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Ronald Chiesse de Souza

Dezembro/2023

Orientador: Daniel Ratton Figueiredo

Programa: Engenharia de Sistemas e Computação

Efeitos de proteção (PrE) são contramedidas que indivíduos tomam (e.g. uso de
máscara) contra epidemias. Tal é a mudança no padrão de mobilidade, influenciada
ativamente pela noção de risco e passivamente pelas restrições geoespaciais. Esta
tese investiga aspectos teóricos da estrita interação entre mobilidade ciente de risco
e estrutura de rede em processos epidêmicos, a fim de prever seu resultado. Propo-
mos um modelo simples de agentes móveis para epidemias SIS de tempo contínuo
em redes de graus não correlacionados. PrE surgem pelo enviesamento dos agentes
para locais seguros. Nossas principais contribuições: (i) Um preditor preciso baseado
em EDO que incorpora explicitamente informações de estrutura e proteção em um
sistema ordens de grandeza menor que o tamanho da rede; (ii) A primeira evidência
teórica de um impacto estrutural chave: maior heterogeneidade estimula a propa-
gação; (iii) Com destaque, encontramos um regime especial onde epidemias em redes
com distribuição de grau arbitrária são previstas em Θp1q não por um sistema, mas
por uma única equação; (iv) Limiares de proteção para estados estacionários livres
de doença, sob taxas de caminhada e transmissibilidade tanto constantes quanto
arbitrariamente altas; (v) Uma lei pela qual um passeio aleatório simples (SRW)
pode ser combinado com a função de grau para produzir qualquer momento dese-
jado da distribuição de grau de uma rede. Entre outras consequências, respondemos
assim à questão sobre o valor esperado que um SRW se aproxima ao superestimar
o grau médio de uma rede. Embora centrados em teoria, nossos resultados indicam
que a disponibilidade sem precedentes de formas de rastrear locais de risco torna
a mobilidade inteligente uma alternativa plausível e de menor impacto a quarente-
nas. Acreditamos que nossos resultados também podem contribuir para a teoria de
interação de partículas.
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Protection effects (PrE) denote countermeasures individuals take (e.g.
maskwearing) against epidemics. Such is the collective change on mobility pat-
terns, influenced actively by risk-awareness and passively by geospatial constraints.
This work investigates theoretical aspects on the strict interplay between risk-aware
mobility and network structure in epidemic processes, in order to predict their out-
come. We propose and formalize a simple agent-based model for continuous-time SIS
epidemics on degree-uncorrelated networks. Protective behavior comes through bi-
asing walkers towards safe sites. Our main contributions: (i) we provide an accurate
ODE-based predictor that explicitly embodies structural and protective information
into a system orders of magnitude smaller than the network size; (ii) the first theo-
retical evidence of a key structural impact on agent-based network epidemics: larger
heterogeneity boosts the spreading; (iii) remarkably, we find a special regime under
which epidemics on networks with arbitrary degree distribution can be accurately
predicted in Θp1q not by a system but by a single ODE equation; (iv) protection
thresholds for disease-free steady states under both constant and arbitrarily large
rates for walk and transmissibility; (v) interestingly, we find a law through which a
simple random walk (SRW) can be conveniently combined with the degree function
in order to yield any desired moment of a network’s degree distribution. Among
other consequences, we thereby answer the question on the expected value an SRW
approaches in reality when overestimating a network’s average degree. While theory-
centric, our results indicate that today’s unprecedented availability of ways to keep
track of risky locations make the development of smart mobility schemes a plausible,
lower-impact alternative to quarantines. We believe our results may also contribute
to the theory of interacting particles.
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Chapter 1

Introduction

Diffusion processes in networks permeate several distinct domains. The abstraction
landscape encompass from electric pulses across neural networks in the brain and
fluids passing through porous materials, to consensus emerging in distributed sys-
tems, fires spreading through tropical forests, and cascading failures occurring in
large-scale power grids. The modeling of such phenomena is based on the network
epidemics framework, wherein epidemic refers to any iterative dynamic by which
viruses, ideas, rumors, failures, or any other propagators can infect neighbors of
their carriers.

Though an appropriate modeling must take into account each targeted domain’s
specificity, the general network epidemic framework typically embeds three core
features:

1. Contact pattern. Traditionally, a network of contacts—upon which the propa-
gation spreads—often corresponding to a static, undirected graph where nodes
represent individuals and an edge linking two nodes means that these actively
interact with one another. In this particular case, the set of individuals one in-
teracts with remains the same throughout the epidemic process. Many other
abstractions have been proposed in order to capture more complex contact
patterns. For instance, one may consider continuous mobility models in a
unit-square region, wherein two nodes interact (edge appearance) whenever
their (euclidean) distance lies below some previously fixed threshold. Note
that in this case the network of contacts is dynamic (since every possible edge
may appear and disappear several times) but the mobility is unstructured since
an individual is free to move in any direction. A more recent approach, which
combines both dynamic contacts and structured mobility, is the agent-based
model (ABM). Therein, individuals are represented by agents that move on a
network. Nodes represent sites and an edge linking two nodes indicates a pos-
sible transit along them. Agents thus "walk" (move) from one site to another
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obeying topological (structural) constraints.

2. Propagation laws. The interactions among individuals are key for an epidemic
to unfold. Proper modeling, however, demands further design decisions: once a
contact is established between an infectious individual and a healthy one, does
it suffice for the infection to be passed along? Does the exposure time matter?
For how long does an infected individual remain in such a state? Does an in-
dividual’s contact pattern change after he becomes infected? If recovered, will
the individual become again subject to new infections? Appropriate answers
clearly depend on the application. However, the network epidemics framework
allows us to consider many of these as adjustable parameters within a compart-
mental setup. These compartments—first proposed by Ross and Kermack &
McKendrick [2, 3]—partition individuals across epidemic states. For instance,
outbreaks wherein an individual’s state changes solely from susceptible (S) to
infected (I) are called SI epidemics. If a previously infected individual eventu-
ally becomes again susceptible, then dynamics are SIS. Conversely, to acquire
immunity past the infection leads one to the recovered (R) state, which in turn
characterizes an SIR epidemic. Once suitable compartments are defined, the
remaining parameters (e.g. pathogen’s transmissibility and recovery rate) must
still be determined.

3. The set of early spreaders—named epidemic seeds—whose infection is gener-
ally accounted an exogenous event. This special set plays a central role in the
epidemic process, as these propagation starters often influence the size and the
dissemination speed of an epidemic outbreak.

In this thesis our investigation concentrates on the two first aforementioned as-
pects of network epidemic models. In particular, the main focus resides in charac-
terizing protection effects (to be soon described), which are closely related to aspects
1 and 2 above.

We remark on two major works derived from each problem considered herein,
both later described in detail.

• Characterizing Protection Effects on Network Epidemics driven by Random
Walks [4], received the Best Paper Award at WPerformance 2020, a satellite
workshop from Brazil’s main academic event on Computing, the Brazilian
Society for Computing’s Congress (CSBC).

• Biased Random Walks as Protection Effects on Agent-based Network Epi-
demics. A paper—about to be submitted to IEEE Transactions on Network
Science and Engineering (TNSE)—consolidating the present research, and in-
cluding the most recent findings, which will also be covered in this text.

2



1.1 Protection Effects

Understanding how epidemics either evolve and die out is increasingly pursued
within various disciplines, for reasons such as to avoid or reduce potentially catas-
trophic impacts across society on its many spheres. The arguably most striking ex-
ample is the recent COVID-19 pandemic, against which an unprecedented scientific
engagement came to be daily witnessed worldwide. Efforts ranged from multiple
level of quarantine and conception and launch of effective vaccines to the under-
standing of spreading patterns [5], socio-demographic responsiveness [6, 7], general
psychological trauma [8] and even hesitancy level on taking vaccines [9], to name a
few.

In this context, protection effects (PrE), aka disease-behavior dynamics [10–12],
denote the set of measures individuals take to avoid contagion (such as to wear
masks and avoid certain locations), once aware that an epidemic unfolds nearby. PrE
fundamentally differ from interventions, which refer to epidemic containment policies
driven by governments: whereas interventions are carried out collective-to-individual
(e.g. closure of schools, shops, restaurants, and flight cancellations [13, 14]), PrE
arise as a behavioral product of individual risk awareness; an individual-to-collective
process. Indeed, intervention is typically encoded as a reduction in the number of
contacts per unit time, possibly leading the epidemic to die out. PrE, in turn, are
generally translated into a saturation level for the infection rate.

Recent studies have investigated how PrE may impact the course of an epidemic
as predicted by traditional models. Most, however, elaborate over static, homoge-
neous mixing premises and lack networks. While such approaches prove resourceful
at capturing and elucidating many key aspects towards disease outbreaks, these
also typically neglect, totally or partially, the structure of the underlying network
of contacts and its time-varying nature.

This thesis proposes a simple agent-based model with PrE for continuous-time
SIS epidemics on non-regular, degree-uncorrelated networks. Protective behavior
comes through biasing local agents movements towards safe sites, in an epidemic
state-dependent fashion: susceptible (S) agents avoid locations hosting infected (I)
agents and vice-versa, with a single parameter to represent aversion strength. Prop-
agation occurs through direct contact between S- and I- agents at a given node and
depends on the total exposition time (details are first provided in Chapter 3 and
then extended in Chapter 5).

Key factors to modeling epidemics through agent-based schemes include their
spatio-temporal expressiveness. Indeed, to take networks for topological structures
mobile agents transit into is a natural way of capturing real world mobility pat-
terns [15]. Models of this flavor have been recently considered [15–18]. To the best

3



of our knowledge, however, non-regular networks and PrE have hitherto never been
theoretically investigated under such schemes; a gap filled by this work.

1.2 Contributions

The main contributions of this thesis are summarized as follows.

• For sparse regimes in degree-uncorrelated networks, degree-block approxima-
tion is leveraged in order to obtain an accurate epidemic predictor that explic-
itly embodies structural and protective information into a system of ordinary
differential equation (ODE) orders of magnitude smaller than the network size.
These results are supported by numerical evaluation of the ODE system and
by simulation of the the epidemic network model;

• The first theoretical evidence of a key structural impact on agent-based epi-
demic models: larger degree heterogeneity boosts the spreading;

• Remarkably, we find a special regime under which epidemics on networks with
arbitrary degree distribution can be accurately predicted in Θp1q (constant
running time), not by a system but by a single ODE equation;

• Protection thresholds for disease-free steady states under both constant and
arbitrarily large rates for walk and transmissibility;

• Interestingly, we find a law through which a simple random walk (SRW) can be
conveniently combined with the degree function in order to yield any desired
moment of a network’s degree distribution.

• A numerical study on dense regimes. Surprisingly, rich, oscillating dynamics
arise as a result of the combination of strong PrE versus highly heterogeneous
topology. This offers new insights on why we frequently observe real-world
seasonal epidemics that persist over only a small fraction of the population;

• Design and implementation of a publicly available network epidemic simula-
tor whose numerical results validate the theoretical analysis on the proposed
models.

1.2.1 Prior Contributions

Throughout the first two years of his doctorate, the author has also investigated
and published results on another epidemic related problem, for which we shall now
provide a small synthesis, without going into detail. This decision takes into account
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the fact that such an investigation (to be briefly presented below), notwithstanding
its relevance, does not account for the main focus of this text nor can it be directly
integrated in a complementary fashion to the main work presented herein. A high-
level description of this prior work is presented below.

Budgeted Influence Maximization (BIM)

The influence maximization (IM) problem has been broadly investigated since the
seminal work of Kempe et al. [19]. This pioneering paper provides a framework
for the general problem, proving its NP-hardness and providing an approximate,
polynomial-time greedy algorithm with performance guarantees (constant factor
from optimal). Their algorithm is based on submodular objective functions, which
is shown to be the case for some diffusion models. However, its high running time
has led to a myriad of approaches to tackle the problem with more efficient algo-
rithms [19–30]. Indeed, various prior works have focused on designing heuristics to
determine good seeds, exploring structural features of the network as well as fea-
tures associated with nodes (e.g., labels). For example, computationally-inexpensive
heuristics based on node degree [22], particle swarm optimization [31], and node ho-
mophily [24] have all been considered.

Heuristics based on k-core decomposition [32] have also been explored [21],
showing a correlation between influential spreaders and highly connected regions
of the network. This idea has been explored by various subsequent works that also
adapt and augment such metric with node rankings [28], communities [26], disjoint
paths [25], and local neighborhoods [27].

The IM problem has also been investigated under diffusion models fundamentally
different from the widely adopted Independent Cascades (IC) and Linear Threshold
(LT). For instance, Ugander et al [33] propose the structural diversity model, further
investigated by Wenzheng et al [34].

However, all these prior works implicitly assume that nodes have identical costs,
since the constraint to start a propagation is simply the number of seeds.

There are also recent works that have investigated network seeding where node
costs are not fixed (over time) nor identical across the network. For example,
Leskovec et al. [35] propose strategies for placing sensors on a network to more
quickly detect a diffusion. Arthur et al. [20] propose strategies to price products
and provide cash-back (discount) to nodes in the network to induce recommenda-
tions to their neighbors. Miyanchi et al. [36] formulate an optimization problem
wherein a fixed budget is allocated to a bipartite network of marketing channels and
customers with variable node costs (no diffusion considered). None of these works
specifically addresses the BIM problem.

