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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

NOVOS MÉTODOS PARA A DETERMINAÇÃO DA ESTRUTURA
TRIDIMENSIONAL DE PROTEÍNAS E NANOPARTÍCULAS

Gabriel Pineschi Braun

Março/2024

Orientadores: Nelson Maculan Filho
Carlile Campos Lavor

Programa: Engenharia de Sistemas e Computação

Através da utilização de dados experimentais obtidos por técnicas como a
ressonância magnética nuclear e o método da função de distribuição de pares, torna-
se possível determinar estruturas tridimensionais de proteínas e nanoestruturas.
Estes são exemplos de instâncias do problema de Geometria de Distâncias Não Asso-
ciadas (uDGP), onde o objetivo principal é determinar as posições de pontos especí-
ficos com base em um conjunto de valores de distância que não foram previamente
atribuídos a pares de pontos específicos. Apresentam-se, nesta dissertação, novas
formulações de programação matemática e uma abordagem heurística para resolver
o uDGP. Nossos resultados demonstram o desempenho superior dos modelos propos-
tos em comparação com os métodos existentes documentados na literatura. Esses
modelos têm um imenso potencial para uso prático, oferecendo soluções eficazes para
a determinação de estruturas em aplicações envolvendo moléculas, nanopartículas e
proteínas.
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Utilizing experimental data from techniques like nuclear magnetic resonance
and the pair distribution function method, it becomes possible to derive three-
dimensional protein structures and nanostructures. These are examples of instances
of the Unassigned Distance Geometry problem (uDGP), where the primary objective
is to determine the positions of certain points based on a set of distance values that
have not been previously assigned to specific point pairs. This dissertation presents
new mathematical programming formulations and a heuristic approach to solve the
uDGP. Our findings demonstrate the superior performance of the proposed models
in comparison to existing methods documented in the literature. These models hold
immense potential for practical use, offering effective solutions for the determination
of structures in applications involving molecules, nanoparticles, and proteins.
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Chapter 1

Introduction

1.1 Motivation

Determining the three-dimensional structures of molecules, proteins, and nanopar-
ticles is crucial for understanding their chemical and physical properties. Moreover,
they provide insight into molecular interactions, catalyst mechanisms, and binding
sites, aiding in drug development, materials design, and catalysis [8].

Consider the prion protein (PrPc) as an illustration. It interacts with the cells of
certain animals, but when its spatial structure is altered, it gives rise to a modified
protein known as prion scrapie (PrPSc), as depicted in Figure 1.1. While this altered
protein maintains the same composition as its original form, the structural change
leads to the emergence of a disease known as Bovine Spongiform Encephalopathy,
commonly referred to as Mad Cow Disease [9].

(a) Normal prion (PrPc) (b) Diseased prion (PrPSc)

Figure 1.1: Normal and abnormal conformations of a prion protein. (a) Experimentally
determined structure of a normal prion protein [1]. In this conformation, most amino
acids participate in alpha-helix and less than 5% in beta sheets. (b) Calculated structure
of an abnormal prion protein [2]. The abnormal protein is misfolded, where the majority
of alpha helices are converted into beta sheets.
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X-ray crystallography was the first method developed for the determination of
molecular structures [10]. The underlying principle of this technique is that the
crystalline atoms cause a beam of X-rays to diffract into many specific directions.
By measuring the angles and intensities of these diffracted beams, a crystallogra-
pher can produce a three-dimensional picture of the density of electrons within the
crystal. From this electron density map, the positions of the atoms in the crystal
are determined [11].

The scope of X-ray crystallography, as implied by its name, is confined to the
examination of molecules capable of crystallization in solid form. Given that numer-
ous proteins defy isolation as solids and are exclusively present in solution, novel
techniques emerged to determine three-dimensional structures exploiting distance
information between atom pairs provided by experiments such as Nuclear Magnetic
Resonance (NMR) [8]. The data generated from these experiments is a list of dis-
tances between pairs of atoms within the structure, allowing proteins to be studied
in solution.

Accurate determination of atomic positions within nanoparticles also holds con-
siderable significance, primarily because their size and three-dimensional structure
are the main factors dictating their properties [12]. Figure 1.2 illustrates examples
depicting the structure of representative nanoparticles.

GNP249 C60NP42
GNP164 QDNP14 CNT80

QDNP9Dendrimer6GNP412 MONP2GNP196

AgNP14 PtNP8 PdNP12 MONP1

CPNT15

20 nm

Figure 1.2: Visualization of 15 representative nanoparticle structures in the PubVINAS
database [3].
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For the case of nanoparticles, higher accuracy is required when determining their
structure. The level of precision needed can vary depending on the specific context,
but in the case of solid-state systems, it often consists of determining the positions
of all atoms to better than 2% for each interatomic distance within that nanos-
tructure [13]. In certain cases, even finer resolution may be necessary. This high
level of precision is crucial because the properties of nanostructured materials and
intricate molecules are extremely sensitive to minor alterations in the distances be-
tween atoms. Therefore, achieving a precise understanding of the nanostructure is
essential for the design and comprehension of these materials [14].

X-ray crystallography is also the prevailing method for determining the structure
of nanoparticles, however, many structures are also challenging or impractical to
obtain through the growth of a single crystal or even a polycrystalline sample [15].
For nanomaterial applications, distance data from NMR analysis used for protein
structure determination has too low resolution, with uncertainties of the order of
one angstrom. In those cases, the structures can be determined from atomic pair
distribution function (PDF) analysis data [5]. This data also consists of a list of
distances between pairs of atoms within the structure.

For both nanoparticles and proteins, when their structures cannot be isolated
as crystals, determining their three-dimensional conformation necessitates the re-
construction of the structure from a set of distances between pairs of atoms. In
consequence, a new problem emerges: the task of deducing the three-dimensional
structure from this distance data, commonly referred to as the Distance Geometry
Problem (DGP).

1.2 Goals and Contribution

This work aims to present novel mathematical programming formulations and a
heuristic approach to address the unassigned variant of the Distance Geometry Prob-
lem (uDGP). In this particular variation, only distance values are available, without
any accompanying information linking them to specific pairs of atoms. Therefore,
this approach enables the direct formulation of data from NMR and PDF as an
uDGP, eliminating the need for experimental efforts to associate each calculated
distance with its corresponding atom pair.

The primary contribution of this research lies in the development of a novel
technique for solving the Unassigned Distance Geometry Problem, enabling precise
determination of molecular and nanoparticle structures based solely on distance
data. Consequently, this study demonstrates the practicality and effectiveness of
applying the uDGP method to accurately infer the structures of both molecules and
nanoparticles from NMR and PDF data.
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1.3 Dissertation Organization

The organization of this work can be outlined as follows. Initially, Chapter 2 presents
the formal definition of the Distance Geometry problem, and the assigned and unas-
signed variants. Additionally, Chapter 3 provides a more in-depth exploration of its
principal applications within the realm of molecular structure determination.

