing the order of
the children of the root

for each T ∈ {Ti, T ′i} do
Create a digraph D = (Vi, ∅)
for each Vj ∈ sV such that Vj 6= Vi do

Let S be the set of precedence relations among the
vertices of Vi concerning Vj (Property 2)

for each (u < v) ∈ S do
E(D)← E(D) ∪ {(u, v)}

addEdgesFromPQTree(G[Vi], D, T)
if there is a topological ordering si of D then

s← ssi
foundV alidTree← TRUE
break

if not foundValidTree then
foundV alidPermutation← FALSE
break

if foundValidPermutation then
return (YES, s)

return (NO, ∅)
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3.3 Characterization of k-PT and k-PPT Graphs

This section describes a characterization of k-PT and k-PPT graphs for a given partition.

First, we define some further concepts.

A graph G is a split graph if there is a 2-partition (V1, V2) of V (G) such that V1 is

a clique and V2 a stable set of G. A graph G is called a threshold graph if G is a split

graph and there is an ordering of V1 (resp. V2), named threshold ordering, such that the

neighborhood of vertices of V1 (resp. V2) are ordered by inclusion, in the following way:

if u, v ∈ V1 (resp. u, v ∈ V2), u preceding v in the threshold ordering, then N [u] ⊆ N [v]

(resp. N(u) ⊆ N(v)).

For the following characterization, we will define the split graph SG(V1, V2) with respect

to a 2-partition (V1, V2) of V (G). Such a graph is obtained from G by the completion of

edges among the vertices of V1 and the removal of all edges among the vertices of V2,

hence transforming V1 into a clique and V2 into a stable set. Figures 3.10(b), 3.10(d)

and 3.10(f) illustrate the corresponding split graphs of the graphs in the Figures 3.10(a),

3.10(c) and 3.10(e), respectively.

Let s = s1s2 be an ordering of V (G). We define (s1, s2) as in accordance with G if

s1 is a threshold ordering of SG(V (s1), V (s2)), and if s1 and s2 are canonical orderings

of G[V (s1)] and G[V (s2)], respectively. Additionally, we define (s1, s2) as strongly in

accordance with G if s1 and s2 are proper canonical orderings of G[V (s1)] and G[V (s2)],

respectively, and both s1 and s̄2 are threshold orderings of SG(V (s1), V (s2)).

As an example, let s1 and s2 be the orderings represented in the Figure 3.10 by reading

the vertices of each part, of each graph, from left to right. The related pair (s1, s2) of

Figure 3.10(a) is in accordance, but is not strongly in accordance, with the given graph. In

the order hand, Figure 3.10(c) depicts a pair (s1,s2) which is strongly in accordance with

the associated graph. Finally, Figure 3.10(e) exemplifies a case where the given orderings

are neither in accordance nor strongly in accordance with its correlated graph. In fact,

since both V1 and V2 in Figure 3.10(e) induce subgraphs that admit only four canonical

orderings each, it can be easily verified that there is no (s1, s2) which is in accordance, or

strongly in accordance, with the graph considering the same partition (V1, V2).

Lemma 10. Let G be a graph. Then, G is 2-PT if, and only if, there is a consistent

ordering s = s1s2 for which V = (V (s1), V (s2)) is a 2-partition of V (G) such that (s1, s2)

is in accordance with G.

Proof. Let V = (V1, V2) be a 2-partition of V (G) and s1 and s2 be two total orderings of

V1 and V2, respectively.

Assume G is 2-PT concerning V. Let s = s1s2 be a precedence consistent ordering of

V (G). Thus, s1 is a canonical ordering of G[V1]. Proceeding by contradiction, suppose

that s1 is not a threshold ordering of SG(V1, V2). That is, there are u, v ∈ V1 and w ∈ V2,

with u < v in s1, such that w ∈ N [u] and w 6∈ N [v]. As u < v < w in s, there is a

contradiction with the fact that s is a precedence consistent ordering of V (G). Therefore,

(s1, s2) is in accordance with G(V1, V2).
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(a) G1 (b) SG1
(V1, V2)

(c) G2 (d) SG2
(V1, V2)

(e) G3 (f) SG3
(V1, V2)

Figure 3.10: Corresponding split graphs (V1 is the set of orange vertices and V2 the
black ones).

On the other hand, assume that (s1, s2) is in accordance with G. Thus, both s1 and

s2 are canonical orderings of G[V1] and G[V2], respectively, and s1 is a threshold ordering

of SG(V1, V2). Now we prove that s = s1s2 is a precedence consistent ordering of V (G)

with respect to V. In order to reach a contradiction, suppose that this statement does not

hold. That is, there are u, v ∈ V1 and w ∈ V2, with u < v in s, such that uw ∈ E(G)

and vw 6∈ E(G). This results in a contradiction because s1 is a threshold ordering of

SG(V1, V2). Hence, s = s1s2 is a precedence consistent ordering of V (G) with respect to

V.

Lemma 11. Let G be a graph. Then, G is 2-PPT if, and only if, there is a strongly

consistent ordering s = s1s2 for which V = (V (s1), V (s2)) is a 2-partition of V (G) such

that (s1, s2) is strongly in accordance with G.

Proof. Let V = (V1, V2) be a 2-partition of V (G) and s1 and s2 be two total orderings of

V1 and V2, respectively.

Assume G is 2-PPT concerning V. Let s = s1s2 be a precedence strongly consistent

ordering of V (G). Thus, s1 is a proper canonical ordering of G[V1] and, as G is also a

2-PT graph, s1 is a threshold ordering of SG(V1, V2), according to Lemma 10. In order to

reach a contradiction, suppose that s̄2 is not a threshold ordering of SG(V1, V2). That is,

there are u, v ∈ V2 and w ∈ V1, with u < v in s2, such that w ∈ N(v) and w 6∈ N(u).

This is a contradiction with the fact that s is a precedence strongly consistent ordering,

as w < u < v in s. Hence, (s1, s2) is strongly in accordance with G(V1, V2).
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Now assume (s1,s2) is strongly in accordance with G. That is, both s1 and s̄2 (resp. s1

and s2) are threshold orderings (proper canonical orderings) of SG(V1, V2) (resp. G[V1] and

G[V2], respectively). By Lemma 10, s = s1s2 is a precedence consistent ordering of V (G).