However, BIM has more recently been formulated and investigated by Nguyen
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and Zheng [37]. The authors depart from the framework introduced by
Kempe et al. [19] and tackle the problem using the IC model. They establish a sub-
modular, cost-normalized objective function, from which they determine a greedy
algorithm—here called GR—with approximation guarantees up to a constant factor.

Other works have also investigated the BIM problem [38–40]. Han et al. [38]
tackle BIM with a heuristic combining two seeding strategies; one based on node
influence, and the other on node cost.

More recently, Nguyen et al. have formulated a more general problem, Cost-
aware Targeted Viral Marketing (CTVM) [39], briefly described as follows. Beyond
arbitrary selecting cost, each node v also provides an arbitrary benefit bpvq for be-
ing activated. The goal is thus to maximize not the influence spread but the total
benefit provided by the final active set. Besides CTVM their algorithm, named
BCT, also tackles either the classical IM and the BIM problems. The latter—
which is the scope of this work—corresponds to the case where, given a network
G “ pV,Eq and a constant C P R˚

`, bpvq “ C, @v P V . They show that, for IM,
BCT significantly outperforms state-of-the-art algorithms such as TIM/TIM+ [41]
and IMM [42] in terms of running time, with equal performance in what regards the
spread of influence. Also, when considering arbitrary selecting costs, they report
BCT outperforms all above-mentioned algorithms, including GR, in terms of con-
ceiving a seed set that yields a final active set with larger overall benefit. For BIM,
however, they report GR performs better than BCT in terms of total influenced
population. Last, Souza et al. [40] characterize the performance of simple and tra-
ditional seeding strategies to solve the BIM problem, motivating the need for more
clever strategies.

Despite addressing the BIM problem, these prior works have the following lim-
itations. The theoretical result of Nguyen and Zheng [37] assumes that the initial
budget is larger than the cost of any node. Moreover, their numerical evaluation
uniformly assigns random costs to nodes, from a small range (less than a factor of
10). Similarly, Han et al. [38] and Nguyen et al.[39] assume that the initial budget is
larger than the cost of any node, and their numerical evaluation considers that cost
and node centrality are linearly related. These assumptions fall short of capturing
more general pricing practices, such as those adopted by celebrities (nodes) for pro-
moting viral marketing in online social networks [43–45]. In particular, marketing
campaigns may not have sufficient budget to hire even one of those more expensive
individuals.

The above context paved the way to the author’s first major contribution made
along his Doctorate’s degree pursuit. The full text has been published in the journal
Information Sciences [4] in 2020. Therein, we propose a flexible node cost model
that strictly depends on the network structure and allows for an arbitrary range
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of values, without making assumptions on the available budget. Efficient seeding
strategies for BIM were investigated by the author under a correlated node cost
model (i.e., higher centrality, higher cost) and the linear threshold model. The main
contributions of the aforementioned publication are as follows:

• We propose a seeding strategy, called Node Surround, which consists of tar-
geting the cheapest neighbors of central, expensive (or even cost-prohibitive)
nodes, leveraging their higher spreading potential at much lower costs when
compared to that of their direct seeding. We show that, as the network thresh-
old increases, this approach outperforms state-of-the-art BIM strategies.

• We show how the classical fraction of activated nodes, a broadly adopted met-
ric, may lead to misinterpretations with respect to the effectiveness of a strat-
egy. Opposite to the unit-cost IM, different BIM strategies with the same
initial budget may still yield seed sets of very different sizes, ranging from
few key-nodes up to a large fraction of the network. By considering solely
their diffusion power (a metric we have proposed), we capture the real benefit
(activated non-seeds) of an investment (budget). Diffusion power (DP) is a
fundamental metric to properly assess BIM strategies. It embeds the Outward
Influence [46] concept—originally proposed for IM—to tackle BIM. Indeed, we
show that to ignore the seeds (paid influencers) when measuring a strategy’s
performance eliminates potentially large assessment distortions.

• We propose a flexible, single-parameter model for node cost, which correlates
cost and network centrality. To the best of our knowledge, this is the first
model to admit non-linear relations between cost and local structure. It also
captures the common real-world scenario wherein node-costs across a network
may differ from one another by many orders of magnitude, thus being more
relevant in practice.

We refer the reader to [4] for a complete description on the problem. As for this
thesis, no further details on this specific work is to be provided hereafter. Instead,
in what follows we switch back to the original agent-based epidemic problem firstly
introduced, and elaborate on such an investigation front.

1.3 Text Organization

The remainder of this thesis is organized as follows. In Chapter 2 we provide back-
ground on the problem and contextualize it through a discussion of related works.
Chapter 3 describes our most basic predictor, designed for complete graphs, with
theoretical analysis and simulation results. Then, Chapter 4 substantially expands
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the previous model in order to accommodate more general network structures. Chap-
ter 5 describes how to embed PrE into the model formulated in the previous chapter,
thus obtaining our final model. A more involved theoretical analysis is carried out
in this chapter, and a series of simulation results show the accuracy of our model.
Last, we conclude the thesis on Chapter 6.
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Chapter 2

Background and Related Work

2.1 Epidemics and models

Modeling propagation dynamics that unfold upon direct contact between individu-
als, specially within the field of mathematical epidemiology, has enormously bene-
fited from the compartmental approaches proposed a century ago by Ross [2] and
Kermack & McKendrick (KMK) [3]. Their work provided fundamental insights
on the dynamics of susceptible-infected-susceptible (SIS) and susceptible-infected-
recovered (SIR) epidemics, respectively, and inspired many models to be crafted on
top of other compartments, such as SI and SIRS [47].

The general framework behind such models is to consider the entire population
as partitioned into non overlapping epidemic states—the so-called compartments—
and then establish (i) what is the set of early spreaders, and (ii) what are the
epidemic laws that govern how individuals migrate between compartments once an
outbreak has started. Once these two features are established, prediction of how
infection propagation unfolds is then typically obtained by numerically solving an
ODE system that incorporates these properties.

In what follows we briefly present some of the most widely studied classic models.
The interested reader should refer to [47] for more details on each of them.

2.1.1 SI

This is the simplest classic epidemic model. Its name comes after Susceptible (S)
and Infected (I), the only two compartments it considers. Here, the only possible
epidemic transition is from S to I. Once infected, an individual remains so until the
end of the epidemic. Clearly, any non empty set of early spreaders, denoted I0, leads
to the entire population eventually become infected.

This model can be segmented into three core phases: (i) sub-critical, wherein just
a few individuals carry the disease, thus making the propagation unfold slowly; (ii)
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critical, which refers to the onset of a far-reaching, exponentially fast propagation,
and (iii) hypercritical, when the spreading finally reaches a saturation level after
having already infected a huge fraction of population. Those remaining susceptible
individuals are again infected at a slow rate when compared to the critical phase.

Denoting by τ the transmissibility rate, SI dynamics over a population of K “

S ` I individuals is modeled as
$

’

’

’

’

&

’

’

’

’

%

dI

dt
“ τ

SI

K

dS

dt
“ ´τ

SI

K
,

(2.1)

or, in terms of densities s “ S{K and i “ I{K (thus s ` i “ 1),
$

’

’

’

’

&

’

’

’

’

%

di

dt
“ τsi

ds

dt
“ ´τsi,

(2.2)

but since population is partitioned, we may notate s “ 1 ´ i and reduce the whole
dynamics to a single equation, which reads

di

dt
“ τip1 ´ iq. (2.3)

Interestingly, (2.3) does actually correspond to the well-known logistic growth equa-
tion, broadly employed across various disciplines.

2.1.2 SIR

Although not the most trivial, this is in fact one of the first compartmental models
proposed, formulated a century ago by KMK. Here, in addition to S and I, a third
compartment, Recovered (R) (also known as Removed), embraces individuals that
either obtain immunity some time after acquiring the disease, or die as a consequence
of it. The only epidemic transitions such a model admits is from S to I and from
I to R. Contrary to the SI model, here it is clear that the entire population will
eventually integrate compartments R (predominantly) and S (residually), with no
remaining infectives.

Denoting by τ and γ the rates for transmissibility and recovery, respectively, SIR
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dynamics is modeled as
$
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’
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%

dI

dt
“ τ

SI

K
´ γI

dS

dt
“ ´τ

SI

K

dR

dt
“ γI,

(2.4)

which in density terms reads

$
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%

di

dt
“ τsi ´ γi

ds

dt
“ ´τsi

dr

dt
“ γi.

(2.5)

2.1.3 SIS

It is specially worth mentioning this classical approach since the present thesis is
based on its fundamental concepts. SIS stands for Susceptible-Infected-Susceptible,
and its name reflects the fact that, once infected, an individual can eventually be-
come susceptible again. Therefore, one same individual may contract the same
disease multiple times under such a model. Whereas SI and SIR have stationary
regimes where the I compartment embraces, respectively, all individuals or virtu-
ally none of them, SIS presents a stationary regime where only a fraction of the
population remains infected. This portion can be any value between 0 and 1.

Denoting by τ and γ the rates for transmissibility and recovery, respectively (as
in the case of SIR), dynamics are given by

$

’

’

’

’

&

’

’

’

’

%

dI

dt
“ τ

SI

K
´ γI

dS

dt
“ ´τ

SI

K
` γI.

(2.6)

Its representation in terms of density reads
$

’

’

’

’

&

’

’

’

’

%

di

dt
“ τsi ´ γi

ds

dt
“ ´τsi ` γi.

(2.7)
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At this point it is clear that the choice on the appropriate model depends on the
actual pathogen under consideration. For instance, diseases that once contracted
lead their hosts to acquire lifetime immunity are better modeled via SIR (Suscepti-
ble, Infected, Recovered). If, conversely, the same disease may come to be contracted
again right after the individual gets healed, then SIS is more suitable, and so on.

Unfortunately, these models are known to have various limitations. In particu-
lar, they implicitly assume homogeneous mixing and infinitesimal population. The
former refers to the fact that any such model assumes that the population is fully
mixed i.e., that at any point in time, any individual from any given compartment
directly interacts with any other individual from any other compartment, without
topological constraints. The latter refers to the fact that these models relax the
real-world restriction on integer values since arbitrarily small fragments of individ-
uals are accepted, just like a fluid. Such a relaxation however is arguably not a
major problem, since the main purpose behind these models is not to predict an
epidemic’s exact outcome, but its average progress over time. Homogeneous mix-
ing, on the other hand, configures a major unrealistic drawback, as no real-world
epidemic behaves like this.

The next section presents the natural evolution of the models hitherto discussed.
Instead of a fully mixed population, it encodes a more natural network of contacts,
through which interactions between individuals obey to structural constraints, as
detailed in what follows.

2.2 Classic Network Epidemics

In order to cope with the strong analytical limitation imposed by the homogeneous
mixing premise inherent to all classic models, Pastor-Satorras & Vespignani [48]
proposed a framework for predicting more complex, networked contact patterns on
SIS epidemics, which was later expanded to other compartmental setups, such as SI
and SIR [1]. Their celebrated work provides an extension for the classic predictive
models seen in the previous section, by accommodating the fact that individuals in
society are generally very heterogeneous in what regards their number of contacts
and the actors within their social circles, i.e. who interacts with whom.

Prior to presenting the model, we must describe the purpose behind the use
of networks in spreading processes. Indeed, networks are long known to be key
ingredients for the study of dynamical processes involving the spread of propagators,
in particular among individuals. For instance, these have been made use of in
sociology 40 years ago to model influence propagation across society [32]. In general,
two main purposes support their adoption:

• Modeling the epidemic itself. In this case, simulations over the obtained setup
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are conducted so that useful observations and intuition can be extracted out
of it;

• Modeling a predictor on the epidemic’s average outcome. This is the huge
leap of [48], as it provisions a framework for encoding structural information
within ODE’s, so that a network epidemic’s average outcome can be more
appropriately predicted by fluid models.

We shall now briefly describe this extension, which has long been instrumental to
the field of Network Epidemics. The core aspect of [48] is to encode interactions that,
rather than fully-mixed, adhere to a network of contacts instead. That is, individuals
are now encoded as nodes in a network, and possible interactions are expressed by
edges between pairs of nodes. An edge linking two nodes mean that these keep
contact with one another, and are therefore neighbors within the network. In this
case, a direct channel for disease transmission—the edge—exists between them.

Let the node degree dpvq of a node v be the number of edges incident to v in
an undirected network G “ pV,Eq i.e., dpvq “

ř

uPV

Ippv, uq P Eq, where Ip¨q is the

indicator function. Pastor-Satorras & Vespignani [48] assume that the network is
degree uncorrelated i.e., that for any edge uniformly chosen at random, the degree
of one of its nodes is independent of the degree of the other node. This property
is often measured in practice through a metric called assortativity coefficient, firstly
proposed by Newman [49]. In short, this metric assigns to a network some number
in the interval r´1, 1s, where -1 means a fully dissortative network, and 1 means a
fully assortative one. A network is said to be assortative if it exhibits the trend of
having nodes of similar degrees connected to each other. Conversely, dissortative
networks present connection patterns wherein neighboring nodes tend to have very
different degrees, i.e., large degree nodes are more often linked to low degree ones
and vice-versa. Therefore, the assumption of a network being degree uncorrelated
means that its assortativity coefficient must be zero (or very close to zero).

