
HYPER-HEURISTICS FOR THE TIME-DEPENDENT ATSP VARIANTS
APPLIED TO AIR TRAVEL

Matheus Cunha Simões

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientadores: Laura Silvia Bahiense da Silva
Leite
Celina Miraglia Herrera de
Figueiredo

Rio de Janeiro
Julho de 2023

HYPER-HEURISTICS FOR THE TIME-DEPENDENT ATSP VARIANTS
APPLIED TO AIR TRAVEL

Matheus Cunha Simões

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientadores: Laura Silvia Bahiense da Silva Leite
Celina Miraglia Herrera de Figueiredo

Aprovada por: Prof. Laura Silvia Bahiense da Silva Leite
Prof. Daniel Ratton Figueiredo
Prof. Glaydston Mattos Ribeiro

RIO DE JANEIRO, RJ – BRASIL
JULHO DE 2023

Simões, Matheus Cunha
Hyper-heuristics for the time-dependent ATSP variants

applied to air travel/Matheus Cunha Simões. – Rio de
Janeiro: UFRJ/COPPE, 2023.

XII, 40 p.: il.; 29, 7cm.
Orientadores: Laura Silvia Bahiense da Silva Leite

Celina Miraglia Herrera de Figueiredo
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2023.
Referências Bibliográficas: p. 37 – 40.
1. Hyper-heuristics. 2. Path Relinking. 3.

ATSP. I. Leite, Laura Silvia Bahiense da Silva et al.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

Aos meus pais por apoiarem
minha educação e formação.

iv

Agradecimentos

Aos meu pais, André e Vanessa, e minha irmã, obrigado pelo apoio contínuo durante
minha formação acadêmica.

Às minhas orientadoras, Laura Bahiense e Celina Figueiredo, obrigado pela
parceria. A dedicação e acompanhamento de vocês foi excencial para o desenvolvi-
mento desta dissertação.

Ao Glaydston Ribeiro, Priscila Machado e Pedro Henrique pela participação e
comentários no exame de qualificação.

Aos professores Glaydston Ribeiro e Daniel Ratton por aceitarem fazer parte da
banca de avaliação desta dissertação.

A todos os professores que tive o prazer de conhecer durante a pós-graduação,
agradeço pela dedicação e ensinamentos em todas as aulas.

Por fim, agradeço à CAPES e ao CNPq pelo apoio financeiro que foi essencial
para realização deste trabalho.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

HIPER-HEURÍSTICAS PARA VARIANTES DO PCVA DEPENDENTE DO
TEMPO APLICADAS A VIAGENS AÉREAS

Matheus Cunha Simões

Julho/2023

Orientadores: Laura Silvia Bahiense da Silva Leite
Celina Miraglia Herrera de Figueiredo

Programa: Engenharia de Sistemas e Computação

Hiper-heurística é um método de busca, que pode incluir um mecanismo de
aprendizado, para selecionar ou gerar heurísticas de baixo nível para resolver prob-
lemas computacionais difíceis. Uma particularidade deste método é que ele opera
em um espaço de busca de heurísticas ao invés de diretamente no espaço de busca
de soluções. É parcialmente motivado pela ideia de desenvolver uma metodologia
de busca mais geral que não exija muito conhecimento prévio sobre o problema
específico e suas instâncias.

Este trabalho explora o uso da Hiper-heurística perturbativa de seleção em duas
variantes do problema do Caixeiro-Viajante Assimétrico Dependente do Tempo
no contexto de viagens aéreas. Na primeira, heurísticas utilizadas em algoritmos
de busca local apresentados na literatura são incorporadas à hiper-heurística para
mostrar sua eficiência. Na segunda, as particularidades e a dificuldade do problema
impactaram o desempenho da Hiper-heurística simples e sua hibridização com o Sim-
ulated Annealing, levando a propostas de modificação do método. Um critério de
aceitação adaptado do “melhor ou igual” e a adição de Path Relinking mostraram-se
capazes de gerar soluções de boa qualidade.

Duas soluções iniciais foram geradas para cada instância a partir de diferentes
heurísticas construtivas com comportamento complementar e várias estratégias de
seleção de heurísticas de baixo nível foram implementadas, como Simple Random,
Random Descendent, Random Permutation e Reinforcement Learning. Melhores
custos foram encontrados na maioria das instâncias para ambos os problemas em
pelo menos uma das estratégias de seleção da hiper-heurística quando comparado a
outros métodos da literatura.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

HYPER-HEURISTICS FOR THE TIME-DEPENDENT ATSP VARIANTS
APPLIED TO AIR TRAVEL

Matheus Cunha Simões

July/2023

Advisors: Laura Silvia Bahiense da Silva Leite
Celina Miraglia Herrera de Figueiredo

Department: Systems Engineering and Computer Science

Hyper-heuristic is a search method, that may include a learning mechanism, for
selecting or generating low level heuristics to solve computational hard problems. A
particularity of this method is that it operates on a search space of heuristics instead
of directly on the search space of solutions. It is partially motivated by the idea
of developing a more generally applicable search methodology that does not require
much prior knowledge about the specific problem and its instances.

This work explore the use of the selection perturbative Hyper-heuristic frame-
work in two Time-dependent Asymmetric Traveling Salesman problem variants in
the context of air travel. In the first, heuristics used in local search algorithms pre-
sented in the literature are embedded into the hyper-heuristic framework to show its
efficiency. In the second, particularities and the difficulty of the problem impacted
the performance of the simple Hyper-heuristic and its hybridization with Simulated
Annealing, leading to proposals for modifying the method. An adapted acceptance
criterion of the “improve or equal” and the addition of Path Relinking proved capable
of generating good quality solutions.

Two initial solutions were generated for each instance from different construc-
tive heuristics with complementary behavior and several low level heuristic selection
strategies were implemented, such as Simple Random, Random Descendent, Ran-
dom Permutation and Reinforcement Learning. Better solution costs were found
in most of the instances for both problems in at least one of the hyper-heuristic
selection strategies when compared to other methods in the literature.

vii

Contents

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1
1.1 Contributions . 3
1.2 Structure . 3

2 Related work 5
2.1 Time-dependent ATSP with Time Windows and Precedence Con-

straints . 6
2.2 Generalized Time-dependent ATSP with Time Windows 7

3 Heuristics 10
3.1 Low level heuristics . 10

3.1.1 Generation heuristics . 10
3.1.2 Selection heuristics . 12

3.2 Hyper-heuristics . 13
3.2.1 Simulated Annealing . 17
3.2.2 Path Relinking . 18

4 Experiments and results 22
4.1 Results for the TD-ATSP-TWPC . 22
4.2 Results for the GTD-ATSP-TW . 25

4.2.1 Hyper-heuristic with modified improve or equal 28
4.2.2 Hyper-heuristic with Path Relinking and modified improve or

equal . 32

5 Conclusion and Future work 34
5.1 Future work . 35

viii

References 37

ix

List of Figures

2.1 Illustration of a tour based on a real instance and containing prece-
dence constraints. 7

2.2 Example of an instance of the GTD-ATSP-TW showing a feasible
solution that starts and ends in the same area over Brazil. 8

3.1 Illustration of how the selection heuristics work. 12
3.2 Hyper-heuristic framework diagram. 15

4.1 Plots of cost versus time for the Hyper-heuristic 31

x

List of Tables

4.1 Instances of the TD-ATSP-TWPC [1]. 23
4.2 Results for the TD-ATSP-TWPC when reproducing the local search

methods of [1]. 24
4.3 Results for the TD-ATSP-TWPC when applying our hyper-heuristic

framework. 24
4.4 Instances of the GTD-ATSP-TW [2]. 25
4.5 Solutions of the GTD-ATSP-TW when using different constructive

heuristics. 26
4.6 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

the BN heuristic. 27
4.7 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

the CI heuristic. 28
4.8 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

the BN heuristic. 30
4.9 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

the CI heuristic. 30
4.10 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

BN heuristic and Path Relinking. 32
4.11 Results of the GTD-ATSP-TW when using the Hyper-heuristic with

the CI heuristic. 33
4.12 Solutions pool before and after the Path Relinking. 33

xi

List of Abbreviations

ACO Ant Colony Optimization, p. 1

ATSP Asymmetric Traveling Salesman Problem, p. 3

BN Bellmore and Nemhauser heuristic, p. 11

CI Cheapest Insertion heuristic, p. 11

GTD-ATSP-TW Generalised Time-dependent Asymmetric Traveling Sales-
man Problem with Time Windows, p. 2

GTSP Generalised TSP, p. 5

LLH Low level heuristics, p. 17

NN Nearest-Neighbor heuristic, p. 1

PSO Particle Swarm Optimization, p. 1

RD Random Descent, p. 14

RL Reinforcement Learning, p. 2

RPD Random Permutation Descent, p. 15

RP Random Permutation, p. 15

SA Simulated Annealing, p. 1

SR Simple Random, p. 14

TD-ATSP-TWPC Time-dependent ATSP with Time Windows and Prece-
dence Constraints, p. 4

TSC Travelling Salesman Challenge 2.0, p. 2

TSP-PC TSP with Precedence Constraints, p. 5

TSP-TW TSP with Time Windows, p. 5

TSP Traveling Salesman Problem, p. 1

xii

Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is a well-known optimization NP-hard
problem with many real-world applications. Given its complexity, it is quite common
for exact branch-and-bound-based algorithms to face difficulties in solving large and
complex instances. So, heuristics and metaheuristics emerge as an alternative to
find solutions close to optimality in reasonable computational time [3]. In fact,
there has been much research in the literature [4–6] exploring the development of
heuristic methods to produce good solutions for the TSP and its variants within low
computational costs. These heuristics are commonly introduced in metaheuristic
algorithms to improve the final result.

Among the applications of the TSP in Air Travel, there is the air flight connec-
tion problem, in which given a set of airports in different cities, aim to obtain the
route that visits each city with the lowest possible cost, usually the sum of costs
to travel from every adjacent vertex in the tour. Marques et al. [7] developed a
complete application based on different heuristics and metaheuristic optimization
algorithms. They compared the implementation of Simulated Annealing (SA), Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO) with two vari-
ations of the Nearest Neighbor heuristic (NN), addressing the total price of the trip,
total duration and a balanced cost corresponding to a weighted sum between the
price and duration. Finally, they compared the performance of the method with a
commercial flight search application denoted as Nomad [7] launched by Kiwi.com
and made publicly available for the resolution of the Flying Tourist Problem, a
formulation related to the Time-dependent TSP.