Moving forward, Chapter 4 provides an overview of the current methods em-
ployed in solving the Unassigned Distance Geometry Problem (uDGP). Then, Chap-
ter 5 presents our novel mathematical programming model and heuristic.

Subsequently, Chapter 6 elaborates on the instances utilized for testing and val-
idating our approach and Chapter 7 outlines the experiments conducted to validate
our method and discusses the resultant findings.

Finally, Chapter 8 concludes this work by summarizing the achieved results and
proposing future avenues of exploration within the domain of Distance Geometry
Problems.
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Chapter 2

Distance Geometry Problem

The field of Distance Geometry (DG) delves into challenges associated with the
notion of distance from a geometric standpoint. Presently, work in this area focuses
around the task of determining a set of coordinates within a geometric space based
on a set of provided distances.

The inception of this field occurred when MENGER [16] utilized the concept
of distance to define several geometric principles like congruence and set convexity.
Distance Geometry was formally recognized as an emerging research field following
the contributions of BLUMENTHAL [17] in 1953.

The interest in the DGP resides in its wealth of applications: molecular structure
and conformation, wireless sensor networks, statics, dimensionality reduction, and
robotics, as well as in the study of the related mathematical theory [8].

This chapter provides a formal definition of the Distance Geometry Problem
(DGP). In Section 2.1, we introduce the concept of assigned and unassigned classes
within DGP.

2.1 The assigned and unassigned classes

The Distance Geometry Problem (DGP) can be categorized into two distinct classes:
Assigned (aDGP) and Unassigned (uDGP) [8, 18]. The differentiating factor be-
tween these categories lies in whether the association between distances and the
corresponding pairs of vertices is provided or not.
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2.1.1 The Assigned Distance Geometry Problem (aDGP)

In the Assigned Distance Geometry Problem (aDGP), the input data consists of
a list of distances, all of which are assigned to the specific pairs of vertices they
correspond to.

Definition 1 (Assigned Distance Geometry Problem, aDGP [19]). Given an integer
K > 0 and a simple, non-directed graph G = (V ,E, d) whose edges weights are given
by a non-negative function d : E → [0,∞), find a function x : V → RK such that

∀(i, j) ∈ E, ∥xi − xj∥ = dij (2.1)

where xi = x(vi),xj = x(vj) and ∥xi − xj∥ is the Euclidean distance between the
coordinates xi and xj.

Definitions 2, 3 and 4, presented below, apply to all classes of the Distance
Geometry Problem.

Definition 2 (realization [10]). The x function, which maps the vertices of the
graph in a DGP to coordinates in the RK space, is denominated a realization of
G in RK .

Definition 3 (valid realization). If x satisfies the system of Equations 2.1, then x

is a valid realization.

Definition 4 (framework). The pair (G,x), where x is a valid realization, is called
a framework.

An example of an aDGP instance and solution is presented in Figure 2.2.

{dij} =


0 1.50 2.45 2.87

1.50 0 1.50 2.45
2.45 1.50 0 1.50
2.87 2.45 1.50 0

 aDGP
===⇒ 1.

50

1.50

2.45 2.4
5

1.50

2.87
1

2 3

4

Figure 2.1: Example of an aDGP instance and solution with 4 atoms.

As demonstrated in the work by Saxe in 1980, the complexity of this problem
within a Euclidean space with of dimension K is NP-Hard [20]. This is result is
derived through a reduction that associates this problem with the 3-Satisfiability
Problem.
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2.1.2 The Unassigned Distance Geometry Problem (uDGP)

In the unassigned distance geometry problem (uDGP), only the distances are pro-
vided, lacking the information about the specific pairs of vertices to which these dis-
tances correspond. Therefore, in addition to finding the realization for the vertices,
it is also necessary to associate the input distances to vertex pairs they correspond
to.

Definition 5 (Unassigned Distance Geometry Problem, uDGP [19]). Given an in-
teger K > 0, a set of vertices V and a list of distance values d1, d2, . . . , dm, find an
injective function g : {1, . . . ,m} → {vivj : i = 1, . . . , n− 1; j = i + 1, . . . ,n} and a
function x : V → RK such that ∀{i, j} ∈ g({1, . . .m}),

∥xi − xj∥ = δij (2.2)

and
δij = dg−1(i,j) (2.3)

where xi = x(vi),xj = x(vj) and ∥xi − xj∥ is the Euclidean distance between the
coordinates xi and xj.

Here, the x function is also the realization of the graph G associated to the
uDGP, and g is an assignment function that defines a set E ⊂ v × V , the edges of
G. An example of uDGP is presented in Figure 2.2.

{dk} =
[
1.50 1.50 1.50 2.45 2.45 2.87

] uDGP
===⇒ 1.

50

1.50

2.45 2.4
5

1.50

2.87
1

2 3

4

Figure 2.2: Example of an uDGP instance and solution with 4 atoms.

By comparing Figures 2.1 and 2.2, one can observe the increased complexity of
the uDGP in contrast to the aDGP, since the same structure must be determined
with less input information. The uDGP class is particularly challenging because the
graph structure and the graph realization both need to be determined at the same
time.

Depending on the application, the embedding space for the Distance Geometry
Problem can be very general. Due to the central focus of this study on molecular
structures, our approach will revolve around three-dimensional space, with the value
of K set as 3.
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Chapter 3

Applications of the Distance
Geometry Problem

In this chapter, we elaborate further into the main applications of the Distance
Geometry Problem (DGP). Section 3.1 detailshow the DGP can be a tool in de-
termining the structural characteristics of molecules and proteins, and Section 3.2
extends the discussion for nanoparticles. Section 3.3 gives a brief overview of other
applications outside the field of chemistry.

3.1 Determination of molecular and protein

structures

Experimental methods can be employed to determine the atomic distances within
molecules and proteins, enabling the realization of their three-dimensional structures
as a solution to a Distance Geometry Problem. The most common approach is to
derive the list of distances from Nuclear magnetic resonance spectroscopy (NMR)
data [21–24]. Recently, various alternative methodologies for measuring distances
in biological and inorganic materials have emerged, holding significant potential for
ongoing advancements in this field [25, 26].

