
CHARACTERIZING CONDITIONAL INDEPENDENCE IN GENE
CO-EXPRESSION NETWORKS

Hugo Sales Corrêa

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Valmir Carneiro Barbosa

Rio de Janeiro
Agosto de 2023

CHARACTERIZING CONDITIONAL INDEPENDENCE IN GENE
CO-EXPRESSION NETWORKS

Hugo Sales Corrêa

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientador: Valmir Carneiro Barbosa

Examinada por: Prof. Valmir Carneiro Barbosa
Prof. Daniel Ratton Figueiredo
Prof. Aline Marins Paes Carvalho

RIO DE JANEIRO, RJ – BRASIL
AGOSTO DE 2023

Sales Corrêa, Hugo
Characterizing Conditional Independence in Gene Co-

Expression Networks/Hugo Sales Corrêa. – Rio de Janeiro:
UFRJ/COPPE, 2023.

X, 56 p.: il.; 29,7cm.
Orientador: Valmir Carneiro Barbosa
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2023.
Referências Bibliográficas: p. 53 – 56.
1. Gene Regulatory Networks. 2. Gaussian Graphical

Models. 3. Single-Cell RNA seq. I. Carneiro
Barbosa, Valmir. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia de Sistemas e
Computação. III. Título.

iii

Ao Renato.

iv

Agradecimentos

Agradeço aos meus pais, Cláudia e Ricardo, pelas minhas origens e formação.
Agradeço ao meu orientador, Valmir, em toda a sua paciência, pela jornada de
crescimento, coragem, e curiosidade intelectual que ele pôde proporcionar. Agradeço
à minha namorada, Janaína, que ao encontrá-la, ajudou a me reencontrar também.
Após uma dura pandemia, ainda que muitos tenham ficado para trás, agradeço a
todos os que, com sua vontade de viver e esperança num mundo melhor, tiveram a
força de reconstruir este Nosso Lugar. Que haja cerveja para comemorar!

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CHARACTERIZING CONDITIONAL INDEPENDENCE IN GENE
CO-EXPRESSION NETWORKS

Hugo Sales Corrêa

Agosto/2023

Orientador: Valmir Carneiro Barbosa

Programa: Engenharia de Sistemas e Computação

Apresentamos, nesta tese, um estudo, por métodos computacionais e estatísticos,
de dados biológicos do transcriptoma do organismo Saccharomyces cerevisiae. Esse
estudo de biologia está relacionado a avanços recentes no entendimento acerca de
como os genes de um organismo interagem para produzir fenótipos complexos, onde
passamos a atribuir uma maior importância à rede regulatória de genes como um
todo, em vez de somente atribuir fenótipos a uma quantidade pequena de genes. O
nosso trabalho se dá por uma ótica de otimização, modelos gráficos probabilísticos e
redes complexas, com o objetivo de ilustrar o potencial dessa mudança de perspectiva
ao corroboramos parcialmente a Hipótese Omnigênica.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

CHARACTERIZING CONDITIONAL INDEPENDENCE IN GENE
CO-EXPRESSION NETWORKS

Hugo Sales Corrêa

August/2023

Advisor: Valmir Carneiro Barbosa

Department: Systems Engineering and Computer Science

In this work, we present a computational and statistical study of transcriptomic
data, in the context of the model organism Saccharomyces cerevisiae. This study
is related to recent advances in the understanding of how genes interact in a cell
to produce complex phenotypes, where we start to give higher importance to the
Gene Regulatory Network as a whole, instead of attributing phenotypic variation to
mutations in a small group of genes. Hopefully, our work brings a fresh perspective,
combining optimization, probabilistic graphical models, and complex networks, with
the objective of showcasing the promise of this shift in understanding, by partially
supporting the Omnigenic Hypothesis.

vii

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Previous Work . 4
1.2 The Omnigenic Hypothesis . 5

1.2.1 The Gene Regulatory Network, seen as a dynamical system . . 5
1.2.2 The Omnigenic Hypothesis - Dynamical System Version 6

1.3 Connecting the Omnigenic Hypothesis with the Selected Modelling
Method . 6
1.3.1 The Omnigenic Hypothesis - Graph Version 7

1.4 Single-Cell RNA-Seq . 8
1.5 Which PGM? . 8
1.6 Contributions and Roadmap . 9

2 Background 10
2.1 The Multivariate Gaussian . 10

2.1.1 How to Assess Conditional Independence 12
2.2 Finding CI Graphs . 13

3 Selecting Candidate CI graphs 16
3.1 Structured Maximum Likelihood Estimation 18

3.1.1 Multivariate Gaussian MLE . 18
3.1.2 Conditional Independence . 19
3.1.3 Algorithm for the MLE . 19

3.2 Information Criteria . 21

4 Methodology 24
4.1 Data Pipeline Overview . 24
4.2 Data Imputation . 25

4.2.1 MAGIC algorithm . 26

viii

4.2.2 Molecular Cross-Validation . 26
4.3 Shrinkage Covariance Estimation . 27
4.4 Conditional Independence Testing . 27
4.5 GGM Maximum Likelihood Estimation 29

4.5.1 Clique Algorithms . 29
4.5.2 Conditional Decorrelation . 30
4.5.3 Convergence Criteria . 31

5 Results 32
5.1 The Selected Data set . 32
5.2 Impact of Data Imputation . 32
5.3 Network Analysis of the CI Networks . 34
5.4 Convergence of the MLE . 38

5.4.1 Comparison of the Edge Cover Algorithms 39
5.5 Information Criteria Results . 41
5.6 Essential Genes . 42

5.6.1 Influence Propagation . 45

6 Conclusion 46

A Proofs 48
A.1 Chapter 3 . 48

A.1.1 Multivariate Gaussian MLE . 48
A.1.2 Conditional Independence . 48
A.1.3 Equivalence of using Correlation 51

A.2 Chapter 5 . 52
A.2.1 Derivation of the Info Score . 52

References 53

ix

List of Figures

1.1 Graph representation of a GRN with genes {a, b, c, d, e}. The directed
edges represent a direct influence of one gene’s expression level on
another’s. Notably, we have two loops: {d, b, a}, {b, c, d}, and if we
consider the sum of a gene’s outdegree and indegree as a measure of
centrality, we would have one hub gene: d, and one peripheral gene: e. 2

1.2 A GCN built from data generated from Figure 1.1 3

2.1 Histogram of YOL049W’s expression levels 11

4.1 The execution steps of the pipeline . 25

5.1 Histograms illustrating the frequency or zero counts before and after
the imputation procedure . 33

5.2 Correlations of gene expression levels before and after imputation . . 34
5.3 Correlations of gene expression levels before and after imputation . . 34
5.4 Instances without FDR control . 35
5.5 Instances with FDR control . 35
5.6 CCDF plot the graph instances’ degree distribution. 36
5.7 Power-law fits to the degree distributions. 37
5.8 Gene degree correlations across graph instances. 38
5.9 Convergence plot of the 0.05 instances, comparing the two different

cover algorithms and the use of FDR control. 39
5.10 Convergence plot of the 0.01 instances, comparing the two different

cover algorithms and the use of FDR control. 39
5.11 Plots showing how close the clique edge cover is to a detachable clique

sequence for the cover algorithm . 40
5.12 Plots showing how close the clique edge cover is to a detachable clique

sequence for the partition algorithm . 41
5.13 Gene expression predictions R2, for Instances without FDR control . . 44
5.14 Gene expression predictions R2, for Instances with FDR control 44

x

List of Tables

5.1 Table showing the Molecular Cross-Validation loss for each hyper-
parameter configuration . 33

5.2 Descriptive table of basic network statistics for the graph instances. . 36
5.3 Converge information for all instances G1, G2, G3, and G4, compar-

ing the two different cover algorithms. 38
5.4 Table containing the information criteria results for all instances. . . . 41
5.5 Centrality metrics of both essential and non-essential genes. 43

xi

Chapter 1

Introduction

In this dissertation, we task ourselves with exploring questions of how genetic vari-
ation leads to different phenotypes in a population. As one can imagine, such ques-
tions are long-standing, with the first models of inheritance, such as Mendel’s, arising
in the 19th century, and focusing on single-gene phenotypes. With technological ad-
vances in the 20th century, such as DNA sequencing technology, we now know that
the majority of traits with a hereditary factor do not follow a monogenic model, i.e.,
we cannot explain the trait’s observed variability in a population, with mutations to
limited genomic regions, even when accounting for environmental factors. Curiously,
the history of polygenic models starts as early as 1918, with Fisher’s publication of
his Infinitesimal model [23], an additive model under which it can be shown that
if many genes affect a (quantitative) phenotype, then the random mutation of alle-
les at each gene converges to a continuous, normally-distributed phenotype in the
population. Perhaps the best example of a trait consistent with this model is adult
height [28], which is historically known to follow a normal distribution.

This model, however, assumes that each gene produces an additive effect which
is independent of other genes, thus completely disregarding all the regulatory ways
in which genes interact with one another. The existence of what we call epistasis,
denoting gene mutations whose effect is dependent on the presence or absence of mu-
tations in other genes, coined by Florence Margaret Durham and Muriel Wheldale,
was pioneerly evidenced in their investigations in the early 1900’s [27] and would
eventually become central in the understanding of most complex traits, evidencing
the limitations of the infinitesimal model for explaining variability in a population.
And thus, we turn our attention to more recent efforts, which have focused on the
interaction between genes, and more specifically, attempt to specify and model the
emergence of complex traits as a consequence of properties of Gene Regulatory Net-
works (GRNs) [20]. Such networks abstractly represent the collection of epistatic
phenomena of a given organism, and given that a GRN is a model for the expression
of mRNA and consequently of proteins, it ultimately determines the function of a

1

a

b

c

d e

Figure 1.1: Graph representation of a GRN with genes {a, b, c, d, e}. The directed
edges represent a direct influence of one gene’s expression level on another’s. No-
tably, we have two loops: {d, b, a}, {b, c, d}, and if we consider the sum of a gene’s
outdegree and indegree as a measure of centrality, we would have one hub gene: d,
and one peripheral gene: e.

cell, it being a unicellular organism or even a member of a more complex organism.
More mathematically, a GRN is a dynamical system that can be summarized

as a directed network, where all the incoming (directed) edges into a gene indicate
what variables (excluding environmental variables) can influence its expression lev-
els, as exemplified in Figure 1.1. Fully uncovering and specifying the underlying
GRN of any given biological strain is currently computationally or experimentally
infeasible, as it would require an understanding of how every possible protein and
mRNA molecule interact with each other under each of many environmental con-
ditions. This challenge is closely related to the field of protein-protein interaction
prediction [26]. This fact, alongside an expansion in biological data availability due
to innovations in sequencing technology, has led to many recent efforts taking a more
statistical approach to uncovering gene regulatory networks.

An example of such approaches are Gene Co-Expression Networks (GCNs)[37][5],
used mainly within a context of analyzing DNA Microarray or bulk RNA-Seq
datasets, both yielding the averaged expression level of each gene in a given tis-
sue or population of cells. These GCNs are typically based on measures of pairwise
“relatedness” between gene expressions, commonly adopting metrics based on cor-
relation or mutual information of the expression levels. When one determines a
cutoff for the significance of these metrics, genes with significantly “related” expres-
sion levels produce and edge in the network. These networks were observed to give
rise to small-world properties, such as the presence of hub genes and small average
distances between genes.

These properties are arguably plausible from an evolutionary perspective, given

2

a

b

c

d e

Figure 1.2: A GCN built from data generated from Figure 1.1

that scale-free networks are robust under random perturbations. Whether these
networks are actually scale-free, however, has been a topic of debate since the early
2000’s, with [16] stating that biological networks better fit truncated power-law
degree distributions, rather than pure power-laws.

Nevertheless, the small-world and “approximate” scale-free properties of gene
networks have yielded insight into the regulatory mechanisms of gene expression
[36].

There are two limitations to the use of GCNs. First, it only produces undirected
edges, so directionality is not preserved. Second, it does not attempt to control
for correlations that are not a product of direct causation: given a gene pair, there
could also be indirect causation, or even no causal relationship at all, in a situation
where both genes are affected simultaneously by a separate gene or set of genes.

The graph in Figure 1.2 is an illustration of how we might expect a GCN-based
method to work: we lose edge directionality and may have to deal with false positives
(inferred edges that do not exist) and false negatives (missing edges), with false
positives tending to be more prevalent. In particular, we illustrate how e could be
missed as a peripheral gene, since it has strong correlation with d, a hub gene, which
in turn has correlations with other genes. Indeed, the appearance of cluster regions
may, in part, be exacerbated as a mathematical consequence of the method, given
that correlations obey a weak form of transitivity.