2.2.1 Degree-block approximation

The next key ingredient in the network contact model—directly derived from the
no degree-correlation premise—is the possibility of handling all nodes of the same
degree, say b, together, since these are now assumed to be statistically equivalent.
This technique is termed degree-block approximation. Within this paradigm, every
node from a certain block b (i.e., every node v such that dpvq “ b, b P N) is equally
likely to be the recipient of an edge whose other extreme is a node of degree b1. This
degree-block separation scheme is illustrated in Figure 2.1, which is original from [1]
and reproduced below:
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Figure 2.1: Degree-block approximation (image reproduced from [1]). Nodes not
only preserve their epidemic state partitioning (in this case, full circles for I and
open circles for S), but can now also be partitioned into degree blocks.

The idea is thus to treat nodes from a same epidemic state and same block under
one same equation. In what follows we show the form of an SIS epidemic model
under this classical network epidemic approach.

2.2.2 SIS epidemics on networks

The basic SIS model for networks is given (in terms of density) by the following
system (which applies for each degree block b):

dib
dt

“ τp1 ´ ibqbΘbptq ´ γib. (2.8)

(2.8) states that the rate at which the density of infectives from some block b varies
with time is governed by a few key quantities. First, note that since every block has
its nodes partitioned into S or I, the density for S-nodes is simply 1´ib. Also, because
we no longer assume homogeneous mixing, there is a limit of b connections through
which a degree-b node interacts with the network, plus a probability Θbptq that an
S-node becomes infected at the continuous time t. For the interested reader, we refer
to [1] for a complete derivation of Θbptq (which is based on the no degree-correlation
assumption). Last, the density of infectives decays with those that recover at rate γ.

Despite its enormous relevance, the classical network epidemics model has two
major shortcomings: first, it considers a static network of contacts i.e. nodes do
always preserve their same connections along with time. Likewise, it also implicitly
assumes that nodes do always behave naively when exposed to risk. It is clear, how-
ever, that in real-world situations individuals adapt their routines upon temporary
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threats underway. Indeed, several models have since then proposed variations for
more complex behavior—in the form of PrE and/or interventions—but with only
small achievements with respect to agent-based approaches.

Noteworthy, one key difference between the above formulation and the one to
be presented in this thesis is that, in our case, a node is not an individual but
rather a site. Individuals are encoded by mobile agents, which may co-exist in a
same node irrespective of their state. Consequently, even though we leverage degree-
block approximation, we cannot assume, for a given block b, that sb “ 1 ´ ib, hence
both populations (S and I) in our model will require explicit equations within each
block (more details later).

2.3 Epidemics with Protection Effects

Roughly 50 years after KMK’s work, Capasso and Serio [10] provided a general-
ization of KMK’s model, replacing the (fixed) infection rate by an infection func-
tion gp¨q, thus capturing more general interactions between susceptible and infected
agents. They show that gp¨q can play two different roles, namely intervention or
protection effects. Their work is among the pioneers in considering such concepts
as key ingredients for predicting an epidemic’s outcome.

Disease-behavior dynamics has ever since been investigated from many differ-
ent perspectives [12, 50]. For example, Hyman and Li [51] consider SIS epidemics
of sexually transmitted diseases. The authors formulate a mean-field model that
segments population into risk-level groups, and conclude that behavioral changes
(such as reducing contacts and partner formations) may decrease the infection level.
Tchuenche et al. [52] turn attention to the influence of local media on population’s
adaptive behavior to an ongoing outbreak, and conclude that media coverage does
not necessarily help to promote epidemic containment. An intervened SIRS epidemic
(i.e. a SIRS epidemic with intervention forces) [53] and a SIS epidemic with PrE
(induced by media coverage) [54] were both investigated under Stochastic Differen-
tial Equations models. In both cases, it is shown that outbreaks otherwise endemic
may still die out due to large random fluctuations.

Risk awareness has also been analyzed in the context of multiplex networks. For
example, Granell et al. [55] consider a network of physical interactions—through
which an SIS epidemic spreads—coupled to a (virtual) social network wherein the
same actors disseminate awareness in a fashion similar to an SIS epidemic. The au-
thors show that the propagation of awareness may delay or even preclude epidemics
that would otherwise yield large outbreaks. Mao and Yang [56] propose a framework
for modeling PrE in multiplex networks and draw particular attention to the fact
that real world infection rates may be significantly larger than those predicted by
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models not encoding PrE. Indeed, the rate as estimated by these models consider
that the affected population behaves naively with respect to the epidemic, when
people do actually adapt and take protective measures throughout the process.

When the time-varying nature of real world contact patterns is taken into ac-
count, outbreaks may yield dynamics that traditional models fail to capture [57, 58].
Within this paradigm, Robinson et al. [59] provide evidence that Great Britain’s re-
strictions on cattle movement (between animal holdings) in order to avoid epidemics
had gradually lost efficiency. Remarkably, the pointed reason is the self-organizing
network induced by behavioral changes from farmers, who came to intensify cattle
movement across the network’s giant strong component. Particularly intriguing,
Zhou et al. [60] provide insights on the protective dynamics that could possibly ex-
plain seasonal epidemics. Finally, Yang et al. [61] study the impacts of emigration
as a protective maneuver. In their model, mobile agents are free to walk in any
direction within a square region and move only upon imminent risk, choosing a new
location uniformly at random. They conclude that protective actions performed
sufficiently early may avoid endemic steady states.

2.4 Agent-based Network Epidemics

None of the prior works addresses PrE in epidemics where agents move within a
network and locally attempt to avoid contact with one another. On the other
hand, agent-based models have predominantly focused on fitting problems i.e., the
establishment of models capable of accurately explaining past epidemics up from
real-world data, so these calibrated models can then be applied to estimate future
outbreaks. Despite their critical social relevance, not only do these models require
the availability of massive amounts of data [62] but also often encompass so many
parameters it becomes hard to determine the extent to which each of them influences
the observed outcome.

This thesis aims at understanding the fundamental impacts of the interplay be-
tween arguably the most central features in agent-based network epidemics: network
structure and mobility patterns, a goal of both theoretical and practical interest. In-
deed, such an understanding will allow for better decision making towards real-world
outbreaks. On the other hand, among the various ways through which one may en-
code epidemic processes, agent-based models (ABM) in networked environments are
known to be best for fine-grained representations of complex interactions between
individuals at a micro-scale [63]. Despite, these are also the most challenging in
terms of providing theoretical insights [64]. Even to date, theory in the field is
still exiguous, mostly built on top of very specific setups (e.g. lattices or cliques).
This fact highly contrasts with the popularity such models have increasingly been
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enjoying through the last two decades [63].
Frameworks for ABM that cope with more general network structures and non

trivial mobility while providing basic statistical mechanics, threshold values and
analytical tools are thus eagerly welcomed. This work is a step in such a direc-
tion. True, a broader analytical view on the extent at which major features of such
processes influence their associated dynamics is key for designing more complex,
predictive models.

17



Chapter 3

Protection Effects on Complete
Networks

This chapter fully describes the protective mobility scheme briefly introduced in
Chapter 1 when the underlying network is a complete graph (i.e. a clique). First,
we provide a detailed description of SIS epidemics from a mobile-agent perspective
in Section 3.1. The protective behaviour is then described and coupled to the model
in Section 3.4 and analysed in Section 3.6. Simulation results that support our
theoretical findings (in this chapter, at the scope of complete graphs) are presented
and discussed in Section 3.7.

3.1 SIS epidemics with mobile-agents

We shall now describe the coupling of SIS epidemics with a mobile-agent envi-
ronment, as considered in this work. The following analysis—which still does not
consider PrE—follows closely the work of Ibrahim [17] but has been modified in
order to capture infections that depend on the exposure time.

Table 3.1 lists the main terms and parameters to be used throughout this chapter.
Mobility and contact pattern. Consider an undirected network G “ pV,Eq with

node and edge set given by V and E, respectively, where n “ |V | denotes its size.
Consider a set K of k “ |K| agents, and let vjptq, j “ 1, . . . , k denote the location
of agent j in time t ě 0. Note that vjptq P V as agents can only be found in network
nodes. At time zero, the location of an agent is chosen uniformly at random from
V . Agents move according to continuous time random walks, where the residence
time in any given node is exponentially distributed with rate λ ą 0 (the walk rate).
Once the agent has to move, it chooses its next node uniformly at random from the
neighboring nodes. Such transitions are assumed to occur instantaneously. Any two
agents j and l are assumed to be in contact with one another iff both of them are
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Table 3.1: Symbols & terminologies
S-agents Susceptible agents.
I-agents Infected agents.

SI-contact Contact (i.e. encounter) between an S-agent and an I-agent.
G “ pV,Eq Undirected network wherein mobile-agents walk.

n Network size, such that n “ |V |.
Npvq Set of neighbors of node v.
K, k Set of agents, such that k “ |K|.

Sptq, Iptq Set of S/I-agents at time t. Sptq Y Iptq “ K, Sptq X Iptq “ H.
S, I |Sptq| and |Iptq|, respectively, thus S ` I “ k
s, i S{k and I{k, respectively, hence s ` i “ 1.
i0 Fraction of initially-infected agents, i.e. when t “ 0.
τ Disease transmissibility.

λ, β, γ Walk rate, infection rate and recovery rate, respectively.
σ Infection probability, such that σ “ τ{p2λ ` τq.
α SI-contact rate.
C A constant, such that C “ pτkλq{pp2λ ` τqnq.
ws S-agent’s tolerance to SI-contacts, 0 ă ws ă 1.
wi I-agent’s tolerance to SI-contacts, 0 ă wi ă 1.

located at the same node, vjptq “ vlptq. Note that this leads to a dynamic network
of contacts that is time-varying and can be characterized by a collection of isolated
cliques.

Epidemic state and infection. Besides residing in a node, every agent has an epi-
demic state, denoted by “S” (susceptible) or “I” (infected). Let cjptq P t “S” ,“I” u de-
note the epidemic state of agent j at time t ě 0. Also, let Sptq “ tj P K|cjptq ““S”u

and Iptq “ tj P K|cjptq ““I”u denote the set of susceptible and infected agents
at time t, respectively. Note that Sptq Y Iptq “ K and Sptq X Iptq “ H for all
t. Disease spreads through direct contact between an S-agent and an I-agent, with
infection probability proportional to the duration of such a contact. The decision
on whether or not an S-agent becomes infected is taken the moment it leaves its
current node, as follows. Let te denote the total time an S-agent a remains exposed
to one or more I-agents while residing in some node. Considering an exponential
random variable Y with parameter τ ą 0, the probability that a becomes infected
is simply P rY ă tes. New infections thus depend not only on te but also on the
pathogen’s transmissibility rate τ , such that within some fixed exposure interval an
agent is more likely to become infected as τ increases.

Recovery. Note that agents can only become infected when taking a step, moving
to some node. Once infected, an individual remains so for a certain time window,
recovering right after. During such a period, however, the walker may infect others.
The elapsed time until an agent recovers is assumed to be exponentially distributed
with rate γ ą 0—the recovery rate—and independent of any other events.
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As with other proposed random walk models [15, 17], a sparse scenario is as-
sumed, where the number of network nodes is much larger than the number of
agents. In addition to being a good approximation for real-world sparse cases, this
also allows the model to be simplified by assuming that only pairwise encounters
occur, as the probability of having three or more agents in a same node becomes
negligible. This assumption is fundamental in the following analysis.

3.2 Problem Statement I

Our first goal is to establish a fluid model that predicts the average behavior of
epidemics governed by the aforementioned laws. Later in Section 3.4 we extend
the problem at hand by including protective behavior, manifested as biased random
walks.

3.3 Modeling epidemic dynamics

The following deterministic model predicts the expected epidemic dynamics under
the assumption that the network is a complete graph (i.e., all possible edges are
present). As with the classical models, it relies on ODEs to capture the change in
the population of S-agents and I-agents. In order to simplify notation, let I “ |Iptq|

(resp. S “ |Sptq|) denote the number of infected (resp. susceptible) agents at time
t. Then, the rate dI{dt at which the infected population changes over time depends
on five different quantities, as follows.

1. The rate at which two given agents meet. Since G is a complete graph, this
rate can easily be shown to be 2λ{n, since their joint walk rate is 2λ and in
one step they can reach any node v P V with probability 1{n.