In an NMR experiment, a sample is positioned within a magnetic field, and
the signal is generated by the excitation of the sample’s nuclei using radio waves,
inducing nuclear magnetic resonance. This resonance is subsequently detected using
sensitive radio receivers. The intramolecular magnetic field surrounding an atom in
a molecule alters the resonance frequency. Since these magnetic fields are unique or
highly characteristic to individual compounds, the data obtained allows access to
intricate details regarding the electronic structure of the molecule and its specific
functional groups [27].
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NMR experiments can also be used to calculate interatomic distances because of
the Nuclear Overhauser Effect (NOE). This effect describes the change in integrated
intensity of one NMR resonance when another is saturated through irradiation with
a radio frequency field. This change in resonance intensity arises from the proximity
of the nucleus to those directly affected by the radio frequency perturbation and
enables the determination of the distance between two nuclei.

Due to the significant errors in the distances calculated in NMR experiments
exploiting the NOE, those are usually treated as intervals, rather than precise values.
Hence, when formulated as an instance of the DGP, they become restraints rather
than constraints.

After the distances are determined, a substantial amount of experimental effort
is dedicated to determining the specific pair of nuclei associated with each distance
extracted from NMR data. This process enables the formulation of the problem as
an aDGP [13]. Since the information that is actually given by NMR experiments
consists of a list of distance values that are only subsequently assigned to atom pairs,
the problem can be formulated directly as an uDGP [19]. This poses a challenge,
however, due to the large size of those instances, as shown in Figure 3.1, and the
additional complexity of the uDGP when compared to the aDGP.

(a) Ribbon diagram (b) Individual atoms

Figure 3.1: Three-dimensional structure of the small human rac1 protein [4].

Figure 3.1 depicts the configuration of the human rac1 protein, which is a rel-
atively small protein [4]. Usual protein structures are comprised of thousands of
atoms. As the number of distance values increases, the complexity of the uDGP
escalates significantly, posing a substantial challenge when attempting to determine
protein structures using this method. DUXBURY et al. [19] proposed the first
methods to realize the structure of proteins using the uDGP inside a heuristic.
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3.2 Determination of nanoparticle structures

Nanostructure-related distance geometry problems arise across a diverse spectrum
of materials, encompassing intricate molecules, nanoparticles, polymers, as well as
non-crystalline elements embedded within crystalline matrices, among others. In
the determination of nanostructures, achieving high resolution is necessary. This
is because the behavior of nanostructured materials and intricate molecules is ex-
ceptionally responsive to even small alterations in interatomic distances. Thus,
precision in nanostructure determination is crucial for comprehending and crafting
materials effectively [13].

The pair-distribution function (PDF) method serves as a versatile and easily
accessible approach for investigating the local atomic structure of nanoparticles.
PDF results can be derived from X-ray, neutron, or electron total scattering data,
and in many instances, data collection can be conducted efficiently [28].

The PDF results can be further processed into a radial distribution function,
RDF. An example of a PDF and its associated RDF are shown in Figures 3.3 and
3.4, respectively. The experimental interatomic distances are obtained from the
positions of peak maxima and shoulders of the RDF, and their multiplicities are set
proportionally to the peak areas. From this list of distances, the structure can be
reconstructed by using global optimization methods like the uDGP.

Figure 1.2 in Section 1.1 illustrates different types of nanoparticles. The number
of atoms in the structure of those particles can vary from a few hundred to thousands.
A common example of a small nanoparticle is fullerene, C60, shown in Figure 3.2.

Figure 3.2: Ball-and-stick representation of the structure of fullerene, C60.

Nanoparticles typically contain fewer atoms compared to proteins, and the more
precise distance data from PDF when compared to NMR makes the determination
of nanoparticle structure an easier problem than the protein analog. Consequently,
employing the uDGP for structural determination of nanoparticles is a more common
application.
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Figure 3.3: Experimental pair distribution function, PDF, from solid C60 as a function
of distance. The red line shows background arising from interparticle correlations [5].

0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

0

Distance, r(Å)

R
ad

ia
ld

ist
rib

ut
io

n
fu

nc
tio

n,
R
(Å

−
1
)

Figure 3.4: The background-subtracted data from the solid C60 PDF in the form of the
radial distribution function [5].
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3.3 Other applications

The Distance Geometry Problem has various well-established applications, including
wireless networks, statics, dimensionality reduction, and robotics. LIBERTI et al.
[8] provide an extensive list of applications for DGP. Here, we summarize a selection
of some of the most relevant ones.

In wireless networks, mobile sensors often determine their pairwise distances by
monitoring their communication energy consumption. These distance measurements
are subsequently utilized to compute the precise positions of each sensor within the
network.

Statics, on the other hand, focuses on analyzing the equilibrium of rigid struc-
tures, predominantly those of human construction, such as buildings and bridges,
when subjected to external forces. A well-known model for such structures is the
bar-and-joint framework, which is essentially a weighted graph. The central chal-
lenge in this context is to determine whether a given graph, with a specified distance
function along its edges, exhibits rigidity or flexibility. Additionally, there is the re-
lated task of determining whether a given graph effectively models a rigid structure,
independently of the specific distance function applied.

In the case of dimensionality reduction, the objective is to discover a projection
within the plane or space that visually aligns the graph as closely as possible with
its higher-dimensional representation.

In robotics, the primary concern revolves around understanding the movement
of a robotic arm or a system of robotic arms within a given space to execute specific
tasks. This involves knowledge of known distances, such as the distances from a joint
to its neighboring joints. The central problem lies in assigning coordinate values to
the position vector of the farthest joint.
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Chapter 4

Methods for solving the uDGP

In this chapter, we explore the main methods in the literature for solving the uDGP
in the context of the realization of the structure of nanoparticles and proteins. Sec-
tion 4.1 presents the heuristic methods which were the initial techniques employed
for solving molecular conformation problems. Section 4.2 discusses mathematical
programming methods, which constitute the fundamental approach within our pro-
posed methodology.

4.1 Heuristic methods

The first methods which employed the uDGP for the realization of chemical struc-
tures focused their studies on nanoparticles. Since nanostructures usually have fewer
atoms than proteins, and more accurate experimental distance data is available, their
instances are easier.

JUHÁS et al. [5] proposed the Liga method in 2006 and GUJARATHI et al. [29]
proposed the TRIBOND method in 2014. Those were the first generation method-
ologies to solve the uDGP applied to chemical structure problems [19]. Both meth-
ods are heuristics that adopt a build-up approach and rely on the availability of
adequate distance constraints to guarantee a singular and unambiguous solution at
each stage of the procedure.