Next, we prove that s = s1s2 is also a precedence strongly consistent ordering of V (G)

with respect to V. For the sake of contradiction, suppose that the statement does not

hold. That is, there are u, v ∈ V2 and w ∈ V1, with u < v in s, such that vw ∈ E(G) and

uw 6∈ E(G). This is an absurd, as s̄2 is a threshold ordering of SG(V1, V2). Consequently,

s = s1s2 is a precedence strongly consistent ordering of V (G) with respect to V.

The above lemmas can be generalized to an arbitrary number of parts as follows.

Theorem 12. Let G be a graph. For all k > 2, G is k-PT (resp. k-PPT) if, and only if,

there is a precedence consistent (resp. strongly consistent) ordering s = s1 . . . sk for which

V = (V (s1), V (s2), . . . , V (sk)) is a k-partition of V (G) such that for all 1 ≤ i < j ≤ k,

(si, sj) is in accordance (resp. strongly in accordance) with G[V (si) ∪ V (sj)].

Proof. Let s = s1 . . . sk be a total ordering and V = (V (s1), V (s2), . . . , V (sk)) be a parti-

tion of V(G). Notice that s is a precedence consistent (resp. strongly consistent) ordering

if, and only if, for all 1 ≤ i < j ≤ k, sisj is a precedence consistent (resp. strongly

consistent) ordering of G[Vi ∪ Vj ] concerning the 2-partition (Vi, Vj). By Lemma 10 (resp.

Lemma 11), it holds if, and only if, (si, sj) is in accordance (resp. strongly in accordance)

with G[V (si) ∪ V (sj)].

A biclique of a graph G is a subgraph of G whose vertices can be partitioned into two

sets A, B such that every vertex of A is adjacent to every vertex of B. Theorem 12 leads

to the following property with relation to k-PPT graphs and bicliques.

Property 3. Let (V1, V2, . . . , Vk) be a partition of V (G), s be a precedence strongly consis-

tent ordering and 1 ≤ i, j ≤ k. If Vi precedes Vj in s and v ∈ Vi is adjacent to w ∈ Vj, then

the partition {z ∈ Vi | z = v or z succeeds v in s} ∪ {z ∈ Vj | z = w or z precedes w in s}
forms a biclique of G.
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Chapter 4

Restricted Hamming-Huffman

trees

In this Chapter, we define a more restricted version of the problem of building optimal

Hamming-Huffman trees. We tackle the problem of building optimal Hamming-Huffman

trees in which the leaves lie in exactly k distinct levels. These type of trees are defined as

k-Hamming-Huffman trees, or k-HHTs. Formally, we define the k-HHT problem as

Problem: k-HHT

Input: A set of symbols Γ and, for all a ∈ Γ, the probability p(a) of

occurrence of a in a message.

Output: An HHT T in which all symbol leaves lie at exactly k levels of T

and such that c(T ) is minimum.

We denote as [k]-Hamming-Huffman tree ([k]-HHT ) a minimum cost HHT over all

optimal k′-HHTs, for all 1 ≤ k′ ≤ k.

If k ≤ 2, we provide a polynomial time algorithm to solve the problem. Otherwise, we

present an algorithm to evaluate a lower bound on the optimal cost of such trees when its

symbols have a uniform probability of occurrence. In this case, we also prove that there

exists an optimal Hamming-Huffman tree having their symbol leaves lying on at most 4

consecutive levels. Finally we compare the efficiency, considering both data compression

and data error detection capabilities, of [2]-HHTs over HTs an even trees (defined in

Chapter 2).

4.1 Hamming Huffman trees with leaves in one

level

In this section, we tackle the 1-HHT problem. This problem can be reduced to that of

deciding the minimum height of the full binary HHT for which the symbol leaves can be

arranged in the last level.
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First, note that there is an important relation between optimal 1-HHTs with ` symbols

and minimum neighborhoods of independent sets with ` elements of Qn. Consider the one-

to-one mapping between the leaves of a full binary 1-HHT T having height n to the vertices

of Qn, in which a leaf a corresponds to c(a) ∈ V (Qn). The problem of finding the minimum

number of error leaves, over all possible trees T , is equivalent to that of finding, over all

independent sets L of cardinality ` = |Γ| in V (Qn), one that minimizes |N(L)|. This is so

because

T is a 1-HHT ⇐⇒ d(c(u), c(v)) ≥ 2 for all distinct u, v ∈ Γ

⇐⇒ L = {c(u) | u ∈ Γ} is an independent set of Qn

Thus, for a given 1-HHT T , the set of errors leaves of T is precisely N(L) in Qn and

L = {c(u) | u ∈ Γ}.
The efficient computation of ϕ(`, n) is possible with the aid of Theorem 14. Before

presenting the theorem, we have to state the following auxiliar lemma.

Lemma 13 ([25], [26]). For any given non-negative integers ` and n, ` < 2n, the number

m has a unique representation

` =

(
n

n

)
+

(
n

n− 1

)
+ . . .+

(
n

k + 1

)
+

(
ak
k

)
+ . . .+

(
at
t

)
such that

n > ak > ak−1 > · · · > at ≥ t ≥ 1

The representation presented in Lemma 13 is defined as the n-bounded canonical rep-

resentation of `.

Also, in [26], Katona defined the function G(`, n) as follows:

G(`, n) =

{
0, if ` ≤ 0(
n
n

)
+
(
n
n−1

)
+ · · ·+

(
n
k+1

)
+
(
n
k

)
+
(
ak
k−1

)
+ · · ·+

(
at
t−1

)
, otherwise

where the a’s are those from Lemma 13 with respect to the given `.

The following theorem was proven in [27].

Theorem 14 (Theorem 2 in [28] and [27]). For every ` ≤ 2n−1

ϕ(`, n) = G(`, n− 1).