2. The number of possible encounters among the agents. Since the sparse regime
is assumed, only pairwise encounters are possible (with high probability), and
thus there are a total of

`

k
2

˘

possible encounters;

3. The probability of an SI-contact, given by the number of possible SI-contacts
at time t divided by the total number of possible contacts, i.e. SI{

`

k
2

˘

;

4. The probability of infection given an SI-contact, denoted by σ. This depends
on the transmissibility τ and the total time the S-agent remained exposed, i.e.
the duration of the SI-contact. Since rates for both transmission and walk are
governed by exponentials, it can be shown (Appendix A) that

σ “
τ

2λ ` τ
. (3.1)
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5. The total rate at which I-agents recover and become S-agents is simply given
by γI, by independence among the agents in the recovery process.

Thus, the infected population dynamics is given by:

dI

dt
“

ˆ

k

2

˙

2λσSI

n
`

k
2

˘ ´ γI “
2λτ

np2λ ` τq
SI ´ γI, (3.2)

which in terms of i “ I{k (and noting that S “ sk), becomes

di

dt
“

2λ

n

τ

2λ ` τ
ksi ´ γi “ βsi ´ γi, (3.3)

where the rightmost term exhibits the classical SIS form (Eq. 2.7), with β “ 2λτk
p2λ`τqn

.

3.4 Protection model

We consider the protective behavior induced by how agents elect each next-hop
during their random walks. Decisions are made locally, based on the instantaneous
information from neighboring nodes only. PrE are thus represented as biased random
walks: every agent j has its walk biased so that hostile nodes are avoided.

Let ws and wi denote S-/I-agent biases to avoid SI-contacts, respectively, with
0 ď ws, wi ď 1. Now, consider the location of an agent j at time t, namely v “

vjptq P V . When j moves, it no longer chooses among v’s neighbors uniformly, but
rather avoids hostile nodes with a bias wx, where x refers to either s or i according
to j’s current state. In turn, those edges driving j to safe sites are given unitary
weights.

Figure 3.1 illustrates this protective scheme, which we formalize as follows. Let
t denote the moment at which an agent j walks, and let Hu,v,j,t denote the event
“node u P Npvq is hostile to agent j at time t”. The probability that j moves to such
node u at t is

$

’

’

’

’

’

&

’

’

’

’

’

%

w
IpHu,v,a,tq
x

Wv,a,t

, case Wv,a,t ą 0

1

dpvq
, otherwise,

(3.4)

where Ip¨q is the indicator function (here as the exponent of wx), and

Wv,j,t “
ÿ

uPNpvq

wIpHu,v,j,tq
x (3.5)

is the required normalizing constant. Agent next-hop probabilities hence depend on
the instantaneous configuration of safe/hostile vicinity. Note that, for the particular
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Figure 3.1: Mobility scheme with PrE derived from biased random-walks (self-loops
omitted for simplicity). Blue (resp. red) circles represent S-(resp. I-)agents. Weights
are dynamically assigned to edges the moment an agent j walks, so that its next-hop
tends to safe sites. For instance, should the highlighted S-agent (left) move, and
assuming ws “ 0.4, its instant next-hop probability assigned to a particular edge
would be 0.4{3.8 if it links to a hostile node and 1{3.8 otherwise.

case where ws “ wi “ 1—which implies no PrE—dynamics are as in Section 3.3 i.e.,
agents choose their next location uniformly. Conversely, if ws “ wi “ 0 then agents
will never step into hostile nodes whenever a safe site is made available. This is the
strongest possible PrE, which is likely to end any epidemic.

3.5 Problem Statement II

Our second goal is to establish a fluid model that predicts the average behavior of
epidemics governed by the aforementioned laws, where PrE is now encoded. Later
in Chapter 4 we further extend the problem at hand by considering more general,
degree-uncorrelated networks.

3.6 Theoretical analysis

The proposed PrE model is now coupled with the epidemic model presented in
Section 3.3 in order to evaluate key-aspects, namely (i) the SI-contact rate (a fun-
damental model parameter), (ii) dynamics of infected population, and (iii) the basic
reproduction number R0 (to be later detailed). Again, the network is assumed to
be a complete graph.

Since ws and wi are block-independent, we may simply consider a single, equiv-
alent protective level w given in terms of their mean, i.e.

w “ pwi ` wsq{2. (3.6)
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Since it allows for a concise and flexible notation, through the rest of this analysis,
any occurrence of w must be interpreted as in (3.6).

3.6.1 SI-contact rate

The SI-contact rate now depends on the PrE parameters ws and wi. This rate
can be represented as the sum of two rates: the rate at which S-agents step into
nodes containing I-agents, and vice-versa. These two cases are considered separately,
starting with the S-agents, as follows.

Consider an S-agent at the moment it takes a step. The probability it enters a
location where an I-agent resides can be computed as follows. Recall that there are
I infected agents, each occupying a different location (due to sparsity assumption).
Each such location is avoided with bias ws. There are n´I other locations, each one
taken with a bias of 1. Thus, the probability that an S-agent provokes an SI-contact
is simply

p “
Iws

Iws ` n ´ I
“

Iws

Ipws ´ 1q ` n
. (3.7)

Analogously, consider an I-agent at the moment it takes a step. The probability
that it enters a location where an S-agent resides can be computed as follows. Recall
that there are S susceptible agents, each occupying a different location (due to
sparsity assumption). Each such location is avoided with bias wi. There are n ´ S

other locations, each taken with a bias of 1. Thus, the probability that an I-agent
provokes an SI-contact is

q “
Swi

Spwi ´ 1q ` n
. (3.8)

The SI-contact rate will thus depend on the number of S/I-agents walking at rate λ

each, and their respective SI-contact probabilities, such that

α “ λSp ` λIq “ λSI

ˆ

ws

Ipws ´ 1q ` n
`

wi

Spwi ´ 1q ` n

˙

. (3.9)

Note that α is a fundamental parameter for the model, and is the main modification
required in the models presented in Section 3.3.

3.6.2 Evolution of infectives

Under the PrE perspective, the SI-contact rate from Section 3.6.1 must be accom-
modated into the model. Note, however, that the probability σ of contagion remains
the same for an SI-contact, as well as the recovery rate γ. Thus, the change in the
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number of I-agents becomes dI{dt “ ασ ´ γI, i.e.

dI

dt
“

τλ

2λ ` τ

ˆ

ws

Ipws ´ 1q ` n
`

wi

Spwi ´ 1q ` n

˙

SI ´ γI. (3.10)

We may rewrite (3.10) in terms of i “ I{k and s, noting that S “ sk. Thus

di

dt
“

τλk

2λ ` τ

ˆ

ws

ikpws ´ 1q ` n
`

wi

skpwi ´ 1q ` n

˙

si ´ γi (3.11)

wherein the infection rate β now becomes dependent on i, such that

βpiq “
τλk

2λ ` τ

ˆ

ws

ikpws ´ 1q ` n
`

wi

skpwi ´ 1q ` n

˙

(3.12)

and hence di{dt “ βpiqsi ´ γi. Note, however, that β’s dependence on i is actually
negligible. Indeed, the premise of sparsity imposes k ! n and, consequently, ikpws ´

1q `n « n; likewise, skpwi ´1q `n « n. Therefore, a good approximation for (3.12)
is

β “
τλkpws ` wiq

p2λ ` τqn
, (3.13)

and for a general w (see (3.6)), (3.13) becomes

β “
2τλkw

p2λ ` τqn
. (3.14)

Finally, rewriting (3.11) in terms of (3.13) gives

di

dt
“

τλkpws ` wiq

p2λ ` τqn
si ´ γi , (3.15)

whose general counterpart (3.14) is

di

dt
“

2τλkw

p2λ ` τqn
si ´ γi . (3.16)

3.6.3 Reproduction number

The basic reproduction number R0 “ β{γ is a classical metric which considers the
pathogen’s spreading potential, and is used to indicate whether the epidemic will
die out shortly (R0 ă 1) or long-last among population (R0 ą 1) [47]. Within the
context of PrE, a natural question arises: is there a range of values for ws and wi as
a function of other model parameters that ensures R0 ă 1? In order to answer this
question, let us first consider a constant C defined as

C “
τkλ

p2λ ` τqn
(3.17)
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so that the infection force β (3.14) may be rewritten as β “ 2Cw. Trivially, because
R0 “ β{γ it follows that 2C{γ ă 1 ùñ R0 ă 1 for any tws, wiu, i.e. the epidemic is
led to extinction even in the absence of protective efforts. Conversely, if 2C{γ ě 1,
then

R0 ă 1 ðñ
β

γ
ă 1 ðñ

2Cw

γ
ă 1 ðñ w ă

γ

2C
. (3.18)

(3.18) exposes that both ws and wi, alone, deliver limited protection in the case the
other assumes a fixed value. For instance, if infected agents induce no protection
(wi “ 1) then R0 ă 1 ùñ ws ă pγ ´ Cq{C, which is not possible when γ ´ C ă 0

since 0 ď ws ď 1. On the other hand, it also shows that there always exists some
w ą 0 that forces R0 ă 1, i.e. the S-/I-agents joint engagement may positively
prevent endemic steady-states. Note, however, that the value for w to satisfy (3.18)
depends both on the walk rate λ and the transmissibility rate τ . A particularly
interesting question is thus whether there exists a regime for w under which R0 ă 1

even in the case λ (resp. τ) is arbitrarily large, for a fixed τ (resp. λ). This regime
can be identified by considering the asymptotic behavior of λ and τ , one at a time,
on the infection rate β (3.14). Indeed,

lim
λÑ8

β “ lim
λÑ8

2τλkw

p2λ ` τqn
“

τkw

n
“ β

1

, (3.19)

which yields a basic reproduction number R0 “ β
1

{γ. Clearly, β 1

ă γ ùñ R0 ă 1.
Thus,

R0 ă 1 ðñ w ă
γn

τk
. (3.20)

Interestingly, any w satisfying Equation 3.20 will manage to extinguish the epidemic
irrespective of the walk rate λ. Indeed, larger walk rates, on the one hand, increase
SI-contacts per unit time; on the other, they reduce S-agents’ exposure time as well.
In similar fashion, as τ Ñ 8 (for a fixed λ), β converges to β

1

“ p2λkwq{n. Here,
β

1

ă γ is met case w ă pγnq{p2λkq. Any such w will succeed at imposing short-lived
epidemics irrespective of the transmissibility rate τ .

3.7 Numerical results

Next we present simulation results that validate the theoretical analysis from Sec-
tion 3.6. A discrete-event simulator [65] was designed and implemented [4] in order
to generate performance metrics concerning the impacts of PrE and other model
parameters. All results to follow assume i0 “ 0.5 and simulation time limit T = 105.

Figure 3.2(a) shows the fraction of infected agents over time for different levels of
PrE. Each given w yields two different curves in the plot: the numerical simulation
from one single run and the model prediction from (3.15). Note that the model
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succeeds in capturing the average dynamics for each protection level. Moreover, the
value for w decisively changes the epidemic’s outcome. In particular, protective level
w “ 0.14 has managed to hinder the epidemic, leading to a disease-free steady state
in a short time. Indeed, from the given parameters, and from (3.18), w “ 0.14 ă

γ{2C “ 0.1425, thus implying R0 ă 1.
Figure 3.2(b) shows how R0 varies as a function of w for two different population

sizes, namely k “ 400 and the 5ˆ-larger k “ 2000. Note that R0 grows linearly for
both cases, but has larger slope when k is larger. The point highlighted in green—
for which R0 is slightly below 1—indicates the protective level of w “ 0.14 shown
in Figure 3.2(a).

The epidemic’s average duration in function of the number k of agents and the
walk rate λ are shown in Figures 3.3(a) and 3.3(b), respectively. Each dot from each
curve averages over 30 runs. Each curve refers to a different epidemic scenario, in
terms of either the network size n and the risk-tolerance level w.

Note that to increase either k or λ leads to a phase transition on the epidemic du-
ration (from ephemeral to long-lasting). More importantly, Figure 3.3(a) illustrates
how PrE may drastically increase the epidemic threshold. In particular, by compar-
ing the two epidemics for n “ 105, note that w “ 0.6 right-shifts the phase transition
observed for w “ 1 (starting around k “ 300) by approximately 200 agents. This
means that upon increasing risk avoidance by 40%—by changing the behavior from
fully tolerant (w “ 1) to 60% tolerant (w “ 0.6)—the system has managed to pre-
clude large outbreaks for a population about 67% larger (from k “ 300 to k “ 500).

Figure 3.3(b) (x-axis log-scaled) illustrates the impact of the walk rate λ on an
epidemic’s average duration. Note that 3 out of the 4 curves show scenarios wherein
an increase in the walk rate leads to a phase transition (very long duration). In
turn, for the curve “n “ 105, w “ 0.6” the duration increases slowly even when λ

reaches 20. It could be the case of a phase transition still being reached for some
even larger λ. However, from (3.19), as λ Ñ 8 the infection rate β converges to
β

1

“ pτkwq{n. For the given parameters, it yields a basic reproduction number
R

1

0 “ β
1

{γ “ 0.0015{0.0019 “ 0.79 ă 1. This means that the protective level of
w “ 0.6 will manage to impede long-lasting epidemics upon any walk rate λ, in
sharp contrast with the scenario where w “ 1.