As illustrated by Tao [31], if, for a certain gene v, its correlation with other
genes ui exceeds a certain threshold ε, meaning ⟨v, ui⟩ ≥ ε for at least εn values of
i = 1, . . . , n, then ⟨ui, uj⟩ ≥ ε4/2 for at least ε4n2/2 pairs (i, j), i.e., many genes ui

will also be correlated among themselves. With this mathematical necessity, we will
likely see higher average degrees and graphs that are more “triangular”.

In general, past results had several limitations both in terms of methodology

3

and in the quality/availability of data. This notwithstanding, they were already
pointing toward a shift to considering most relevant phenotypes to arise from many
interacting genes.

1.1 Previous Work

Besides GCNs, there have been a number of methods attempting to model gene
regulatory networks.

Some through the lens of dynamical systems, by simplifying the gene regulatory
process as Boolean Networks, where each variable’s truth value is determined by a
Boolean expression containing its incoming neighbours. Although seemingly sim-
plistic, this approach provides the possibility of analyzing dynamics, instead of only
producing descriptive results on structure. Such networks can exhibit vastly differ-
ent regimes, depending on their degree distribution, and a number o studies suggest
that they do capture biologically plausible features and processes [29]. Having been
explored since the late 60’s, our theoretical understanding of them is advanced, and
most recent work has been focused on inference of these networks from biological
data.

Other works focus on clustering and dimensionality reduction to uncover different
“modes” of cell behaviour within a given tissue [1] [18]. These methods are more
closely related to the general area of Manifold Learning, such that one assumes
that the high dimensional data produced by genes reside in a lower dimensional
manifold. Some recent examples even adapt popular Neural Network self-supervised
models, for instance, auto-encoders [32] to try and capture such a hypothesized
manifold. And within this captured structure, one would be able to observe different
“regions” of cellular behaviour, therefore, such methods are not intended to directly
indicate regulatory connections or pathways between genes, but rather help the
understanding of intratissue or cell culture heterogeneity and its relationship to
traits or diseases.

Finally, Gaussian Graphical Models (GGMs), the main method explored in this
dissertation, which will be extensively explained in later chapters, have been used
at least since the publication of the optimization method called Graphical Lasso,
enabling the inference of such models in problems scaling to thousands of nodes, thus
becoming a viable approach to handling gene expression data, in which each gene
represents a node. However, the initial version of the graphical lasso is no longer
widely adopted, as it was shown repeatedly to have issues with false discoveries.
One such instance, in a study of gene expression in cancer cells, the authors even
judged necessary to remove edges with weights below 0.2 as an attempt to reduce
false positives from the method [39]. Others tried to deal with this problem by

4

incorporating previous knowledge about the network into the learning procedure
[35].

1.2 The Omnigenic Hypothesis

Recently, evidence has been accumulating that GRNs are highly connected, with
Genome-Wide Association Studies (GWAS) failing to attribute the appearance of a
phenotype to variations in only a few genes [22]. A GWAS of schizophrenia (Purcel
et. al, 2014) [25], for example, failed to demonstrate the relation of individual gene
expressions to the appearance of the phenotype, which as the authors mention, was
already known for autism. Such mounting evidence has motivated the formulation
of the omnigenic hypothesis [4], which we summarize into two claims:

1. (pleiotropy) The GRN of complex organisms is sufficiently connected for most
complex traits to be affected by thousands of genes, and consequently, pleiotropic
genes (those affecting different, seemingly unrelated traits) are prevalent.

2. We can characterize a GRN as comprising both core genes and peripheral
genes for a given phenotype, with the expression of core genes making them influ-
ential, while that of peripheral genes only allows them to influence the phenotype
indirectly through the core genes.

Claim (2) is consistent with the “robust yet fragile” effect in complex networks
[7], since mutations in core genes could indeed give rise to significant variation, while
failing to explain the full spectrum of a phenotype in a population.

1.2.1 The Gene Regulatory Network, seen as a dynamical

system

More formally, RNA transcription can be modelled as a stochastic dynamical system
(ignoring environmental inputs) with an underlying undirected G.

∂p(xk)

∂t
= fk

G(x1, x2, . . . , xp)

,

where G is such that If a variable pair ij is not in E(G) then both ∂f i
G

∂xj
= 0 and

5

∂fj
G

∂xi
= 0, meaning that xi holds no direct influence on xj and vice-versa.

1.2.2 The Omnigenic Hypothesis - Dynamical System Ver-

sion

Given the definition of a GRN as a dynamical system, let us translate what the
Omnigenic Hypothesis actually postulates regarding the dynamical system. Let
Γ ⊂ ∆ be the subset of genes directly related to a phenotype ϕ, i.e., Γ is the set
of core genes of ϕ. The manifestation of the phenotype will be defined as function
ϕ(xΓ) of the expression levels of its core genes.

We can decompose the variations in ϕ(xΓ) into three causes:

1. Random perturbations on xi for i ∈ Γ

2. Inside “influence” of genes xi for i ∈ Γ among themselves

3. Outside “influence” of genes xj for j ∉ Γ.

In items 2 and 3, what we mean by “influence” is how an intervention on a
certain gene can propagate to another, as time passes. If an intervention on the
expression levels xi of gene i causes a change in xj of gene j that would otherwise
not happen, we say that gene i is influential to j. On such terms, Claim (2) translates
to the statement that: For most complex phenotypes, outside “influence” is the most
dominant on determining variation of phenotypes, and this influence of peripheral
genes is long-tailed, spreading to thousands of genes.

1.3 Connecting the Omnigenic Hypothesis with the

Selected Modelling Method

In this study, we attempt to support the existence of a mechanism which is consis-
tent with Claim 2. If an organism’s GRN does indeed have approximate scale-free
properties, like hub genes and small distances, and if core genes, which are a priori
known to be “essential”, also tend to be hub nodes in the network, then core genes
will be highly connected (by a small distance) to thousands of peripheral nodes,
and it will be plausible that these peripheral genes’ influence accumulate and signif-
icantly impact the expression of the core genes, and thus, impact the development
of a given phenotype. If we were to find that the GRN is not scale-free or that the
hub genes do not intersect with known “essential” genes, then the support to Claim
2 would be much weaker.

6

1.3.1 The Omnigenic Hypothesis - Graph Version

More formally, let us again take a set of genes Γ directly related to a phenotype ϕ,
representing its core genes. We can now derive a weaker version of the hypothesis
that only states facts about the underlying graph G, instead of the dynamical system.
The hypothesis can then be broken into three statements:

1. Genes i ∈ Γ are contained in large connected components.

2. G has low degrees of separation (low average distance).

3. Genes i ∈ Γ have higher degrees.

These three conditions are closely linked to graphs called “small-world”. There-
fore, the hypothesis basically says that G should be “small-world” and that, for
the majority of complex phenotypes ϕ, their respective Γs should be composed of
“central”/hub nodes.

It is important to note, however, that we will deal with non-directional connec-
tions in our methods and will not attempt to make causal claims. So in a (Platonic)
sense, we will not study the GRN directly, but only its “shadow” cast in the form of
correlations and partial correlations, and thus we will not be able to differentiate the
case of peripheral genes impacting core genes versus core genes impacting peripheral
genes, or anything in between, although it makes more evolutionary sense that core
genes would be highly regulated as to maximize robustness of an organism.

Through this lens, the Omnigenic hypothesis, as stated above, can be related to
GCN-based studies in the sense that one can use a GCN to identify hub-genes and
relevant biomarkers (clusters of genes related to similar biological functions). As
previously mentioned, however, GCNs are typically based on measures of pairwise
“relatedness” between genes and can suffer from exacerbated transitivity. In this
study, therefore, we aim to explore an alternative definition of a GCN, by attempt-
ing to infer conditional independences, instead of direct correlations, as an attempt
to reduce false positives, when compared to the GRN. As such, we will attempt to
model gene expression data through a Probabilistic Graphical Model (PGM). This
formulation is more appropriate to isolate direct effects between pairs of genes, and
it would be interesting to know whether the network continues to have approximate
scale-free properties. Our choice of Graphical Model, however, still yields undi-
rected networks, and as previously discussed, could ever only partially support the
plausibility of Claim 2.

7

1.4 Single-Cell RNA-Seq

The first studies applying GCNs used Microarray data or bulk RNA-Seq data. These
experimental methods provide gene expression measurements for whole tissues or cell
cultures simultaneously, and thus provide an expression profile for the “average” cell
at different timestamps, therefore it enables the observer to assess how the average
expression level of each gene evolves over time.

Such methods come with two main drawbacks. First, different cell types within
the same tissue can have distinct roles in multicellular organisms, i.e., a tissue or
cell culture can have subpopulations with unique transcriptional profiles. Naturally,
significant correlations that only appear in certain subpopulations are likely to be
missed when only average expression profiles are considered. Second, bulk assays
fail to recognize whether a change in the expression profile is due to a change in
regulation or in composition (e.g., if one cell type arises to dominate the popula-
tion). These drawbacks become specially problematic when one attempts to study a
cell’s developmental stage, because it is highly variable in duration. So if one takes
many cells with the same chronological age, they will wildly vary in their “matu-
rity”, or biological age, and thus, we are likely to obscure many intricate regulatory
relationships between genes, if we only consider average expression data [15].

Single-Cell RNA-Seq (scRNA-Seq), which overcomes this limitation, has now
become the standard, as it allows to individually measure the RNA expression levels
of each cell in the population. Nevertheless, it has drawbacks of its own: when a
measurement of a cell is performed, the cell is destroyed, i.e., we cannot use scRNA-
Seq to observe the expression profile of a single cell through time; furthermore,
scRNA-Seq only yields partial readings, as the technology only has enough sensitivity
to capture around 10% of a cell’s RNA molecules [11]. The latter point makes special
treatment of the data necessary, as we have an aggressive amount of missing data,
we need more elaborate and domain-consistent imputation methods, which will be
detailed later on, to make analyses feasible.

1.5 Which PGM?

As mentioned above, although scRNA-Seq is a large step toward the observation of
intra-tissue/population heterogeneity, however, most experiments only output a few
hundred measurements, this means that the ratio of samples to genes is very small,
putting us in the high-dimensional/small data domain. In a context such as this, we
must select a PGM that is inherently parsimonious in its learning procedure. Thus,
a reasonable choice is to model gene expression through a Gaussian Graphical Model
(GGM), which is a linear model, therefore not data-hungry, especially given that

8

regularization methods are much better known in the linear context. Moreover, a
GGM’s conditional independence structure, as we will see in the following chapters,
can be conveniently represented through the inverse of its covariance matrix [33].
It is important to note, however, that this choice resides in the extreme left of
the spectrum between statistical significance and the capacity of modelling non-
linear relationships, whose existence is extensively proven and documented in gene-
gene interactions. We, however, do not currently have the resources to create big
datasets, and we will also ultimately benefit from the mathematical tractability of
linear models.

1.6 Contributions and Roadmap

In the following chapters, we will first contextualize the reader with some math-
ematical background on Gaussian graphical models and conditional independence
testing. In the third chapter, we will then delve into the mathematical and al-
gorithmic core of the work; given that our methodology entails generating a set of
competing GGMs, we will explain our approach to evaluating a GGM’s performance
and selecting the most appropriate model out of multiple options. In chapter 4, we
will provide a review of our methodology as whole, which can be seen as a com-
prehensive data processing pipeline, from data treatment to model inference and
evaluation. We will go into more detail on relevant contributions in the efficient
implementation of the GGM Maximum Likelihood Estimator. Finally, in the fifth
chapter we study the results, in terms of model performance, algorithmic conver-
gence, and perhaps more importantly, how the results relate to current biological
knowledge, and if we do indeed obtain a positive outlook in terms of supporting
the Omnigenic hypothesis. We also understand that we ended up constructing a
useful software package (https://github.com/hugosc/ggm_scrna_seq) that can
be expanded upon and even applied to other domains outside of biology.

9

https://github.com/hugosc/ggm_scrna_seq

Chapter 2

Background

In this chapter, we aim to provide some theoretical context and intuition on mul-
tivariate Gaussian distributions, explain the instances where such distributions can
be seen as graphical models, and finally give an overview of methods for finding the
conditional independence graphs under the assumptions of Gaussianity.