A consequence of this theorem in [28], is that all the vertices belonging to the inde-

pendent set L yielding |N(L)| = ϕ(`, n) can be assumed to be, without loss of generality,

of the same parity. This fact can be used directly to solve the 1-HHT problem, as shown

in the following theorem. Let h(`) = dlog2 `e+ 1.
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Theorem 15. Let Γ be a set of ` symbols, each a ∈ Γ having probability p(a). The height

and the cost of an optimal 1-HHT T are, respectively, h(`) and

c(T ) = h(`)
∑
a∈Γ

p(a)

Proof. To find an optimal 1-HHT T , it is necessary to determine the minimum height h

of T such that the symbols and their corresponding error leaves lie all at this level, that

is, `+ ϕ(`, h) ≤ 2h. By [28], one may consider without loss of generality that the set of `

codifications consists of elements having a same parity. In order to choose ` vertices with

a same parity, one may use at most half the symbol leaves of that level. That is, a full

binary 1-HHT must have at least height dlog2 `e+ 1 to be able to contain ` leaves with a

same parity thus, h ≥ dlog2 `e+1. On the other hand, let L be a set of codifications having

a same parity. First note that L is an independent set of Qn and the corresponding error

leaves have the opposite parity. Therefore, any set of ` symbols leaves at level dlog2 `e+ 1

having a same parity consists of a valid 1-HHT. Consequently, h ≤ dlog2 `e + 1, yielding

that h = dlog2 `e+ 1 and c(T ) = (dlog2 `e+ 1)
∑

a∈Γ p(a).

4.2 Hamming Huffman trees with leaves in two

levels

In this section, we discuss optimal 2-HHTs. We show that, similarly to the 1-HHTs, it is

possible to build optimal 2-HHTs efficiently. We provide an algorithm for building optimal

2-HHTs that runs in time O(` log2 `), where ` = |Γ|.
A motivation to study this specific case lies in the fact that, for symbols with uni-

form probabilities of occurrence, there is always a Huffman tree with symbols in at most

two different levels. This follows from Section 2.3.4.5 of Knuth’s Vol. 1 [29]. It is not

known whether this is also the case for Hamming-Huffman trees. Experimental results

were designed to investigate this hypothesis and the results are presented in Section 4.4.

Furthermore, recall that the problem of building optimal general HHTs is open since the

eighties. Thus, the approach of studying more restrictive cases is worthy, since a solution

for a particular case may have practical value or lead to a solution for general HHTs.

The strategy for determining an optimal 2-HHT with leaves at two levels h1 and h2,

with h1 < h2, is devised as follows. Note that by Theorem 15, a full binary tree having

height h(`) is enough to build a 1-HHT. Therefore, h(`) is a natural upper bound on h1,

that is, 1 ≤ h1 < h(`).

First, consider any specific value for h1. For such a value, let `1 be the number of

symbol leaves that are placed at level h1. Note that 1 ≤ `1 ≤ min{`− 1, 2h1−1}, since 2h1

is the maximum number of nodes at level h1, and half of them have the same parity.

Once `1 symbol leaves are chosen to be placed at level h1, there will be error nodes

corresponding to such symbol leaves at this same level, and the remaining nodes will be

free nodes from which the tree can grow to achieve larger levels (in particular, to achieve

40



level h2, where the remaining symbol leaves must lie). As seen in Figure 2.8, distinct

sets of leaves lead to distinct sets of error leaves, the latter varying considerably in size.

Clearly, to minimize the cost of the solution for the fixed values of (h1, `1), it suffices to

minimize the value of h2. To do that, it suffices to distribute as uniformly as possible the

remaining `2 = ` − `1 symbols leaves over the subtrees rooted at the free nodes. Indeed,

it is possible to arrange all symbol leaves at level h2 of each subtree all having the same

parity, ensuring that the leaves at level h2 pairwise have Hamming distance of at least 2.

Therefore, the aim is to choose the set of symbol leaves at level h1 in such a way that

the number of free nodes is maximized or, equivalently, that the number of error leaves

is minimized. In other words, the algorithm must select a set of symbol leaves at level

h1 which produces ϕ(`1, h1) corresponding error nodes. For this choice, the maximum

number of free nodes, that will be denoted by ρ(`1, h1), is given by

ρ(`1, h1) = 2h1 − `1 − ϕ(`1, h1) (4.1)

For the cost c(T ) = c(`, `1, h1) of this particular way of building a 2-HHT T having

`1 symbols at level h1, we present an algorithm to evaluate this value. If ρ(`1, h1) = 0,

then it is not possible to grow the tree to allocate the remaining `2 symbols at level h2.

So, the choices of h1, `1 turned out to lead to an unfeasible solution. If ρ(`1, h1) > 0, then

the remaining `2 symbols are uniformly distributed in ρ(`1, h1) subtrees rooted at the free

nodes, each receiving at most
⌈

`2
ρ(`1,h1)

⌉
symbols, and one of them receiving exactly such

an amount. Minimizing the common height in each subtree rooted at each free node is

a 1-HHT problem. By using the result h(`) of Theorem 15, we have that the minimum

height h′(`1, h1) required for each subtree to accommodate those symbols is given by

h′(`1, h1) = h

(⌈
`2

ρ(`1, h1)

⌉)

To determine c(`, `1, h1) in this case, it is needed to assign the set of symbols Γ to the

set of chosen symbols leaves. But to minimize such a cost, it clearly suffices to place

at level h1 the `1 symbols with the highest probability of occurrence. Assuming that

Γ = {a1, a2, . . . , a`} is ordered decreasingly according to their respective probability of

occurrence, we have that
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c(`, `1, h1) = h1

`1∑
i=1

p(ai) + h2

∑̀
i=`1+1

p(ai)

= h1

`1∑
i=1

p(ai) + (h1 + h′(`1, h1))
∑̀

i=`1+1

p(ai)

= h1

∑̀
i=1

p(ai) + h′(`1, h1)
∑̀

i=`1+1

p(ai)

= h1 + h′(`1, h1)
∑̀

i=`1+1

p(ai)

Figure 4.1 depicts this strategy. The nodes labeled with “s” represent symbol leaves,

the black nodes represent the error leaves, and the dashed nodes represent the free nodes.