3.7.1 Discussion

While the analyses have up to this focused on complete graphs, the proposed model
will be expanded in Chapter 4 in order to support more general, degree-uncorrelated
networks. Indeed, Figure 3.4 shows results from a simulation indicating how differ-
ent topologies can decisively change how the epidemic unravels. It compares the

26



(a) Fraction of infected agents over time (k “ 2000).

(b) Basic reproduction number as a function of w.

Figure 3.2: Fraction of infected agents as a function of time for different scenarios
(a), and the reproduction number R0 (b) as a function of w when k “ t400, 2000u.
For both figures, τ “ 1; γ “ 1.9 ¨ 10´3;λ “ 1; n “ 105.
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(a) Average duration of different epidemics in function of k (λ “ 1).

(b) Average duration of different epidemics in function of λ (x-axis
log-scaled; k “ 250).

Figure 3.3: Average duration of different epidemics in function of the number k of
agents (a) and the walk rate λ (b). For both figures, τ “ 1; γ “ 1.9 ¨ 10´3.

28



Figure 3.4: Our ODE model (Mean-Field PrE Model) fails at predicting epidemics
on real networks, while it is relatively accurate for a Gpn, pq network with same size
and same average degree.

outcome of two equally-parameterized epidemics, diverging from one another due
to the network structure. The blue curve denotes a single-run epidemic simulation
performed over a real network: the High-Energy Physics (Hep-Ph) network [66].
The green curve is an equivalent simulation carried out over a random Gpn, pq net-
work with same size and same average degree of Hep-Ph. The red curve is the ODE
model prediction for this epidemic. Note that, on the one hand, the model is unable
to predict the outcome for the real network; on the other, it interestingly delivers a
reasonable prospect for Gpn, pq. In the next chapter we broaden the present scope
with the inclusion of non-regular graphs, thus embracing many classes of networks.

3.8 Time-varying protection

Our mobility scheme so far has assumed a fixed protection level: agents repel hostile
localities agreeing to some previously established risk tolerance w. One could ar-
gue, however, that a proportional defensive scheme would likewise express a natural
behavior against an outbreak, aligned with the hypothesis that people get more or
less responsive to threats in proportion to their own risk perception. While such a
perception could result from a combination of many epidemic-related aspects (such
as media coverage and number of infected relatives), it is reasonable to link risk
awareness to the actual size of the epidemic (i.e., the total number of infectives).
That is, we may consider the case where individuals assess an epidemic as more or
less dangerous depending on the current number of infected individuals. We hence-
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forward consider a proportionally reactive approach. To this end, we promote a
change in the previous model, described as follows.

3.9 Reactive Model

A straightforward way to obtain a more general responsive setup is to replace w by
some function wpiq, which in turn will determine different protective levels depending
on the current fraction i of I-agents.

We therefore consider that the risk-tolerance from agents is now governed by a
function wp¨q, 0 ď wp¨q ď 1, such that

wpiq “ p1 ´ iqr, (3.21)

for some rejection force r ě 0. Note that r controls how intensely agents repel
SI-contacts as the infectives total increases.

3.9.1 Analysis

We are mainly interested in answering whether there exists a regime for wp¨q that
ensures short-lived epidemics irrespective of the infection force β and, if so, identi-
fying such a regime. To this end, however, the basic reproduction number R0 is no
longer representative of a proper threshold, as it was in Section 3.6.3. Indeed, be-
cause the infection force β now depends on a varying protective level wpiq, its value
at the endemic regime may also differ from that applied to i0 (the initial fraction
of infectives). More precisely, in Section 3.6.3—wherein the risk-tolerance w were
still a fixed parameter—we have defined a constant C (3.17), in order to rewrite the
infection force 3.14 as β “ 2Cw and then notate R0 “ 2Cw{γ. Here, however, we
cannot follow these same lines, i.e. we cannot simply replace w by a function wpi0q,
for the aforementioned reason.

We thus resort to another approach in order to understand the protective-
behavior impacts on the endemic regime. The first step is to replace w from (3.16)
by wpiq. Therefore,

di

dt
“

2τλkwpiq

p2λ ` τqn
si ´ γi “ 2Cwpiqsi ´ γi , (3.22)

and the steady-state fraction i˚ of I-agents is then determined by equaling the above
derivative to zero, i.e. i˚ must satisfy

2Cwpi˚
qsi˚

´ γi˚
“ 0 . (3.23)
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To ease notation, we divide all terms by γ and also define another constant, C 1, such
that C 1 “ γ{2C. Then, (3.23) becomes

wpi˚qsi˚

C 1
´ i˚

“ 0 . (3.24)

Now, substituting wpi˚q by the function wpi˚q “ p1 ´ i˚qr (3.21), and noting that
s “ 1 ´ i˚, yields

p1 ´ i˚qrp1 ´ i˚qi˚

C 1
´ i˚

“ 0 , (3.25)

thus
p1 ´ i˚

q
r`1

“ C 1 , (3.26)

which implies that
1 ´ i˚

“ C 1 1
r`1 , (3.27)

and hence
i˚

“ 1 ´ C 1 1
r`1 . (3.28)

Since we want to know the regime under which the epidemic vanishes, we must
determine when condition 1 ´ C 11{pr`1q ď 0 holds. Indeed,

1 ´ C 1 1
r`1 ď 0 ðñ 1 ď C 1 1

r`1 ðñ 1 ď C 1 . (3.29)

(3.29) reveals a strikingly different perspective when compared with that of
constant risk-tolerance: the epidemic vanishes only if C 1 ě 1. However, this is
exactly the same condition for the epidemic to vanish when no protection effect is
present. Remarkably, proportionally reactive protection cannot contribute to the
termination of an epidemic, contrary to the constant-protection case (3.18). Note,
however, that the proportional protection influences the endemic level, as given by
(3.28): larger values for the SI-contact rejection r will lead to smaller endemic levels.
Such a conclusion is aligned with previous works that have analysed proportional
protection over fully-mixed, unstructured environments [10]: the gradually reactive
behavior imposes a saturation level to the epidemic rather than extinguishing it.
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Chapter 4

Agent-based Epidemics on
Degree-uncorrelated Networks

4.1 Problem Formulation without PrE

We shall now describe the coupling of SIS epidemics [47] with a mobile-agent en-
vironment, as considered in this work. At this point, we are not yet considering
protective mobility (which will be included later in the text), but only uniform
random walks instead. Table 4.1 lists the main terms and parameters to be used
throughout this section.

Mobility and contact pattern. Consider an undirected network G “ pV,Eq with
node and edge set given by V and E, respectively, where n “ |V | denotes its size.
Also, consider a set A of K “ |A| agents. Here, again, A is assumed to be sparse
i.e. K ! n. An exact definition for sparsity as considered herein is later provided in
Section 4.3.4. Agents move across G according to uniform, continuous-time random
walks, hereafter named Simple Random Walks (SRW), as follows. First, we associate
a self-loop with each node so that an agent about to walk is always allowed to take no
action—by choosing its current location—or to effectively go somewhere else. Note
that this characterizes a lazy random walk. More specifically, let vjptq P V, j P A

denote the location of agent j at time t P R`, and let Npvq “ tu P V | pu, vq P Eu

denote the closed neighborhood of node v. Also, assume the starting location of
j, vjp0q, is uniformly chosen at random from V, @j P A. Thereafter, the residence
time of j at any given node is exponentially distributed with rate λ ą 0, the walk
rate. Upon movement at time t, j’s next-hop is uniformly chosen at random from
Npvjptqq. Hops are assumed to occur instantaneously.

Any two agents j and l are said to be in contact with one another iff both of
them are located at the same node, i.e. if vjptq “ vlptq. Note that, on top of a static
topology (imposed by G), agents produce another, time-varying network of contacts
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Table 4.1: Symbols & Terminologies
S-/I-agent Susceptible / Infected agent, respectively.
G “ pV,Eq Undirected network wherein mobile-agents walk.

n Network size; n “ |V |.
Npvq Set of v’s neighbors including v, v P V.
B Set of degree blocks from G; B “ tb1, b2, ..., b|B|u.
dpvq v’s degree, v P V ; dpvq “ |Npvq| “ b, for b P B.
Vb Set of degree-b nodes; Vb “ tv P V | dpvq “ bu.

SI-contact Pairwise contact between S- and I-agents at v.
A, K Set and number of agents, respectively; K “ |A|.

Sptq, Iptq Set of S-/I-agents at continuous time t.
S, I Shorthand for |Sptq| and |Iptq|; S ` I “ K
s, i S{K and I{K, respectively, hence s ` i “ 1.
I0, i0 Number and fraction of I-agents at t “ 0, respectively.
Sv, Iv Number of S-/I-agents currently at node v, respectively.
Sb, Ib Number of S-/I-agents currently at block b, respectively.
τ Pathogen’s transmissibility rate.

λ, γ Walk rate, and recovery rate, respectively.
λb Exit rate from block b; λb “ ppb ´ 1q{bqλ.
vb A node with degree b or a node from block b.
pb Fraction of nodes with degree b (i.e., from block b).
nb Number of degree-b nodes; nb “ npb;

ř

b nb “ n.
qb Prob. rand. chosen link points to block b; qb “ bpb{xby.
xby Network’s average degree; xby “

ř

b bpb.
xb2y 2nd moment of the degree distrib.; xb2y “

ř

b b
2pb.

xkyb Expected density of agents in block b; xkyb “ bpb{xby.
xλby Expected exit rate; xλby “

ř

b λbxkyb “ λp1 ´ 1{xbyq

xKyb Expected population in block b; xKyb “ Kbpb{xby.
xbyA Agents’ expected block; xbyA “

ř

b bxkyb “ xb2y{xby.
xay Expected agglomeration; xay “ Kxb2y{pnxby2q.

characterized by a collection of isolated cliques.
Epidemic state and infection. Each agent is in one of two states, namely “S”

(susceptible) or “I” (infected). Let cjptq P t “S” ,“I” u denote the epidemic state
of agent j at time t ě 0. Also, let Sptq “ tj P A|cjptq ““S”u and Iptq “ tj P

A|cjptq ““I”u denote the set of susceptible and infected agents at time t, respectively,
such that SptqYIptq “ A and SptqXIptq “ H for all t. Disease spreads through direct
contact between S- and I-agents—hereafter denoted SI-contact—, with infection
probability proportional not only to the duration of such a contact but also to the
number of infectives the S-agent is in contact with. Since an SI-contact may arise
when either S- or I-agents enter a hostile node i.e. a node containing at least one
agent from a different epidemic state, both cases must be described separately, as
follows.
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• S-agent j enters a node v hosting Iv I-agents. In this case, each infective throws
an exponential coin Y with parameter τ ą 0, the pathogen’s transmissibility
rate, independently. Therefore, a total of tY1, Y2, ..., YIvu coins are generated
in function of j. Then, j gets infected iff any Yi fires before it leaves the node
and before I-agent i leaves as well.

• I-agent j enters a node v hosting Sv S-agents. Here the incoming infective
throws Sv exponential coins tY1, Y2, ..., YSvu with parameter τ ą 0, one for
each S-agent at v. Infection then happens as in the previous item.

Recovery. Once infected, an individual so remains for a certain time window,
recovering right after. The elapsed time until an I-agent recovers is exponentially
distributed with rate γ ą 0, the recovery rate. Recoveries are independent from
agent to agent.

Note that any S-agent, once infected, initiates an infection event for each S-
agent still remaining at v. Likewise, when an I-agent recovers, it is exposed to new
transmission events produced by each I-agent remaining at v.

4.2 Problem Statement III

Our third goal is to establish a fluid model that predicts the average behavior of
epidemics governed by the aforementioned laws, where degree-uncorrelated networks
are considered but no risk-awareness. Later in Chapter 5 we further extend the
problem at hand by finally encoding protective behavior with degree-uncorrelated
networks.

4.3 Key Definitions

In order to properly describe our preliminary predictor, let us first revisit and also
introduce some terminology, as follows.

4.3.1 Degree-block approximation

Often, a network G “ pV,Eq may be partitioned into degree-based subsets so that
many nodes are treated altogether based on their degree, a procedure called degree-
block approximation [1], which we have already defined in Section 2.2.1. We now
formalize such blocks as follows. Let B “ tb1, b2, ...b|B|u, b1 ă b2 ă ... ă b|B|, denote
the set of all degree blocks occurring in G. Each b P B informs that at least one
node with degree b occurs in G. For instance, if b1 “ 3 then |tv P V | dpvq “ 3u| ě 1.
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4.3.2 Block Probability

In a network that lacks degree correlations, the probability that a randomly chosen
link points from a node with degree b1 to one with degree b is independent of b1 [48].
Consequently, if nb and pb are the number and the fraction of nodes with degree
b, respectively (hence nb “ npb), xby is the network’s average degree and m “ |E|

is the total number of undirected edges (links), the probability qb that a randomly
chosen link points to any degree-b node is

qb “ nb
b

2m ´ n
“ npb

b

2m ´ n
“

bpb
xby

. (4.1)

Note that self-loops (made present for all nodes) must be counted only once, hence
the denominator is 2m ´ n instead of simply 2m.