In 2017, the online travel agency Kiwi.com released the Traveling Salesman Chal-
lenge [8] - given a set of cities to visit and a list of flights with the respective origin,
destination, price and day, the challenge consisted of finding the combination of
flights with the lowest price that visits each city once and returns to the first city.
In this case, instances had from 15 to 100 vertices and execution time limited in 30
seconds. This problem can be modeled as a Time-dependent Asymmetric Traveling

1

Salesman Problem (TD-ATSP). Duque et al. [9] developed a hybrid metaheuris-
tic combining ACO and SA to solve the challenge instances that outperformed the
solutions provided by an greedy heuristic and these algorithms separately.

In 2018, Kiwi.com proposed the Travelling Salesman Challenge 2.0 (TSC) [2],
using the same structure of the first competition, but considering a more complex
problem. The contestants had to determine the cheapest possible connection be-
tween specific areas, with an area being a set of cities. Besides, the trip had to start
from a given city, it was necessary to visit exactly one city in each area, it was oblig-
atory to move between areas every day, and the trip had to continue from the same
city. Lastly, the entire trip had to end in a city located within the starting area.
This problem was modeled as a Generalised Time-dependent Asymmetric Travel-
ing Salesman Problem with Time Windows (GTD-ATSP-TW) [10]. The challenge
included small and large instances that are more specific and complex, with up tp
300 areas and vertices, and execution time limit of 15 seconds. In particular, the
large instances are difficult to solve via exact methods considering the time limit set
by the challenge. Ahmad et al. [11] developed a hybrid heuristic combining Tabu
Search and Simulated Annealing to solve the problem, showing that their approach
could improve the initial solutions quite a bit and final results were better than the
Great Deluge algorithm [12].

Pylyavskyy et al. [10] proposed a Reinforcement Learning (RL) hyper-heuristic
algorithm to solve the instances introduced in TSC [2]. They tested six selection
hyper-heuristics that controlled a set of four low level heuristics to improve the
initial solutions. Their work was the evolution of Alrasheed et al. [13], where some
of the same authors used a local search algorithm to improve the initial solutions in
the same problem. A similar approach was used by Saradatta and Pongchairerks [1]
to solve a different variation of TSP known as the Time-dependent Asymmetric
Traveling Salesman Problem with Time Windows and Precedence Constraints. They
generated random initial solutions that were improved by two local search algorithms
and compared with a modified Nearest Neighbor algorithm [4] to solve a real-world
application of air transport much more complicated than the classical asymmetric
traveling salesman problem due to the properties of the airfare prices, the time
windows constraints and the precedence constraints.

Regarding the Time-dependent TSP with time windows and precedence con-
straints, although it is common to find papers addressing the separate variations of
this problem (Time-dependent TSP, TSP with time windows and TSP with prece-
dence constraint), few papers explore all these variants in the same problem. Spe-
cially, there are no article exploring the use of hyper-heuristics for this problem,
until the paper submitted from this work [14], i.e., to the best of our knowledge,
this would be the first article to present a hyper-heuristic for it.

2

1.1 Contributions

In this work is used simple generation and selection low-level heuristics well known
in the literature to develop a new hyper-heuristic framework capable of solving, in
a better way, the problems solved by [1] and [10]. In addition, the computational
results were improved compared to various methods presented in the literature for
these problems [1, 10, 11, 13].

For the Generalized time-dependent ATSP with time windows, we used differ-
ent constructive heuristics to quickly generate good initial solutions and feed our
hyper-heuristic with the modified improve or equal criterion to speed up the search
and improve the cost of the final result when compared to the methods used in [11],
[13], and [10]. This use of different constructive heuristics combined with the char-
acteristics of our acceptance criterion was crucial to find better solutions in the end,
since these heuristics presented distinct and complementary behaviors in relation to
the tested instances. By using this strategy for the GTD-ATSP-TW, in the vast
majority of cases, we were able to improve the best results known in the literature
for instances of the problem from the Kiwi competition.

It is common to find the use of Path Relinking methods within a metaheuristic
algorithm or as a post-optimization technique operating on the set of solutions.
However, although we commonly find in the literature the use of hyper-heuristics
with metaheuristics, there are not many examples of using Path Relinking within a
hyper-heuristic framework. For instance, Jiang et al. [15] introduced the combination
of hyper-heuristics with GRASP and Path Relinking to solve the nurse rostering
problem, comparing their computational results with a more traditional procedure
based on hyper-heuristic with simulated annealing. So, it is proposed a new path
relinking within a hyper-heuristic framework to solve the GTD-ATSP-TW from
TSC by Kiwi.com. The Path Relinking connect the local optimal solutions found
during the search. As a result, new good solutions are built and more choices may
be returned to the final user without much additional time. Finally, the outcome
showed that the adequate use of a hyper-heuristic framework with Path Relinking
can be very efficient in improving the final results and combining the outcome of
every method, new better solutions were set up for the majority of the instances.

1.2 Structure

The following chapters are organized as follows:

• Chapter 2 presents the literature review on Asymmetric Traveling Salesman
Problem (ATSP) variants, highlighting the two problems considered in this
work: the Time-dependent ATSP with Time Windows and Precedence Con-

3

straints (TD-ATSP-TWPC) and the Generalized Time-dependent ATSP with
Time Windows (GTD-ATSP-TW).

• In Chapter 3 is introduced the generation and selection low level heuristics
used, followed by the hyper-heuristic framework developed and its hybridiza-
tions with Simulated Annealing and Path Relinking.

• In Chapter 4 is present all computational experiments in chronological and
result improving order. The results on the TD-ATSP-TWPC and on the GTD-
ATSP-TW are also compared to the best solutions available in the literature.

• Chapter 5 shows the conclusions and commentaries on another methodology
being developed and placed as future work.

4

Chapter 2

Related work

The TSP optimization is NP-hard problem with various applications in real-world
scenarios. There are also several variants of the TSP in the literature, depending on
each application that is modeled by this very important problem. Two cases based
on multiple of these variants are studied in this work with instances and results found
in the literature. Each of theses cases include some of the following characteristics:

• Asymmetric TSP (ATSP): The cost of traveling from city i to city j may not
be the same as traveling from j to i;

• Time-dependent TSP (TD-TSP): The travel cost depends on the distance and
the day of travel;

• Generalised TSP (GTSP): The cities are divided into clusters and the salesman
visits exactly one city of each cluster;

• Open tour TSP: The salesman does not have to end the tour from the point
it started.

• TSP with Time Windows (TSP-TW): The salesman must visit a city within
a specified time window; and

• TSP with Precedence Constraints (TSP-PC): The salesman must visit city i

immediately after visiting city j, for some pairs of cities (i, j).

There is an extensive literature on heuristics for the TSP [4, 5] that can be
adapted for variants and used within more complex methods such as metaheuristics
and hyper-heuristics. Most of these heuristics are fast and easy to implement, which
are good characteristics for low level heuristics. A presentation by Kheiri and Keed-
well [16] show the Selection Hyper-heuristics and some examples of how to apply
low level heuristics in an iteration of the search for the optimal solution.

The next sections introduce the two problems consider in this work, based on
the above-mentioned TSP variants.

5

2.1 Time-dependent ATSP with Time Windows

and Precedence Constraints

The Time-dependent ATSP with Time Windows and Precedence Constraints (TD-
ATSP-TWPC) consists of a salesman that has to visit N countries within N weeks,
exactly one country each week, and the last visited country must be the same as the
starting one, making a cycle, known as Hamiltonian cycle. Let cijk be the lowest
flight price offered by all available airlines to travel from country i to country j

in week k, where i ̸= j. In addition, cijk is possibly different than cjik, producing
the asymmetry in the TSP and cija may be different from cijb because the price
of a flight between two countries may vary on the week, making this problem a
Time-dependent ATSP. It is also possible that there are no available flights to travel
from country i to country j in week k and, in this case, a high artificial cost c̃ijk is
associated.

Moreover, as defined in [1], this problem has time windows constraints (a country
with a time window constraint must be visited in an exact pre-assigned week, and not
the usual time window of an interval potentially wider than 1 day) and precedence
constraints (if there is a precedence constraint concerning countries i and j, country
j must by visited immediately after country i). The objective of TD-ATSP-TWPC
is to minimize the total cost of traveling around all N countries, defined as the sum
of the prices of all flights belonging to the selected trips.

The specific characteristics of this problem compared to the classic TSP make
the optimization even more difficult and the use of well-defined exact methods al-
most impossible, considering the acceptable time limit for real-world applications.
Saradatta and Pongchairerks [1] proposed a method which generates random initial
solutions that are improved by two local search algorithms and compared them with
a modified nearest neighbor algorithm to solve the TD-ATSP-TWPC.

Figure 2.1 illustrates an example of a tour based on a real instance, and contain-
ing two precedence constraints in which it is necessary to visit China immediately
before the USA, and South Korea immediately before Malaysia. As can be seen
in Figure 2.1, these precedence constraints make the solutions have very long arcs,
with high costs. This specificity opposes the traditional TSP idea of minimizing
costs and using short arcs to visit nearby vertices before distant vertices.

There are several studies in the literature about the separate characteristics of
this TSP variant including exact and search optimization approaches, such as [17, 18]
for the TD-ATSP, [19] for the TSP-TW and [20] for the TSP-PC. However, few
papers explore these characteristics all together in the same problem. In particular,
no articles was found exploring the use of hyper-heuristics for this problem until the
submission of [14]. Regarding this problem, the algorithms used by Saradatta and

6

Figure 2.1: Illustration of a tour based on a real instance and containing precedence
constraints.

Pongchairerks [1] were implemented and embedded into a hyper-heuristic framework,
to show that the combined use of heuristics can produce better solutions than their
use separately.

2.2 Generalized Time-dependent ATSP with Time

Windows

The flight network growth and the complexity of travel planning considering the
different paths and costs to fly from one location to another [21] made several travel
agencies to develop their own search engines. Moreover, it motivated some agencies
as Kiwi.com to launch online challenges for researchers and developers in order to
improve their own software, named Nomad. The Travelling Salesman Challenge was
released in 2017 [8] based on a more traditional Time-dependent TSP with instances
up to 100 vertices. In 2018, Kiwi.com proposed the Travelling Salesman Challenge
2.0 (TSC) [2].