Figure 4.1: A Hamming-Huffman tree with leaves on two levels.

The optimal cost is the minimum cost obtained by varying h1 and `1 over all possible

values. Formally, the cost of an optimal 2-HHT T is given by

c(T ) = min{c(`, `1, h1) | 1 ≤ h1 < h(`) , 1 ≤ `1 ≤ min{`− 1, 2h1−1}}

where

c(`, `1, h1) = h1 + h′(`1, h1)
∑̀

i=`1+1

p(ai)

Concerning the computational complexity for determining the optimal cost, for each

1 ≤ h1 < h(`), there are at most 2h1−1 possible values for `1. Therefore, there are at most

1 + 2 + 22 + . . .+ 2dlog2 `e−1 = 2dlog2 `e − 1 = Θ(`) distinct pairs (h1, `1). Moreover, for the

computation of each c(`, `1, h1), the evaluation of ϕ(`1, h1) is required. This evaluation

can be computed in time O(h2
1) = O(log2 `) with the aid of a precomputed Pascal triangle.

Besides that, a precomputed sum of values
∑i

j=1 p(ai) for all 1 ≤ i ≤ `, which can be

done in time Θ(`), can be used to obtain the summation present in c(`, `1, h1) in constant

time. Therefore, the complexity of evaluating the cost of an optimal tree is O(` log2 `).
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The results of this section can be summarized by the following theorem.

Theorem 16. Let Γ be a set of ` symbols, each a ∈ Γ having probability p(a). The cost

of an optimal 2-HHT T is

c(T ) = min{c(`, `1, h1) | 1 ≤ h1 < h(`) , 1 ≤ `1 ≤ min{`− 1, 2h1−1}}

where

c(`, `1, h1) = h1 + h′(`1, h1)
∑̀

i=`1+1

p(ai)

and

h′(`1, h1) = h

(⌈
`2

ρ(`1, h1)

⌉)
Furthermore, this cost can be computed in time O(` log2 `).

4.3 Uniform Hamming-Huffman trees

In this section, we discuss the problem of building optimal uniform HHTs, that is, trees in

which all symbols have the same probability of occurrence. In contrast to 2-HHTs, even

for the more restrictive case of uniform probabilities, an efficient algorithm for building

an optimal uniform HHT will remain open. Let λ(T ) be the difference between the last

and the first levels of T which have at least one symbol leaf at that level. For instance, for

T as in Figure 2.6(a), λ(T ) = 1, where λ(T ) = 0 for any tree T of Figure 2.8. We prove

that λ(T ) ≤ 4 for all optimal uniform HHT T . Moreover, we show that there is always

an optimal uniform HHT T in which λ(T ) ≤ 3. In addition, all optimal uniform HHTs

are [5]-HHTs, and there exists an optimal uniform HHT which is a [4]-HHT. Finally, we

present a dynamic programming algorithm to evaluate a lower bound on the cost of such

a tree.

Recall that (optimal) HTs for symbols with uniform frequencies have all leaves in

at most two levels. It is unknown whether the same holds for HHTs. We consider the

conjecture that there is always an optimal uniform HHT in which the symbol leaves are

distributed in k ≤ 3 distinct levels, and we provide empirical evidence in favor of it.

Section 4.4 compares the lower bound of this section with the cost of optimal 2-HHTs, the

latter being computed as presented in Section 4.2.

Let T be a uniform HHT on ` symbols. Consider the following operation over a symbol

leaf s of T :

• descend(s) (see Figure 4.2): replace the leaf s by a full binary HHT Ts having height

two in such a way that this leaf becomes the root of Ts. The tree Ts is such that

one of its leaves is the symbol leaf s. Note that there are exactly two error leaves

associated with s among the leaves of Ts, besides one free node s′, regardless which

leaf corresponds to s. Next, transform s′ into a symbol leaf associated with any
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symbol s′′ that appears in the last level of T . Finally, transform the node of s′′ into

an error leaf. Let T ′ be the resulting tree. Apply contract(T ′) to obtain the final

transformation.

Figure 4.2: Operation descend(s), over a symbol leaf. The dotted node represents
a free node to be used in the encoding of another symbol.

Let T ′ be the resulting tree after applying descend(s). The following lemma proves

that T ′ is also an HHT.

Lemma 17. Let T be an HHT, s be one of its symbol leaves and T ′ be the tree obtained

by the operation descend(s). The tree T ′ is an HHT.

Proof. We shall prove that, in T ′, all the leaves with Hamming distance one to s are error

leaves. As the root of Ts comes from a symbol leaf in T , all nodes with Hamming distance

one to it in T ′ are error leaves. Moreover, as Ts is an HHT by construction, all the nodes

in T ′ with Hamming distance one to s and s′ are also error leaves in T ′. Finally, the

transformation carried out in the last step ensures that T ′ does not contain two sibling

leaves which are both error leaves. That is, every node of T ′ is either an error leaf or an

ancestor of a symbol leaf. Therefore, T ′ is an HHT.

Let p = 1
` be the probability of occurrence of the symbol leaves of T and T ′ be the

tree obtained by the operation descend(s), for some symbol leaf s of T . Let l1 be the level

of s and l2 be the last level of T . Note that, the symbol of s′′ was moved from level l2 to

level l1 + 2. Moreover, the symbol of s was moved from level l1 to level l1 + 2. Therefore,

the cost of T ′ can be written as a function of the cost of T as

c(T ′) = c(T )− p(λ(T )− 4) (4.2)

Theorem 18. Let T be a uniform HHT. If T is optimal, then λ(T ) ≤ 4. Moreover, there

is always an optimal T for which λ(T ) ≤ 3.

Proof. We prove that when λ(T ) > 4 is always possible to obtain an HHT T ′ from T such

that c(T ′) < c(T ), contradicting the optimality of T .

Let l1 and lk be the first and the last level of T containing symbol leaves, respectively.