4.3.3 b-Expected Density/Population

Given a node v and an agent j, it is a well-known result that, for a stationary
distribution π of a SRW, the stationary probability πv that j is at v corresponds to
v’s degree share, i.e. πv “

dpvq

2m´n
(self-loops considered). Consequently, the stationary

probability xkyb that j is at any degree-b node (i.e. any node v such that dpvq “ b),
or the b-expected density, is

xkyb “
ÿ

vPVb

πv “
b

2m ´ n
nb “

bnpb
2m ´ n

“
bpb
xby

. (4.2)

(4.2) expresses a not an obvious—and not always valid—relation: the expected
density of agents within some block matches the probability that a randomly chosen
link points to that same block (4.1) i.e. xkyb “ qb. This holds due to the lack of
degree correlations. If not for this, qb’s definition would be different (as it depends
on how degrees correlate), whereas xkyb’s would remain as is.

The expected population xKyb of agents within a specific block b, or the b-expected
population, follows immediately from (4.2), and reads

xKyb “ K
bpb
xby

. (4.3)

4.3.4 Sparsity

We now establish an explicit sparsity threshold. We say a scenario is sparse if

max
b

pxKyb{nbq ď 0.1. (4.4)
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The above threshold means, on the one hand, that every next-hop is likely to be
vacant; on the other, it also stands at a safe margin from random fluctuations that
could sensibly violate the premise on pairwise encounters only.

4.3.5 Agents’ Expected Block

A node freely chosen uniformly at random has expected degree xby “
ř

vPV

dpvq 1
n
,

but a next-hop (also a node) randomly chosen by a set A of agents belongs to an
expected block xbyA, which reads

xbyA
∆
“ Eπrdp¨qs “

ÿ

vPV

dpvqπv. (4.5)

Despite being a well-known result, Eq. 4.5 is hardly tractable in practice as it lacks
a closed form. By explicitly accounting for the different degree blocks, our next
result not only resolves Eq. 4.5 but even raises perspectives beyond the scope of
this paper. Briefly, we prove that an SRW and the degree function dp¨q may be
conveniently combined in order to converge in expected value to any desired moment
of a network’s degree distribution, as follows.

Proposition 1 (Law of convergence to the n-th moment) Let d : V ÝÑ N

denote the degree function, to be measured up from each node via SRW in an undi-
rected network G “ pV,Eq. If such a walk has a unique stationary probability πv ą 0

of being at any node v P V , then Eπ rdp¨qn´1s {Eπ rdp¨q´1s “ xbny, @n P Z`.
Proof:

Eπ

“

dp¨q
n´1

‰ ∆
“

ÿ

vPV

dpvq
n´1πv “

ÿ

b

ÿ

vPVb

bn´1πv
Eq. 4.2

“

ÿ

b

bn´1
xkyb “

ÿ

b

bn´1 bpb
xby

“
1

xby

ÿ

b

bnpb “
xbny

xby
.

Consequently, if n “ 0 then

Eπ

“

dp¨q
n´1

‰

“ Eπ

“

dp¨q
´1

‰

“
1

xby
, hence

Eπ rdp¨qn´1s

Eπ rdp¨q´1s
“

xbny

xby
xby “ xbny, and the claim holds. ˝

Remarkably, Proposition 1 provides a closed form for Eq. 4.5, which now reads

xbyA
∆
“ Eπ rdp¨qs “

xb2y

xby
. (4.6)

To the best of our knowledge, the above derivation, which leads to a general closed
form for Eπ rdp¨qs—and is valid for any connected, undirected network—is new.
Indeed, the above result has been demonstrated only for the particular case of
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the configuration model [49], which breeds only degree uncorrelated networks (or
negligibly correlated). Conversely, through Proposition 1 we prove that such a ratio
applies to more general networks, with arbitrary degree correlations (e.g. a star
network).

Eq. 4.6 exposes a universal property of uniform random walks, so far only ob-
served empirically: the average degree xby for heterogeneous networks tends to be
largely overestimated when learned via SRW [67]. Proposition 1 not only proves that
this is always the case, but also states the exact value being approached irrespective
of degree correlations. By noticing that

xb2y

xby
“

xb2y ´ xby2 ` xby2

xby
“ xby `

Varpbq
xby

the extra term—directly proportional to the network’s heterogeneity—becomes ex-
plicit.

Noteworthy, xb2y{xby may be considered a special quantity in the study of net-
works, with several other physical interpretations and/or applications apart from
mobile-agent contexts. These include the network’s heterogeneity coefficient [68]
and the Molloy-Reed criterion for the existence of a giant connected component [69].
For the particular case of degree-uncorrelated networks, it also accounts for the
largest eigenvalue of the adjacency matrix of power-law networks with exponent
2 ă γ ă 5{2 [70] and the average degree of a node’s nearest neighbors [49, 68].

Although beyond the present scope, it should be briefly mentioned that Propo-
sition 1 also accounts for a promising reference on the design of estimators for the
network moments via random walks.

4.3.6 Expected Agglomeration

Another key quantity for later discussion is the expected agglomeration xay of agents
per node, which we define as

xay “
ÿ

b

xKyb

nb

xkyb “
Kxb2y

nxby2
“

KxbyA
nxby

. (4.7)

4.3.7 Exit Rate

Self-loops capture the ability every agent has of staying at its current node whenever
its walk event triggers. This begs a clear distinction between the walk rate and the
exit rate i.e., the rate at which an agent’s decision on its next hop effectively takes
it elsewhere. Consequently, every node with degree b induces its own exit rate λb,
defined as

λb “
b ´ 1

b
λ. (4.8)
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4.3.8 Expected Exit Rate

Though a single walk rate λ applies to the entire network, the same is not true with
respect to the exit rate, which is block dependent (4.8). It will later prove relevant
to also consider the expected exit rate xλby, which reads

xλby “
ÿ

b

λbxkyb “ λ

ˆ

1 ´
1

xby

˙

. (4.9)

(4.9) sheds light on how the inclusion of self-loops can substantially improve the epi-
demic prediction accuracy. Indeed, the very definition of qb (4.1) implicitly assumes
that, from anywhere in the network, an agent is allowed to go to any other node,
including its current node. Such is only the case in the presence of self-loops. Oth-
erwise, an agent’s exit rate would be poorly estimated, should the average degree xby

be small (4.9).

4.3.9 Infection Probability

Encounters in a sparse regime occur pairwise only, w.h.p. Since exponentials are
memoryless, two agents in SI-contact at some node v with degree b may be assumed
to have arrived at the same time. Disease thus spreads with some probability σb

that the I-agent’s transmission event fires (at rate τ) prior to some exit event (at
rate 2λb, since both agents may exit v). We show in Appendix A that

σb “
τ

2λb ` τ
. (4.10)

4.3.10 Expected Infection Probability

It will also be important to discuss the infection probability in terms of its expected
value across the different degree blocks, as follows:

xσby “
ÿ

b

σbxkyb. (4.11)

4.4 General Block-Level System

Our general-purpose predictor is

$

’

’

’

’

&

’

’

’

’

%

dIb
dt

“pI ´ Ibqλqb´Ibλqb ` Ibλb
Sb

nb

σb ` Sbλb
Ib
nb

σb ´ γIb,

dSb

dt
“pS´Sbqλqb´Sbλqb´Ibλb

Sb

nb

σb ´ Sbλb
Ib
nb

σb ` γIb.

(4.12)
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(4.12) states that the number of S-/I-agents within some block b varies with time
according to five main quantities. Let us walk through these from the I-agent’s
perspective (the same ideas apply for S-agents):

• pI ´ Ibqλqb: the number of I-agents from outside b that, walking at rate λ, hop
into b with probability qb;

• Ibλqb: the number of I-agents within b that, walking at rate λ, leave that block
with probability qb “ 1 ´ qb;

• Ibλb
Sb

nb

σb and Sbλb
Ib
nb

σb: the number of I-(resp. S-) agents already within

b that, walking at an effective rate λb, (i) encounter a total of Sb{nb (resp.
Ib{nb) S-(resp. I-) agents and (ii) promote a new infection (resp. get infected)
with probability σb;

• γIb: the number of I-agents within b that recover at rate γ.

With straightforward calculations, (4.12) reduces to

$

’

’

’

’

&

’

’

’

’

%

dIb
dt

“ λpIqb ´ Ibq `
2λbσb

nb

SbIb ´ γIb

dSb

dt
“ λpSqb ´ Sbq ´

2λbσb

nb

SbIb ` γIb,

(4.13)

which in terms of densities i and s reads
$

’

’

’

’

&

’

’

’

’

%

dib
dt

“ λpiqb ´ ibq `
2λbσbK

nb

sbib ´ γib

dsb
dt

“ λpsqb ´ sbq ´
2λbσbK

nb

sbib ` γib.

(4.14)

The evolution of infectives is thus obtained through summing up (4.13) for each
block i.e.,

dI

dt
“

2

n

ÿ

b

λbσbSbIb
pb

´ γI, (4.15)

or, in density terms,
di

dt
“

2K

n

ÿ

b

λbσbsbib
pb

´ γi. (4.16)

Note, however, that our predictor is still required to solve (4.13) since Sb and Ib must
be determined for each block. The relevance of (4.15) and (4.16) is made more clear
in the next section, where we show the existence of a special condition under which
blocks may be treated independently from one another, leading to a huge analytical
simplification and consequent computational speedup on the numerical solution.
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4.5 Matching Density Condition (MDC)

This is perhaps our most surprising result. Depending on the input parameters,
dynamics over networks with arbitrary degree distribution may be accurately pre-
dicted not by a system but by one single equation. We shall now describe it from
the S-agents standpoint (the same ideas apply for I-agents).

4.5.1 State-level mixing & MDC

The key observation is: if every S-agent j performs, with high probability (w.h.p),
sufficiently many hops prior to get infected, to the point of approaching the net-
work’s mixing time, then the probability that j is at any node v still as an S-agent
approaches πv. We call this phenomenon state-level mixing, when either S- or I-
agents—not necessarily both—do approach the mixing time w.h.p prior to chang-
ing their epidemic state. The immediate consequence, on the one hand, is that
ErSb{Ss ” xkyb @b. On the other, since every Kb is partitioned as Sb ` Ib, then
ErIb{Is ” xkyb would forcefully hold as well (irrespective of whether I-agents do mix
at state level), thus the whole dynamics exhibit the Matching Density Condition i.e.

ErSb{Ss ” E rIb{Is ” xkyb @b P B. (4.17)

(4.17) states that, upon MDC, not only are the relative densities of suscepti-
ble/infected agents within each block state invariant, but also that these match
the stationary density of agents at b.

MDC allows us to express every Sb and Ib strictly in terms of the variables S and
I and the block-level constants xkyb. That is, provided MDC, then Sb “ xkybS and
Ib “ xkybI @b P B. In what follows we describe (i) how to identify MDC beforehand,
and (ii) the epidemic dynamics with MDC and its many striking consequences.

4.5.2 Identifying MDC

To determine in advance whether S-agents do predominantly mix is a hard task, as
their states also depend on their interactions with I-agents. On the flip side, it is
quite straightforward to achieve this sense from an I-agent perspective. Indeed, once
infected, the expected number xhIy of hops an I-agent performs until recovering is
a simple relation between its expected exit rate xλby and the recovery rate γ. It can
be shown that

xhIy “ xλby{γ. (4.18)

When the bound on the mixing time for an input network is verifiable [71], a trivial
check on whether xhIy stands within said bound suffices. Briefly, let π denote the
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stationary distribution of a single random walk in a network with spectral gap δ.
Now, for π0 “ minπi P π, I-agents are, on average, at most at an ε ą 0 distance
from π if

xhIy ě
logp1{pπ0εqq

δ
. (4.19)

At this point it is clear that one may not always identify in advance whether MDC
applies. Indeed, its computation not only requires previous knowledge on the net-
work’s degree distribution but also may be costly or even time-prohibitive.

4.5.3 Dynamics with MDC

Consider an epidemic process that unfolds upon MDC. Therefore, Sb “ xkybS and
Ib “ xkybI. Substituting in Eq. 4.15 yields

dI

dt
“

2xλbyxσbyxb2y

nxby2
SI ´ γI, (4.20)

which in terms of densities i and s becomes

di

dt
“

2xλbyxσbyKxb2y

nxby2
si ´ γi

Eq. 4.7
“ 2xλbyxσbyxaysi ´ γi. (4.21)

(4.20) and (4.21) are in many ways a striking result. They impact several aspects
of the spreading dynamics at hand, which we elaborate as follows.

• Block Independence. Block-level variables vanish upon MDC. This represents
a huge analytical and numerical simplification: whereas the size complexity for the
number of equations of a block-level solution is Θp|B|q, MDC is Θp1q.

• Degree Distribution. Interestingly, not only Sb and Ib disappear, but also qb

no longer plays a role as well, due to inter-block movements being neglected (even
though these still occur in practice), thus the premise of no degree correlation drops.
Moreover, because at least one epidemic partition (either S- or I-agents) reach state-
level mixing, their density at each block is equally distributed across the nodes from
that block w.h.p. In this case, (4.20) and (4.21) do apply irrespective of the network’s
degree distribution.