The TSC is a more complex variant of the TSP with instances up to 300 areas
and vertices, each instance having distinct rates of vertices per areas and average
adjacency matrix density. The problem is defined by a list of N areas, a list of M
cities/airports per area, the traveling costs between the cities/airports per day, and
the starting city. The objective of the real-world application is to find the cheapest
trip that visits exactly one city of each given area and ends at the starting area.
During the trip, it is not possible to arrive to an airport and then continue the trip
by departing from another airport of the same area. The final destination of the trip
is the starting area but not necessarily the starting airport, so the returned trip does

7

not necessarily define a Hamiltonian cycle. Figure 2.2 shows a fictional example of
instance for the problem including a world tour where each area correspond to a
major region of the globe.

Figure 2.2: Example of an instance of the GTD-ATSP-TW showing a feasible solu-
tion that starts and ends in the same area over Brazil.

Pylyavskyy et al. [10] defined this problem as a Generalized Time-dependent
ATSP with Time Windows combining the time-dependent with time-windows, asym-
metric and generalised variants of the TSP. Different from the problem defined in
Subsection 2.1, there are no precedence constraints, and the time windows con-
straints may have another interpretation. However, there exists the same time de-
pendence based on the cost of traveling between two cities in different days and the
same asymmetry on the cost of going from i to j or from j to i. Combined with the
characteristics of the Generalised TSP and the increase in the instances size, this
problem can be considered harder than the version from 2017 and the one defined
in the previous subsection.

A hybrid metaheuristic based on Tabu Search and Simulated Annealing was
proposed by Ahmad et al. [11] to solve the TSC [2]. They showed that this approach
could improve the initial solutions quite a bit and better the final results compared to
the Great Deluge algorithm [12]. Alrasheed et at. [13] used a Local Search algorithm
with four perturbative heuristics and were able to find solution in only 12 of the 14
instances from the challenge. Finally, a hyper-heuristic algorithm was proposed by
Pylyavskyy et al. [10], in colaboration with some of the same author from Alrasheed
et at. [13] work, which improved the results to the best known in the literature. They
used a random initial solutions improved by a local search procedure to somehow
ensure its feasibilty and input into a Hyper-heuristic with Reinforcement Learning
selection strategy.

In this work, the low level heuristics of Pylyavskyy et al. [10] were embedded

8

into a Hyper-heuristic with modified improve or equal acceptance criteria and a
new hyper-heuristic framework with Path Relinking [22], that produce better initial
solutions based on constructive heuristics to find better final solutions. The results
were compared with the three works mentioned in the previous paragraph and we
show the impact of the initial solution on the performance of the method through
constructive heuristics with complementary characteristics.

9

Chapter 3

Heuristics

This chapter introduces the heuristics implemented within a Hyper-heuristic to solve
the GTD-ATSP-TW and the TD-ATSP-TWPC. The first section presents the gen-
eration and selection low level heuristics, commonly used in the literature. The
second section show the Hyper-heuristic framework and its modifications developed
in this work.

3.1 Low level heuristics

There are two main categories of heuristics related to methods for solving the TSP:
(i) constructive or generation heuristics and (ii) local search or selection heuristics.
Both of them can be used to compose the set of low level heuristics used within a
Hyper-heuristic. Constructive heuristics are used to generate a solution from scratch,
which usually works as starting point for a search algorithm. Diversely, local search
heuristics are used within iterative algorithms that explore the neighborhood of
a current solution, trying to find a better one, i.e., a solution that improves the
objective function. We adopt the terms generation and selection, as they are the
most used in the context of Hyper-heuristics.

3.1.1 Generation heuristics

As described in Section 2.2, Pylyavskyy et al. [10] proposed a Hyper-heuristic
method to solve the GTD-ATSP-TW problem proposed by Kiwi.com in 2018 [2].
They used a random initial solution improved by a local search method to be a
starting point of the search.

By reproducing their methodology using only the random initial solution, it was
possible to notice the presence of many infeasible points that were difficult to fix
during the execution of the hyper-heuristic. These points are generated when it is
necessary to use the artificial costs associated with vertices without available flights

10

between them, as mentioned in Section 2.1. Therefore, to amend this situation, the
following constructive heuristics were implemented aiming to produce better initial
solutions than the ones produced by [10] and remove the need of a pre-optimization
to bring solutions closer to feasibility:

• Nearest Neighbor heuristic (NN) [5]: one of the most common and simplest
heuristics used for finding initial solutions for the TSP. It starts in some vertex
(the origin, if it exists), and at each step, it includes a non-visited vertex with
the lowest cost from the latest vertex inserted in the current solution. This
process ends when all vertices in the graph have been visited. If there is a
connection between the last vertex and the first vertex, then a Hamiltonian
cycle is built; otherwise a non-feasible solution is provided.

• Bellmore and Nemhauser (BN) heuristic [23]: similar to the NN heuristic, it
also starts in some vertex (the origin, if it exists) but, at each step, it considers
the two extremes of the current solution, the head and the tail, and examines
the two non-visited vertices with the lowest cost to connect with these two
extremes. The vertex included in the solution is the one with the lowest cost.
This process ends when all vertices in the graph have been visited. If there is
a connection between the last vertex and the first vertex, then a Hamiltonian
cycle is built; otherwise a non-feasible solution is provided.

• Cheapest Insertion (CI) heuristic [5]: it starts with a partial tour consisting
of two vertices (the origin, if it exists, and another vertex randomly chosen).
At each iteration, it finds vertices k, i and j (i and j being the extremes of an
edge belonging to the partial tour, and k not belonging to that tour) for which
cik + ckj − cij is minimized, and it inserts vertex k between vertices i and j,
removing the connection i − j from the solution. This process ends when all
vertices in the graph have been visited. If there is a connection between the
last vertex and the first vertex, then a Hamiltonian cycle is built; otherwise a
non-feasible solution is provided.

In the TD-ATSP-TWPC, the only particularity when applying these heuristics
is that when a vertex is selected, there must be a validation on its presence in a
precedence constraint or a time window in order to avoid generating solutions that
do not satisfy all restrictions. Therefore, if a vertex that precedes another is selected,
both are included in the solutions and the cost of including a vertex outside its time
window or next to a vertex other than its precedence is as high as possible. In the
GTD-ATSP-TW, the vertices being considered for selection in each iteration are
airports and when any vertex is included in the solution, all vertices from the same
area are removed from the set to be selected. This way, the initial solution satisfy
the problem description of visiting only one airport of each area.

11

All three heuristics are simple and efficient enough to assist the search given the
strict time limit imposed by the challenge. While NN and BN heuristics are O(N2)

algorithms, the time complexity of the CI heuristic is O(N3). However, it won’t
have a big impact on the optimization performance because the largest instance
size is when N is equal to 300 and there is enough time for the search. Finally,
none of these heuristics guarantee the feasibility of the solution and the amount of
artificial edges presented in the solution may have a big impact in the search method
performance.

3.1.2 Selection heuristics

The selection heuristics are typically used in each iteration of a search method to
create a little change in the current solution in a direction of improvement of the
objective function. We use the following simple selection heuristics, commonly found
in the literature (Figure 3.1 illustrates how each of these heuristics works. The first
sequence is the original and the vertices highlighted in each line are the ones selected
in the heuristic):

• SWAP: it randomly selects two vertices in the solution and exchanges their
positions in the solution.

• INSERT: it randomly selects a vertex and a position in the solution. Then
the vertex is removed from the current position and inserted into the selected
position. Consequently, all vertices between the old position and the new one
are moved; and

• REVERSE: it randomly selects two vertices in the solution and reverses all
vertices between these two, including them.

Figure 3.1: Illustration of how the selection heuristics work.

The first experiment with Hyper-heuristic uses only the SWAP and INSERT
selection heuristics as low level heuristics, since the goal is to show that the combined

12

use of these simple heuristics can produce better solutions than their use separately
in distinct Local Search algorithms, as done by Saradatta and Pongchairerks [1]
to solve the TD-ATSP-TWPC presented in Section 2.1. Moreover, it is important
to notice that both selection heuristics were adapted to consider the time windows
and the precedence constraints. This way, a vertex in the right time window do
not change its position and adjacent vertices proper precedence do not move alone,
avoiding violating the constraint. Lastly, in this case, the initial solution is randomly
generated, as done in [1].

In the second problem, the Hyper-heuristic uses SWAP, INSERT and REVERSE
selection heuristics along with a CHANGE AIRPORT heuristic that selects an area
and changes, with a 50% probability, the visited airport for this area, as done in
Pylyavskyy et al. [10]. However, differently from [10], that used a random initial
solution improved by a local search procedure, we use the generation heuristics BN
and CI to produce better initial solutions.

3.2 Hyper-heuristics

Heuristic and metaheuristic algorithms have been used to solve large instances of
many hard combinatorial problems in acceptable execution time. However, these
algorithms, like Ant Colony Optimization, Simulated Annealing and Tabu Search,
need some specific knowledge of the problem and its peculiarities in order to adjust
their parameters when there are changes in the problem description or in the scope
of instances. Moreover, the use of simple heuristics alone may not be sufficient
for obtaining results close enough to optimality. As a result, many researchers
have devoted themselves to develop more sophisticated heuristic methods, known as
Hyper-heuristics, that operates on a search space of heuristics instead of directly on
the search space of solutions. These methods do not require much prior knowledge
about the problem and are not greatly affected by instances with very different
characteristics.

According to Burke et al. [24] and Drake et al. [25], there are two main categories
of hyper-heuristics: generation Hyper-heuristics, which generate new heuristics from
components of available heuristics, and selection Hyper-heuristics, which select one
heuristic from a set of low level available heuristics at each iteration. This categoriza-
tion is usually accompanied by subcategories. For example, selection constructive
hyper-heuristics use constructive methods to gradually build solutions from scratch
by choosing a heuristic at each moment of the construction. Conversely, selection
pertubative hyper-heuristics operate on complete solutions, using the available low
level heuristics to slightly change that solutions.

A common strategy for generation Hyper-heuristics is based on genetic pro-

13

gramming (GP) [26]. The GP is similar to a genetic algorithm, but with individual
represented using expression trees instead of permutations or integer numbers. This
representation is used to encode heuristics that suffer mutations and crossover oper-
ations to generate new heuristics. Ðurasević and Ðumić [27] show the use of GP for
generating relocation rules in the container relocation problem and Duflo et al. [28]
use this kind of Hyper-heuristic focused on a heuristic generation method for the
TSP.

This work focus on the use of selection pertubative Hyper-heuristics with an
adapted Improve or Equal deterministic acceptance criterion to solve the variants
of the TSP introduced in Sections 2.1 and 2.2. At each iteration, these methods
choose a heuristic from a set of low level heuristics and apply it in the current
solution trying to improve its cost in a direction of enhancement of the objective
function. This approach is interesting because it takes advantage of the fact that
some heuristics perform better at some stages of the search while other ones work
better at other times. Therefore, the sequence in which the low level heuristics are
applied is important and different sequences may generate interesting solutions [29].
Moreover, it is possible to introduce a feedback mechanism into the Hyper-heuristic
framework to make it capable of learning the best sequence of application of the low
level heuristics during the search process.