2.1 The Multivariate Gaussian

A multivariate normal distribution N (µ,Σ), takes two parameters: a mean vector
µ, and a covariance matrix Σ (or alternatively, its inverse, Ω = Σ−1), which is always
positive semi-definite.

It is an appropriate choice for modelling multivariate data if

• each individual variable has a well behaved marginal distribution, having no
fat tails and being approximately symmetric.

• Higher order relationships are not relevant to the problem, and one is content
with only modelling the linear relationships between variables.

Although these are “simplifying” assumptions in most settings, they come with
the benefit of mathematical and computational tractability, and often result in data
efficient methods, especially useful when not many data are available.

In our setting, however, we are dealing with count data, which are usually mod-
elled with a Negative Binomial Distribution or a Poisson distribution, which in
theory are more appropriate to capturing the skewness prevalent in count data.
Nonetheless, the overall number of RNA molecules in a cell is in the hundreds of
thousands, with an average count per gene in the thousands, a large enough number
for many genes to exhibit an approximately normal distribution. In the ideal setting,
most or all marginal distributions would “look” Gaussian, but a typical distribution
of a gene on our dataset can be seen in Figure 2.1, clearly displaying some skewness.

10

Figure 2.1: Histogram of YOL049W’s expression levels

We recognize that this is an indication that using Gaussians models might not
be ideal, but in most genes, such as the one shown above, the skewness is not large
enough to the point of the empirical covariances being problematic or ill-defined,
which would be the case, were the expression levels fat-tailed.

The formula for its pdf is as follows:

f(x;µ,Σ) = (2π)−p/2∣Σ∣−1/2 exp{ −
1

2
(x −µ)TΣ−1(x −µ)}. (2.1)

This formula may seem daunting at first, but it is at bottom quite simple, which
is better identifiable if we exclude the normalizing constants, and observe that the
main part of the formula is simply the exponential

exp{ −
1

2
(x −µ)TΣ−1(x −µ)}.

This way, one might recognize that the exponent resembles some kind of norm
on x−µ, that is, it could relate to a distance between x and µ, in a certain space not
yet obvious. Indeed, dM(x,µ,Σ) =

√
(x −µ)TΣ−1(x −µ) is a well-defined distance

between µ and x in a space defined by Σ, and it is called the Mahalanobis distance.
Such a space is linear, and there actually exists some matrix L, related to Σ, such
that

(x −µ)TΣ−1(x −µ) = ∥Lx −Lµ∥2.

This means that we can interpret the inner term (x−µ)TΣ−1(x−µ) as the squared
distance between x and u, transformed to the linear space given by L. Furthermore,
L is actually what underlies the definition of Σ, which can be found by Σ = (LLT)−1.
Conversely, considering that Σ is, by definition, positive semidefinite, by the spectral
theorem, and using the Cholesky decomposition, one can obtain a (non-unique) L

11

from Σ. By properties of the trace operator, we can express this distance term as

∥Lx −Lµ∥2 = ⟨LLT, (x −µ)(x −µ)T⟩ = ⟨Σ−1, (x −µ)(x −µ)T⟩

Where ⟨A,B⟩ is the summation of the element-wise product of A and B and (x −
µ)(x −µ)T is the outer product of vector x −µ. Therefore, we get the much more
intuitive formula:

f(x;µ,Ω−1)∝ exp{ −
1

2
⟨Ω, (x −µ)(x −µ)T⟩}, (2.2)

∝∏
ij

exp{ −
1

2
ωij(xi − µi)(xj − µj)}, (2.3)

where, as we mentioned previously, Ω = Σ−1 represents the precision matrix of the
distribution.

2.1.1 How to Assess Conditional Independence

Given the formula above, we can make an interesting observation about the matrix
Ω related to the influence of “cross terms” in the multivariate gaussian.

Let’s take z = (xi − µi)(xj − µj) as the product of the i and j elements of x −µ.
Then, the derivate of f(x;µ,Ω−1) with respect to z is

∂f(x;µ,Ω−1)

∂z
= −Cωij exp{ −

1

2
ωijz}

From this derivative, we can see that the only term in Ω which interacts with
the element z is ωij. We can also see that, if ωij is zero, then the derivative with
respect to z is also zero. Therefore, the probability of x would not change directly
with the product (xi − µi)(xj − µj). Also, if ωij is not zero, the influence of z in
the pdf is directly controlled by ωij. Although this may seem a convoluted way to
state a tangential, albeit curious fact, it is of high importance if one notices that z

looks a lot like the covariance between variables Xi and Xj. Additionally, in general,
ωij = 0 does not mean σij = 0. So even if ωij = 0, variables Xi and Xj may still be
correlated.

Now, one should wonder, what does it mean, when two variables Xi and Xj

can be correlated, but (xi − µi)(xj − µj) not influence the pdf? Curiously, what
it means is that Xi and Xj, although dependent and correlated, are conditionally
independent, given all other variables of the distribution.

Indeed, as is formally proved in the appendix, the element ij of the precision
matrix Ω is 0 if, and only if, variables Xi and Xj are conditionally independent,
given all other variables. So, as we see in the next section, most methods of deter-
mining conditional independence in the Gaussian setting basically consist of trying

12

to identify which entries of Ω are zero. And finally, once one determines the spar-
sity pattern of the distribution’s precision matrix, one obtains a Gaussian Graphical
Model (GGM), which, when represented as a graph, its adjacency matrix is given
by the precision matrix.

2.2 Finding CI Graphs

Given what we’ve previously discussed, the task of modelling a dataset through a
GGM can therefore be described as attempting to obtain a sparse, positive semidefi-
nite matrix, such that when interpreted as a precision matrix, the resulting Gaussian
distribution maintains some level of likelihood with respect to the data. By far, the
most challenging aspect of this task is actually finding the conditional independence
structure (graph) of the distribution, i.e., the sparsity pattern of the precision ma-
trix, because, as we will see in the next chapter, finding the actual values of the
matrix after a certain structure is imposed is actually a straightforward maximum
likelihood estimation problem. There are two main types of approaches when at-
tempting to find the CI graph.

The first type of method consists of performing global optimization on the pre-
cision matrix, which attempts to simultaneously find a sparse solution while fitting
the actual values of the matrix. So when the optimization is done, one already ob-
tains a sparse precision matrix, optimized for some likelihood-ish objective function,
without having previously specified the sparsity structure. To illustrate this gen-
eral idea, we start with the already mentioned Graphical Lasso [9]: One of the first
widespread methods for finding conditional independence in the Gaussian setting.
With similar interpretation to Lasso regularization for linear regression, it is a reg-
ularized maximum likelihood method, where one adds an l1-norm penalty term to
the log-likelihood function as an attempt to impose a sparse solution to the problem.
Its most basic version consists of solving the optimization problem below:

max
Ω⪰0

log ∣Ω∣ − tr(SΩ) − λ∥Ω∥1, (2.4)

where log ∣Ω∣−tr(SΩ) is related the multivariate Gaussian’s log-likelihood, as we will
show in Chapter 3. To see why this would lead to sparse solutions, we can interpret
the optimization problem above as the Lagrangian form of

max
Ω⪰0

log ∣Ω∣ − tr(SΩ)

s.t ∥Ω∥1 ≤ t.

13

The constraint ∥Ω∥1 ≤ t produces a “tilted” hypercube solution space, with edges
occurring when a subset of variables are zero, somewhat like multidimensional ver-
sion of a diamond. The method’s popularity was due to having the first computa-
tionally efficient implementation, enabling instances of 1000 variables to be solved.
Many newer methods built upon the ideas developed and attempted to address their
shortcomings; such examples are the Bayesian Graphical Lasso [35], the Graphical
ElasticNet [17], and the de-sparsified Graphical Lasso [13].

The second class of methods take a more classical statistical approach, where we
derive a statistic for the entries of the precision matrix, the idea being that ωij is 0
under the null hypothesis, indicating conditional independence of the variables Xi

and Xj, given all other variables of the distribution:

H0ij ∶ ωij = 0 versus H1ij ∶ ωij ≠ 0 (2.5)

Therefore, the problem of finding the CI graph of the distribution becomes a
problem of multiple hypothesis testing. Such methods will commonly utilize linear
regressions as an intermediate step to deriving these statistics. For instance, to
check if Xi and Xj are conditionally independent, one can produce two regressions
with variable set Z which excludes both Xi and Xj for finding the residuals ϵi

and ϵj. It can be shown that if ϵi and ϵj are uncorrelated, then Xi and Xj are
conditionally independent, which implies fitting two regressions for each variable
pair ij. Alternatively, one can also make use of a node-wise Lasso Regression:

argmin
βi,σ

{
∥Xi −Xicβi∥

2nσ
+
σ

2
+ λ∑

k∈ic

a

a
∣βik∣} , (2.6)

where one attempts to predict the value of variable Xi from the rest of the distri-
bution, Xic . One then is able to combine βij, obtained when attempting to predict
Xi and βji, obtained when attempting to predict Xj and derive a statistic for ωij.
Unlike the Graphical lasso or similar methods, these approaches do not necessarily
produce the Ω matrix, but only provide the matrices sparsity structure through the
H0ijs which failed to be rejected.

In general, these methods tend to be faster to execute, given that we skip a
convex optimization problem with millions of variables (p2 if the matrix is p × p),
and instead perform individual linear regressions. We will go into detail on the
specific methods utilized in the Methodology chapter, but they generally follow the
outline illustrated here. There is an additional component we’ve omitted in this
chapter, for pedagogical reasons, but it will also be detailed later in chapter 4,
which is a formula developed for conditional independence testing that enables one
to control the false discovery rate of the results.

Ultimately, we did indeed observe that the statistical approaches were more

14

promising and computationally efficient, when compared to the Graphical Lasso-like
methods we’ve briefly discussed. There are, of course high quality implementations
for the Graphical Lasso, which claim to be able to solve problems with p up to one
million, in a single machine [10], but we failed to apply these solutions to the same
claimed efficiency, and finally, due to time and resource restrictions, we decided,
after some preliminary testing, to not further explore the Graphical Lasso or its
descendants, and they will not be present in the Results chapter.

15

Chapter 3

Selecting Candidate CI graphs

In the previous chapter, we discussed various approaches for determining the Con-
ditional Independence (CI) graph of a distribution assuming Gaussianity. These
methods included the Graphical Lasso and test-oriented approaches. In this chap-
ter, we will focus on evaluating different and competing CI structures for the same
data. This evaluation becomes essential when we are uncertain about the best
method for various scenarios.

Our final objective is to find a plausible Gaussian Graphical Model (GGM) for
the data, which is represented by a precision matrix denoted as Ω. Since a GGM
is essentially a multivariate Gaussian distribution, we can assess the quality of each
candidate CI graph based on how well the resulting Ω and Gaussian Distribution fit
the data. In this case, the most straightforward measure for evaluating goodness of
fit is the negative log-likelihood (NLL) of the distribution with respect to the data.
The CI graph that leads to the smallest NLL is the preferred choice.

To illustrate the soundness of using the NLL for goodness of fit in distributions,
we will provide an information theoretic interpretation of the NLL, showing why
minimizing the NLL with respect to the data in a space of solutions results in the
minimum KL divergence to the true distribution. Given a single data point X ∼ f ,
sampled from a distribution f , the expected NLL of f is:

EX[NLL(X; f)] = EX[− log f(X)], (3.1)

which coincides with the definition of Shannon Entropy, H(X). However, in the
scenario one does not know the true distribution f , one could then bravely attempt
to model and approximate f by means of another distribution g. In this case,
regardless of the bravery one might hold, it would be reasonable to anticipate a

16

worse NLL, whose expected value would be given by

EX[NLL(X; g)] = EX[− log g(X)] (3.2)

= EX[− log
g(X)

f(X)
] +EX[− log f(X)] (3.3)

= KL(f ∣∣g) +H(X). (3.4)

It is in fact not only reasonable, but mathematically necessary, to expect a
worse NLL, given that KL(f ∣∣g) is a non-negative number. Moreover, since H(X)
is constant with respect to g, the NLL of g can be seen as proportional to the KL
divergence from the underlying distribution f to the modelling candidate g. The
KL divergence is not a proper distance, it does, however, tend to be continuous and
differentiable, and KL(f ∣∣g) = 0 if, and only if, f = g. Therefore, if one searches a
space G of distributions and uses the NLL for selecting g ∈ G, it would provide us
with the closest distribution to the underlying f , in terms of the KL divergence.