• Sparsity. Dynamics under MDC only depends on how the rates for walk,
transmissibility and recovery relate to one another, thus the sparsity premise drops.
In this work, a dependence on the number of agents still exists simply because
the infection probability σb within each block, as we defined (4.10), assumes pair-
wise encounters only. A dense regime would require another definition for σb to
be conceived—a task beyond our present scope—and then plugged back directly
into (4.20) and (4.21).

• Structural Influence. General key aspects of the underlying network are now
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made explicit. Indeed, even those scenarios where MDC does not hold are in fact
subject to the same network structure and, consequently, to its influence. Beyond
previously evidenced impact of its size (4.15), another major topological aspect
have now became pronounced: larger degree heterogeneity (xb2y{xby2) boosts the
spreading. It means that regularly well-connected topologies are best for disease
containment i.e., safer urban scenarios should ideally provide direct path between
any two regions but at equivalent proportions, in a fashion similar to regular graphs.

Of particular interest is how this feature compares to static contact models,
where nodes encode individuals rather than sites [48]. Therein, larger xby propels
the outbreak, which is not the case in our model. Remarkably though, the impact
of degree heterogeneity in both models turns out to be the same: to intensify the
spreading.

Last, note that the expected agglomeration (4.7) has naturally arose into (4.21)
in replacement to an otherwise block-level system, in agreement with intuition.

• Classical SIS. It is now also evident that the classical, homogeneous-mixing
SIS model (2.7) does actually correspond to a particular case of a particular case
of the herein proposed model. Indeed, MDC itself is a particular scenario which
embeds a force of infection β defined as

β “ 2xλbyxσbyxay, (4.22)

so that (4.21) becomes di{dt “ βsi ´ γi, which in turn is further reduced to the
homogeneous-mixing SIS (2.7) by simply making β “ τ .
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Chapter 5

Protection Effects on
Degree-uncorrelated Networks

5.1 Protection Model

We now include the protective behavior artifact into the model presented in the
previous chapter. Protection here is modeled in the exact same way described in
Section 3.4. With that protective model at hand, we proceed to establish our ulti-
mate problem statement.

5.2 Problem Statement IV

Our ultimate goal is to generalize the fluid model from Chapter 4 in order to predict
the progress of epidemics where agents are now biased as described in this section.
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5.3 Theoretical analysis

The PrE model proposed in Section 3.4 is now coupled with the epidemic model
presented in Section 4.1 in order to evaluate key-aspects, namely (i) the SI-contact
rate (a fundamental model parameter), (ii) prediction on the dynamics, and (iii)
the basic reproduction number R0. As in the case of complete graphs, ws and wi

are block-independent, we will simply consider a single, equivalent protective level
w given in terms of their mean, as described in (3.6).

5.4 SI-contact rate

The SI-contact rate within each block now depends on the PrE parameter w (3.6). To
make further progress on how exactly w influences such a rate, we must first describe
the “two-stage migration” approach to compute the probabilities of SI-contacts, as
follows.

5.4.1 Two-stage Migration

From a strictly probabilistic standpoint, the entry of an agent j in a node vb from
block b may be thought of as a sequence of two chained events : (i) j chooses a block b

with probability qb and then (ii) once b is established, j somehow chooses some vb.
Let us denote αSb

and αIb the SI-contact rates within b produced, respectively, by the
walks of those S-/I-agents already within b that step into hostile nodes also from b.
Therefore, αSb

“ SbλbρSb
and αIb “ IbλbρIb , where ρSb

and ρIb are, respectively, the
time-varying probabilities that an S-/I-agent from b provokes an SI-contact within
b. We thus need to find the instantaneous values for ρSb

and ρIb . When random
walks are uniform (i.e. w “ 1), then simply ρSb

“ Ib{nb and ρIb “ Sb{nb, so that
αIbσb and αSb

σb yield the 3rd and 4th terms of Equation 4.12, respectively.
In the presence of PrE however, the two-stage separation comes in handy: we

may still consider blocks as being chosen by j as described in (i) since, in the general
case, sparsity implies that the probability density deducted from hostile nodes and
equally redistributed across safe sites does not meaningfully change the likelihood
of each block in comparison to the others. However, once a block b is elected, j’s
final residence can no longer be drawn uniformly out of nb possibilities since j is now
prone to safe localities. In this case, an appropriate stage-(ii) behavior is described
as follows.
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5.4.2 SI-contact Rate with PrE

Firstly, note that those Ib I-agents within b occupy Ib out of nb nodes w.h.p., due
to sparsity. In turn, each such location is avoided by S-agents with some bias w,
whereas the other nb ´ Ib nodes from b are chosen with unitary weight. Thus, the
instantaneous probability that the S-agent j provokes an SI-contact at block b is
simply ρSb

“ Ibw{pIbw ` pnb ´ Ibqq “ Ibw{pIbpw ´ 1q ` nbq, but since Ibpw ´ 1q ! nb

(due to sparsity), then ρSb
« Ibw{nb so that

αSb
“ Sbλb

Ibw

nb

. (5.1)

Analogously, αIb “ Ibλb
Sbw

nb

. Note that αSb
” αIb . These are fundamental pa-

rameters for the model, and also the main modification required in relation to the
previous section.

5.5 Evolution of infectives

By applying (5.1) in (4.13) with already shown simplifications, the dynamics with
PrE are captured by

$

’

’

’

’

&

’

’

’

’

%

dIb
dt

“ λpIqb ´ Ibq `
2λbσbw

nb

SbIb ´ γIb

dSb

dt
“ λpSqb ´ Sbq ´

2λbσbw

nb

SbIb ` γIb,

(5.2)

which in terms of densities i and s reads
$

’

’

’

’

&

’

’

’

’

%

dib
dt

“ λpiqb ´ ibq `
2λbσbKw

nb

sbib ´ γib

dsb
dt

“ λpsqb ´ sbq ´
2λbσbKw

nb

sbib ` γib.

(5.3)

When MDC holds, then

dI

dt
“

2xλbyxσbyxb2yw

nxby2
SI ´ γI, (5.4)

which in terms of density reads

di

dt
“

2xλbyxσbyKxb2yw

nxby2
si ´ γi, (5.5)
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so that the force of infection becomes

β “
2xλbyxσbyKxb2yw

nxby2
Eq. 4.7

“ 2xλbyxσbyxayw, (5.6)

with the classical SIS still being a particular case of this even more general model,
again by simply making β “ τ .

5.6 Reproduction number

The basic reproduction number R0 “ β{γ is a classical metric that considers the
pathogen’s spreading potential, and is used to indicate whether the epidemic will
die out shortly (R0 ă 1) or long last among population (R0 ą 1) [47].

Within the context of PrE, a natural question arises: is there a range of values
for w that ensures R0 ă 1? In order to answer this question, let us first consider
a constant C “ 2xλbyxσbyxay so that β “ Cw. The problem is then to determine
which values for w yield pCwq{γ ă 1. Trivially, if C{γ ă 1 then the epidemic is led
to extinction even in the absence of protective efforts. Conversely, if C{γ ą 1, then

R0 ă 1 ðñ w ă
γ

C
ðñ w ă

γ

2xλbyxσbyxay
. (5.7)

(5.7) provides good news: it states that, for the epidemic problem at hand, there
always exists some w ą 0 that imposes R0 ă 1, i.e. the joint engagement of S- and
I-agents may forcefully prevent endemic steady-states.

5.6.1 Asymptotic regimes

Values for w that satisfy (5.7) arise as a function of other model parameters, par-
ticularly the walk rate λ and transmissibility rate τ (within xσby). This introduces
the question: is there a regime for w under which R0 ă 1 even if λ (resp. τ) is
arbitrarily large, for a fixed τ (resp. λ)? This regime can be identified by consid-
ering the asymptotic behavior of λ and τ , one at a time, on the infection force β.
Applying (4.10) on (5.6) yields

lim
λÑ8

2xλbyxσbyxayw “ lim
λÑ8

2τxλbyxayw

2xλby ` τ
“ τxayw “ β

1

, (5.8)

which yields a basic reproduction number R0 “ β
1

{γ. Thus,

R0 ă 1 ðñ w ă
γ

τxay
. (5.9)
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Interestingly, any w satisfying (5.9) will manage to extinguish the epidemic irrespec-
tive of the walk rate λ. Indeed, larger walk rates increase SI-contacts per unit time,
but also reduce their duration as well. In similar fashion, as τ Ñ 8 (for a fixed λ),
β converges to β

1

“ 2xλbyxayw. Here, β 1

ă γ is met case w ă
γ

2xλbyxay
. Any such

w will succeed at imposing short-lived epidemics irrespective of the transmissibility
rate τ .
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5.7 Numerical results

In what follows we present simulation results that validate the theoretical analysis
from Section 5.3. A discrete-event simulator was designed and implemented [72]
in order to generate performance metrics concerning the impacts of PrE and other
model parameters. More details on the simulator and its implementation are pro-
vided later in Section 5.8. All results to follow assume i0 “ 0.5. The population of
early spreaders was chosen uniformly at random from the agent set. The starting
position of each agent within the network is established as follows. First, every agent
is designated to enter some node uniformly chosen at random. Then, every agent
is required to walk for a certain time window, and only after that the set of early
infectives is finally established. This procedure eliminates an otherwise strong and
unrealistic assumption of having all agents initially stopped and without any walk
event scheduled prior to the epidemic to begin.

Figures 5.1 and 5.2 show the fraction of infected agents over time for different
levels of PrE in a Barabási-Albert network and in a G(n,p) network, respectively.
Each given w yields three different curves in both plots: the numerical simulation
from one single run and the prediction on the fraction of infectives, as given by
the block-level system (5.3) and the network-level master equation (5.5). Note that
both models capture with high accuracy the average dynamics for each protection
level, since the epidemic’s early stage up to its stationary regime. Moreover, it is
clear how w decisively changes the epidemic’s outcome. In particular, in Figure 5.1
the protective level w “ 0.05 has managed to hinder the epidemic, leading to a
disease-free steady state. The same occurs in Figure 5.2 when w “ 0.1.

Fig. 5.3 illustrates the impact of the walk rate λ on an epidemic’s average du-
ration. Note that 3 out of the 4 curves show scenarios wherein an increase in the
walk rate leads to a phase transition (very long duration). In turn, for the curve
“w0.65” the duration increases slowly even when λ reaches 20. Arguably, a phase
transition could still be reached for some even larger λ. However, as λ Ñ 8 the
infection rate β converges to β

1

“ τxayw (5.8). For the given parameters, it yields a
basic reproduction number R1

0 “ β
1

{γ “ 0.06895{0.07 “ 0.985 ă 1. This means that
a (relatively small) protective level of w “ 0.65 will manage to impede long-lasting
epidemics for any walk rate λ, in sharp contrast with the scenario where w “ 1.

5.7.1 Dense Regimes

Even though the present work focuses on sparse scenarios, the spreading profile un-
der dense regimes and the extent to which such dynamics can be reliably captured
by the model arise as natural followup questions. Whereas the first strongly de-
pends on numerical simulations (to be presented in this section), the latter brings
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Figure 5.1: Fraction of infected agents over time for different risk-tolerance values
(w) in a BA network, with their respective block-level (block) and network-level
(master) predictors (n “ 100K nodes, xby « 21, K “ 450). For instance, the blue
curve "w1" is the actual simulation of an epidemic when w “ 1; the solid, orange
curve "w1 block" is the prediction on the average behavior when w “ 1 as given
by numerically solving the system of equations in (4.14); likewise, the dashed, green
curve "w1 master" expresses the numerical solution from the master equation (4.21)
(which assumes MDC). Remarkably, both predictors are almost perfectly overlapped
through all scenarios.

the infection probability (4.10) to a central spot in this discussion. As previously
mentioned, (4.10) assumes sparsity, hence pairwise SI-contacts only. Although the
task of deducing the infection probability for dense regimes lies beyond the scope
of this work, an assessment on what is the gap between how these epidemics evolve
and what the present model predicts when applied to them is of particular interest.

A first intuition is that a wrong prediction will almost surely be the case, but
how exactly? It is clear that, prior to conducting experiments, this question must be
divided into more concrete aspects in order for a proper understanding to be built.
More specifically,

1. How different from each other would block-level (4.14) and network-level (4.21)
predictors behave, regardless of the actual spreading?
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Figure 5.2: Fraction of infected agents over time for different risk-tolerance values
(w) in a G(n,p) network, with their respective block-level and network-level predic-
tors (n “ 100K nodes, xby « 21, K “ 5000). Here again, both predictors perfectly
overlap each other through all scenarios.