Let p be the probability of occurrence of each symbol associated to T . Apply descend(s) to

some symbol leaf s at level l1 to obtain T ′. If λ(T ) > 4, then λ(T )p > 4p and, equivalently,

λ(T )p− 4p = p(λ(T )− 4) > 0. Therefore, by (4.2), we have that c(T ′) < c(T ). Moreover,

note that each application of descend(s) eliminates a leaf in level l1 and a leaf in level

lk. By successive applications of descend(s) to symbol leaves, it is possible to obtain an

optimal uniform HHT such that λ(T ) ≤ 3.
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We will proceed in the remaining of this section by providing a lower bound on the cost

of uniform HHTs. For this, we need to generalize the concept of Hamming-Huffman trees.

A k-Hamming-Huffman forest, or k-HHF, is a forest F of HHTs such that the symbol

leaves are distributed among exactly k distinct levels of F . Note that the trees of F may

have a height greater than k since there might be some levels of F with no symbol leaves.

The cost of a k-HHF is defined by the sum of the costs of its HHTs.

The strategy to derive the lower bound on the cost of a k-HHF for ` symbols and r trees

is as follows. Consider h1 to be the first level in which symbol leaves appear in F . Let `1 be

the number of symbol leaves to be represented in the level h1. Clearly, the most desirable

arrangement for choosing `1 nodes at level h1 is one in which the corresponding error

leaves are minimized, that is, in which the free nodes are maximized. This is so because

the remaining `− `1 symbol leaves must be allocated as descendants of the resulting free

nodes at level h1, and the more resulting free nodes, the better. At this point, this strategy

will deal with all those free nodes as independent trees of a (k − 1)-HHF. But, some of

them may actually be part of the same HHT of the k-HHF and, because of that, the

symbol leaves allocated in a tree descending from a free node produce error leaves that

may conflict with the allocation of symbol leaves descending from another free node. Since

the possibility of conflict will not be dealt with, the resulting k-HHF may not be feasible

and that is why this strategy yields a lower bound on the cost of this k-HHF. The lower

bound, defined as cF (k, r, `), on the cost of an optimal k-HHF of r disjoint HHTs for `

symbols derived from this strategy is evaluated as follows.

First note that if ` = 0, then cF (k, r, `) = 0. Also, if r = 0 (resp. k = 0) and

` ≥ 1, it means that there are not enough free nodes to accommodate the remaining

` symbols. In other words, this scenario leads to an unfeasible solution and, therefore,

cF (k, r, `) = +∞. If k = 1 and `, r ≥ 1, the resulting problem is equivalent to the one of

distributing ` symbols among r 1-HHTs with the same height. In particular, each one of

these trees must have at least h(d `re) leaves to be able to accommodate all the symbols.

Thus, using the same reasoning as the one used in Theorem 15 and, as the symbols have an

equal probability of occurrence, cF (k, r, `) = h(d `re). For the general case, the algorithm

minimizes the cost over all possible pairs (`1, h1). Note that despite the fact that there

are only `1 symbols at level h1, all the remaining `− `1 symbols have a prefix with size h1

in their codifications. Given that, the first part of the cost of the general case is given by

h1(`1 + (`− `1)) = h1`.

For the remaining part of the cost, the algorithm uses pre-computed values to solve

the problem of distributing ` − `1 symbols among a (k − 1)-HHF in which the roots are

the resulting free nodes, in a dynamic programming fashion. Formally, cF (k, r, `) can be

expressed as
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cF(k, r, `) =



0, if ` = 0

+∞, if ` ≥ 1,

(r = 0 or k = 0)

h(d `re), if `, r ≥ 1, k = 1

min`1∈D1 and h1∈D2 {h1`+cF (k−1, ρF (r, `1, h1), `−`1)} , otherwise

where:

• D1 = {1, . . . , `− k + 1},

• D2 = {h(d `1r e), . . . , h(d `re)}, and

• ρF (r, `, h) denotes the maximum number of free nodes when ` symbol leaves are

allocated at level h of an HHF consisting of r HHTs, and h is the first level having

leaves. The computation of ρF will be discussed next.

For 2-HHTs, cF (2, 1, `) is exactly the cost of a uniform 2-HHT using the algorithm

presented in Section 4.2. Moreover, considering general uniform HHTs, the cost of an

optimal uniform HHT with ` symbol is at least

min{cF (k, 1, `) | 1 ≤ k ≤ `} (4.3)

Figure 4.3 depicts the strategy being adopted in the computation of cF .

Figure 4.3: Example of the strategy used to evaluate cF (k, r, `).

The computation of ρF (r, `, h) will also be carried out by a dynamic programming

algorithm. First, note that ρF (r, `, h) equals the maximum number of free nodes when `

symbols are distributed among the leaves of r full HHTs with height h. So, the strategy

to yield the recurrence is as follows. First, suppose that `1 symbols are to be allocated

into a single HHT. Therefore, the remaining ` − `1 symbols have to be allocated among

the leaves of r− 1 full HHTs with height h. Both allocations must be done in such a way

that the number of free nodes is maximized. The former can be computed with the aid

of the formula given in (4.1). The latter can be determined using recursion. Formally, we
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have

ρF (r, `, h) =


r2h, if ` = 0

−∞, if ` ≥ 1, (r = 0 or

h = 0 or ` > r2h−1)

max0≤`1≤min{2h−1,`} {ρ(`1, h)+ρF (r−1, `− `1, h)} , otherwise.

Precomputing the values of ρF requires a matrix whose number of elements is

O(`2 log `), as r is limited by ` and h is limited by h(`). Moreover, as the processing

of each cell of such matrix requires O(`) steps, precomputing the values of ρF takes time

O(`3 log `). Assuming that the values of ρF are available at constant time, precomputing

the values of cF depends on a matrix whose number of elements is O(`2), as k ≤ 4 by

Theorem 18 and the remaining parameters are limited by `. Furthermore, since processing

each cell of such a matrix requires O(D1D2) = O(` log `) steps, evaluating cF takes time

O(`3 log `). Therefore, the proposed lower bound can be computed in time O(`3 log `) and

space O(`3).