In short, a selection Hyper-heuristic is a general-purpose problem-independent
heuristic search framework which operates a set of low level heuristics to solve com-
putationally hard problems, using only limited problem information such as the
objective function and the direction of the optimization. A Hyper-heuristic usu-
ally has a learning mechanism that collects and uses some feedback from the search
process, such as the amount of times that each heuristic was used and their re-
spective changes in the solution, generating scores for each heuristic based on its
performance. These scores are used to select the heuristic to be applied at each
step. Kheiri and Keedwell [29], for example, proposed a Hidden Markov Model to
determine the transition matrix between the low level heuristics during the search.

The selection hyper-heuristic usually has two sequential steps: (i) heuristic se-
lection and (ii) move acceptance. The first step selects the low level heuristic from
the available set and applies it to the current solution, while the second one decides
if it will accept or reject the new solution. This process is illustrated in Figure 3.2.
The heuristic selection strategies used are the following:

• Simple Random (SR): it uses a uniform probability distribution to randomly
select a low level heuristic at each step;

• Random Descent (RD): it selects a low level heuristic randomly and applies it
repeatedly as long as an improvement is found;

14

• Random Permutation (RP): it generates a random ordering of the low-level
heuristics and, at each step, successively applies a low-level heuristic in the
provided order;

• Random Permutation Descent (RPD): it generates a random ordering of the
low-level heuristics and applies each of them repeatedly as long as an improve-
ment is found, respecting the provided order; and

• Reinforcement Learning (RL): As described by Pylyavskyy et al. [10] and
detailed in Algorithm 1, it assigns an initial score to each low level heuristic in
the beginning of the algorithm and adjusts the scores while learning through
the iterations. When a low level heuristic improves a solution, its score is
updated positively, while a worsening move decreases the score of a low level
heuristic.

Figure 3.2: Hyper-heuristic framework diagram.

15

Algorithm 1: Hyper-heuristic introduced by Pylyavskyy et al. [10]
Data: set of LLHs, initial solution s, objective function f , artificial edges

counter a, tolerance of non-improvement α, factor for rewarding
reward, factor for penalising worsening or non-feasible solutions
peanaltyw and penaltyf

Result: best solution Best

1 Best← s;
2 LLHS ← [0.5, 0.5, 0.5, 0.5];
3 iter ← 1;
4 count← 0;
5 while Execution time ≤ Time limit do
6 LLHi ← SelectLLH(LLHs);
7 new_s← ApplyLLH(LLHi);
8 if a(new_s) == 0 then
9 if f(new_s) < f(s) then

10 s← new_s;
11 count← 0;
12 LLHSi ← LLHSi + iter × reward;
13 if f(new_s) < f(Best) then
14 Best← new_s;

15 else if count > α then
16 s← new_s;
17 count← 0;
18 LLHS ← [0.5, 0.5, 0.5, 0.5];

19 else
20 LLHSi ← LLHSi − iter × penaltyw;
21 count← count+ 1;

22 else
23 LLHSi ← LLHSi − iter × penaltyf ;
24 count← count+ 10;

25 iter ← iter + 1;

Lastly, the acceptance strategy is an important component of any selection
heuristic and it can be deterministic or non-deterministic. Deterministic strate-
gies always make the same decision for acceptance regardless of the input, while a
non-deterministic approach might generate a different decision for the same input.
In the final Hyper-heuristic framework, is set an adapted Improve or Equal deter-
ministic acceptance criterion which only accepts two kinds of solutions: (i) the ones

16

with better or equal cost; or (ii) the ones having the same number of artificial edges,
even if they have a slightly worse cost (as all the artificial edges have the same high
cost, and the exchange is only allowed when the number of artificial edges is equal,
the sum of artificial costs dominates the final solution cost, and the possible slightly
worse in cost does not deteriorate the value of the solution much.)

3.2.1 Simulated Annealing

There are many cases in the literature where the acceptance strategy used in the
Hyper-heuristic is based on metaheuristics such as Simulated Annealing [30, 31]
and Tabu Search [32, 33]. The merge with Simulated Annealing brings a non-
determinism to the Hyper-heuristic that can be used to better explore the capacity
of each LLH.

The Simulated Annealing metaheuristic relies on two loops, the outer and the
inner one. At each iteration, the inner loop is responsible for generating a new can-
didate solution, according to an appropriate neighborhood function and a validation
step. Then, the outer loop updates the temperature based on a predefined cooling
schedule. The inner loop usually ends when reaching a set number of iterations,
while the outer stops when the temperature gets low enough.

In Algorithm 2 is presented a standard Hyper-heuristic combined with Simulated
Annealing, the “SelectLLH” method abbreviate the implementation of the heuristic
selection strategy. The acceptance criteria allow a move if it improves the current
solution or if it is within the probability given by e

−d
T , where T is the current tem-

perature and d is the cost difference of the two solutions. When the algorithm starts
T is in a high temperature and the probability of accepting worsening movements is
high to avoid reaching local minima. As the temperature is cooled, this probability
decreases abruptly and the search behaves closer to Local Search algorithms.

Even though it is one of the most used combinations with Hyper-heuristics, this
strategy contradicts some of the objectives proposed by Hyper-heuristics. The need
for various parameter adjustments makes the method more dependent on the prob-
lem and instances it is dealing with. The values used for the Simulated Annealing
parameters have a significant impact on the quality of the result. Different problems
may perform better with faster or slower cooling, while the same initial and final
temperature values have distinct effects for instances of the same problem. This
way, the Hyper-heuristic with Simulated Annealing comes more to complement the
Simulated Annealing method, by providing the possibility of accessing LLHs with
several neighborhood structures, than the opposite.

In Section 4.2 a few more comments are included on these difficulties based on
experiments made for the GTD-ATSP-TW. Moreover, as the main problem with this

17

approach is presented in the contradiction of generalization from the Hyper-heuristic
and the need for parameter tuning from Simulated Annealing, in Section 5.1 is
included a idea of future work to make a Hyper-heuristic with Simulated Annealing
that perform multiple searches and make parameter adjustment based on previous
solutions found.
Algorithm 2: Hyper-heuristic with Simulated Annealing
Data: set of LLHs, initial solution s, initial temperature T0, final

temperature Tf , iterations at each temperature K, cooling rate α,
objective function f

Result: best solution Best

1 T ← T0;
2 Best← s;
3 while T > Tf do
4 count← 0;
5 while count < K do
6 LLH ← SelectLLH(LLHs);
7 new_s← ApplyLLH(LLH);
8 d← f(new_s)− f(s);
9 if d ≤ 0 and f(new_s) < f(Best) then

10 Best← new_s;
11 s← new_s;

12 else if exp(−d
T
) > random(0, 1) then

13 s← new_s;

14 count← count+ 1;

15 T ← α · T ;

3.2.2 Path Relinking

Usually the Path Relinking is introduced in a Hyper-heuristic framework when it is
already combined with other metaheuristics. Jiang et al. [15] combined the hyper-
heuristics with GRASP and Path Relinking to solve the nurse rostering problem.
Their method generated multiple initial solutions through a GRASP approach and
used the result from the search on each of these to compose the Path Relinkg pool.
Therefore, in this section is proposed a Path Relinking from a single search using
local minima solution found during the process.

The motivation for using a Path Relinking post-optimization method lies in the
fact that better solutions are likely to be found when the path between two high
quality solutions found during the Hyper-heuristic search is explored. These high
quality solutions are stored in a pool during the search to be used in the Path

18

Relinking procedure after the search. Algorithm 3 shows the inclusion of local
minima solutions in a pool. In the “PathRelinking” method, all pairs of solutions
present in the pool are selected to be explored.

For two solutions in the pool, one is set as source, while the other is used as a
guide. To create the path between these two solutions, small changes are made in
the first of one that approximate it to the second. For example, as in the GTD-
ATSP-TW, a solution is represented by a sequence of vertices, swap two vertices to
make at least one of them stay in the same position as in the guide solution. This
way, during the construction of this path between the source and the guide, new
solutions are generated and new sequences not explored before may lead to better
costs.

The objective with the new solutions generated from the Path Relinking is not
only in the possibility of new improvements in the best cost overall, but also in the
fact that new good solutions are built and may be introduced in a new pool of high
quality solutions to be returned to the final user without much additional time. In
real-world applications, it is common to find best solutions that demonstrate a much
greater implementation difficulty than other sub-optimal solutions at just as good a
cost. By returning a pool of good solutions, a final user have more options to select
a suitable answer to the real problem.

Our selection hyper-heuristic has three sequential steps: (i) heuristic selection,
(ii) move acceptance, and (iii) pool insertion. The first selects the low level heuristic
from the available set and apply it to the current solution, while the second decides
if it will accept or reject the new solution produced in the previous step based on
our adapted Improve or Equal. Lastly, in the third it is decided whether the new
solution should enter the pool of high quality solutions for post-optimization with
Path Relinking. This process is demonstrated in Algorithm 3.

As the GTD-ATSP-TW proposed by Kiwi.com is limited by execution time, the
Path Relinking was made only as post-optimization to avoid process undesirable bad
local minima solutions that would be removed from a full pool further in the search.
In this case, the Hyper-heuristic is stopped 10−4 · N · PS seconds before the time
limit, where N is the number of areas and PS is the pool size, to execute the Path
Relinking between solutions in the pool. During the Hyper-heuristic search, when
a new local optimal solution is found, it becomes a candidate to participate in the
Path Relinking post-optimization procedure. Local minima are determined when
the current solution does not changed for more than some predetermined number
of iterations (in Algorithm 3 this value is set to N). This solution enter the pool in
three situations:

1. if the pool is not full;

19

2. if the pool is full, and the solution has the best cost overall;

3. if the pool is full, the solution does not have the worst cost, and it is sufficiently
different from the other solutions in the pool. In the last two cases, the solution
with the worst cost is removed from the pool.

The third criteria to accept a solution in the pool is important to maintain
diversity between solutions. It is common to find different good solutions sharing
the same sub-sequence of vertices since it may be the main cause for the reduction
in the cost. However, when two solutions are too similar, the Path Relinking is
not that efficient because it does not generate many intermediate solutions in the
path linking them. For the implementation in the GTD-ATSP-TW, the distance
between two solutions is the number of positions with distinct vertices and they are
considered sufficiently different when this number is greater than

√
N .