2. How intensely do we expect these to under/overestimate the real spreading?

3. From a practical standpoint, how decisively will w influence the outcome of
such epidemics?

Starting with the first question, such a difference will clearly depend on network
structure. True, despite its provenience from MDC, (4.20) brought to evidence an
otherwise hidden information on how heterogeneity plays a central role throughout
the propagation. On the other hand, it also assumes state-level mixing, which is
hardly the case for dense regimes. Both features considered, note that the network-
level predictor (4.21) assumes that I-agents are better distributed across the network
in comparison to block-level. (4.21) is thus the one expected to predict higher
endemic levels. A more intuitive reasoning that leads to such a conclusion is to
think of the marginal virulence every new incoming I-agent adds to the infective
potential of an already hostile node: if a node hosts exactly one S- and one I-agent,
then a new incoming I-agent offers 100% marginal virulence, as the risk of infecting
the S-agent doubles. Likewise, a third incoming I-agent would impose a marginal
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Figure 5.3: Epidemic’s average duration over agent’s walk rate (x-axis log-scaled).
Each dot from each curve averages upon 10 runs for a same walk rate. Confidence
intervals were omitted as the goal is not to directly compare curves, but to under-
stand their average behavior in function of λ.

virulence of only 50% as the number of infectives now raises from 2 to 3, and so
on. Clearly, a new incoming I-agent will at some point increase just negligibly the
(already high) risk of infection, in a kind of saturation regime. This fact combined
with heterogeneous scenarios where agents do not mix, mean that infectives are even
more concentrated within the hubs in these cases. This, on the one hand, diminishes
the risk of getting infected within those more remote nodes; on the other, every new
infective coming into the hub contributes negligibly to its already strong infection
force. This overall weaker spreading is better captured by the block-level predictor.

Moving forward to the second question, this is harder to conjecture when w “ 1.
Estimates on R0, given by the relation between the force of infection β and the
recovery rate γ are useful to some extent here. Besides, numerical results over
different scenarios can be particularly revealing in this case, as we report shortly.
Conversely, for very strong levels of PrE (e.g. w “ 0.001), a short-lived epidemic
will almost surely be the forecast, specially because such models assume sparsity.

By its turn, the third question—more than the first one—comes with a strong
preliminary intuition: under enormously dense regimes, PrE is not expected to no-
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ticeably change the course of an outbreak when I-agents are already made present
in almost every node. In turn, it can also be thought of as a decisive preemptive
artifact while the reach of an outbreak is still small. Numerical simulations (to be
presented) can be profoundly enlightening here.

Now that a preliminary reasoning on what to expect from simulations over dense
regimes has been formed, in what follows we proceed to report the simulations, and
check its interesting results against the aforementioned expectations.

Figures to be presented in this section are for a different set of initial conditions.
Instead of randomly infecting half the population, the set of early infectives reside
on a single node. More specifically, we infect at time zero the entire population
within the hub (i.e. the highest degree node) of a BA network, and then study
the consequences of applying enormously different levels of PrE. All simulations to
follow are run on the same BA network with |V | “ 104 nodes and K “ 3 ˆ 105

agents. Largest degree is 501 and average degree xby « 21.
For better clarity, results to follow are separated under two groups, summarized

below:

1. Pandemic regime. This first group contains simulations at which the absence
of protective efforts leads to massive spreading across a huge fraction of the
population; we then apply a strong level of PrE to such a scenario and check
whether it does meaningfully change the previously observed outcome.

2. Otherwise endemic regime. Scenarios that, even in the absence of PrE, give
rise to epidemics that, although persistent, reach only a small portion of the
agents. Here again, after running a simulation with w “ 1 (i.e. no protection)
we apply a strong PrE level to the system and observe how differently its
related outbreak evolves, keeping in mind the expectations we have delineated
previously in this section.

Pandemic regime

Figure 5.4 shows the fraction of infectives over time for a dense epidemic simulation
with the aforementioned parameters. The figure contains 2 sets of 3 curves each.
Each set expresses the simulation outcome for a given PrE level and its respective
predictions as given by the master equation (4.21) and the block-level system (4.14).
Levels of PrE adopted are w “ 1 and w “ 0.001.

Remarkably, PrE has a negligible influence on the overall fraction of infectives,
despite its huge intensity. Not only is the hypercritical regime onset not delayed but
both curves overlap both early and late in the epidemic. Indeed, note how the two
epidemic curves (w1 and w0.001, respectively) end up converging to the same sta-
tionary level, despite a 1000ˆ PrE factor separating both. This fact contradicts our
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Figure 5.4: Fraction of infectives over time for an epidemic simulation on a dense
regime in a BA network with |V | “ 104 nodes, K “ 3 ˆ 105 agents, largest degree
= 501 and average degree xby « 21. For w “ 1, I0 “ 691 (approx. only 0.23% of
the agents) and for w “ 0.001 the number of early spreaders is I0 “ 707, which is
fairly close to the first case. The other parameters are λ “ 1, τ “ 1, and γ “ 7.
Note that the stationary regime accounts for a pandemic, as the disease permeates
a huge fraction of individuals.

previously formed intuition, as there are two separated facts here: first, if a massive
number of infected agents are already widespread through the entire network, then
S-agents will be always forced to hop into hostile nodes, as neither their current
node nor their neighborhood are free from I-agents. This fact is actually easy to vi-
sualize and to conclude by intuition (as we did already). The counter-intuitive part
is that the set of early spreaders here is quite small compared to K and PrE is very
large, so that one would at least expect the epidemic onset to be noticeably delayed.
This easy way through which the spreading made such profound inroads even in
the presence of strong PrE is in agreement with results over static contact models,
where nodes encode individuals rather than sites [48]. Therein, it is a well-known
result that the epidemic threshold vanishes for highly heterogeneous networks.

Another major difference one may notice when comparing the present scenario
with sparse regimes is a much smoother epidemic curve for the actual spreading
(curves w1 and w0.001), indicating that dense scenarios are much less affected by
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random fluctuations.
Interestingly, through all simulations for both cases we had both master and

block-level predictors over/underestimating the actual spread, respectively, by
nearly the same proportion when w “ 1. This indicates that a reasonable prediction
for dense scenarios without PrE could still be achieved up from the cumulative aver-
age of these two outcomes. On the other hand, when w “ 0.001 both models make
grossly wrong predictions of extremely short-lived outbreaks, leading these curves to
not even appear in the plot, but this comes as expected, since both models assume
sparsity.

Otherwise endemic regime

Contrariwise to the above results, where intuition and observance have converged to
some extent (although not completely), Figure 5.5 comes with even more surprising
outcomes.

Here, a preliminary intuition is: if endemic levels without PrE remain low (like,
say, 30%) then, unless I-agents manage to span over all network nodes at any point in
time (which is unlikely), a strong enough PrE must provoke safe sites to appear, thus
gradually “absorbing” S-agents from neighboring regions, hence slowly but surely
weakening the epidemic until it dies out.

Whereas a relatively constant, well behaved endemic level is shown to be the
case for w “ 1, a very peculiar spreading pattern emerges when w “ 0.001. In-
terestingly, rich, oscillating dynamics arise as a result of the combination of strong
PrE versus highly heterogeneous topology (with outbreak ignition at the hub). In-
deed, note that when w “ 0.001 only a small fraction of the population remains
infected (around 2%), but in a curious oscillating fashion, seemingly narrowing up
along with time. It turns out, however, that if we let the epidemic run for a longer
time, then oscillations intensify back again from time to time. We demonstrate this
behavior in Figure 5.6, which provides a magnified version of the exact same curve
w “ 0.001 from Figure 5.5 by restricting the y-axis to the interval r0, 0.12s and also
by extending the simulation time from 20 to 50.

This interesting phenomenon captured by Figure 5.6 offers new insights on why
we frequently observe real-world seasonal epidemics that persist with only a small
fraction of population: on the one hand, protective measures are taken (including
mobility patterns); on the other hand, heterogeneous topology cause those more
well connected nodes to gather sufficiently many agents to sustain local, long-lived
spreading dynamics that from time to time reach out to neighboring regions.
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Figure 5.5: Fraction of infectives over time for an epidemic simulation on a dense
regime in a BA network with |V | “ 104 nodes, K “ 3ˆ 105 agents, largest degree =
501 and average degree xby « 21. Here again, I0 « 700 for both curves. The other
parameters are λ “ 1, τ “ 1, and γ “ 37.

5.8 Epidemic Simulator

A brief note on the epidemic simulator that conducted our series of experiments is
worth it at this point. Our discrete-event simulator [65, 72] was entirely written
in C++, with no inclusion of libraries for manipulating networks or for numerically
solving ODE systems. Indeed, the author has made his own implementation of every
aspect related to these features, and also has made the entire code publicly available.

Towards the key implementation-level decisions:

• Networks are represented and read as edge lists;

• By its turn, the numerical solver for the ODE systems implements the 4-th
order Runge-Kutta technique. In particular, the exact algorithm adopted is
an extension of the 2-equation, first-order system [73], which is reproduced
below:

4th-order Runge-Kutta method for 2-equation, first-order system:
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Figure 5.6: Magnified version of the curve w “ 0.001 from Figure 5.5. The y-axis
here is restricted to the interval r0, 0.12s. Also, simulation time is extended from 20
to 50. Extremely ephemeral propagation is forecast by both master and block-level
predictors, hence their barely noticeable appearance (close to the origin).
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Chapter 6

Conclusion

This work proposed a simple agent-based model for continuous-time SIS epidemics
on either complete graphs and also non-regular, degree-uncorrelated networks. Pro-
tective behavior came through biasing walkers towards safe sites, in state-dependent
fashion: susceptible (S) agents avoid locations hosting infected (I) ones and vice-
versa, at parameter-defined levels. Propagation was modeled as occurring through
direct contact between S- and I- agents at a given node and depends on the total
exposition time.

Through degree-block approximation, we provided an accurate, ODE-based pre-
dictor that explicitly embodies structural and protective information into a system
typically orders of magnitude smaller than the network size; We have also provided
the first theoretical evidence of a key structural aspect hitherto only observed em-
pirically in agent-based models: larger degree heterogeneity boosts the spreading;

Remarkably, we also have found a special regime under which epidemics on
networks with arbitrary degree distribution can be accurately predicted in Θp1q, not
by a system but by one closed-form, fast-computing equation, namely the Matching
Density Condition obtained via state-level mixing.

We have provided protective thresholds for disease-free steady states under ei-
ther fixed and asymptotic rates for both walk and transmissibility, with a rigorous
theoretical analysis.

Interestingly, we have found a law through which a simple random walk (SRW)
can be conveniently combined with the degree function dp¨q in order to converge in
expected value to any desired moment of a network’s degree distribution. Among
other consequences, we answered a long open question on which value an SRW
does actually approach when overestimating a network’s average degree, which is
now known to be xb2y{xby. This finding raises research perspectives even beyond
the scope of epidemics. For instance, methods for learning network structure via
random walks could leverage this fact in order to design estimators with enhanced
trade-off between simplicity and effectiveness, backed-up by theoretical results.
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Last, our contributions also include the design and implementation of a publicly
available network epidemic simulator whose numerical results validate the theoretical
analysis on the proposed model.

6.1 Future Work

The following topics denote promising research directions.

• Of interest is a deeper investigation on time-varying protection effects, for
which we have conducted only a preliminary study. The intention is to un-
derstand how an epidemic unfolds through gradually reactive protection, that
is, the one that is more or less intense according to the number of infectives.
A mathematical model—validated with simulation data—that captures such
dynamics is currently a gap. Emerging issues include “Given a network (topol-
ogy) and other initial conditions, up from what level of protective effort will
the outbreak fade away?" It is also known that time-varying forces of infec-
tion give rise to bistability, a scenario where not only the model parameters
but also the i0 size of the initially infected population becomes fundamental
to the correct prediction of the epidemic reach. An immediate implication is
seasonality : once the epidemic is weakened, individuals relax their protective
efforts likewise, thus allowing those few infections still active to recur in a new
outbreak. The characterizations of topology and reactivity that give rise to
the phenomenon are subject of investigation;

• Mathematically characterize PrE in high density regimes. Indeed, the numeri-
cal results obtained in this thesis are promising: they uncovered an interesting
phenomenon captured by Figure 5.6, offering a new insight on why do we fre-
quently observe real-world seasonal epidemics that persist with only a small
fraction of population.

• Graph sampling methods that leverage the law of the n-th moment convergence
(Proposition 1). This could potentially reveal a much simpler way for learning
a network’s structure up from relatively inexpensive random walks.
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Appendix A

Infection Probability

The infection probability as stated in Equation 4.10 comes from the notion of “com-
peting exponentials”, as follows. Without prejudice, let us assume no self-loops,
thus λb “ λ i.e., the exit rate matches the walk rate. An infection then occurs when
the transmission event fires (at rate τ) prior to a walk event (at rate 2λ since it
may come from both agents, at rate λ each). Moreover, 2λ and τ relate to indepen-
dent events. Let us notate A “ “infection” and B “ “walk away”. Since both are
independent exponentials, their joint density is

ppa, bq “ τ2λe´pτa`2λbq, (A.1)

from which we want P pA ă Bq. Thus,

P pA ă Bq “

ż 8

0

ż b

0

ppa, bqdadb

“

ż 8

0

2λe´2λb

ż b

0

τe´τadadb

“

ż 8

0

2λe´2λb
p1 ´ e´τb

qdb

“

ż 8

0

2λe´2λbdb ´

ż 8

0

2λe´pτ`2λqbdb

“ 1 ´
2λ

2λ ` τ

“
τ

2λ ` τ
.

(A.2)
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