Now, we have three pending methodological questions:

1. How do we find the Gaussian Graphical Model of a given CI graph and dataset?

2. How do we provide an unbiased estimate of this model’s NLL?

3. How do we know what is a “good” model, given some NLL value?

To answer question 1, we uncover the GGM from the CI graph as the solution
to an optimization problem, which we call Structured Maximum Likelihood Estima-
tion. This problem is very similar to Multivariate Gaussian Maximum Likelihood
Estimation, however, it adds the restriction of a predetermined sparsity structure to
the precision matrix. This restriction causes the problem to no longer have a closed
formula solution in the general case. So we need to approach it with an optimization
algorithm. In any case, obtaining the maximum likelihood solution induces bias in
the NLL on the training data (used for the optimization procedure). So, to answer
question 2, we could either find additional data sampled from the distribution and
use it exclusively for quantifying the NLL of a previously obtained model or derive
a penalty term that compensates for the bias of the MLE. Given that we already
have a small dataset, reserving a fraction of it for validation would compromise the
quality of the models found through MLE. Therefore, in this dissertation, we de-
cided to approximate penalty terms for the MLE bias. Such methods (Information
Criteria) are detailed in the end of the chapter.

As for question 3, we propose a baseline model to compare against. The baseline
for a GGM would be a model with all variables being independent and conditionally
independent, i.e, a CI graph with no edges. There are two reasons for this graph

17

to be an appropriate baseline: First, as we saw in the previous chapter, in Section
2.5, the null hypothesis H0 when assessing whether two variables are conditionally
independent is that they are, in fact, conditionally independent. So, in some, sense,
the joint null hypothesis would be that all variables are conditionally independent.
The second reason is that, when all variances of the distribution (the diagonal of
the covariance matrix) are fixed, the multivariate Gaussian distribution with the
highest possible entropy, i.e., the highest degree of uncertainty, is the one where all
non-diagonal entries of the covariance and precision matrices are zero.

3.1 Structured Maximum Likelihood Estimation

3.1.1 Multivariate Gaussian MLE

From here onward, we assume that the mean vector µ is 0 in order to simplify
notation. We first review the formula for the classical MLE of a multivariate Gaus-
sian so we can build upon it to show how we can add the conditional independence
restrictions. Assuming µ = 0, we can reduce the pdf in Equation 2.1 to

fΣ(x) = (2π)
−p/2∣Ω∣1/2 exp{ −

1

2
xTΩx}

where Ω = Σ−1.
Let D[1∶n] be the dataset of p-dimensional random vectors X1, . . . ,Xn. We cal-

culate the NLL in regard to the precision matrix Ω as

NLL(D[1∶n];Ω) = −
n

∑
i=1

log f(xi) (3.5)

= −
np

2
log 2π −

n

2
log ∣Ω∣ +

1

2

n

∑
i=1

XT
i ΩXi (3.6)

As shown in the appendix Section A.1.1, we can simplify the minimization of the
NLL to the following problem:

max
Ω⪰0

log ∣Ω∣ − tr(SΩ),

where S = 1
n ∑

n
i=1XiXT

i , is the empirical covariance matrix. In general, if n > p,
then the problem is well defined, and the closed form solution is demonstrated to
be Ω̂ = S−1.

18

3.1.2 Conditional Independence

As illustrated in the previous chapter, given a precision matrix Ω, we can easily
know whether two variables Xi, and Xj, are conditionally independent:

Proposition 1. Let A = {i, j}, B = N ∖A, then Xi áXj ∣B if, and only if ωij = 0.

Proof. The proof can be read in the appendix, Section A.1.2.

From proposition 1, we can conveniently codify the structure of conditional de-
pendence between our variables as a set E of edges, containing self-loops, codifying
which entries of Ω are allowed to be non-zero. And thus, the MLE becomes

max
Ω⪰0

log ∣Ω∣ − tr(SΩ) (3.7)

s.t. ωij = 0 ∀ij ∉ E.

Additionally, we can reformulate the problem in Eq. (3.7) as the dual:

max
Σ⪰0

log ∣Σ∣

s.t. σij = sij ∀ij ∈ E,

where sij are the entries of S, the empirical covariance matrix. The derivation of
the dual is not obvious, but the reader can refer to [33].

3.1.3 Algorithm for the MLE

To solve the optimization problem shown in the previous section, there is no known
closed-form solution for general graphs, but it is, at least, a convex problem to solve.
So, although it has many variables, we can obtain a simple algorithm that converges
to the optimum.

We ultimately decided on a method that is memory-efficient, and is most widely
used for this problem in the literature: coordinate descent, which does not require us
to calculate Hessians or Jacobians, or any other German sounding matrix involving
derivatives (which scale quadratically with the number of variables in the problem).

Although both the primal and dual formulations lead to valid implementations,
we implement the solution on the primal, given that we believe the instances in
our domain to be edge-sparse. As such, we would cycle through edges, and update
their respective entry in the precision matrix iteratively. There is, however, a way
to speed-up the cycling by grouping edges together and optimizing them all at the
same time. Below we show what are the conditions for a set of edges to be grouped
together and have a closed-form solution in their simultaneous optimization step.

19

For a given set M ⊆ {{i, i} ∣ {i, i} ∈ E} and a current solution Ω0, we need to
solve

max
Ω

log ∣Ω∣ − tr(SΩ)

s.t ωij = ω
0
ij ∀ij ∉M

ωij = 0 ∀ij ∉ E,

in order to perform a coordinate step on M . If M defines a block sub-matrix of Σ,
we can apply the Schur Complement to isolate a subproblem related to M to solve.
The complete derivation can be found in the appendix.

Proposition 2. Let M ⊆ {{i, i} ∣ {i, i} ∈ E} and A = ⋃ij∈M{i, j} Fixing all variables
outside of M is equivalent to the following optimization problem:

max
Ω′⪰0

log ∣Ω′∣ − tr(SA,AΩ
′)

s.t ωij = 0 ∀ij ∉ E

Ω′ = ΩA,A −Ω
0
A,B(Ω

0
B,B)

−1Ω0
B,A.

Proof. The proof can be read in the appendix, Section A.1.2.

If we select the edge set M as a clique, then we know that Proposition 2 has a
closed solution.

Corollary 1. Let B = V ∖A be the vertex complement of A. If M is a clique, then
the solution Ω̂ to 2 is

Ω̂A,A = S
−1
A,A +Ω

0
A,B(Ω

0
B,B)

−1Ω0
B,A,

Ω̂A,B = Ω
0
A,B,

Ω̂B,B = Ω
0
B,B.

Proof. The proof can be read in the appendix, Section A.1.2.

It is proved by Speed and Kiiveri that if one selects a sequence of such sets that
cover all the edges, an algorithm that sequentially solves the problem in Proposi-
tion 2 will converge to the solution of Equation 3.7 [30]. Therefore, a full algo-
rithm for this optimization problem could be described as first finding a clique cover

20

M1,M2, . . . ,Mk of all the edges, and then iteratively applying the formula in Corol-
lary 1 to obtain solutions Ω0 = I,Ω1, . . . ,Ωlk+i, where one goes through each of the k

cliques at least l times until one reaches some convergence criterion. It is important
to note that there are some special cases of graphs with which we are guaranteed to
reach the solution within a short number of iterations. The best known class is the
triangular, or chordal graphs, where one reaches convergence with l = 1, i.e., after
only traversing each clique once, given an appropriate choice of clique sequence.
Trivially, the complete graph is chordal, and the sequence of M1 = E reduces to
the original MLE of the multivariate Gaussian, where we assume all variables are
conditionally dependent, and has closed-form solution.

Algorithm 1 Strucutured MLE Algorithm
1: procedure MLE(S,G, ϵ)
2: Ω1 ← I
3: s←∞
4: C ← CliqueEdgeCover(G)
5: while s > ϵ do ▷ Check for convergence
6: Ω0 ← Ω1

7: for A ∈ C do
8: B ← V −A
9: Ω1

A,A ← (SA,A)
−1 +Ω0

A,B(Ω
0
B,B)

−1Ω0
B,A

10: end for
11: s← distMetric(Ω0,Ω1) ▷ distance metric for convergence criterion
12: end while
13: return Ω1

14: end procedure

The function call CliqueEdgeCover(G) in the algorithm represents a procedure
that finds sets of clique-inducing vertices that cover all edges of G, i.e., if uv is an
edge of G, then at least one set returned by CliqueEdgeCover(G) must contain both
u and v. Although not necessary, this cover can also be a partition, and we discuss
best choices of such an algorithm in the Methodology chapter. Also worthy of note
is that we must initialize the algorithm with a viable solution, and such a solution,
for any graph, will always be the identity matrix, because it is positive definite and
trivially, all non-edges of G appear as a 0 in the I matrix.

3.2 Information Criteria

Suppose we have a dataset D[1∶n] and a known CI structure codified by graph G.
Furthermore, suppose we obtain the solution Ω∗ to the Structured Maximum Likeli-
hood with respect toD[1∶n] and G. Let l = NLL(Xn,Σ∗) be the NLL obtained by the
Structured MLE algorithm. As we previously mentioned, l comes with the bias of

21

being calculated on D[1∶n] given that we already utilized D[1∶n] for the optimization
procedure.

The Akaike Information Criterion estimates that this bias is proportional to
the number of free parameters of the model. More specifically, in our context:

AIC(G,N) = 2l + 2m(G), (3.8)

where m(G) represents the number of edges in the graphical model codified by
G. This formula basic states that, for models with the same log-likelihood, models
with fewer parameters would be preferred [2]. Intuitively, one could think of this
as the mathematical version of Occam‘s razor, where an explanation with fewer
assumptions is preferred. Indeed, more model parameters can be seen as more
assumptions, especially in this context, where an edge ij of G implies the rejection
of the null hypothesis of i and j being conditionally independent. Additionally,
we can interpret that, if one chooses a model with few parameters, then the NLL
calculated in the training data, has very little bias, and is a reliable metric of model
fit, however the quality of the fit itself may be poor, due to the model being overly
simplistic. Therefore, it makes sense to continue to add parameters to the model as
long as the ensuing decreases in the NLL are significant.

This criterion, however, due to its strong assumptions, can often lead to under-
estimating the needed compensation from the number of parameters, especially in
the high-dimensional but small sample size setting [6]. This led to the development
of criteria that involve incorporating some prior knowledge about the distribution of
solutions, in this case, graphs, giving preference to more sparsity or vice-versa. They
are called the Extended Bayesian Information Criteria [8], and are defined as
follows.

BICγ(G,N) = 2l + log(N)m(G) + 2γ(
(n(G) − 1)n(G)/2

m(G)
),0 ≤ γ ≤ 1. (3.9)

In the formula, the parameter γ allows one to control the prior of the solution in
terms of how prevalent solutions with the same number of parameters are, given
the maximum possible number of parameters. Larger values of γ more strongly
penalize models with a large number of parameters. In the special case where one
takes the parameter γ to be zero, the EBIC simplifies into the original Bayesian
Information Criterion.

BIC(G,N) = 2l + log(N)m(G). (3.10)

In [8], however, the authors report that their simulation works best with γ ≥ 0, in the

22

context of Gaussian Graphical Models. We can see that when the number of data
points (N) is larger than 7, then the penalty of m(G) exceeds the AIC’s penalty.

In general, assuming that any of the above criteria are suitable, if one selects
the candidate model Ω̂ that minimizes a criterion, this same model should also be
the one with the smallest NLL with respect to true underlying distribution f , not
the sample D[1∶n]. Now one might ask, how do we know which are suitable to this
context? Luckily, as we will see in chapter 5, all criteria mostly agree with one
another on which model is best.

23

Chapter 4

Methodology

In this chapter, we will turn our focus to implementation specifics, given that we
already provided some level of mathematical detail or, at least, intuitive explanations
on the major points.

4.1 Data Pipeline Overview

In order to produce GGMs from our data, we needed to implement a pipeline of
data processing steps. This consists of three main blocks: data preprocessing, model
inference, and model evaluation.

In data pre-processing, we both do some preliminary data cleaning, such as re-
moving columns that have no information, we then perform data imputation through
MAGIC [34], a manifold Learning technique that aims to recover the original rela-
tionships between data points, when count data suffer from dropout.

In the model inference block, we perform three steps. We calculate the empirical
covariance matrix from the imputed data. Here, we apply a Shrinkage Covariance
estimation method. After that, we run the SILGGM [38] package to uncover the
conditional independence structure of the data. And finally, using the estimated
empirical covariance matrix and the learned independence structure, we run the
Structured MLE algorithm to find the GGM.

In the last block, we run Information Criteria to perform model selection, given
that we generate more than one candidate Conditional Independence structure.