This Hyper-heuristics with Path Relinking was used in additon to the modi-
fied improve or equal acceptance criteria to solve the GTD-ATSP-TW described
described in Section 2.2. As done in all experiments, the initial solutions were
generated by the heuristics described in Section 3.1.1 and the selection heuristics,
introduced in Subsection 3.1.2, composed the set of low level heuristics that were
applied to the solutions to improve the objective function value.

20

Algorithm 3: Hyper-heuristic with Path Relinking
Data: set of LLHs, initial solution s, objective function f , artificial edges

counter a, maximum pool size PS, instance size N , time limit TL

Result: best solution Best

1 Best← s;
2 count← 0;
3 while Execution time ≤ TL− (10−4 ·N · PS) do
4 LLH ← SelectLLH(LLHs);
5 new_s← ApplyLLH(LLH);
6 d← f(new_s)− f(s);
7 if d ≤ 0 or a(new_s) = a(s) then
8 s← new_s;
9 count← 0;

10 if d ≤ 0 then
11 Best← new_s;

12 else
13 count← count+ 1;
14 if count = N then
15 AddToPool(s);

16 AddToPool(s);
17 PathRelinking();

21

Chapter 4

Experiments and results

In this chapter is describe the experiments and results from our selection pertubative
Hyper-heuristic framework applied to the Time-dependent ATSP with Time Win-
dows and Precedence Constraints (TD-ATSP-TWPC) and the Generalized Time-
dependent ATSP with Time Windows (GTD-ATSP-TW), both described in Chap-
ter 2. All methods were coded in C++ language and all experiments were executed
on a personal computer with an i7-7500U 2.7 GHz Intel processor and 8 GB of RAM
memory. Moreover, each method was executed 10 times with different seeds to get
a wider view of its performance. Various heuristic selection strategies were tested
within the hyper-heuristic framework and the best of them is presented for each
instance of the problems TD-ATSP-TWPC and GTD-ATSP-TW.

4.1 Results for the TD-ATSP-TWPC

The experiments presented in Saradatta and Pongchairerks [1], as commented in
Chapter 1, were based on the comparison between the use of the modified nearest
neighbor algorithm with two different local search heuristics - the SWAP and IN-
SERT heuristics. They tested six small instances classified into two classes, each
one having the same number of countries, time windows constraints and precedence
constraints. Class 1 includes Instances 1 to 3, with 15 countries, in which two coun-
tries have pre-assigned visited week (one of them being the starting country), and
one pair of countries has Precedence Constraints. Class 2 includes Instances 4 to
6, with 20 countries, in which three countries have a pre-assigned visit week, and
two pairs of countries have precedence constraints. These instances are presented in
Table 4.1, in which column “Dens.” indicates the density of the adjacency matrix of
each instance. It is worth to highlight that all standard deviations are null in these
instances, but this might not be the case in more general instances, since, for each
week, the adjacency matrix can change.

Our Hyper-heuristic combines the low level heuristics used in the Local Search

22

Table 4.1: Instances of the TD-ATSP-TWPC [1].

Instance # of countries Time Windows Con-
str.

Precedence Constr. Dens.(%)

1 15 Thailand in week 1;
Singapore in week 2.

France after Italy. 79.0

2 15 Thailand in week 1;
South Korea in week
6.

Malaysia after Japan. 79.0

3 15 Thailand in week 1;
Japan in week 9.

China after Germany. 79.0

4 20 Thailand in week 1;
United Kingdom in
week 6; Malaysia in
week 9.

Japan before Aus-
tralia; France before
Hong Kong.

71.0

5 20 Thailand in week 1;
Germany in week 6;
Australia in week 11.

China before USA;
South Korea before
Malaysia.

71.0

6 20 Thailand in week 1;
France in week 8;
South Korea in week
13.

Australia before New
Zealand; Hong Kong
before United King-
dom.

71.0

algorithms of [1] to solve the TD-ATSP-TWPC. The method receives the set of
low level heuristics (in this case, SWAP and INSERT) and the initial solution.
For a better comparison with Saradatta and Pongchairerks [1], the same stopping
criterion based on reaching N2 consecutive iterations without improvement was
used, where N is the number of vertices. The initial solution was also generated
randomly as done in [1] in their local search algorithms. However, while their initial
solutions are feasible roundtrips for TD-ATSP-TWPC, our initial solutions accepted
infeasibility, i.e., tours including artificial connections with high costs c̃ijk penalized
in the objective function, as introduced in Section 2.1.

The solution costs obtained were compared when the low level heuristics are
used separately and together, to show the improvement provided by combining
these heuristics in each execution of the method. The combined use of low level
heuristics brought improvements both in terms of quality of solutions found and in
the computational time to get them. In fact, we were able to achieve solutions with
better values for 4 and tied in 2 out of 6 instances.

Table 4.2 shows the results when reproducing the Local Search methods of [1]
(values in bold highlight the best solutions cost for each instance). Table 4.3 exhibits
the results when applying the hyper-heuristic framework. The selection methods’
variants included: SR, RD, RP, RPD and RL, and the best of them were included
in the result table (all parameter values for the RL selection were the same as those
used by Pylyavskyy et al. [10], i.e., α = 104, reward = 0.003, penaltyf = 0.000625

and penaltyw = 0.0005). Columns “Best”, “Worst”, “Avg.”, “Std.(%)” and “Avg. Time

23

(s)” correspond to the cost of the best solution achieved, the cost of the worst, the
average cost, the standard deviation in percentage and the average execution time
in seconds, respectively. Column “Best Known” is the cost of the best solution found
in the literature, in this case by Saradatta and Pongchairerks [1]. Lastly, column
“Method” indicates the selection strategy responsible for obtaining the best result
for each instance.

The results depicted in Table 4.3 prove that the combined use of low level heuris-
tics in the Hyper-heuristic framework was able to provide better results and average
solution costs for all instances compared to the Local Search algorithms used in
Table 4.2. Only instances 1 and 2 had similar cost to the best known. We can also
see that methods RD and RL were the ones that presented the best results more
often.

Even with high standard deviation values in Table 4.3, we observed that the
results reproducing Saradatta and Pongchairerks [1] experiments (Table 4.2) also
include high values for the standard deviation. Moreover, our Hyper-heuristic frame-
work was able to produce a slight improvement, as shown by the average standard
deviations 12.44 in Table 4.2 and 10.39 in Table 4.3. In conclusion, for solving
the TD-ATSP-TWPC, we can affirm that combining low level heuristics within a
Hyper-heuristic framework leads to much better results.

Table 4.2: Results for the TD-ATSP-TWPC when reproducing the local search
methods of [1].

Instance Method Best Worst Avg. Std.Dev.(%)† Avg.Time(s) Best Known[1]
1 INSERT 102280 176970 128559 15.83 0.0037 102280
2 SWAP 127209 174103 157778 9.01 0.0039 115122
3 INSERT 137722 230970 175672 16.67 0.0036 133329
4 SWAP 219975 300723 262077 10.02 0.0087 196620
5 INSERT 205049 322688 258241 13.55 0.0081 194682
6 SWAP 176333 243099 206925 9.60 0.0084 149065

† The average standard deviation is 12.44.

Table 4.3: Results for the TD-ATSP-TWPC when applying our hyper-heuristic
framework.

Instance Method Best Worst Avg. Std.Dev.(%)† Avg.Time(s) Best Known[1]
1 SR 102280 139186 121859 9.71 0.0042 102280
2 RD 115122 164564 138332 11.93 0.0039 115122
3 RL 129547 174690 150226 10.19 0.0038 133329
4 RP 191324 277484 245733 11.18 0.0087 196620
5 RL 191637 243495 213667 7.23 0.0084 194682
6 RD 147192 213858 176065 12.15 0.0089 149065

† The average standard deviation is 10.39.

24

4.2 Results for the GTD-ATSP-TW

When Kiwi.com proposed the Travelling Salesman Challenge 2.0 [2], they provided
14 instances, with a range from 10 to 300 areas and airports, as shown in Table 4.4.
Each instance has a different distribution of airports per area, and adjacency matri-
ces whose density varies weekly, for the vast majority of instances, as indicated in
columns “Airp. per area” and “Avg. Dens.”, respectively. Column “Std. Dev. Dens.”
stands for the densities’ standard deviations. Lastly, column “Time Lim.” shows
the time limit we used for the execution of the experiments on this problem, which
were set by the challenge as the following rules:

• 3 seconds for instances with number of areas N ≤ 20 and number of airports
M ≤ 50;

• 5 seconds for instances with N ≤ 100 and M ≤ 200; and

• 15 seconds for instances with N > 100.

Table 4.4: Instances of the GTD-ATSP-TW [2].

Instance Areas Airports Airp. per area Avg. Dens.(%) Std. Dev. Dens.(%) Time Lim.(s)
1 10 10 1 100.0 0.0 3
2 10 15 1 to 2 35.0 1.5 3
3 13 38 1 to 6 92.0 0.0 3
4 40 99 1 to 5 100.0 0.0 5
5 46 138 3 12.3 0.0 5
6 96 192 2 17.6 0.0 5
7 150 300 1 to 6 11.8 1.0 15
8 200 300 1 to 4 54.8 0.4 15
9 250 250 1 25.7 0.5 15
10 300 300 1 78.7 0.0 15
11 150 200 1 to 4 28.5 0.3 15
12 200 250 1 to 4 28.5 0.2 15
13 250 275 1 to 3 19.0 0.1 15
14 300 300 1 13.3 15.1 15

Usually, a strict execution time limit is not very impactful for metaheuristics
and Hyper-heuristics, since these algorithms already respond much faster than exact
methods. However, in this challenge the time limit is an important factor, as it is
necessary to return a high quality solution in the total time of 3 to 15 seconds,
depending on the instance size.

The instances from the TSC were already tested with a hyper-heuristic by
Pylyavskyy et al. [10] and their method presented a good performance by improving
the best known solution in 4 of the 14 instances and matching 3 others. In their
case, the focus was on a selection pertubative Hyper-heuristic with Reinforcement
Learning and random initial solutions refined by a Local Search to reach feasibility.
However, they do not make it clear how the Local Search algorithms guaranteed

25

feasibility and which stopping criteria was used to allow both Local Search and
Hyper-heuristic execution within the time limit. Therefore, the objective in this
work is to show the improvement in the final solutions when we apply different con-
structive heuristics to generate the initial solutions to the Hyper-heuristic instead
of using random methods and propose a new Hyper-heuristic framework with Path
Relinking that uses local minima solutions found during the search procedure.