4.1.1 Liga

The Liga method consists of a stochastic algorithm which grows large clusters by
adding atoms to a population of high-quality subclusters. This algorithm incorpo-
rates a strategy for backtracking and updating populations of high-quality clusters
at each size, which is inspired by promotion and relegation in sport—such as occurs
in European soccer leagues like La Liga in Spain
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The Liga algorithm can be described as follows [5]:

A. Build-up procedure. Start with a single atom, and place the second atom
at a randomly selected distance from the target list. Find the third position by
constructing a triangle using two target distances. Add additional atoms are
by constructing 4-vertex pyramids, while attempting to use only the allowed
distances from the target list.

There are many small clusters that use allowed target lengths, but are incon-
sistent with the target structure. Growth from these incorrect clusters eventually
leads to an increase in the cost function, and the algorithm then has to backtrack
to repair the faulty part of the cluster.

B. Backtracking procedure. Backtracking is carried out by first evaluating
the individual atom contributions to the total error and removing the worst
atoms according to a stochastic procedure where the probability an atom is
removed is proportional to its associated error contribution.

4.1.2 TRIBOND

The TRIBOND method consists of a deterministic algorithm. The theoretical foun-
dations of the method are based on rigidity theory, which enables derivation of a
polynomial bound on its efficiency. The algorithm consists of finding a core, which
is shown in Figure 4.1 by setting the smallest bond as the base bond and then test
all the bond combinations using the triangle inequality to generate feasible triangle
pairs. Subsequently, in the build-up procedure, more atoms are added to the core.

base bridge

Figure 4.1: An example of a core in the TRIBOND method. In two dimensions, it
consists of four points. The horizontal bond is the base, in black, the bonds below it, in
blue, make up the base triangle while those above it, in red, make up the top triangle.
The vertical bond is the bridge, in green.
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The TRIBOND algorithm can be described as follows [29]:

A. Core finding procedure.

1. Choose the shortest bond as the base bond and a window (subset) of
W = 6 smallest entries in the distance list for the core finding search.

2. Iterate over all triangles constructed with the triangle inequality that
have the same base bond using distances in the window W .

3. Search over all pairs of feasible triangles generated above and calculate
the bridge bond. Using a binary search, test if there is an unused distance
that matches the bridge bond. If such a value is found, we have a core.
Remove the edges used from the distance list and exit to the buildup
procedure.

B. Build-up procedure.

1. Search over all sets of two edges from the distance list to find a set
compatible with the base triangle in the existing structure. Search over
the distance list to test the bridge bond.

2. If successful, remove from the distance list the edges that are used in
connecting the newly added node. If not all atoms have been places,
return to the previous step and resume the search.

3. If no compatible set can be found, find a new core and restart.

Core finding requires a search across all potential base and top triangles, whereas
buildup only demands a search through top triangles, since the base triangle is a
predetermined component of the structure. As a result, buildup necessitates consid-
erably fewer computations than core finding. This procedure is outlined in Figure
4.2.

4.2 Mathematical programming methods

In 2020, DUXBURY et al. [19] introduced mathematical programming formulations
for the uDGP in the context of molecular and biomolecular structure determination.
Alongside presenting theoretical findings connected to these formulations, they also
introduced a novel heuristic approach for addressing this problem.
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Due to the properties of the assignment function g outlined in Definition 5,
binary variables denoted as aki,j are introduced such that

aki,j = 1 ⇐⇒ distance dk is assigned to the pair (i, j) ∈ V × V (4.1)

4.2.1 Model M1

Considering vertices v1, . . . , vn ∈ V and distance values d1, . . . , dm, the uDGP can
be modeled as:

min
n−1∑
i=1

n∑
j=i+1

(
m∑
k=1

aki,j

(
∥xi − xj∥2 − d2k

)2)
(4.2)

subject to:

n−1∑
i=1

n∑
j=i+1

aki,j ≤ 1 k = 1, 2, . . . ,m (4.3)

m∑
k=1

aki,j = 1 i = 1, . . . n− 1, j = i+ 1, . . . n (4.4)

where xi ∈ R3, aki,j ∈ {0, 1}.
The relationship between a uDGP solution and a solution to Model M1 is stated

in Theorem 1 [19].

Theorem 1. A pair (g,x) is a solution for an uDGP instance associated to a graph
G = (V ,E), with |V | = n, |E| = m, g : 1, . . . ,m → V × V , and x : V → R3, if and
only if (x, a) is a global optimal solution to Model M1.

4.2.2 Model M1R

Model M1 can only solve instances of up to five atoms in a reasonable time. One
of the reasons for the slow performance of the model is the huge number of binary
variables aki,j. To reduce number of binary variables in Model M1, a formulation with
only continuous variables was introduced, inspired by the Solid Isotropic Material
with Penalization (SIMP) method [30, 31].

min t−
n−1∑
i=1

n∑
j=i+1

(
m∑
k=1

(
aki,j
)2) (4.5)
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subject to:

n−1∑
i=1

n∑
j=i+1

(
m∑
k=1

aki,j

(
∥xi − xj∥2 − d2k

)2)
= t (4.6)

n−1∑
i=1

n∑
j=i+1

aki,j ≤ 1 k = 1, 2, . . . ,m (4.7)

m∑
k=1

aki,j = 1 i = 1, . . . n− 1, j = i+ 1, . . . n (4.8)

where t ≥ 0, xi ∈ R3, 0 ≤ aki,j ≤ 1.
The relationship between a uDGP solution and a solution to Model M1R is

stated in Theorem 2 [19].

Theorem 2. A pair (g,x) is a solution for an uDGP instance associated to a graph
G = (V ,E), with |V | = n, |E| = m, g : 1, . . . ,m → V × V , and x : V → R3, if
and only if (x, a) is a global optimal solution to Model M1R for some value of t with
globally optimal objective function value equal to −m.

4.2.3 NEW-TRIBOND (NT)

Model M1R demonstrates superior capacity in solving larger instances when com-
pared to Model M1. Nevertheless, when confronted with instances featuring hun-
dreds of atoms, it falls short. To address such instances, a heuristic inspired by the
TRIBOND method, leveraging the foundation of Model M1R, can be employed.

The first step is to find a core, positions in R3 for five vertices with ten associated
distances provided from the list of distance values, solving Model M1R considering
just five points, and then increase its size by adding one vertex position at a time
solving a modification of Model M1R, where four random points (already fixed) are
used to find the next position:

A. Core finding procedure.
Find a core x1, . . . ,x5 ∈ R3 solving the problem

min t−
4∑

i=1

5∑
j=i+1

(
m∑
k=1

(
aki,j
)2) (4.9)
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subject to:

4∑
i=1

5∑
j=i+1

(
m∑
k=1

aki,j

(
∥xi − xj∥2 − d2k

)2)
= t (4.10)

4∑
i=1

5∑
j=i+1

aki,j ≤ 1 k = 1, 2, . . . ,m (4.11)

m∑
k=1

aki,j = 1 i = 1, . . . 4, j = i+ 1, . . . 5

(4.12)

where t ≥ 0, xi ∈ R3, 0 ≤ aki,j ≤ 1.