24

Input

Data Prepa-
ration

Data Im-
putation X

′

=DtX

Shrinkage
Covariance
Estimation

S′ = βS + (1 − β)I

Conditional
Indepen-

dence Testing
H0ij ∶ ωij = 0 versus H1ij ∶ ωij ≠ 0

Structured MLE maxΩ⪰0 log ∣Ω∣ − tr(S′Ω), s.t. ωij = 0 ∀ij ∉ E

Information
Criteria

GGM

Data Preprocessing

Inference

Model Evaluation

Figure 4.1: The execution steps of the pipeline

4.2 Data Imputation

In the context of Single Cell RNA-Seq data, we have high dimensional count data
(thousands of genes) and a high dropout rate. Most SCRNA-Seq technologies are
reported to only account to 5-10% of RNA molecules found in the cell. This creates
issues when attempting to study correlations between genes, especially given that

25

many genes represent less than 5% of the total RNA count, and are likely to have
0 counts in some SCRNA-Seq readings. Therefore, we are faced with the need for
some imputation method prior to learning the GGM or performing analyses. We
present the algorithm we selected below.

4.2.1 MAGIC algorithm

The MAGIC algorithm can be classified as a manifold learning algorithm, where
high dimensional data exist embedded in a lower dimensional manifold, and the
manifold’s structure can be somewhat reconstructed when looking at small regions
at a time and observing neighboring data. The MAGIC method (as is characteristic
of manifold learning methods) represents this manifold using a nearest neighbor
(NN) graph, and in the context of expression data, each node represents a cell, and
edges connect most similar cells, based on gene expression [34]. Finally, it leverages
this NN graph to perform and physics inspired imputation procedure.

In the article, MAGIC was evaluated on four different scRNA-seq datasets, and
reportedly recovered fine phenotypic structure in the data, including well-separated
clusters, bifurcating developmental trajectories as well as heterogeneous state tran-
sitions.

The method can be summarized as follows:

1. Given K, produce a K nearest-neighbour graph,

2. From the graph, create a diffusion operator D (a p × p matrix),

3. Calculate the imputed data X
′

=DtX.

Both the values of K and t are adjustable parameters that the model itself does
not provide a way of determining optimally. Thus the need for a validation method
that evaluates the overall qualify of the imputation method, so we can test different
options for MAGIC’s parameters.

4.2.2 Molecular Cross-Validation

Molecular Cross-Validation (MCV) is an extension of the basic cross-validation
method for the case of count data. It is the approach we used for evaluating methods
for denoising/imputing SCRNA-Seq data. It provides an unbiased way to both cal-
ibrate a given imputation method and to compare its performance to that of other
methods [3].

The key feature is that it directly estimates the quantity of interest: the similarity
of the denoised data to the full set of mRNA present in the original cell. It proposes
a specific way to split count data from a matrix X into two matrices of the same

26

dimension, Xtrain and Xval, where the number of counts in Xval is α times the number
of counts in Xtrain. If we perform such as split, then the MCV loss for imputation
method f and dataset X is

loss(f,X) = E∥αf(Xtrain) −Xval∥
2 (4.1)

One can then use this splitting procedure and the accompanying loss function
to find the best hyper-parameter set for a given method.

4.3 Shrinkage Covariance Estimation

Shrinkage methods for covariance matrices, in general, are tools for handling the
estimation of a covariance matrix in the setting of high-dimensional small data sets.
In this scenario, the pure sample covariance matrix is typically not well-conditioned
and can even be not invertible, which is a problem in our context, given that we
are very often computing things in terms of the precision matrix, the inverse of the
covariance matrix.

These methods usually follow the idea of performing a convex combination of
the sample covariance matrix and the identity matrix

S′ = βS + (1 − β)I, (4.2)

and the specifics of each method involve determining the value β as a function of the
data set (usually its size). Independent of the value of β, we can see that performing
this convex combination guarantees that the resulting S′ will be positive definite,
a necessary property for us to execute the Structured MLE problem across many
possible CI graphs.

We ultimately chose to apply the Ledoit-Wolf estimator [19] to our imputed
data, given that this estimator has a proper implementation in Scikit-Learn [24], is
probability distribution-free, and is an asymptotically optimal shrinkage method.

4.4 Conditional Independence Testing

For learning the conditional independence structure from the imputed data, we used
the R package SILGGM [38]. This package provides options for an array of algo-
rithms for determining conditional independence structures in the Gaussian setting,
it is however more geared towards the more computationally efficient methods which
do not involve global optimization, and instead perform individual inference of the
precision entries. We gave preference to utilizing the de-sparsified nodewise scaled
Lasso (D-S_NW_SL) [14]. We, found of particular interest their implementation

27

of a False Discovery Rate (FDR) control framework, taking the work of Liu [21] on
his method and generalizing it to other available methods in the package.

Liu’s framework works with any statistic Tij that, under the null hypothesis
wij = 0, asymptotically follows a standard normal distribution. I.e., Tij

n
Ð→ N (0,1).

Given some true value of Ω with underlying CI graph G, and given a threshold t

for the statistics Tij, the proportion of false discoveries in data set Dn sampled from
N (0,Ω) will be

FDP(Dn, t) =
∑ij∉E(G) I{∣Tij ∣ ≥ t}

max{∑i,j∈V (G) I{∣Tij ∣ ≥ t},1}
, (4.3)

the ratio of non-edges to node pairs whose respective ∣Tij ∣ exceeded t in absolute
value. The maximum in the denominator is there in the case of no discoveries, to
make the FDP = 0. Additionally, we can define the FDR as the expected value

FDR(t) = EDn[FDP(Dn, t)]. (4.4)

Liu demonstrates two things: that FDP(Dn, t) converges with high probability to
FDR(t) as n grows, and that, despite not knowing the distribution’s true precision
Ω and its respective CI graph G, we can approximate the enumerator in Equation
4.3 by

∑
ij∉E(G)

I{∣Tij ∣ ≥ t} ≈ (2 − 2Φ(t))(p
2 − p)/2, (4.5)

where p is the number of variables in the distribution and Φ is the inverse CDF of
the standard normal. Therefore, our FDR estimator becomes

F̂DR(t) =
(2 − 2Φ(t))(p2 − p)/2

max{∑i,j∈V (G) I{∣Tij ∣ ≥ t},1}
(4.6)

Now, if we want to keep the FDR below certain level α, we just have to choose
a t such that F̂DR(t) ≤ α. The smaller the t, the better statistical power, so the
recommended method is to get the infimum defined by the previous inequality. In
the end, we settled on 4 different graphs, all generated using the D-S_NW_SL
algorithm. We generated the graphs by varying the p-value threshold for the graph
edges and by enabling and disabling FDR control.

(G0): with p-value threshold 0.05,

(G1): with p-value threshold 0.01,

(G2): with p-value threshold 0.05 and FDR control enabled,

(G3): with p-value threshold 0.01 and FDR control enabled.

28

4.5 GGM Maximum Likelihood Estimation

The algorithm, as described in chapter 3, was implemented in Python, despite
Python being known for its inefficient execution, since it has a wide array of ef-
ficiently implemented libraries. And indeed, the algorithm itself has a very simple
logic, most if its complexities lying in two parts: the numerical computations related
to line 9 of algorithm 1, and the calculation of the clique edge cover.

For the numerical parts, we used Numpy and Scipy, whose linear algebra func-
tions are basically wrappers to C code and BLAS calls.

4.5.1 Clique Algorithms

For the clique edge cover algorithms, the first one implemented, the basic par-
tition algorithm, we used C++ and called the function in Python by using the
Google-funded pybind11 library. The basic partition algorithm consists of finding
an arbitrary partition of the graph edges into cliques. This is done in the most
straightforward way possible: We select an arbitrary edge uv, find a maximal clique
c which contains uv and remove the clique (edges) from the graph. This procedure
is repeated until the graph has no more edges. The algorithm is guaranteed to
terminante because at every step, we remove at least one edge.

Algorithm 2 Basic Partition Algorithm
1: procedure Partition(G)
2: G0 ← G
3: P = ∅
4: while m(G0) > 0 do
5: uv ← selectEdge(G0)

6: C ← FindMaximalClique(uv,G0)

7: P ← P ∪ {C}
8: E(G0)← E(G0) ∖E(C)
9: end while

10: return P
11: end procedure

The FindMaximalClique procedure also has a straightforward implementation,
we start the clique with two nodes, u and v, and add one node at a time. If C is
the current clique, we take any vertex w ∈ ⋂u∈V (C)N(u), that is neighbours with all
clique vertices, and add it the the clique.

This next algorithm was implemented using the Python library networkx for
graphs and networks. We decided to explore the case where we allowed edge repeti-
tion in our cover, and thus no longer obtained a partition. This required a different
approach to the basic partition algorithm, where instead of finding one clique at

29

a time and removing it from the graph, we instead decided to first enumerate all
maximal cliques in the graph and then greedily and sequentially selected the cliques
until all the edges are covered. The criterion for greedy selection is that the most
“valuable” clique is the one containing the most edges that have not yet been covered
by previously selected cliques.

Algorithm 3 Clique Edge Cover Algorithm
1: procedure CliqueEdgeCover(S,G, ϵ)
2: MC = AllMaximalCliques(G)
3: Smc ← {m(C) ∣ ∀C ∈MC}
4: Q← PriorityQueue(MC,Smc)

5: P ← ∅
6: Ec ← ∅

7: while ∑C∈P m(C) <m(G) do
8: C ← Q.pop()
9: P ← P ∪ {C}

10: Ec ← Ec ∪E(C)
11: for C ′ ∈ Q do
12: Q.updatePriority(C ′, ∣E(C ′) −Ec∣)

13: end for
14: end while
15: return P
16: end procedure

We first initialize the priority queue with all maximal cliques, where each clique’s
priority is its number of edges. Therefore the first clique to be selected will be the
graph’s largest clique. After a clique is selected, we then downgrade the priority of
each clique by the number of edges that they share with the selected clique (which
were not yet covered). This guarantees that, at each step, we are able to greedily
select the clique the covers the most number of edges by simply popping the queue.

4.5.2 Conditional Decorrelation

there are some relevant implementation details to highlight here. As shown in Algo-
rithm 1, in Chapter 3, there is a step that computes S−1A,A+Ω

0
A,B(Ω

0
B,B)

−1Ω0
B,A, for all

cliques A. But given that we know all these cliques ahead of time, we precompute
all inverses S−1A,A at the beginning of the algorithm as a preprocessing step. Addi-
tionally, we initially experienced numerical instability when computing the inverse
(Ω0

B,B)
−1 for calculating the term Ω0

A,B(Ω
0
B,B)

−1Ω0
B,A. So we decided to apply a trick

of skipping the calculation of that inverse and instead solve the linear system

Ω0
B,Bx = Ω

0
B,A

30

, which has solution x = (Ω0
B,B)

−1Ω0
B,A, so we arrive at

Ω0
A,B(Ω

0
B,B)

−1Ω0
B,A = Ω

0
A,Bx.

These optimizations led to faster execution and better numerical instability.

4.5.3 Convergence Criteria

For this kind of algorithm, usually one utilizes the ∆ in the solution as the criterion
for stopping. In this case, it would be whether ∆ = Ω1 − Ω0 ≈ 0. Given that the
omegas are matrices, one common approach would be to check that the maximum
element max{δij ∣ i, j ≤ p} has reached a certain very small threshold ϵ. In practice,
however, we would not recommend this approach, because, as we will see later, due to
the large size of the matrices, there is still some numerical instability (even after the
optimizations shown in the previous section), and the solution may always fluctuate,
even if there is a theoretical guarantee of convergence. We recommend instead using
a δ in the objective function, and maintain the execution of the algorithm while the
difference in log-likelihood is positive, and above a certain ϵ.

31

Chapter 5

Results

In this chapter, we delve into the results of the pipeline as a whole, so we look into
what the results of each important step were, such as data imputation, the resulting
networks inferred by the Condition Independence testing algorithms, the execution
profile of the structured MLE and finally, how the obtained GGM maintains biolog-
ical plausibility.

5.1 The Selected Data set

We selected, for our experiments, a scRNA-seq data set of the model organism
Saccharomyces cerevisiae [12]. The full data set contains readings for combinations
of different strains (lab-generated by gene deletions) and environmental conditions.
We selected a “rich” environment, Yeast Extract + Peptone + Dextrose (YPD),
assuming it would provide us with “typical” expression patterns. As for the strain,
we simply selected the one which had the most data points in combination with the
YPD environment. This selection resulted in a subgroup of the data that contained
1419 datapoints. Out of all 6827 columns (genes), we selected 5697 gene columns
which had a non-zero count in at least one of the datapoints.