Firstly, we implemented the generation heuristics described in Subsection 3.1.1
to the GTD-ATSP-TW. Table 4.5 compares the results from a random approach
against the results when applying the constructive heuristics NN, BN and CI. Col-
umn “Art. edges” indicated the number of artificial connections needed to make
the solution feasible. For the purpose of optimization and feasibility of the final
solution, a high cost c̃ijk was attributed to the artificial connections, as done for the
TD-ATSP-TWPC. These artificial costs are not included in the values presented in
“Cost” column, as it is already highlighted in column “Art. edges”, i.e., the values
in column “Cost” are the sum of the costs from non-artificial edges in the solution.

The random approach generated solutions with too many artificial connections,
deteriorating as the instance size grows or the density decreases. All the three
constructive heuristics tested (NN, BN and CI) showed a significant improvement
in the quality of the solution and may help the Hyper-heuristic to find good final
solutions faster.

Table 4.5: Solutions of the GTD-ATSP-TW when using different constructive heuris-
tics.

Random NN BN CI
Instance Cost Art. edges Cost Art. edges Cost Art. edges Cost Art. edges

1 21313 0 5267 0 3498 0 1872 0
2 6196 3 8193 1 8193 1 6137 3
3 16882 0 8582 0 8536 0 8104 0
4 60776 0 18176 0 17089 0 16422 0
5 391 42 703 16 1082 1 1038 0
6 2607 74 1756 31 2289 1 2802 0
7 18188 121 29898 4 33041 1 34420 0
8 11269 73 4332 0 3234 1 4602 0
9 84791 184 84017 1 83996 1 78713 0
10 324202 66 52048 1 52872 0 13396 0
11 40149 100 40923 3 41501 4 22523 92
12 48387 137 60661 3 57760 2 31912 112
13 31088 206 86944 8 81134 7 28909 173
14 35737 257 113808 6 120512 8 27248 240

The NN and BN heuristics presented a similar behavior in terms of the amount
of artificial connections in each instance. The difference between them in Instances
5 and 6 made us choose the BN heuristic over the NN. Conversely, the CI heuristic
had another behavior in the column “Art. edges”. In this case, almost all up to the
tenth instance had no artificial connection and low costs. However, in more complex

26

instances (11th to 14th), the heuristic had difficulty in generating good solutions and
resulted close to the random case. Therefore, the BN and CI heuristics were used to
generate the initial solutions for our Hyper-heuristics to enhance the search for good
solutions and improve their cost compared to the best known ones. The choice for
these constructive heuristics was very opportune because, unlike more sophisticated
heuristics, they are simple, fast and do not return solutions too close to local minima
that could affect the search.

Tables 4.6 and 4.7 show the results of the Hyper-heuristic with initial solutions
from BN and CI heuristics respectively. The selection strategies used were the same
as in the TD-ATSP-TWPC, i.e., SR, RD, RP, RPD and RL, and initially the move
acceptance strategy adopted was the standard Improve or Equal with the algorithm
executing until reaching the time limit of each instance.

Table 4.6: Results of the GTD-ATSP-TW when using the Hyper-heuristic with the
BN heuristic.

Solution found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1396 1415.6 2.28 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 8071 8071.0 0.00 7672 7672
4 RD 14134 14791.1 2.49 13952 14024
5 SR 731 920.5 12.06 690 698
6 RP 2262 2338.7 2.26 2610 2159
7 SR 30969 31349.2 0.93 30937 31681
8 RD 4043 4079.8 0.46 4041 4052
9 RP 77864 80723.9 1.64 75604 76372
10 RP 43614 46350.3 1.97 58304 21167
11 SR 44913 46617.0 1.67 49453 44153
12 RDP 57221 59526.4 2.02 70082 65447
13 RD 89279 93534.1 2.74 164764 97859
14 - - - - 198787 118811

† The average standard deviation is 2.35.

The solutions cost are compared with the best values found in the literature [10,
11, 13] and the available information given in the TSC by Kimi.com [2]. The value
in bold represents the lowest cost found for the respective instance and the values
in column “Best Cost” in italics are highlighted because they are solutions found
with a cost between the two sources. As done in Table 4.3, the column “Method”
in Table 4.8 indicates the selection method responsible for obtaining the result for
each instance.

27

Table 4.7: Results of the GTD-ATSP-TW when using the Hyper-heuristic with the
CI heuristic.

Solution Found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1387 1406.5 1.14 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 7936 7936.0 0.00 7672 7672
4 RP 14453 14563.2 0.69 13952 14024
5 RPD 804 972.0 6.43 690 698
6 RD 1990 2207.9 5.88 2610 2159
7 RD 31564 31782.3 0.38 30937 31681
8 RD 4028 4054.9 0.40 4041 4052
9 RPD 76226 76677.3 0.32 75604 76372
10 RPD 12331 12525.6 0.57 58304 21167
11 RD 60749 65929.0 3.83 49453 44153
12 SR 89790 93656.0 3.20 70082 65447
13 RP 137116 146671.0 3.44 164764 97859
14 - - - - 198787 118811

† The average standard deviation is 2.02.

These results show that the initial solution generated from heuristics have a
impact in the final cost. Good solutions were found in a few different cases. The
“Art. edges” column in Table 4.5 shows that the performance of the CI heuristic
is better in medium instances but much worse in large complex instances when
compared to the BN heuristic. This behavior in the initial solution was reproduced
in the cost of the final solutions. The Hyper-heuristic with CI initial solution was
better for most instances from 1 to 10 (achieving the greatest difference in the tenth
instance), and the Hyper-heuristic with BN initial solution was significantly better
for instances 11, 12 and 13.

However, this first experiment was not satisfactory due to the absence of viable
solutions at the end of the search for instance 14 in all cases. Furthermore, the suc-
cess rate for other complex instances, mainly 13, was very low with viable solutions
returning in few of the 10 runs. Finally, there is a visible deficiency in the solutions
found for instances 3 to 5 compared to the references is visible.

4.2.1 Hyper-heuristic with modified improve or equal

Following the previous experiments, new tests were made using the Hyper-heuristic
with Simulated Annealing (most common variation in the literature). Besides the
difficulties commented in Subsection 3.2.1 regarding the need for parameter tuning,
the characteristics of the instances from the TSC made this approach even more
challenging. Each instance presented a different behavior on the costs associated
to its edges. In some large instances the edges had a low cost, while in some small
instances the edges had a high cost, making it necessary to use different initial

28

temperatures for each instance. In addition, the low density for some adjacency
matrices, added to the use of artificial edges with a very high cost, meant that at high
temperatures the algorithm led to solutions with a quality close to random (present
in Table 4.5), causing the deterioration of the initial solutions, and impacted the
search performance at low temperatures as it needed to remove the many artificial
connections before improving the cost of feasible solutions.

Regarding the Hyper-heuristic with Simulated Annealing, some other attempts
were made to try to change the acceptance probability based on the presence of
artificial edges in the current solution. Even managing to find solutions for instance
14, the low success rate remained and the costs of the best solutions increased.
Then a new strategy was chosen, instead of restrict the acceptance criteria from
the Simulated Annealing, it may be better to relax the previous improve or equal
criteria used before.

As presented in Section 3.2, the adapted Improve or Equal acceptance criterion
only accepts two kinds of solutions: (i) the ones with better or equal cost; or (ii)
the ones having the same number of artificial edges, without increasing the number
of artificial edges even if the solution has a slightly worse cost. This way, it accepts
solutions with a slight deterioration while viability is not reached leading to a bet-
ter performance of the algorithm, without compromising the quality of the initial
solution. This allowed a better controlled increase in the search space compared to
strategies based on Hyper-heuristics with SA which initially have greater flexibility
to explore worsening movements and ended up losing qualities of the initial solution.

Tables 4.8 and 4.9 show the results of the Hyper-heuristic with initial solutions
from BN and CI heuristics using the adapted improve or equal acceptance criteria
(using the same layout as Tables 4.6 and 4.7). In the first, we improved the cost
in five instances, matched two and got five with a cost between the two references.
In the second, we improved the cost in eight instances and matched one. Moreover,
the behavior in the initial solution from each constructive heuristic was reproduced
in the cost of the final solutions as in the first experiment.

The number of low level heuristics used in both problems (GTD-ATSP-TW and
TD-ATSP-TWPC) was not large enough for the variation in the heuristic selection
method to express a significant pattern of improvement. This is well evidenced by
the variety in the method that obtained the best result for each instance (column
“Method” of Tables 4.3, 4.8 and 4.9). Yet, in the first instances with less vertices than
the last ones, the Reinforcement Learning strategy was dominant in all experiments
and was the one with most better solutions between the five selection strategies in
all tables combined.

Instance 5 is a particular case for which both references [10] and [2] found solution
costs below 700, and we were not able to achieve such values. Given the size of this

29

Table 4.8: Results of the GTD-ATSP-TW when using the Hyper-heuristic with the
BN heuristic.

Soluton Found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1396 1409.8 1.61 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 6857 7284.5 2.70 7672 7672
4 RPD 8180 9499.8 8.05 13952 14024
5 RD 735 911.9 13.59 690 698
6 RPD 2334 2664.1 9.23 2610 2159
7 RP 28941 30479.2 1.98 30937 31681
8 SR 3996 4048.5 0.72 4041 4052
9 RD 77439 82633.6 2.88 75604 76372
10 RL 43588 46369.5 2.00 58304 21167
11 RP 48774 58284.9 8.31 49453 44153
12 SR 59241 69866.4 8.29 70082 65447
13 RPD 106825 128609.0 8.86 164764 97859
14 RPD 146788 171520.0 7.58 198787 118811

† The average standard deviation is 5.41.

Table 4.9: Results of the GTD-ATSP-TW when using the Hyper-heuristic with the
CI heuristic.

Solution Found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1387 1395.1 0.19 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 7013 7416.8 2.92 7672 7672
4 RL 8190 9360.3 10.41 13952 14024
5 RL 723 872.4 9.57 690 698
6 RPD 2017 2267.1 5.47 2610 2159
7 RPD 30343 30708.1 0.81 30937 31681
8 RL 3977 4025.5 0.58 4041 4052
9 RD 75107 75672.2 0.32 75604 76372
10 RL 11864 12059.2 1.06 58304 21167
11 RD 62717 67348.1 5.00 49453 44153
12 SR 95327 103714.0 3.85 70082 65447
13 RP 169539 177369.0 3.45 164764 97859
14 RD 219683 225618.0 2.07 198787 118811

† The average standard deviation is 3.26.

instance, comprising 46 areas and 138 airports, we thought our method would be
able to find solutions in the same range of [10] and [2]. Probably the initial solutions
generated by the BN and CI heuristics for this case were already too close to a local
minima, so more than one LLH should be needed and the acceptance strategy should
be adapted to tolerate multiple worsening in the cost of the solution, including a
controlled increase in the number of artificial edges to escape that local minima.