B. Build-up procedure.

1. For i = 6, . . . ,n, solve the problem

min t−
∑
j∈J

(
mi∑
k=1

(
aki,j
)2) (4.13)

subject to:

∑
j∈J

(
mi∑
k=1

aki,j

(
∥xi − xj∥2 − d2k

)2)
= t (4.14)∑

j∈J

aki,j ≤ 1 k = 1, 2, . . . ,mi (4.15)

m∑
k=1

aki,j = 1 j ∈ J , . . . n (4.16)

where t ≥ 0 and 0 ≤ aki,j ≤ 1. Here, xi ∈ R3 is the position to be
determined. Here the set J includes the indices of all of the already fixed
points xj ∈ R3, j ∈ J ⊂ {1, . . . , i− 1}, and mi is the number of available
distances.

2. If a set of compatible distances cannot be found for some i = 6, . . . ,n,
find a new core (return to Step 1) and restart.

The importance of a core in Step A is to allow, with high probability [29], to
start correctly the reconstruction of the molecular structure. After finding a core,
the geometric idea of Step B is to intersect fours spheres [32] (centered at points yj),
which gives one point if there are consistent distance values (radii of the spheres)
from the list of distances. This algorithm follows the same procedure outlined in
Figure 4.2.
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Figure 4.2: The TRIBOND algorithm.
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Chapter 5

Proposed Methods

In this chapter, the proposed methods for solving the Unassigned Distance Geom-
etry Problem (uDGP) will be discussed. To begin, Section 5.1 will introduce our
new mathematical programming formulations for uDGP, building upon the concepts
outlined in Section 4.2. Following that, in Section 5.3, we will elaborate on a novel
heuristic that harnesses these newly developed formulations.

5.1 New mathematical programming models

The core concept behind our approach involves reconfiguring the objective function
in Equation 4.2 in a manner that is becomes convex. We propose the following
objective function:

min
n−1∑
i=1

n∑
j=i+1

(
m∑
k=1

aki,j

∣∣∣∥xi − xj∥ − dk

∣∣∣) (5.1)

5.1.1 Model M2

Considering our new objective function, which can be rewritten as:

min
m∑
k=1

yk (5.2)

subject to the original constraints 4.3 and 4.4:

n−1∑
i=1

n∑
j=i+1

aki,j ≤ 1 k = 1, 2, . . . ,m (5.3)

m∑
k=1

aki,j = 1 i = 1, . . . n− 1, j = i+ 1, . . . n (5.4)
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and,

yk ≥ αk, yk ≥ −αk (5.5)

t2i,j = ∥xi − xj∥2 (5.6)

−(1− aki,j)D + ti,j ≤ zki,j ≤ ti,j + (1− aki,j)D (5.7)

−aki,jD ≤ zki,j ≤ aki,jD (5.8)

−(1− aki,j)D + (dk + αk) ≤ zki,j ≤ (dk + αk) + (1− aki,j)D (5.9)

where yk, tij, zijk ≥ 0, xi, αk ∈ R, aki,j ∈ {0, 1} for i = 1, . . . n − 1, j = 1 +

1, . . . n, k = 1, 2, . . . ,m, and D = max{dk}:
The relationship between a uDGP solution and a solution to Model M1R is

stated in Theorem 3.

Theorem 3. A pair (g,x) is a solution for an uDGP instance associated to a graph
G = (V ,E), with |V | = n, |E| = m, g : 1, . . . ,m → V × V , and x : V → R3, if and
only if (x, a) is a global optimal solution to Model M2 for some values of (y,α, z, t).

Theorem 3 follows trivially from an adaptation of Theorem 1.

5.1.2 Model M2C

Another approach to diminish the large number of binary variables in instances with
more atoms involves considering the multiplicity of the input distances. This can
be seen by considering the C60 molecule as illustrated in Figure 5.1, where there are
only 21 different interatomic distances of the total 1770.

1 2 3 4 5 6 7 8
0

50

100

150

Distance, r(Å)

M
ul

tip
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ity

=⇒

Figure 5.1: Fullerene, C60, that has a degenerate distance list with a total of 1770
interatomic distances, but only 21 unique.
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Thus, it is possible to modify Model M2 reducing the number of integer variables
by considering the distance multiplicities. Considering that each distance dk has
multiplicity ck, the original constraints 4.3 and 4.4 can be rewritten as:

n−1∑
i=1

n∑
j=i+1

aki,j ≤ ck k = 1, 2, . . . ,m (5.10)

m∑
k=1

aki,j = 1 i = 1, . . . n− 1, j = i+ 1, . . . n (5.11)

The objective function and all the other constraints in M2 remain unchanged.

5.2 Model M2R

Unfortunately, the continuous relaxation of the objective function of Models M2
and M2C is not convex. Inspired by the increased performance of Model M1R in
relation to Model M1, we have also proposed a modification of Model M2 with
objective function:

min
m∑
k=1

yk +
n−1∑
i=1

n∑
j=1+1

(
t2ij − ∥xi − xj∥2

)
(5.12)

Subject to constraints 5.5, 5.7, 5.8, 5.9, 5.10 and 5.11 of Model M2C, and with
constraint 5.6 being replaced by:

t2i,j ≥ ∥xi − xj∥2 (5.13)

for i = 1, . . . n − 1, j = 1 + 1, . . . n. The continuous relaxation of this new Model
M2R has a non-convex objective function, and its set of constraints is convex. From
constraint 5.13 we can say that any local optimum of will imply:

t2i,j = ∥xi − xj∥2 (5.14)

for i = 1, . . . n− 1, j = 1 + 1, . . . n.

5.3 New heuristic (NT2)

Likewise for M1 and M1R, Model M2C can solve larger instances when compared
to Model M2. However, it also cannot solve instances containing dozens of atoms.

To address these challenging instances, a similar approach as in Heuristic NT can
be employed. The Heuristic NEW-TRIBOND-2 (NT2) employs the same principle
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as NEW-TRIBOND, with the distinction that Model M2C is employed at each step:

A. Core finding procedure.
Find a core x1, . . . ,x5 ∈ R3 solving the problem

min

mi∑
k=1

yk (5.15)

subject to:

4∑
i=1

5∑
j=i+1

aki,j ≤ ck k = 1, 2, . . . ,m (5.16)

m∑
k=1

aki,j = 1 i = 1, . . . 4, j = i+ 1, . . . 5 (5.17)

And constraints 5.5-5.6 for i = 1, 2, . . . 5, j = 1, 2, . . . 5,

B. Build-up procedure.

1. For i = 6, . . . ,n, solve the problem

min

mi∑
k=1

yk (5.18)

subject to:

4∑
i=1

5∑
j=i+1

aki,j ≤ cik k = 1, 2, . . . ,m (5.19)

mi∑
k=1

aki,j = 1 i = 1, . . . 4, j = i+ 1, . . . 5 (5.20)

And constraints 5.5-5.6 where i is the index of the position to be deter-
mined, xi ∈ R3, for j ∈ J ⊂ {1, . . . , i−1}, and k ∈ 1, . . . ,mi. Here, J is a
random set with four indices related to already fixed points and mi is the
number of available distances with their respective available multiplicity
cik.