5.2 Impact of Data Imputation

We applied the Molecular Cross-Validation procedure to the MAGIC imputation
algorithm, testing different values of k (number of nearest neighbors to use when
constructing the similarity graph), and t (the intensity of the diffusion) and obtained
the results shown in Table 5.1.

32

Table 5.1: Table showing the Molecular Cross-Validation loss for each hyper-
parameter configuration

mcv_loss k-nn t

0 0.086977 5 1
1 0.080744 5 3
2 0.080875 5 5
3 0.083197 10 1
4 0.080844 10 3
5 0.081049 10 5
6 0.082036 15 1
7 0.080937 15 3
8 0.081164 15 5

Figure 5.1: Histograms illustrating the frequency or zero counts before and after the
imputation procedure

In these results, we see that out of all values of k, t = 3 was the optimal option, as
1 did not perform a strong enough imputation, and 5 arguably makes too strong an
effect in the data. Overall, the parameter values found effected a somewhat “light”
amount of imputation to the data. It however, made a big difference in terms of
eliminating zero values from the dataset. As we can see in Figure 5.1, in the raw
data, most of the genes very rarely were expressed in the cells (<10%), and after
the imputation procedure, almost all genes were present in all cells. It is important
to note that the imputation procedure creates continuous values. In the raw data
set, a gene was expressed in terms of a non-negative integer. In the imputed data,
a gene can now have an expression of, let’s say, 0.3, in a given cell. The application
of the diffusion operator pulled expression levels of each gene closer to their average
expression value, as the average standard deviation for each gene reduced from 0.5
to 0.21.

We can also observe, in Figure 5.2 the difference in the correlation matrix caused
by the imputation procedure, yielding much stronger correlation signals.

33

(a) Correlation matrix before imputation (b) Correlation matrix after imputation

Figure 5.2: Correlations of gene expression levels before and after imputation

(a) Correlation matrix before imputation (b) Correlation matrix after imputation

Figure 5.3: Correlations of gene expression levels before and after imputation

One the could wonder if this increase in correlation signals comes at the expense
of the fine structure of the data, but as we see in Figure 5.3, it is unlikely to be the
case, since the TSNE plots both before and after imputation still indicate a latent
subspace.

5.3 Network Analysis of the CI Networks

Let us first delve into the basic network statistics for our graph instances. In table
5.2, we see that all graphs have a low density between 0.2% and .9%, but they are
still mostly connected, all having a giant component and at most two isolated nodes,
even though the sparsest graph has an average degree more than four times lower

34

(a) G0 (b) G1

Figure 5.4: Instances without FDR control

(a) G2 (b) G3

Figure 5.5: Instances with FDR control

35

Table 5.2: Descriptive table of basic network statistics for the graph instances.

G2 G0 G3 G1

FDR Control Yes No Yes No
Edge p-value 0.05 0.05 0.01 0.01
n(G) 5697 5697 5697 5697
m(G) 44472 153210 35002 102132
average_degree 15.6124 53.7862 12.2878 35.854
edge_density 0.00274 0.00944 0.00215 0.006295
largest_component 5696 5697 5695 5697
#_isolated_nodes 1 0 2 0
avg_shortest_path_length 2.57309 2.1950 2.65633 2.31923

Figure 5.6: CCDF plot the graph instances’ degree distribution.

than the densest graph.
We also observe that the average shortest path length is very small, smaller that

3 in all instances, despite the graphs having low densities. These observations are
consistent with the graph version of the Omnigenic Hypothesis. Also, this is highly
indicative of the existence of hubs in the networks and of heavy-tailedness in the
degree distribution. Indeed, as we investigate the degree distribution for all graphs,
we see that all of the instances exhibit fat-tailed behaviour. This behaviour can be
observed by inspecting the log-log plot of the empirical complementary cumulative
distribution function (CCDF), as shown in Figure 5.6:

Usually, in such a plot, fat-tailed distributions yield an almost linear or with a
very slowly changing derivative. And we can see that this is indeed the case for all
instances, as shown by Figure 5.6. Upon further inspection, one can observe that
all the empirical CCDFs have a very similar shape, and they all display an unusual
curve, which is not quite power law, and could be interpreted to have two different
regimes. The first, with a stronger decay, and a second, towards higher values, that
decreases more slowly. Indeed, if we attempt to fit a power law to each instance, we

36

Figure 5.7: Power-law fits to the degree distributions.

see that higher end of the curve always exceeds the fit. Additionally, all αs are very
similar (with the exponent of the curves being −α), of around 3 and the way that
the curve exceeds the power-law fit is very consistent among the instances. The fits
were found using the Python library powerlaw, and in this case, in addition to α,
we also allowed the fit to adjust the minimum values of the curves.

This observation of consistency, alongside the fact that all the instances can be
sorted into a subgraph sequence, motivates the hypothesis that all instances are
structurally very similar, with all nodes (degreewise) being affected very uniformly
as we cut edges due to more conservative p-values. This hypothesis is further cor-
roborated by the fact that node degrees are highly correlated: the degree increase
or decrease from one instance to another is very linear, as can be seen in Figure 5.8.

From this heatmap, we see that indeed, all correlations are larger than 0.93. I.e.,

37

Figure 5.8: Gene degree correlations across graph instances.

Table 5.3: Converge information for all instances G1, G2, G3, and G4, comparing
the two different cover algorithms.

FDR p-val. algo. ll nodes / clique n_cliques s / clique h / it

yes 0.05 COVER 1.412e+07 2.587165 31165.0 1.922 16.646
yes 0.05 PART 1.414e+07 2.063467 39359.0 1.917 20.964
no 0.05 COVER 1.476e+07 3.323004 79841.0 1.132 25.114
no 0.05 PART 1.478e+07 2.182667 107124.0 1.153 34.327
yes 0.01 COVER 1.396e+07 2.521616 25028.0 2.271 15.794
yes 0.01 PART 1.395e+07 2.049594 31778.0 2.270 20.040
no 0.01 COVER 1.446e+07 2.971808 58562.0 2.179 35.449
no 0.01 PART 1.450e+07 2.128923 76255.0 2.267 48.032

there exists some α and β, such that increasing the p-value from 0.01 to 0.05 causes
the degree dG(u) of node u to increase to dG′(u) ≈ α + βdG(u), for any u, with very
low error (an R2 of at least 0.86).

Overall, it does indeed appear that in all tested instances, our results we approx-
imately scale-free, therefore we are, at least initially, consistent with our interpreta-
tion of the Omnigenic hypothesis.

5.4 Convergence of the MLE

We ran our computational experiments on a computer having an Intel(R) Xeon(R)
E-2146G CPU 3.50GHz processor, which contains 6 physical cores, split into 12
virtual cores and 62GiB RAM memory. Overall, the execution of the MLE algorithm
is the most costly step of the whole pipeline, with the execution having taken up to
a week to ensure full convergence (when all instances were running in parallel).

Naturally, as we saw previously, the instances without FDR control are more
dense, have more parameters to control, and thus are able to provide a more exact fit

38

Figure 5.9: Convergence plot of the 0.05 instances, comparing the two different cover
algorithms and the use of FDR control.

Figure 5.10: Convergence plot of the 0.01 instances, comparing the two different
cover algorithms and the use of FDR control.

in the training data. This is evidenced in Table 5.3, where the instances without FDR
achieve a higher log-likelihood (ll) than their counterparts. As we’ve extensively
commented before, however, the pure log-likelihood value is not a direct indication
of model performance, and we still need to apply the information criteria to obtain
a, hopefully, unbiased view of performance. The log-likelihood is however useful
for checking the convergence of the algorithm. Additionally, we can see the average
execution time per clique is independent of average clique size, therefore, we conclude
that cover algorithms that provide larger average cliques could provide an advantage
over other cover algorithms.

5.4.1 Comparison of the Edge Cover Algorithms

Furthermore, when comparing the log-likelihoods using the partition algorithm ver-
sus the cover algorithm, we see that they are able to achieve approximately the same

39

Figure 5.11: Plots showing how close the clique edge cover is to a detachable clique
sequence for the cover algorithm

level of log-likelihood, but the cover algorithm reaches convergence faster in both
instances, as seen in Figures 5.9 and 5.10. The main factor that causes this, is that
the algorithm was able to cover all edges with a smaller number of cliques, and the
processing time for each clique is appears to be independent of clique size. There
is also a gain in the fact that edges can be in more that one clique, so they are
optimized potentially multiple times per sweep. However, we hypothesize that the
most gain is in the fact that we used a greedy approach to selecting cliques, instead
of just iteratively finding arbitrary maximal cliques.

A way that we might explain why the cover algorithm provides a faster conver-
gence is by evaluating the quality of the clique sequence in terms of how close it
approaches an ideal sequence that would be constructible in a chordal graph. As
mentioned in the previous chapter, if the graph is chordal, one can find a sequence
of cliques with which the algorithm converges with only one sweep. This sequence
C1,C2, . . . ,Cl is such that

V (Ci) −
i−1
⋃
j=1

V (Cj) ≠ ∅,

i.e., the next clique of the sequence always introduces a new vertex that had not
been seen previously. We can see in Figure 5.11 that the cliques found by the cover
algorithm approximately follow this trend, of introducing one new vertex per clique,
until we reach about 4000 vertices, 70% of the total.

The partition algorithm, in turn, only follows this trend until less than 3000
vertices, which represents about 50% of the vertex total (Figure 5.12). A percentage
significantly lower than the cover algorithm.

It is curious that these graphs obtained by conditional independence testing are
still somewhat triangular, in the sense that we are able to find a clique sequence that
approximates a sequence of simplicial vertices. If the reader recalls, triangularity

40

Figure 5.12: Plots showing how close the clique edge cover is to a detachable clique
sequence for the partition algorithm

Table 5.4: Table containing the information criteria results for all instances.

FDR p-val algo AIC BIC EBIC0.01 EBIC0.1 EBIC0.5 EBIC1.5

- - - -24602752 -24572835 -24571815 -24562634 -24521828 -24419815
no 1 - 280172 85483538 85483538 85483538 85483538 85483538
yes 0.05 PART -28202615 -27950417 -27943865 -27884900 -27622833 -26967667
no 0.05 PART -29314688 -28521386 -28504249 -28350019 -27664553 -25950887
yes 0.05 COVER -28152501 -27900302 -27893750 -27834785 -27572719 -26917552
no 0.05 COVER -29284929 -28491626 -28474490 -28320260 -27634793 -25921128
yes 0.01 PART -27891323 -27688854 -27683425 -27634561 -27417387 -26874453
no 0.01 PART -28765995 -28240921 -28228750 -28119212 -27632378 -26415293
yes 0.01 COVER -27853123 -27650655 -27645226 -27596361 -27379188 -26836254
no 0.01 COVER -28861500 -28336426 -28324255 -28214718 -27727883 -26510798

was also noted to be the case for analyses using Gene Co-expression networks based
on correlation. However, we believe it arose as more of a mathematical consequence
of the method, rather than necessarily an innate property of the studied biological
systems. It is unclear if, in this scenario of conditional independence testing, this
triangularity is purely a biological phenomenon or it was exacerbated by some step
of our processing pipeline, such as the imputation method or even the conditional
independence testing method itself. This question warrants further investigation,
but we assume that, even if still present, a bias towards more triangular graphs is
much weaker than in correlation-based methods.

5.5 Information Criteria Results

After we fit all our models, we assess their (hopefully) unbiased performance through
Information Criteria. Before finding which instance has the best values, we want to
know if they surpass the baseline model (as one might recall, the baseline model is
defined by having all variables be conditionally independent). Indeed, as we can see
in Table 5.4, all of them do across all criteria.

41

Additionally, we also add the instance given by the complete graph, equivalent
to using the p-value threshold of edges equals 1. This instance also performed
significantly worse than our four instances, indicating that the Information Criteria
do indeed penalise overly complex. models. Nonetheless, ee see that the instance
that best performed on the AIC and BIC was the densest, as can be seen in Table
5.4, with the p-value threshold of 0.05 and without FDR control. As we increase
the γ parameter of the EBIC, we see that sparser instances obtain better results.
We conclude from this that, in this setting, controlling for FDR does likely result in
less Type 1 errors, but it is conservative to a point where it may hinder model fit,
depending on what criterion is considered to be the most appropriate, but we know
that the EBIC was constructed to function in the low-data setting. Furthermore,
given that edge degrees are very highly correlated between the different instances,
structural conclusions about the network are unlikely to change much. So, on the
perspective of overall model quality, using FDR control appears superior.