4.4 Experimental Results

In this section, we describe some experimental results which have been performed in the

context of the previous sections.

We have conducted three experiments. The first one is related to the algorithm de-

scribed in Section 4.2. It compares uniform [2]-HHTs with the lower bound described

in Section 4.3. The second experiment compares general [2]-HHTs with the Huffman

trees aiming to enlighten the tradeoffs of both strategies. In the third experiment we have

implemented a backtracking that finds an optimal uniform Hamming-Huffman tree for

1 ≤ ` ≤ 38.

Implementations of such algorithms were executed on a notebook having a CPU Core

i7, with 8 GB RAM, running Ubuntu 16.04 OS. The algorithms were implemented in

C++. The results are presented next.

All the programs related to this section are available at [30].

4.4.1 Uniform [3]-HHT optimality hypothesis

As the first experiment, we tested the hypothesis that uniform [3]-HHTs are indeed opti-

mal. In this case, for all 1 ≤ ` ≤ 4096, we have compared the costs of the algorithms in

Section 4.1 and Section 4.2 with those produced by the algorithm in Section 4.3. Some

values of this comparison are presented in Table 4.1. The first column represents the

number of symbols. The second shows the cost of the corresponding [2]-HHT. The third

represents the cost of the lower bound described in Section 4.3. This column is divided

into two parts. The first is the minimum k value that minimized the cost of the resulting

tree and the second is the cost of the tree. The last column of the table gives the relative
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differences between the costs presented in the last two columns. These costs and their

relative differences are depicted in Figure 4.4 and Figure 4.5, respectively. By observing

the table and the figures one can note that, for symbols with uniform probability of oc-

currence, the cost of [2]-HHTs are very close to the ones of the lower bound, for all tested

values of `. The difference between these costs was no more than 2.1%. Moreover, all the

trees obtained by the lower bound have symbol leaves in at most three different levels.

ℓ

co
st

0

5

10

15

1000 2000 3000 4000

Minimum Cost 2-level Cost

Figure 4.4: Costs of optimal uniform [2]-HHTs and the lower bound of uniform
k-HHTs for ` symbols.

4.4.2 [2]-HHTs efficiency

In the second experiment, we have compared the costs and the error detection capabilities

between [2]-HHTs and Huffman trees. The goal of this experiment is to present the

tradeoffs of using [2]-HHTs instead of Huffman trees. In this comparison, we analyze their

differences in compression and error detection rates.

Considering the compression, we have performed two tests. First, we compared the

costs of uniform [2]-HHTs with the costs of uniform HTs. The second test compares the

costs of [2]-HHTs and HTs for the Zipf distribution. The Zipf distribution is well-known for

its empirical correspondence with the frequencies of words in natural languages [31]. This

relation describes that the i-th most frequent word in an alphabet occurs with frequency
1
i . We use this distribution to simulate real-world compressions. Both these comparisons

were done for 10 ≤ ` ≤ 1111110 and the results are shown in Table 4.2, which is organized

similarly to Table 4.1. For both cases, the difference in the costs of the trees was inversely

proportional to the number of symbols being encoded. Considering uniform trees, this

difference converged to around 5% and, for the Zipf’s distribution, this difference converged
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`
[2]-HHT

cost

lower bound
k-HHT % diff `

[2]-HHT
cost

lower bound
k-HHT % diff

k cost k Cost
3 3.000 1 3.000 0.000 44 6.841 3 6.750 1.347
85 7.741 3 7.624 1.543 126 8.000 1 8.000 0.000
167 8.725 3 8.545 2.102 208 8.928 3 8.832 1.089
249 9.000 1 9.000 0.000 290 9.421 3 9.286 1.448
331 9.689 3 9.498 2.004 372 9.831 3 9.664 1.725
413 9.908 3 9.797 1.137 454 9.965 3 9.905 0.600
495 9.996 2 9.996 0.000 536 10.164 3 10.121 0.424
577 10.385 3 10.255 1.268 618 10.560 3 10.371 1.826
659 10.663 3 10.472 1.826 700 10.744 3 10.561 1.731
741 10.810 3 10.641 1.585 782 10.859 3 10.712 1.373
823 10.903 3 10.776 1.173 864 10.936 3 10.834 0.940
905 10.962 3 10.887 0.690 946 10.981 3 10.936 0.416
987 10.995 3 10.980 0.138 1028 11.016 2 11.016 0.000
1069 11.153 3 11.102 0.463 1110 11.270 3 11.172 0.879
1151 11.379 3 11.237 1.260 1192 11.463 3 11.298 1.463
1233 11.540 3 11.354 1.636 1274 11.594 3 11.407 1.638
1315 11.651 3 11.457 1.693 1356 11.691 3 11.504 1.628
1397 11.722 3 11.548 1.506 1438 11.766 3 11.589 1.530
1479 11.800 3 11.628 1.477 1520 11.825 3 11.665 1.370
1561 11.853 3 11.700 1.303 1602 11.873 3 11.733 1.186
1643 11.890 3 11.765 1.066 1684 11.913 3 11.795 0.997
1725 11.930 3 11.824 0.897 1766 11.944 3 11.851 0.784
1807 11.957 3 11.877 0.676 1848 11.968 3 11.902 0.550
1889 11.978 3 11.926 0.439 1930 11.987 3 11.949 0.321
1971 11.993 3 11.971 0.186 2012 11.998 3 11.992 0.054
2053 12.010 2 12.010 0.000 2094 12.081 3 12.054 0.226
2135 12.144 3 12.091 0.438 2176 12.207 3 12.127 0.656
2217 12.263 3 12.162 0.834 2258 12.317 3 12.195 0.999
2299 12.371 3 12.227 1.177 2340 12.421 3 12.259 1.321
2381 12.459 3 12.289 1.388 2422 12.495 3 12.318 1.438
2463 12.527 3 12.346 1.470 2504 12.555 3 12.373 1.472
2545 12.580 3 12.399 1.458 2586 12.601 3 12.424 1.419
2627 12.628 3 12.449 1.437 2668 12.656 3 12.473 1.472
2709 12.680 3 12.496 1.474 2750 12.699 3 12.518 1.444
2791 12.719 3 12.540 1.429 2832 12.737 3 12.561 1.403
2873 12.756 3 12.582 1.383 2914 12.773 3 12.602 1.362
2955 12.787 3 12.621 1.314 2996 12.801 3 12.640 1.273
3037 12.811 3 12.658 1.210 3078 12.822 3 12.676 1.153
3119 12.841 3 12.693 1.164 3160 12.855 3 12.710 1.140
3201 12.867 3 12.727 1.097 3242 12.879 3 12.743 1.070
3283 12.889 3 12.759 1.017 3324 12.894 3 12.774 0.940
3365 12.908 3 12.789 0.934 3406 12.917 3 12.804 0.885
3447 12.922 3 12.818 0.815 3488 12.930 3 12.832 0.766
3529 12.934 3 12.845 0.693 3570 12.946 3 12.859 0.677
3611 12.954 3 12.872 0.639 3652 12.959 3 12.884 0.582
3693 12.966 3 12.897 0.535 3734 12.970 3 12.909 0.473
3775 12.976 3 12.921 0.428 3816 12.980 3 12.932 0.369
3857 12.983 3 12.943 0.302 3898 12.988 3 12.955 0.259
3939 12.992 3 12.965 0.204 3980 12.994 3 12.976 0.141
4021 12.997 3 12.987 0.080 4062 12.999 3 12.997 0.019