2. If a set of compatible distances cannot be found for some i = 6, . . . ,n,
find a new core (return to Step 1) and restart.

This algorithm also follows the same procedure outlined in Figure 4.2.
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Chapter 6

Instances

This chapter describes the instances used to validate our proposed approaches for
solving the Unassigned Distance Geometry Problem (uDGP). In the context of this
work, an instance is regarded as the input data for all the mathematical program-
ming models for the uDGP discussed previously. Two types of instances were stud-
ied: Lennard-Jones clusters and Lavor Instances.

In Chapter 3 we stated that the main application for the uDGP is the realization
of the three-dimensional structure of nanoparticles and proteins. Section 6.1 details
the Lennard-Jones clusters were used to assess the model’s efficacy in reconstructing
nanostructures, while Section 6.2.2 elaborates on the Lavor Instances, employed
to evaluate the performance of the new methods in reconstructing molecules and
proteins.

6.1 Lennard-Jones Clusters

The n-atom Lennard-Jones cluster, LJ-n, is the ground state configuration of n

atoms assuming a Lennard-Jones pair potential acting between all the atoms. These
systems occupy a distinct and crucial role in evaluating models for nanostructure
investigation, which is primarily attributed to the simplicity in modeling weak forces
they exhibit.

Another important aspect is the convenient generation of physical realizations of
these systems in the form of rare gas clusters. Through techniques such as electron
diffractometry [33] and mass spectrometry [34, 35], the experimental measurement
of these rare gas clusters enables the validation of computational global optimiza-
tion outcomes against real-world data. Consequently, Lennard-Jones clusters have
become the standard benchmark for new optimization methods for the study of
nanoparticle structures [36–38].
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6.1.1 Lennard-Jones Cluster instance generation

The three-dimensional structure of the cluster is determined by minimizing the sum:

fv =
∑

(i,j)∈E

(
Aij

r12ij
− Bij

r6ij

)
. (6.1)

where fv is the Lennard-Jones potential, E is the set of all atom pairs (i, j) and Aij

and Bij are constants defined for each pair.
Hoare et al. [6] and Northby [39] have successfully determined the globally

optimal structures for LJ-n systems across different n values.

(a) n = 13 (b) n = 38 (c) n = 55

Figure 6.1: Ball-and-stick representation of the three-dimensional structures of Lennard-
Jones clusters of different sizes [6, 7].

Utilizing these coordinates, the distances between every atom pair are computed
and subsequently employed as input for the uDGP.

6.2 Lavor Instances

The Lavor Instances [40] are designed to resemble the geometry of molecular and
protein frameworks, offering a crucial tool for evaluating the effectiveness of models
for investigating molecular and protein structures.

6.2.1 Lavor Instances background model

The Lavor Instances are based on the model proposed by Phillips et al. [41]. In
this model, a molecule is conceived as a sequence of N atoms, each possessing
Cartesian coordinates denoted by x1, . . . ,xN in the three-dimensional space R3. For
any consecutive pair of atoms i and j, the bond length rij represents the Euclidean
distance between them. When considering three consecutive atoms, i, j, and k, the
bond angle θik reflects the geometric angle formed by the third atom in relation to
the line defined by the preceding two. Similarly, for a sequence of four consecutive
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atoms, i, j, k, and l, the angle ωil, called the torsion angle, quantifies the rotation
between the planes formed by the atoms i, j, k and j, k, l.

Phillips also defines the following sets to facilitate further description:

• M1 is the set of pairs of consecutive atoms (i, j).

• M2 is the set of atom pairs (i, k) separated by two covalent bonds.

• M3 is the set of atom pairs (i, l) separated by three covalent bonds.

• M4 is the set of atom pairs (i, j) separated by more than two covalent bonds.

The three-dimensional structure of a molecule is determined by minimizing the sum
of the following terms:

fd =
∑

(i,j)∈M1

crij
(
rij − r0ij

)2
,

fa =
∑

(i,k)∈M2

cθik
(
θik − θ0ik

)2
,

fω =
∑

(i,l)∈M3

cωil
(
1 + cos(nilωil − ω0

il)
)2

,

fv =
∑

(i,j)∈M4

(
Aij

r12ij
− Bij

r6ij

)
.

(6.2)

where fd, fa and fω are the potentials corresponding to bond lengths, bond angles,
and torsion angles, respectively. The constant crij is the bond stretching force con-
stant, cθik is the angle bending force constant, and cωil is the torsion force constant.
The constants r0ij and θ0ik represent the equilibrium values for bond length and bond
angle, respectively. The constant nil defines the number of minima involved and
ω0
ilis the phase angle that defines the position of the minima.

Similarly to the case of Lennard-Jones clusters, the term fv is the Lennard-Jones
potential, where Aij and Bij are constants defined by each atom pair (i, j).

In this model, the bond lengths and bond angles are defined as rij = 152.6 pm

for all (i, j) ∈ M1 and θik = 109.5◦ for all (i, k) ∈ M2, respectively. Additionally,
cωil = 1, nil = 3, and w0

il = 0 for all (i, l) ∈ M3, which results in three distinct
preferred torsion angles: 60◦, 180◦, and 300◦. By employing these parameters, we
can calculate atomic distances and create instances for the uDGP.

6.2.2 Lavor Instance generation

Considering bond lengths rij = 152.6 pm and bond angles θik = 109.5◦ fixed, the
three-dimensional structure of a molecule can be completely determined by its tor-
sion angles, which are randomly selected from the set {60◦, 180◦, 300◦}.