5.6 Essential Genes

To further corroborate the plausibility of the model, we went into the analysis of
essential genes: genes whose mutations/deletions are associated with (in)viability
of the organism, in our case, Saccharomyces cerevisiae. We went into the Yeast-
Mine platform, populated by the Saccharomyces Genome Database, and searched
for genes associated with the inviability phenotype and found 2215 genes which can
be considered essential. Of those 2215, 1230 were found in our data set. As is re-
ported in the literature, essential genes should display some measure of centrality in
the GRN, therefore, our method should be able to display such a property. Indeed,
if we examine some centrality metrics computed on one of our instances, we see the
the essential genes are more likely to have a higher value that a non-essential gene.

As for centrality metrics, we weighted each edge ij by the absolute value of the
partial correlation ∣ρi,j∣Z ∣ between i and i, given all other variables Z = V (G)∖{i, j},
where

ρi,j∣Z = −
ωij

√
ωiiωjj

. (5.1)

The partial correlation measures the degree of association between i and j, when
the effect of the controlling variables Z is removed. In the case of the multivariate
Gaussian, when can calculate all partial correlations directly from the precision
matrix. From these weighted edges, we calculated the weighted degree of each node.
We also calculated the betweenness of each node, but instead of directly using ∣ρi,j∣Z ∣
as the edge weight, we used 1− ∣ρi,j∣Z ∣ instead, as we wanted to have shorter distances
between genes that had a high conditional dependence between each other.

42

Table 5.5: Centrality metrics of both essential and non-essential genes.

G2 G3 G0 G1

Edge p-value 0.05 0.01 0.05 0.01
FDR Control Yes Yes No No
degree KS stat. 0.1554 0.1592 0.1590 0.1596
degree KS p-val. 8.667e-21 8.160e-22 9.386e-22 6.505e-22
between. KS stat. 0.1122 0.0964 0.0994 0.1292
between. KS p-val. 5.020e-11 2.960e-08 9.491e-09 1.721e-14
info_score KS stat. 0.2227 0.2073 0.2199 0.2219
info_score KS p-val. 1.968e-42 8.955e-37 2.281e-41 3.923e-42

The final centrality metric we computed was our specific development geared to-
wards a GGM. We defined a metric that calculates the expected gain in information
we obtain by discovering the value of a gene. Genes that are conditionally dependent
on many other genes should significantly reduce the amount of uncertainty in the
distribution. The new metric is

info_score(i) = 2Ey[H(X) −H(X ∣Xi = y)], (5.2)

where we are taking expected value of the difference in entropy between the
full distribution X ∼ N (0,Ω), and the distribution conditional on variable Xi,
across all possible values y of Xi, according to its marginal distribution given by
Xi ∼ N (0, ω−1ii). In the case of the Gaussian multivariate distribution, Equation 5.2
simplifies to

info_score(i) = log∣Σ−i∣ − log∣Σ∣ + logσii +C, (5.3)

where we can disregard the constant C. This is a quite simple and computationally
efficient formula, where log∣Σ∣ only needs to be calculated once, and then, for every
node i we would need to calculate log∣Σ−i∣, where Σ−i represents the matrix Σ with
the i-th row and column removed. Although the most popular determinant algo-
rithms have O(n3) complexity, their numerical implementations are quite efficient
in practice. The derivation of the formula can be seen in the appendix Section A.2.
After computing the metrics for each node for all instances, we obtain Table 5.5:

Overall, if we look at all quantiles displayed in Table 5.5, we can see that the
essential genes always exceed the non-essential genes, furthermore the metric that
we developed is the one that yields the largest distribution difference. Indeed, if we
look at all our instances, every one of them has a significant difference in distribution
for all centrality metrics.

We illustrate this claim by looking at the non-parametric Kolmogorov-Smirnov

43

(a) G0 (b) G1

Figure 5.13: Gene expression predictions R2, for Instances without FDR control

(a) G2 (b) G3

Figure 5.14: Gene expression predictions R2, for Instances with FDR control

(KS) statistic for detecting distribution differences. And we see that two instances
displayed the more significant differences between gene and non-essential genes
across the three metrics: instance G2, with p-value 0.05 and FDR control, and
instance G1, with p-value 0.01 but without FDR control. Curiously, both these in-
stances are sparse, but not the most sparse instance we tested. This result seemingly
goes in a different direction compared to the Information criteria results, where the
densest instance had the better performance. This divergence between the results
above and the information criteria is likely due to their difference in purpose: in-
formation criteria attempt to evaluate a model from a predictive power standpoint,
irrespective of whether the model’s inner structure maintains biological plausibility.
In this scenario, they ended up pointing towards denser solutions, and consequently,
solutions with more Type 1 errors, which appear to have somewhat obfuscated struc-
tural properties of the network. We evaluate this phenomenon more as a limitation
of using Information Criteria than an issue with GGM modelling in of itself. Ul-
timately, the information criteria showed that all models perform above baseline,
and the essential gene analysis indicated that all models also display biologically
plausible structures.

44

5.6.1 Influence Propagation

So far, we have be able to indicate that the graph structure of the GRN is likely
consistent with a “small-world” regime. However, we have not yet given direct
indication that core genes of phenotypes are more likely to be “hub” nodes of the
graph, given that KS statistics between essential and not essential genes are not
that large, only going up to 22, as seen in Table 5.5. So we turn to a more subtle
structural question about the GGM. For a certain gene i, can expression levels of
genes j at distance d(i, j) = k be used to predict i?. If we take the precision matrix
of the GGM, we can derive the coefficients of a linear regression to any gene i, and
by doing so, we are able to calculate an R2, defined by:

R2 = 1 −
V ar(Xi −X

pred
i)

V ar(Xi)

We can see by Figure ?? that for all instances, essential genes had, on average, a
much higher R2 for both distances 1 and 2, and this difference is much more marked
than the centrality metrics previously shown. This metric of prediction power of
genes at distance k (especially distance 2) is much more indicative that peripheral
genes tend to exert strong influence on core genes.

45

Chapter 6

Conclusion

Finally, given the information criteria results, specially in comparison to our baseline
model, we can assert that all instances we tested did have an adequate level of fit.
If we assume that this level of fit is enough to also make assertions on the structure
of the underlying GRN, we cay say that

1. The GRN may indeed have scale-free properties, given that all instances we
tested had scale-free properties, and

2. the essential (core) genes did indeed have a higher degree of centrality, across
all centrality metrics we tested, than the average gene.

As we originally discussed in the introduction of both these facts, therefore, are
supportive evidence for the Omnigenic hypothesis.

We also observed that the second algorithm for finding a clique edge cover worked
better in terms of convergence speed compared to the first. We did not, however,
spend time porting the Python code into an efficient C++ implementation, nor did
we attempt theoretical improvements on it, given our insights into its possible con-
nection to chordal graphs and simplicial vertices. Also on the topic of triangularity,
we have not investigated, mathematically or empirically, whether it is an inherent
property of biological networks, or if we are inducing it through some of the methods
we applied in the pipeline. All these questions merit to be explored in further work.

Ultimately, we were able to build a full pipeline, from data processing to mod-
elling, that yielded models with positive performance, evaluated under different In-
formation Criteria. Furthermore, the models themselves appeared to have properties
consistent with prevailing biological assumptions about genes, such as the fact that
essential genes tend to have many regulatory connections in the GRN. Therefore,
this approach shows promise for further development and tests on other domains in
the high-dimensional/small data set regime. We recognize that many aspects of the
pipeline were not fully explored, such as alternative imputation models, alternative

46

shrinkage methods, or more kinds of Conditional Independence tests, but the sheer
scope of this project was quite overwhelming to this humble student. Nonetheless,
we assess that the overall approach, combining its many components, is adequately
validated in the transcriptomic data setting and there is ample opportunity to im-
prove and generalize this software package.

47

Appendix A

Proofs

A.1 Chapter 3

A.1.1 Multivariate Gaussian MLE

The formula for the Multivariate Gaussian’s log-likelihood is

l(X[1∶n];Ω) =
np

2
log 2π +

n

2
log ∣Ω∣ −

1

2

n

∑
i=1

XT
i ΩXi

And given that XT
i ΩXi = tr(ΩXiXT

i), and by the linearity of the trace operator,
we have

n

∑
i=1

XT
i ΩXi =

n

∑
i=1

tr(ΩXiX
T
i) = tr(Ω

n

∑
i=1

XiX
T
i)

Therefore,

l(X[1∶n];Ω)∝ n log ∣K ∣ − tr(Ω
n

∑
i=1

XiX
T
i)

Finally, we can write the maximum Likelihood problem as

max
⪰0

log ∣Ω∣ − tr(SΩ)

where S = 1
n ∑

n
i=1XiXT

i , is the empirical covariance matrix.

A.1.2 Conditional Independence

Proof of Proposition 1:

Proof. From the conditional probability formula, we know that P (S ∣ T)∝ P (S∩T).
Additionally, we can decompose xTΩx into

48

xTΩx = ωi,jxixj + xiΩi,−jx−j + xjΩj,−ix−i + x
T
−ijΩ−ij,−ijx−ij

Therefore, the conditional distribution of (Xi,Xj), given all other variables B =

{Xk ∣ k ≠ i, j}, would be proportional to

f∣B(xi, xj)∝ exp{
1

2
(ωi,jxixj + xiKi,−jx−j + xjKj,−ix−i + x

T
−ijK−ij,−ijx−ij)}

Which can be factored as

f∣B(xi, xj)∝ exp{
1

2
(ki,jxixj} exp{

1

2
xiΩi,−jx−j} exp{

1

2
xjΩj,−ix−i} exp{x

T
−ijΩ−ij,−ijx−ij}

Considering that all variables other than xi and xj are fixed, terms not involving
them xi or xj can be considered constants. So we can simplify the equation above
to

f∣B(xi, xj)∝ exp{
1

2
(ωi,jxixj} exp{

1

2
ωi,ix

2
i } exp{

1

2
ωj,jx

2
j}

I.e., the product of two marginal probabilities and a dependent component involving
ωij, and if ωij = 0, the component would equal 1, and the pdf could be seen as the
product of the marginals of xi and xj.

Proof of Proposition 2:

Proof. Considering A as a vertex subset and B as its complement, from the Schur
Complement properties, we know that

∣Ω∣ = ∣ΩB,B ∣∣ΩA,A −ΩA,B(ΩB,B)
−1ΩB,A∣

log∣Ω∣ = log∣ΩB,B ∣ + log∣ΩA,A −ΩA,B(ΩB,B)
−1ΩB,A∣

Therefore, the optimization problem becomes

max
Ω

log∣Ω0
B,B ∣ + log∣ΩA,A −Ω

0
A,B(Ω

0
B,B)

−1Ω0
B,A∣ − tr(SΩ)

s.t ωij = ω
0
ij ∀ij ∉M

ωij = 0 ∀ij ∉ E

Now we can remove constant terms due to ΩB,B, ΩA,B, and ΩB,A being fixed. And
thus, obtain

49

max
Ω

log∣ΩA,A −Ω
0
A,B(Ω

0
B,B)

−1Ω0
B,A∣ − tr(SA,AΩA,A)

s.t ωij = ω
0
ij ∀ij ∉M

ωij = 0 ∀ij ∉ E

Let us conveniently add the term tr(SA,AΩ0
A,B(Ω

0
B,B)

−1Ω0
B,A) to the objective

function, without changing the optima, since it is a constant. Now we can
use the linearity of the trace operator to group the terms tr(SA,AΩA,A) −

tr(SA,AΩ0
A,B(Ω

0
B,B)

−1Ω0
B,A) into tr(SA,A(ΩA,A −Ω0

A,B(Ω
0
B,B)

−1Ω0
B,A)).

Now, finally, by creating the auxiliary matrix Ω′ we can rewrite the problem as

max
Ω′⪰0

log ∣Ω′∣ − tr(SA,AΩ
′)

s.t ωij = 0 ∀ij ∉ E

Ω′ = ΩA,A −Ω
0
A,B(Ω

0
B,B)

−1Ω0
B,A,

where the positive definiteness of Ω′ guarantees that the resulting Ω1 solution will
also be positive definite, given that Ω0 is also assumed to be positive definite.