Figure 4.1a shows the improvement of the solution cost during the 15 seconds
execution for instance 14. The initial solutions was built using the CI heuristic. The

30

(a) Cost during all execution time (b) Cost between 3 and 8 seconds

Figure 4.1: Plots of cost versus time for the Hyper-heuristic

curve in orange is for a run with the standard improve or equal and the curve in
blue is for the adapted improve or equal. The final cost was better in the second
one, returning a feasible solution, while the first returned a solution with artificial
edges responsible for the gap in the cost between the two final solutions. Moreover,
analyzing executions between 3 and 8 seconds in Figure 4.1b, it is possible to notice
the slight increase in the cost allowed in the modified improve or equal and the sharp
cost drops due to the removal of artificial edges. In this case, the artificial edges were
at a cost of 10000 and the SWAP LLH composed 70% of the improvements, while
the other three LLH got approximately 10% of the improvements in the solution
cost. This behavior may be explained by the sparsity in the adjacency matrix,
the asymmetry, the time dependence characteristic of the problem and the fact
that the INSERT and REVERSE LLHs not only impact the vertices selected in
the operation, but also change the position of all vertices between them. It is also
related to the dominance of the RL selection because it uses the performance from
SWAP to prioritize it over the other less efficient heuristics.

Combining the results shown in Tables 4.8 and 4.9, we were able to improve
the best solutions known in the literature for instances of the Generalized Time-
dependent TSP problem from the Kiwi competition. Actually, we were better at
12 and tied at 1 out of 14 instances compared to the three papers in the literature
and were better at 9 and tied at 1 out of 14 for the information provided in the
competition. This evidences that the adequate use of good initial solutions can be
very efficient in improving the final results. In fact, the strategy included the use of
different constructive heuristics to quickly generate good initial solutions and feed
the Hyper-heuristic with the modified improve or equal criterion to speed up the
search and improve the cost of the final result when compared to the methods used
in [10], [11], and [13]. This use of different constructive heuristics combined with

31

the characteristics of our acceptance criterion was crucial to find better solutions in
the end, since these heuristics presented distinct and complementary behaviors in
relation to the tested instances.

4.2.2 Hyper-heuristic with Path Relinking and modified im-

prove or equal

This experiment is to introduce the selection perturbative Hyper-heuristic with a
Path Relinking post-optimization, that uses initial solutions built from simple con-
structive heuristics for the TSP and local minima found during a single search. The
objective is to obtain at least one of the following improvements: (i) lower costs with
the solutions found in Path Relinking and (ii) increase the quantity of high quality
solutions to enable the return of a set of good solutions.

As done in the previous subsection, Tables 4.10 and 4.11 presents the results
of the Hyper-heuristic with Path Relinking when using the BN and CI heuristics
respectively. The same layout was used to highlight solutions cost and compare with
the best known in the literature.

Table 4.10: Results of the GTD-ATSP-TW when using the Hyper-heuristic with
BN heuristic and Path Relinking.

Solution Found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1367 1390.6 0.67 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 7047 7298.0 2.46 7672 7672
4 RPD 8393 10112.8 8.08 13952 14024
5 RL 732 998.7 15.65 690 698
6 RD 2096 2458.7 9.59 2610 2159
7 SR 30110 30629.7 0.88 30937 31681
8 RL 3997 4060.8 0.91 4041 4052
9 RPD 77398 84630.5 5.64 75604 76372
10 RP 43651 46376.7 1.96 58304 21167
11 SR 47944 53241.4 8.01 49453 44153
12 RD 57362 68046.4 10.18 70082 65447
13 RPD 108772 127453.0 8.60 164764 97859
14 RPD 142991 165147.0 7.81 198787 118811

† The average standard deviation is 5.74.

The same improvements as Subsection 4.2.1 were found. In the first case, we
improved the cost in seven instances, matched one, and got four intermediates. In
the second case, we improved the cost in eight instances and matched one. Moreover,
combining these two cases, the Hyper-heuristic with Path Relinking and the modified
improve or equal acceptance criteria was able to improve the costs from 12 instances
compared to the well documented methods from the literature, i.e., the methods

32

Table 4.11: Results of the GTD-ATSP-TW when using the Hyper-heuristic with the
CI heuristic.

Solution Found Best Known
Instance Method Best Cost Avg. Cost Std (%)† Best of [10, 11, 13] TSC [2]

1 RL 1384 1402.4 1.89 1396 1396
2 RL 1498 1498.0 0.00 1498 1498
3 RL 6577 7227.2 4.70 7672 7672
4 RL 7809 9113.0 8.01 13952 14024
5 RPD 813 958.6 6.73 690 698
6 RPD 1971 2252.0 6.81 2610 2159
7 RP 30526 30738.2 0.47 30937 31681
8 RL 3976 4020.7 0.46 4041 4052
9 SR 75098 75686.7 0.41 75604 76372
10 RP 11923 12109.8 1.19 58304 21167
11 RPD 63763 67648.9 3.17 49453 44153
12 RD 96788 103769.0 3.82 70082 65447
13 SR 169229 178635.0 2.65 164764 97859
14 RD 213747 224962.0 2.20 198787 118811

† The average standard deviation is 3.03.

presented in [10, 11, 13]. Finally, considering the score system used in the TSC,
where 100 points were given for each solution cost lower than shown in the last
column of the result tables, and the winner score of 640 points over more than
500 teams, our set of best solutions would have made at least 900 point in the
competition and at least 800 points if considering the average cost for each instance.

All final solutions found are feasible, so they have no artificial edges. This way,
with only an average of 1% enhancement in the best solutions cost, there is no
significant improvement in the final solution cost. However, new good solutions
were generated for almost all instances, resulting in pools with better options for
returning to a possible user. This set of high quality solutions is of great importance
in real-world problems because, even modeling the problem as detailed as possible,
a feasible solution with the best known cost may not offer the best conditions of
implementation. Therefore, the return of a pool with different solutions and good
costs is an advantage offered by the algorithm. In Table 4.12 is an example of the
top 5 solutions in the pool for an execution of instance 14 with BN initial solution
and RL selection strategy, showing the significant improvements made comparing
the values before and after the Path Relinking.

Table 4.12: Solutions pool before and after the Path Relinking.

Before After
164179 163572
164252 163634
164287 163635
164325 163650
164351 163733

33

Chapter 5

Conclusion and Future work

The TSP is a NP-hard optimization with many real-world application, as in the
context of air travel with flight connections. This utilization is studied by researches
and interests business with the objective of improving their products. In such man-
ner, emerged some challenges for the research and development communities from
companies like Kiwi.com.

In this work was implemented the algorithms used by Saradatta and Pongchair-
erks [1] and embedded them into a new hyper-heuristic framework to solve the
Time-dependent Asymmetric Traveling Salesman Problem with Time Windows and
Precedence Constraints, showing that the combined use of heuristics can produce
better solutions than their use separately. We were able to find better results in all
instances, both in terms of solution quality and computational time. In particular,
we were not able to find articles exploring the use of Hyper-heuristics for this prob-
lem, i.e., to the best of our knowledge, this would be the first work to present the
performance of a Hyper-heuristic for it.

The Generalized Time-dependent ATSP with Time Windows was also explored,
being the focused problem. The low level heuristics of Pylyavskyy et al. [10] were
embedded into some Hyper-heuristic variations to solve the instances proposed in the
Travelling Salesman Challenge 2.0 [2]. In particular, a standard Hyper-heuristic, a
Hyper-heuristic with Simulated Annealing, a Hyper-heuristic with modified improve
or equal acceptance criterion and a new Hyper-heuristic framework with Path Re-
linking using local minima from a single search procedure. These methods produced
better initial and final solutions compared to three paper in the literature [10, 11, 13]
focused in the same problem proposed by Kiwi.com [2].

Tests with the common hybrid between Hyper-heuristics and Simulated Anneal-
ing showed the disadvantage of this approach since The number of artificial edges
increased a lot at the beginning of the algorithm, when the probability of accepting
worsening moves was greater, causing the deterioration of the initial solutions. Due
to these results, the modified improve or equal acceptance criterion was proposed to

34

allow slight worse cost while viability is not reached. It led to a better performance
of the algorithm, without compromising the quality of the initial solution and the
objective of using constructive heuristic to easy the search.

Moreover, the tests included two constructive heuristics, BN and CI, to generate
the initial solutions. Their use combined with the characteristics of the modified
acceptance criterion were crucial to find better solutions in the end, since they
presented distinct and complementary behaviors in relation to the tested instances.
By using this all these strategies for the problem, we were able to find better results
in the vast majority of instances, in terms of solution quality, since the stopping
criterion is a fixed computational time specified in the challenge.

Lastly, a Hyper-heuristic framework with Path Relinking as post-optimization
based on local minima solutions found during a single search was proposed as an
alternative to the Hyper-heuristic with Path Relinking presented in the literature
that uses the results of various searches to compose the pool for the Path Relinking
procedure. This way, the new framework take out the need for multiple executions of
the Hyper-heuristic, which return the final solution much faster. Even not improving
significantly the cost of the best solutions, the method was able to refine the high
quality solutions pool that can be further returned to a potential user to easy the
implementation efforts usually associated with the best solution overall.

5.1 Future work

Based on the selection Hyper-heuristic using GRASP with Path Relinking proposed
by Jiang et al. [15] where multiple Hyper-heuristic searches are executed to produce
the solutions pool for the Path Relinking and the idea of Reinforcement Learning
used in the selection strategy in [10], a new framework could be developed to remove
the disadvantages of the parameter tuning in the Hyper-heuristic with Simulated
Annealing. It would be a Hyper-heuristic with GRASP and Simulated Annealing
assisted by a Reinforcement Learning that uses the result from a search as feedback
to adjust the parameters (initial temperature, final temperature and cooling rate)
before starting a new search loop.