26



To generate distances for the uDGP input, we first obtain Cartesian coordinates
for each atom of the chain (xn1,xn2,xn3), using the following matrices:

xn1

xn2

xn3

1

 = B1B2 . . . Bn


0

0

0

1

 , n = 1, 2, . . . ,N (6.3)

where B1 is the 4× 4 identity matrix,

B2 =


−1 0 0 −r12

0 1 0 0

0 0 −1 0

0 0 0 1

 , B3 =


− cos θ13 − sin θ13 0 −r23 cos θ13

sin θ13 − cos θ13 0 r23 sin θ13

0 0 1 0

0 0 0 1

 ,

and, for i = 4, . . . ,N ,

Bi =


− cos θ(i−2)i − sin θ(i−2)i 0 −r(i−1)i cos θ(i−2)i

sin θ(i−2)i cosω(i−3)i − cos θ(i−2)i cosω(i−3)i − sinω(i−3)i r(i−1)i sin θ(i−2)i cosω(i−3)i

sin θ(i−2)i sinω(i−3)i − cos θ(i−2)i sinω(i−3)i cosω(i−3)i r(i−1)i sin θ(i−2)i sinω(i−3)i

0 0 0 1


Figure 6.2 shows an instance generated using this procedure.

Figure 6.2: Example of a Lavor instance with 47 atoms.

Once these coordinates are generated, the distances between each pair of atoms
are calculated to serve as input for the uDGP. In Section 3.1 we stated that because
the distance information from NMR experiments has significant errors, they are
treated as restraints rather than constraints. In this work, however, no uncertainties
will be incorporated to instances, and the distance data will be precise.
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Chapter 7

Results and Discussion

This chapter discusses all the experimental infrastructure to validate our new ap-
proach to solve the Unassigned Distance Geometry Problem (uDGP). Section 7.1
details the experimental setup of the experiments and the software used to solve the
mathematical programming models, and Section 7.2 explores the experiments done,
and the results obtained. Section 7.3 discusses the results.

7.1 Experimental Setup

This section presents the experimental setup used for the experiments. All exper-
iments were conducted using a server equipped with an Intel® Core™ i9-10885H
CPU @ 2.40GHz with 8 cores and hyperthreading disabled.

Gurobi Optimizer is a prescriptive analytics platform and a decision-making
technology developed by Gurobi Optimization. The Gurobi Optimizer is a solver,
since it uses mathematical optimization to calculate the answer to a problem [42].
The Gurobi 10.0.2 build v10.0.2rc0 (linux64) solver was used to obtain the solution
for the mathematical programming models in all experiments.

The experiments were conducted using the Python 3.11 programming language
employing the pyomo package, an open-source software package that supports a
diverse set of optimization capabilities for formulating, solving, and analyzing opti-
mization models [43, 44].

7.2 Experiments and Discussion

This section explores and discusses the experiments done to validate our new math-
ematical programming formulation and heuristic to solve the uDGP.
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7.2.1 Mathematical programming models

To assess the performance of Models M2 and M2C, both were employed in the
realization of Lennard-Jones clusters of varying sizes. To benchmark our findings,
we employed method M1R, to solve the same instances. The outcomes are presented
in Table 7.1.

Table 7.1: Performance comparison of mathematical programming models in solving
Lennard-Jones cluster instances for the uDGP of different sizes and a time limit of 1000
seconds. Ten instances were solved for each size.

CPU time (s)

Size, n Success rate Average Standard deviation Minimum Maximum

Model M1R
4 100% 0.0997 0.0016 0.0986 0.102
5 100% 1.56 0.0358 1.53 1.62
7 0%

Model M2
4 100% 0.0903 0.0122 0.0717 0.106
5 100% 0.535 0.0128 0.521 0.550
6 100% 8.06 0.477 7.38 8.61
7 0%

Model M2C
4 100% 0.0696 0.008 74 0.0608 0.0801
5 100% 0.0832 0.0474 0.795 0.913
6 100% 2.38 0.0952 2.25 2.48
7 100% 325 9.47 309 333
8 0%

Model M2R
4 100% 0.223 0.0354 0.184 0.276
5 100% 10.5 0.517 9.81 11.2
7 0%

For all models, instances of larger size than those shown in Table 7.1 could not
be solved within the time limit of 1000 seconds. The short time limit of 1000 seconds
was set just to compare the capability of the models in solving small instances. Real
applications could be solved with a larger time limit.

Table 7.1 reveals a notable enhancement in performance for Model M2 when
solving various instances. Specifically, for instances with 4 atoms, the performance
gain is modest. However, for 5 atoms, there is a substantially improved perfor-
mance, with model M2 solving instances in approximately one-third of the time
taken by Model M1R. The performance improvement becomes even more striking
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when dealing with instances larger than 6 atoms, as Model M2 successfully found
a correct solution in just 8 seconds, while the benchmark Model M1R failed to find
any solution within 1000 seconds.

Model M2C exhibited superior performance compared to Model M2, highlight-
ing the impact of reducing the number of binary variables on the time needed to
encounter a solution. Across all instance sizes, Model M2C consistently achieved
faster solution times, even successfully finding solutions for instances with 7 atoms
within the specified time limit. Unfortunately, the relaxed Model M2R showed poor
performance, taking a much longer time to solve small instances.

Similar experiments were conducted for Lavor instances, and the results can be
found in Table 7.2.

Table 7.2: Performance comparison of mathematical programming models in solving
Lavor instances for the uDGP of different sizes and a time limit of 1000 seconds. Ten
different instances were solved for each size.

CPU time (s)

Size, n Success rate Average Standard deviation Minimum Maximum

Model M1R
4 100% 0.335 0.003 74 0.330 0.340
5 100% 47.5 32.2 12.7 81.3
6 0%

Model M2
4 100% 0.237 0.0177 0.223 0.267
5 100% 10.8 6.60 2.23 17.6
6 60% 255 124 39.9 490
7 0%

Model M2C
4 100% 0.104 0.0218 0.0799 0.139
5 100% 2.12 0.702 0.909 2.61
6 80% 47.2 23.1 17.4 73.8
7 0%

Model M2R
4 100% 0.834 0.226 0.609 1.14

The results obtained while evaluating the models’ performance in solving Lavor
instances closely resembled those found for Lennard-Jones cluster instances. In both
cases, both Models M2 and M2C outperformed the benchmark Model M1R, with
M2C exhibiting faster performance owing to the reduced number of binary variables.
Notably, for instances with smaller sizes, solving a Lavor instance typically required
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more time compared to a Lennard-Jones cluster of equivalent size. This difference
is likely attributed to the distinct nature of the instances in this scenario, and it’s
worth noting that the standard deviation was significantly higher, underscoring the
significant influence of geometry on the models’ performance. Here we also see that
Model M2R takes longer to find a correct solution, even when compared to the
benchmark Model M1R.

7.2.2 Heuristics

We assessed our new Heuristic, NT2, which utilizes Model M2C, against the bench-
mark NT. As expected, the new heuristic performed faster than the benchmark, as
the key distinction lies in the fact that the new heuristic leverages the faster model
M2C. For the heuristics, the time limit was set to 5000 seconds. Again, the short
time limit was set just to compare the capability of the models. Real applications
could be solved with a larger time limit.