Proof of Corollary 1:

Proof. If M is a clique, then the restriction ωij = 0 can be dropped, given that all
non-edges are outside of M , and therefore, ωij is already naturally set to ω0

ij, and
thus equal 0, since we assume Ω0 to be a viable solution. If it is dropped, then the
problem becomes

max
Ω′⪰0

log ∣Ω′∣ − tr(SA,AΩ
′)

s.t Ω′ = ΩA,A −Ω
0
A,B(Ω

0
B,B)

−1Ω0
B,A,

a simple problem of the Gaussian MLE for sample covariance matrix ΣA,A with no
structure restriction. Therefore, the optimum is given by

Ω′ = (SA,A)
−1

Ω1
A,A = (SA,A)

−1 +Ω0
A,B(Ω

0
B,B)

−1Ω0
B,A.

50

A.1.3 Equivalence of using Correlation

With better numerical stability in mind, our MLE algorithms were all executed
on the data set’s empirical correlation matrix, instead of the empirical covariance
matrix. This does not alter the results, provided that obtained precision matrix is
transformed back the original scale. To see why this is true: let’s use P = DΩD,
where D is the diagonal matrix

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(s11)−1/2

⋱

(skk)−1/2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where sii are the diagonal elements of the empirical covariance matrix S. If we
replace Ω in terms of P and D, and optimize on P instead, we obtain the equivalent
optimization problem

max
P

log ∣D−1PD−1∣ − tr(SD−1PD−1)

s.t pij = 0 ∀ij ∉ E.

From this equivalent formulation, we can calculate the solution Ω∗ of the origi-
nal Structured MLE problem by Ω∗ = D−1P ∗D−1, where P ∗ is the solution to the
reformulated problem.

Let us recall two matrix properties:

∣AB∣ = ∣A∣∣B∣ (A.1)

tr(ABC) = tr(BCA) = tr(CAB) (A.2)

Applying both to the objective function of the reformulated problem:

log ∣D−1PD−1∣ − tr(SD−1PD−1) = 2 log ∣D−1∣ + log ∣P ∣ − tr(D−1SD−1P)

= 2 log ∣D−1∣ + log ∣P ∣ − tr(CP),

where C is the empirical correlation matrix. Therefore, the optimization problem
simplifies to

max
P

log ∣P ∣ − tr(CP)

s.t pij = 0 ∀ij ∉ E,

51

Which is solving the MLE for the empirical correlation matrix, but maintaining the
same structure restriction.

A.2 Chapter 5

A.2.1 Derivation of the Info Score

From our definition of the information score, we can apply the differential entropy
formula for the multivariate gaussian, thus obtaining

info_score(i) = 2Ey[H(X) −H(X ∣Xi = y)]

= 2H(X) − 2Ey[H(X ∣Xi = y)]

= k + k log(2π) + log∣Σ∣ − 2Ey[H(X ∣Xi = y)].

For the second term, E[H(X ∣ i)], we know that the covariance matrix of the
conditional distribution given Xi is the Schur complement

Σ′ = Σ−i −Σi,−iσiiΣ−i,i,

and as we can see, it does not depend on specific values of y, so the expected value
operator can be ignored. From properties of the Schur complement, we also know
that ∣Σ′∣ = ∣Σ∣/∣σii∣. Therefore

2Ey[H(X ∣Xi = y)] = k − 1 + (k − 1) log(2π) + log∣Σ−i∣ − ∣σii∣

Putting it all together, we obtain

info_score(i) = log∣Σ∣ − log∣Σ−i∣ + ∣σii∣ +C.

52

References

[1] El ad David Amir, Kara L Davis, Michelle D Tadmor, Erin F Simonds, Jacob H
Levine, Sean C Bendall, Daniel K Shenfeld, Smita Krishnaswamy, Garry P
Nolan, and Dana Pe'er. viSNE enables visualization of high dimensional
single-cell data and reveals phenotypic heterogeneity of leukemia. Nature
Biotechnology, 31(6):545–552, May 2013.

[2] Ken Aho, DeWayne Derryberry, and Teri Peterson. Model selection for ecol-
ogists: the worldviews of AIC and BIC. Ecology, 95(3):631–636, March
2014.

[3] Joshua Batson, Loïc Royer, and James Webber. Molecular cross-validation for
single-cell RNA-seq. September 2019.

[4] Evan A. Boyle, Yang I. Li, and Jonathan K. Pritchard. An expanded view of
complex traits: from polygenic to omnigenic. Cell, 169:1177–1186, June
2017.

[5] Scott L. Carter, Christian M. Brechbühler, Michael Griffin, and Andrew T. Bond.
Gene co-expression network topology provides a framework for molecular
characterization of cellular state. Bioinformatics, 20:2242–2250, Septem-
ber 2004.

[6] Gerda Claeskens and Nils Lid Hjort. Model Selection and Model Averaging.
Cambridge University Press, January 2001.

[7] John C. Doyle, David L. Alderson, and Lun Li. The “robust yet fragile” nature
of the internet. PNAS, 102:14497–14502, October 2005.

[8] Rina Foygel and Mathias Drton. Extended bayesian information criteria for
gaussian graphical models. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems, volume 23. Curran Associates, Inc., 2010.

[9] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, December 2007.

53

[10] Cho-Jui Hsieh, Matyas A Sustik, Inderjit S Dhillon, Pradeep K Ravikumar,
and Russell Poldrack. Big & quic: Sparse inverse covariance esti-
mation for a million variables. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

[11] Saiful Islam, Amit Zeisel, Simon Joost, Gioele La Manno, et al. Quantita-
tive single-cell rna-seq with unique molecular identifiers. Nature Methods,
pages 163–166, February 2014.

[12] Christopher A Jackson, Dayanne M Castro, Giuseppe-Antonio Saldi, Richard
Bonneau, and David Gresham. Gene regulatory network reconstruction
using single-cell RNA sequencing of barcoded genotypes in diverse envi-
ronments. eLife, 9, January 2020.

[13] Jana Janková and Sara van de Geer. Confidence intervals for high-dimensional
inverse covariance estimation. Electronic Journal of Statistics, 9(1), Jan-
uary 2015.

[14] Jana Janková and Sara van de Geer. Honest confidence regions and optimality
in high-dimensional precision matrix estimation. TEST, 26(1):143–162,
sep 2016.

[15] Itamar Kanter and Tomer Kalisky. Single cell transcriptomics: methods and
applications. Frontiers in Oncology, 5:14497–14502, March 2015.

[16] Raya Khanin and Ernst Wit. How scale-free are biological networks. Journal
of Computational Biology, 13:810–818, May 2006.

[17] Solt Kovács, Tobias Ruckstuhl, Helena Obrist, and Peter Bühlmann. Graphical
elastic net and target matrices: Fast algorithms and software for sparse
precision matrix estimation, 2021.

[18] Manik Kuchroo, Jessie Huang, Patrick Wong, Jean-Christophe Grenier, Dennis
Shung, Alexander Tong, et al. Multiscale PHATE identifies multimodal
signatures of COVID-19. Nature Biotechnology, 40(5):681–691, February
2022.

[19] Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-
dimensional covariance matrices. Journal of Multivariate Analysis,
88(2):365–411, February 2004.

[20] TI Lee. Transcriptional regulatory networks in saccharomyces cerevisiae. Sci-
ence, 298:799–804, October 2002.

54

[21] Weidong Liu. Gaussian graphical model estimation with false discovery rate
control. The Annals of Statistics, 41(6), dec 2013.

[22] Teri A. Manolio, Francis S. Collins, Nancy J. Cox, David B. Goldstein,
et al. Finding the missing heritability of complex diseases. Nature, page
747–753, October 2009.

[23] Ronald M. Nelson, Mats E. Pettersson, and Örjan Carlborg. A century af-
ter fisher: time for a new paradigm in quantitative genetics. Trends in
Genetics, 29:669–676, October 2013.

[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res.,
12(null):2825–2830, nov 2011.

[25] Shaun M. Purcell, Jennifer L. Moran, Menachem Fromer, et al. A polygenic bur-
den of rare disruptive mutations in schizophrenia. Nature, page 185–190,
January 2009.

[26] V. Srinivasa Rao, K. Srinivas, G. N. Sujini, and G. N. Sunand Kumar. Protein-
protein interaction detection: Methods and analysis. International Jour-
nal of Proteomics, 2014:1–12, February 2014.

[27] Marsha L. Richmond. Women in the early history of genetics: William bateson
and the newnham college mendelians, 1900-1910, March 2001.

[28] Max Roser, Cameron Appel, and Hannah Ritchie. Human height. Our World
in Data, 2013. https://ourworldindata.org/human-height.

[29] Julian D. Schwab, Silke D. Kühlwein, Nensi Ikonomi, Michael Kühl, and
Hans A. Kestler. Concepts in boolean network modeling: What do they all
mean? Computational and Structural Biotechnology Journal, 18:571–582,
2020.

[30] T. P. Speed and H. T. Kiiveri. Gaussian markov distributions over finite graphs.
The Annals of Statistics, 14(1), March 1986.

[31] Terrence Tao. When is correlation transitive? https://terrytao.wordpress.

com/2014/06/05/when-is-correlation-transitive/. Accessed: 2023-
08-06.

[32] Duc Tran, Hung Nguyen, Bang Tran, Carlo La Vecchia, Hung N. Luu, and
Tin Nguyen. Fast and precise single-cell data analysis using a hierarchical
autoencoder. Nature Communications, 12(1), February 2021.

55

https://terrytao.wordpress.com/2014/06/05/when-is-correlation-transitive/
https://terrytao.wordpress.com/2014/06/05/when-is-correlation-transitive/

[33] Caroline Uhler. Gaussian graphical models. In Marloes Maathuis, Mathias
Drton, Steffen Lauritzen, and Martin Wainwright, editors, Handbook of
Graphical Models, chapter 9, pages 219–236. CRC Press, 2018.

[34] David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail,
Ambrose J. Carr, Cassandra Burdziak, Kevin R. Moon, Christine L. Chaf-
fer, Diwakar Pattabiraman, Brian Bierie, Linas Mazutis, Guy Wolf, Smita
Krishnaswamy, and Dana Pe’er. Recovering gene interactions from single-
cell data using data diffusion. Cell, 174(3):716–729.e27, July 2018.

[35] Hao Wang. Bayesian graphical lasso models and efficient posterior computation.
Bayesian Analysis, 7(4), December 2012.

[36] Ivan Rodrigo Wolf, Rafael Plana Simões, and Guilherme Targino Valente. Three
topological features of regulatory networks control life-essential and spe-
cialized subsystems. Scientific Reports, 11, December 2021.

[37] Bin Zhang and Steve Horvath. A general framework for weighted gene co-
expression network analysis. Statistical Applications in Genetics and
Molecular Biology, 4, August 2005.

[38] Rong Zhang, Zhao Ren, and Wei Chen. SILGGM: An extensive r package for
efficient statistical inference in large-scale gene networks. PLOS Compu-
tational Biology, 14(8):e1006369, August 2018.

[39] Haitao Zhao and Zhong-Hui Duan. Cancer genetic network inference us-
ing gaussian graphical models. Bioinformatics and Biology Insights,
13:117793221983940, January 2019.

56

	List of Figures
	List of Tables
	Introduction
	Previous Work
	The Omnigenic Hypothesis
	The Gene Regulatory Network, seen as a dynamical system
	The Omnigenic Hypothesis - Dynamical System Version

	Connecting the Omnigenic Hypothesis with the Selected Modelling Method
	The Omnigenic Hypothesis - Graph Version

	Single-Cell RNA-Seq
	Which PGM?
	Contributions and Roadmap

	Background
	The Multivariate Gaussian
	How to Assess Conditional Independence

	Finding CI Graphs

	Selecting Candidate CI graphs
	Structured Maximum Likelihood Estimation
	Multivariate Gaussian MLE
	Conditional Independence
	Algorithm for the MLE

	Information Criteria

	Methodology
	Data Pipeline Overview
	Data Imputation
	MAGIC algorithm
	Molecular Cross-Validation

	Shrinkage Covariance Estimation
	Conditional Independence Testing
	GGM Maximum Likelihood Estimation
	Clique Algorithms
	Conditional Decorrelation
	Convergence Criteria

	Results
	The Selected Data set
	Impact of Data Imputation
	Network Analysis of the CI Networks
	Convergence of the MLE
	Comparison of the Edge Cover Algorithms

	Information Criteria Results
	Essential Genes
	Influence Propagation

	Conclusion
	Proofs
	Chapter 3
	Multivariate Gaussian MLE
	Conditional Independence
	Equivalence of using Correlation

	Chapter 5
	Derivation of the Info Score

	References