We actually started working in this idea, leading to some changes after initial
tests. However, it was not completed yet due to the need for further improvements
in the performance of parameter tuning. Initially, tests on the Minimum Latency
Problem [34] (a relative of TSP) were made on small and big instances with up to
1084 vertices. In the larger instances, not only the parameters adjustments were bad,
but also the greedy randomized approach from GRASP to generate initial solution
was returning costs too high even with really restricted candidate lists. Moreover,
the introduction of the parameter to determine the candidate list size into the tuning

35

mechanism made the results worse.
Other ways of generating good initial solutions including some variance could

be compared to the strict heuristics described in Section 3.1 and the constructive
approach based on GRASP. A selection constructive Hyper-heuristic, using the op-
erators of the generation heuristics from Subsection 3.1.1 as LLHs and a simple
random selection, turned out to be a better method to create good initial solutions
with some variance. This new approach, based on a double selection Hyper-heuristic,
not only stabilized the initial solution cost, but also removed one parameter from
the tuning set.

Finally, as commented in Subsection 4.2.1, the difference in the edges costs of
distinct instance for the same problem impacted the parameters choice. So, the
following equations are used to standardize the range of values for each parameter:

(i) T0 =
−∆avg

ln p0
and (ii) α =

(
−∆avg

ln pf ·T0

) 1
k , where ∆avg is the average absolute difference

in the objective function for a perturbation in the solution, T0 is the initial temper-
ature for the probability po of accepting worse costs and α is the cooling rate for the
the probability pf of accepting worse costs after k outer iterations of the Simulated
Annealing. This way, the cooling system can be defined by parameters (p0 and pf)
ranged within 0 and 1 independent of the instance characteristics, and the amount
of total iteration, as well as k, can be fixed based on the instance size.

36

References

[1] SARADATTA, T., PONGCHAIRERKS, P. “A time-dependent ATSP with time
window and precedence constraints in air travel”, Journal of Telecommu-
nication, Electronic and Computer Engineering (JTEC), v. 9, n. 2-3,
pp. 149–153, 2017.

[2] HANOUSKOVÁ, B. “Travelling Salesman Challenge 2.0 wrap-up. Tech commu-
nity behind Kiwi.com”. 2018. Online available at: https://code.kiwi.

com/travelling-salesman-challenge-2-0-wrap-up-cb4d81e36d5b,
accessed on March 2023.

[3] BOUSSAÏD, I., LEPAGNOT, J., SIARRY, P. “A survey on optimization meta-
heuristics”, Information sciences, v. 237, pp. 82–117, 2013.

[4] CIRASELLA, J., JOHNSON, D. S., MCGEOCH, L. A., et al. “The asym-
metric traveling salesman problem: Algorithms, instance generators, and
tests”. In: Algorithm Engineering and Experimentation: Third Interna-
tional Workshop (ALENEX), pp. 32–59. Springer, 2001.

[5] ROSENKRANTZ, D. J., STEARNS, R. E., LEWIS II, P. M. “An analysis of
several heuristics for the traveling salesman problem”, SIAM Journal on
Computing, v. 6, n. 3, pp. 563–581, 1977.

[6] PURKAYASTHA, R., CHAKRABORTY, T., SAHA, A., et al. “Study and
analysis of various heuristic algorithms for solving travelling salesman
problem—a survey”. In: Proceedings of the Global AI Congress 2019, pp.
61–70. Springer, 2020.

[7] MARQUES, R., RUSSO, L., ROMA, N. “Flying tourist problem: Flight time and
cost minimization in complex routes”, Expert Systems with Applications,
v. 130, pp. 172–187, 2019.

[8] VESELÝ, O. “Travelling Salesman Challenge. Tech community behind
Kiwi.com”. 2017. Online available at: https://code.kiwi.com/

travelling-salesman-challenge-recap-7956f433bc10, accessed on
October 2022.

37

https://code.kiwi.com/travelling-salesman-challenge-2-0-wrap-up-cb4d81e36d5b
https://code.kiwi.com/travelling-salesman-challenge-2-0-wrap-up-cb4d81e36d5b
https://code.kiwi.com/travelling-salesman-challenge-recap-7956f433bc10
https://code.kiwi.com/travelling-salesman-challenge-recap-7956f433bc10

[9] DUQUE, D., CRUZ, J. A., CARDOSO, H. L., et al. “Optimizing meta-heuristics
for the time-dependent TSP applied to air travels”. In: International Con-
ference on Intelligent Data Engineering and Automated Learning, pp. 730–
739. Springer, 2018.

[10] PYLYAVSKYY, Y., KHEIRI, A., AHMED, L. “A reinforcement learning
hyper-heuristic for the optimisation of flight connections”. In: 2020 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, 2020.

[11] AHMAD, E. D., MUKLASON, A., NURKASANAH, I. “Route Optimization of
Airplane Travel Plans Using the Tabu-Simulated Annealing Algorithm to
Solve the Traveling Salesman Challenge 2.0”. In: 2020 International Con-
ference on Computer Engineering, Network, and Intelligent Multimedia
(CENIM), pp. 217–221. IEEE, 2020.

[12] DUECK, G. “New optimization heuristics: The great deluge algorithm and the
record-to-record travel”, Journal of Computational Physics, v. 104, n. 1,
pp. 86–92, 1993.

[13] ALRASHEED, M., MOHAMMED, W., PYLYAVSKYY, Y., et al. “Local search
heuristic for the optimisation of flight connections”. In: 2019 International
Conference on Computer, Control, Electrical, and Electronics Engineering
(ICCCEEE), pp. 1–4. IEEE, 2019.

[14] SIMÕES, M., BAHIENSE, L., FIGUEIREDO, C. “Hyper-heuristics for the
Time-dependent ATSP variants applied to air travel”, Submitted to
RAIRO Operations Research, 2023.

[15] JIANG, H., QIU, J., XUAN, J. “A hyper-heuristic using GRASP with path-
relinking: A case study of the nurse rostering problem”, Journal of Infor-
mation Technology Research, v. 4, n. 2, pp. 31–42, 2011.

[16] KHEIRI, A., KEEDWELL, E. “Selection hyper-heuristics”. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp.
983–996. Association for Computing Machinery, 2022.

[17] ABELEDO, H., FUKASAWA, R., PESSOA, A., et al. “The time dependent
traveling salesman problem: polyhedra and algorithm”, Mathematical Pro-
gramming Computation, v. 5, n. 1, pp. 27–55, 2013.

[18] KANOH, H., OCHIAI, J. “Solving Time-Dependent Traveling Salesman Prob-
lems Using Ant Colony Optimization Based on Predicted Traffic”. In: Dis-
tributed Computing and Artificial Intelligence, v. 151, pp. 25–32. Springer,
2012.

38

[19] DUMAS, Y., DESROSIERS, J., GELINAS, E., et al. “An Optimal Algorithm
for the Traveling Salesman Problem with Time Windows”, Operations
research, v. 43, n. 2, pp. 367–371, 1995.

[20] MOON, C., KIM, J., CHOI, G., et al. “An efficient genetic algorithm for
the traveling salesman problem with precedence constraints”, European
Journal of Operational Research, v. 140, pp. 606–617, 2002.

[21] DE MARCKEN, C. “Computational complexity of air travel planning”, MIT
Lecture Notes, Fall, 2003.

[22] SIMÕES, M., BAHIENSE, L., FIGUEIREDO, C. “Hyper-heuristics with
Path Relinking applied to the Generalised Time-Dependent ATSP in Air
Travel”. In: Proceedings of XII Latin-American Algorithms, Graphs and
Optimization Symposium, 2023.

[23] BELLMORE, M., NEMHAUSER, G. L. “The traveling salesman problem: a
survey”, Operations Research, v. 16, n. 3, pp. 538–558, 1968.

[24] BURKE, E. K., GENDREAU, M., HYDE, M., et al. “Hyper-heuristics: a survey
of the state of the art”, Journal of the Operational Research Society, v. 64,
n. 12, pp. 1695–1724, 2013.

[25] DRAKE, J. H., KHEIRI, A., ÖZCAN, E., et al. “Recent advances in selection
hyper-heuristics”, European Journal of Operational Research, v. 285, n. 2,
pp. 405–428, 2020.

[26] KOZA, J. R. “Survey of genetic algorithms and genetic programming”. In:
Wescon conference record, pp. 589–594. Western Periodicals Company,
1995.

[27] ÐURASEVIĆ, M., ÐUMIĆ, M. “Automated design of heuristics for the con-
tainer relocation problem using genetic programming”, Applied Soft Com-
puting, v. 130, pp. 109696, 2022.

[28] DUFLO, G., KIEFFER, E., BRUST, M. R., et al. “A gp hyper-heuristic ap-
proach for generating tsp heuristics”. In: 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 521–
529. IEEE, 2019.

[29] KHEIRI, A., KEEDWELL, E. “A sequence-based selection hyper-heuristic util-
ising a hidden Markov model”. In: Proceedings of the 2015 annual confer-
ence on genetic and evolutionary computation, pp. 417–424, 2015.

39

[30] GARZA-SANTISTEBAN, F., SÁNCHEZ-PÁMANES, R., PUENTE-
RODRÍGUEZ, L. A., et al. “A simulated annealing hyper-heuristic
for job shop scheduling problems”. In: 2019 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 57–64. IEEE, 2019.

[31] BAI, R., BURKE, E. K., KENDALL, G., et al. “A simulated annealing hyper-
heuristic for university course timetabling”. In: Practice and Theory of
Automated Timetabling VI, pp. 345–350. Springer, 2006.

[32] KENDALL, G., HUSSIN, N. M. “A tabu search hyper-heuristic approach to
the examination timetabling problem at the MARA University of Technol-
ogy”. In: Practice and Theory of Automated Timetabling V, pp. 270–293.
Springer, 2005.

[33] ZAMLI, K. Z., ALKAZEMI, B. Y., KENDALL, G. “A Tabu Search hyper-
heuristic strategy for t-way test suite generation”, Applied Soft Computing,
v. 44, pp. 57–74, 2016.

[34] SANTANA, Í., PLASTINO, A., ROSSETI, I. “Improving a state-of-the-art
heuristic for the minimum latency problem with data mining”, Interna-
tional Transactions in Operational Research, v. 29, n. 2, pp. 959–986,
2022.

40

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contributions
	Structure

	Related work
	Time-dependent ATSP with Time Windows and Precedence Constraints
	Generalized Time-dependent ATSP with Time Windows

	Heuristics
	Low level heuristics
	Generation heuristics
	Selection heuristics

	Hyper-heuristics
	Simulated Annealing
	Path Relinking

	Experiments and results
	Results for the TD-ATSP-TWPC
	Results for the GTD-ATSP-TW
	Hyper-heuristic with modified improve or equal
	Hyper-heuristic with Path Relinking and modified improve or equal

	Conclusion and Future work
	Future work

	References