Table 7.3 showcases the results of a comparison of the performance in solving
Lavor instances of different sizes, confirming reduction in computational times for
Model NT2.

Table 7.3: Performance comparison of heuristics in solving Lavor instances for the uDGP
of different sizes and a time limit of 5000 seconds. Ten different instances were solved
for each size.

CPU time (s)

Size, n Success rate Average Standard deviation Minimum Maximum

Model NT
6 100% 23.7 11.8 6.26 42.8
7 100% 39.6 16.0 5.62 69.5
8 100% 57.1 22.2 17.4 84.8
9 100% 139 47.5 59.6 185
10 100% 297 128 53.2 443
20 100% 628 203 252 909
50 60% 2310 651 1380 3590

Model NT2
6 100% 2.02 0.822 0.945 2.94
7 100% 4.57 2.60 1.71 8.59
8 100% 11.6 5.18 2.21 19.3
9 100% 25.2 18.9 2.90 49.2
10 100% 162 85.8 41.3 308
20 100% 501 269 81.0 900
50 80% 1450 609 339 2180
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Similar experiments were conducted for Lennard-Jones cluster instances using
Model NT2. The results can be found in Table 7.4.

Table 7.4: Performance comparison of heuristics in solving Lennard-Jones cluster in-
stances for the uDGP of different sizes and a time limit of 5000 seconds. Ten instances
were solved for each size.

CPU time (s)

Size, n Success rate Average Standard deviation Minimum Maximum

Model NT2
6 100% 0.166 0.137 0.0320 0.448

7 100% 0.681 0.271 0.399 1.41

8 100% 5.90 2.88 2.91 12.9

9 100% 22.1 9.76 1.09 35.8

10 100% 107 74.7 5.42 252

20 100% 523 446 39.6 1110

50 100% 1690 736 523 1950

The solution of the uDGP using the NEW-TRIBOND type heuristics results in
a notably high standard deviation, as evident from Tables 7.3 and 7.4. This variance
occurs because there is no assurance that the initially encountered core is correct.
At each step, if an atom is placed incorrectly, the building-up procedure must reset
and search for a new core. Consequently, the same instance can entail a significant
or minimal number of resets, resulting in widely varying computational times.

The comparison between Tables 7.3 and 7.4 reveals that, for smaller instances,
the time needed to find a solution is shorter for Lennard-Jones instances than for
Lavor instances. As the instance size increases, the time difference diminishes. This
phenomenon occurs because the time required to find a core in a Lavor instance
increases at a slower rate than the time to find a core in a Lennard-Jones cluster
instance as the instance size grows, as illustrated in Figure 7.1.

The smaller increase in time required to find a core as the size of the instance
increases for Lavor instances is likely attributed to the presence of more recurring
patterns in Lavor instances as they expand in size. These recurring patterns can
facilitate the search for a core and contribute to the more gradual increase in com-
putational time compared to Lennard-Jones instances.
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Figure 7.1: Variation of the computational time required to find a five atom core with
instance size for Lennard-Jones cluster and Lavor instances.

7.2.3 Heuristics with core guessing

A set of experiments was conducted utilizing the NT2 heuristic, but with a slight
change: instead of solving Model M2C to find a core, cores were guessed based on the
inherent characteristics of the instance. This approach aimed to explore the potential
of applying chemical knowledge to construct structures by using known structural
subunits, such as aromatic rings, as building blocks. This method bypasses the need
for the most time-consuming step: finding the initial core. This approach could lead
to more efficient and faster solutions in cases where domain-specific knowledge can
inform the core construction process.

Table 7.5 presents the results of experiments conducted on Lavor instances, where
the initial core was guessed instead of being determined through computation.

In these experiments, the initial core was guessed by generating a smaller Lavor
instance with 5 atoms. A comparison between Tables 7.5 and 7.3 clearly demon-
strates that this approach significantly reduces the time needed to find a solution
for the uDGP. This method holds promise because, in many real-world applications,
there is often some prior chemical knowledge about the structure based on the na-
ture of the molecule that needs its structure determined. For instance, in the case
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Table 7.5: Performance comparison of heuristics in solving Lavor instances for the uDGP
of different sizes and a time limit of 1000 seconds, starting from a core guess. Ten
instances were solved for each size.

CPU time (s)

Size, n Success rate Average Standard deviation Minimum Maximum

Model NT2
6 100% 0.0714 0.0491 0.024 0.138
7 100% 0.203 0.184 0.0450 0.503
8 100% 3.06 2.10 0.749 6.52
9 100% 8.36 6.96 1.36 21.6
10 100% 17.9 10.7 1.78 29.5
20 100% 45.1 16.6 15.1 63.0
50 100% 335 244 98.6 765

of protein structure determination, commonly occurring amino acid structures can
serve as initial core guesses, streamlining the subsequent build-up procedure. This
approach can be valuable in situations where domain-specific knowledge can inform
and accelerate the structure determination process.

7.3 Discussion

As expected, both of our novel models: M2 and its variant M2C, were able to solve
the Unassigned Distance Geometry Problem, uDGP and showed good performance
when compared to a benchmark model: Model M1R [19].

The new heuristic NT2 also exhibited better performance than the benchmark
NT due to its implementation with the faster Model M2C. We also demonstrated the
capability of incorporating of chemical knowledge, which can substantially decrease
the time required to find the solutions of a Distance Geometry Problem.
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Chapter 8

Conclusion

This work presented new mathematical programming models, M2 and its variant
M2C, to solve the Unassigned Distance Geometry Problem, uDGP. Both results were
compared to a benchmark model: Model M1R [19]. Our results demonstrate that
both M2 and M2C outperform M1R across instances that resemble the structure
of molecules and nanoparticles, showing the potential of our new models in real
applications.

Furthermore, our investigation extends to the development and application of a
novel heuristic, NT2, which capitalizes on the faster Model M2C. This new Heuristic
also proved to be able to solve uDGP instances in less time than the benchmark
method NT [19].

In addition, we demonstrated how the incorporation of chemical knowledge per-
taining to the structures under investigation can be integrated into this novel heuris-
tic, resulting in even faster solutions.

As future work, we intend to delve into a detailed examination of the building-up
procedure within the heuristics. The objective is to develop strategies that minimize
the need to restart the entire process whenever an atom is positioned incorrectly.
This will lead to consistent and predictable solution times.

Additional research directions encompass the consideration of errors in exper-
imental distance data. This investigation seeks to enhance the robustness of our
reconstruction process by accounting for uncertainties in the input data.
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