Table 4.1: Comparison between the cost of optimal [2]-HHTs and the lower bound
on the cost of k-HHTs.
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Figure 4.5: Difference in percent between the cost of optimal uniform [2]-HHTs and
the cost of the lower bound of uniform k-HHTs for ` symbols.

to around 25%.

Concerning error detection, we have compared optimal [2]-HHTs, HTs, and even trees.

Notice that the Huffman trees have some sort of error detection capability. This occurs

when, at the end of the process of decoding, the last node being processed by the HT

is not a leaf. In this case, it means that some bits of the message have been corrupted.

For this experiment, we build [2]-HHTs and HTs considering the Zipf distribution. The

results reported for even trees are those from [32] in which a similar strategy of testing

has been used. We have chosen a value for `, in the range 10 ≤ ` ≤ 500000, in such a way

that the related optimal [2]-HHT has the value

number of symbol leaves

number of error leaves

maximized. That is, the resulting tree minimizes the proportion of error leaves in compar-

ison with symbols leaves, meaning that such a tree is the one that has the least capacity of

error detection. For the given `, we created an optimal [2]-HHT and an HT for ` symbols

considering the Zipf distribution. For such trees, we have tested random messages with b

symbols, b ∈ {10, 25, 50, 100, 250, 500, 1000, 2500, 5000}. For each one of these messages,

we introduced i random errors in their bits, for all 1 ≤ i ≤ min{b, 20}. For each value of

i, we ran the test one million times, counting how many times the tree could detect the

error. The percentage of detection of each tree is presented in Table 4.3. In this table, one

may observe that the error detection capability of HTs seems to decrease as b increases.

Also, comparing even trees with the optimal [2]-HHT, one may note that in both trees the

error detection capability seems to be proportional to b. Moreover, the optimal [2]-HHT
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Uniform
Probabilities

Zipf
Distribution

`
[2]-HHT

cost
Huffman

cost
% diff `

[2]-HHT
cost

Huffman
cost

% diff

10 4.800 3.400 41.176 10 4.327 2.934 47.479
20 5.750 4.400 30.682 20 5.263 3.669 43.442
30 6.000 4.933 21.622 30 5.732 4.102 39.757
40 6.700 5.400 24.074 40 6.016 4.403 36.634
50 6.940 5.720 21.329 50 6.271 4.636 35.270
60 7.000 5.933 17.978 60 6.497 4.825 34.645
70 7.343 6.171 18.981 70 6.659 4.988 33.498
80 7.675 6.400 19.922 80 6.811 5.126 32.854
90 7.822 6.578 18.919 90 6.959 5.246 32.652
100 7.920 6.720 17.857 100 7.045 5.352 31.622
110 7.973 6.836 16.622 110 7.145 5.447 31.158
210 8.933 7.781 14.810 210 7.854 6.073 29.331
310 9.584 8.348 14.799 310 8.277 6.436 28.601
410 9.905 8.751 13.183 410 8.589 6.695 28.293
510 10.000 8.996 11.160 510 8.833 6.897 28.066
610 10.538 9.321 13.050 610 9.015 7.062 27.656
710 10.765 9.558 12.629 710 9.159 7.201 27.198
810 10.894 9.736 11.894 810 9.301 7.323 27.014
910 10.965 9.875 11.039 910 9.446 7.430 27.134
1010 10.999 9.986 10.143 1010 9.538 7.525 26.758
1110 11.270 10.155 10.983 1110 9.658 7.610 26.912
2110 12.108 11.059 9.488 2110 10.372 8.187 26.695
3110 12.839 11.683 9.892 3110 10.731 8.534 25.750
4110 13.013 12.007 8.381 4110 11.052 8.780 25.871
5110 13.581 12.397 9.552 5110 11.300 8.973 25.937
6110 13.814 12.659 9.125 6110 11.451 9.130 25.420
7110 13.941 12.848 8.508 7110 11.652 9.263 25.786
8110 13.998 12.990 7.764 8110 11.789 9.378 25.707
9110 14.334 13.202 8.576 9110 11.944 9.480 25.986
10110 14.549 13.379 8.743 10110 12.035 9.572 25.733
11110 14.696 13.525 8.653 11110 12.129 9.654 25.633
21110 15.611 14.448 8.055 21110 12.817 10.212 25.513
31110 15.983 14.947 6.936 31110 13.230 10.544 25.474
41110 16.565 15.406 7.522 41110 13.542 10.782 25.600
51110 16.845 15.718 7.171 51110 13.737 10.965 25.280
61110 16.974 15.928 6.573 61110 13.942 11.115 25.430
71110 17.258 16.157 6.814 71110 14.149 11.243 25.852
81110 17.532 16.384 7.009 81110 14.264 11.353 25.641
91110 17.706 16.561 6.912 91110 14.371 11.450 25.517
101110 17.830 16.704 6.741 101110 14.466 11.536 25.392
111110 17.911 16.820 6.484 111110 14.582 11.615 25.543
211110 18.867 17.758 6.243 211110 15.269 12.149 25.678
311110 19.450 18.315 6.201 311110 15.722 12.471 26.069
411110 19.838 18.725 5.943 411110 15.985 12.701 25.851
511110 19.992 18.974 5.363 511110 16.225 12.881 25.955
611110 20.408 19.284 5.828 611110 16.466 13.028 26.385
711110 20.663 19.525 5.826 711110 16.596 13.153 26.174
811110 20.821 19.707 5.654 811110 16.706 13.261 25.973
911110 20.925 19.849 5.419 911110 16.837 13.357 26.049
1011110 20.987 19.963 5.131 1011110 16.960 13.443 26.163
1111110 21.183 20.113 5.321 1111110 17.080 13.520 26.331

Table 4.2: Comparison between the costs of optimal [2]-HHTs and HTs.
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b
Huffman
Tree (%)

Even
Tree (%)

Optimal
[2]-HHT (%)

10 66.1303 90.3540 98.9303
25 73.9825 98.7620 99.8219
50 67.0522 99.0953 99.9172
100 42.4929 99.4894 99.9584
250 34.3946 99.8482 99.9835
500 38.6768 99.9150 99.9923
1000 9.4573 99.9595 99.9958
2500 1.7315 99.9831 99.9983
5000 2.3790 99.9922 99.9994

Table 4.3: Comparison between the error detection capabilities of optimal HTs, even
trees and [2]-HHTs.

seems to have a significantly greater detection capability. For instance, for a message with

500 symbols, the optimal [2]-HHT achieves an error detection rate that is achieved by the

even tree only when the message has 5000 symbols.

4.4.3 Backtracking for optimal uniform HHTs

In the third experiment, we used backtracking to build an optimal uniform HHT for all

1 ≤ ` ≤ 38. We have concluded that, for these values of `, there is always an optimal

Hamming-Huffman tree with at most two levels with symbol leaves. Besides that, in

some cases, there is also an optimal tree with more than two levels. For instance, for

` = 38, there is also an optimal tree with three levels. Another interesting aspect of this

experiment is the fact that, considering optimal uniform Hamming-Huffman trees for 5

symbols, the backtracking obtained the tree depicted in Figure 4.6 which has a different

structure from the one depicted in Figure 2.6, presented in the literature.

Figure 4.6: An optimal uniform Hamming-Huffman tree for 5 symbols.
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Chapter 5

Conclusions

In this thesis, we have studied two topics of computer science, namely, thinness in graphs

and Hamming-Huffman trees. The main contributions of this work for both topics are

described next.

With respect to thinness in graphs, we have introduced two classes of graphs: prece-

dence k-thin and precedence proper k-thin graphs, subclasses of k-thin and proper k-thin

graphs, respectively. Concerning precedence k-thin graphs, we presented a polynomial

time algorithm that receives as input a graph G and a k-partition of V (G) and decides

whether G is a precedence k-thin graph with respect to the given partition. This result

is presented in Section 3.1. Regarding the precedence proper k-thin graphs, for the same

input, we proved that if k is a fixed value, then it is possible to decide whether G is a

precedence proper k-thin graph with respect to the given partition in polynomial time. For

variable k, the related recognition problem is NP-complete. These results are presented

in Section 3.2. Also, using threshold graphs, we characterize both precedence k-thin and

precedence proper k-thin graphs.

Concerning Hamming-Huffman trees, we have presented a restricted case of the prob-

lem of building optimal Hamming-Huffman trees. Namely, we introduced the problem

of building k-Hamming-Huffman trees (k-HHTs), which are Hamming-Huffman trees in

which the symbol leaves are distributed in exactly k distinct levels. For k ≤ 2, we pre-

sented a polynomial time algorithm to solve the problem. We showed that such a case

is reduced to the problem of finding an independent set L with a certain size ` of a hy-

percube Qn such that the cardinality of the neighborhood of L is minimum, over all such

independent sets of size `. The latter is a well-studied problem and it has already been

solved. For k ≥ 3, we presented an algorithm to evaluate a lower bound on the cost of such

trees when the symbols have a uniform probability of occurrence. Moreover, we proved

that, for uniform frequencies, an optimal HHT is always a [5]-HHT and that there exists

an optimal HHT which is a [4]-HHT.

Lastly, we have made some experiments to investigate the optimality of uniform [2]-

HHTs and to measure the capabilities of compression and error detection of [2]-HHTs.

Considering these experiments, we conjectured that there is an optimal uniform HHT in
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which the leaves lie on at most three levels. We formalize this conjecture as follows.

Conjecture 1. Let Γ be a set of symbols having the same frequency. There exists an

optimal Hamming-Huffman T tree associated with Γ such that T is a [3]-HHT.

Also, we conclude that 2-HHTs are indeed a viable solution to compress text data

in real-world situations. In comparison with HTs, its cost is around 25% higher but it

provides an excellent error detection rate. For instance, for block messages of size 5000,

our experiment showed that the error detection rate is around 99.9994% for 2-HHTs.

Concerning precedence k-thin and precedence proper k-thin, some open questions are

highlighted:

• Given a graph G, what is the complexity of computing pre-thin(G) and pre-

pthin(G)?

• Given a graph G and an integer k, what is the complexity of determining if pre-

thin(G), or pre-pthin(G), is at most k?

• How do pre-thin(G) and pre-pthin(G) relate to thin(G) and pthin(G), respectively?

• Is it possible to extend the results of this paper to consider other types of orderings

(partial orders) and restrictions?

Considering k-HHTs, some questions remain open:

• Conjecture 1 holds?

• The k-HHT problem can be solved in polynomial time, for k > 2?

• Is it possible to design a dynamic programming to build, or evaluate the cost, of

k-HHTs in general?
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