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"Every kid starts out as a
natural-born scientist, and then

we beat it out of them. A few
trickle through the system with

their wonder and enthusiasm for
science intact." (Carl Sagan)
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA ABORDAGEM ESTATÍSTICA PARA ANALISAR O QUANTUM
ALTERNATING OPERATOR ANSATZ COM GROVER MIXER

Guilherme Adamatti Bridi

Março/2024

Orientador: Franklin de Lima Marquezino

Programa: Engenharia de Sistemas e Computação

O operador Grover mixer é uma versão variacional do operador difusão de Grover,
introduzido como um operador mixing para o Quantum Alternating Operator Ansatz
(QAOA) e usado em duas variantes, conhecidas como Grover Mixer QAOA (GM-
QAOA) e Grover Mixer Threshold QAOA (GM-Th-QAOA). Uma propriedade im-
portante dessas variantes é que o valor esperado é invariante para qualquer permu-
tação de estados. Como consequência, o algoritmo é independente da estrutura do
problema. Se, por um lado, esta característica levanta sérias dúvidas sobre a capaci-
dade do algoritmo de superar o bound do problema de busca não estruturada, por
outro lado, pode abrir caminho para o seu estudo analítico. Neste sentido, este tra-
balho considera uma abordagem estatística para analisar tanto o GM-QAOA quanto
o GM-Th-QAOA que resulta em expressões analíticas para o valor esperado que de-
pendem da distribuição de probabilidade associada ao espectro do hamiltoniano do
problema. Embora no caso do GM-QAOA a expressão dependa exponencialmente
do número de camadas, o caso mais simples do GM-Th-QAOA resulta em uma ex-
pressão independente desse parâmetro e, com ela, fornecemos limites para diferentes
métricas de desempenho. Posteriormente, estendemos a análise do GM-Th-QAOA
para um contexto mais geral para o QAOA com o Grover mixer que chamamos de
Grover-based QAOA. Nessa estrutura, que permite ao operador separador de fase
codificar qualquer compilação da função de custos, generalizamos todos os bounds
utilizando um argumento de contradição com a otimalidade do algoritmo de Grover
no problema de busca não estruturada. Como resultado, obtemos a principal con-
tribuição deste trabalho, formalizando a noção de que o Grover mixer reflete, no
máximo, uma aceleração quadrática ao estilo do algoritmo de Grover sobre a força
bruta clássica.
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The Grover mixer operator is a variational version of Grover’s diffusion opera-
tor, introduced as a mixing operator for the Quantum Alternating Operator Ansatz
(QAOA) and used in two variants known as Grover Mixer QAOA (GM-QAOA) and
Grover Mixer Threshold QAOA (GM-Th-QAOA). An important property of these
variants is that the expectation value is invariant over any permutation of states.
As a consequence, the algorithm is independent of the structure of the problem. If,
on the one hand, this characteristic raises serious doubts about the capacity of the
algorithm to overcome the bound of the unstructured search problem, on the other
hand, it can pave the way to its analytical study. In this sense, this work considers a
statistical approach to analyze both GM-QAOA and GM-Th-QAOA that results in
analytical expressions for the expectation value depending on the probability distri-
bution associated with the problem Hamiltonian spectrum. Although in the case of
GM-QAOA, the expression depends exponentially on the number of layers, the more
simple case of GM-Th-QAOA results in an expression with complexity independent
of that parameter, and, with it, we provide bounds for different performance metrics.
Subsequently, we extend the analysis of GM-Th-QAOA to a more general context
for QAOA with the Grover mixer we called Grover-based QAOA. In that framework,
which allows the phase separation operator to encode any compilation of the cost
function, we generalize all the bounds by using a contradiction argument with the
optimality of Grover’s algorithm on the unstructured search problem. As a result,
we get the main contribution of this work, formalizing the notion that the Grover
mixer, at most, reflects a quadratic Grover-style speed-up over classical brute force.
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Chapter 1

Introduction

The current state-of-the-art quantum computing technology is known as the Noisy
Intermediate-Scale Quantum (NISQ) era [2, 3]. During the NISQ era, we have
access to quantum computers with only tens or hundreds of qubits. As challenging
as the limitation on the number of qubits, is the presence of noise, which results in
coherent and incoherent errors that compromise the quality of output measurements
and consequently restrict the allowed depth of quantum circuits [4]. Unfortunately,
the protocols of quantum error correction, due to the large qubit requirements,
are far beyond NISQ device capabilities, in such a way that if we are interested
in achieving a speed-up of quantum algorithms over classical ones—often called
quantum advantage—at scales that are of practical interest in the short or medium
terms, we need to handle the limitations of NISQ devices [4].

In this context, the Variational Quantum Algorithms (VQA) [4], a class of hybrid
quantum-classical algorithms, have gained prominence in recent years as a poten-
tiality of quantum advantage in the NISQ era. These algorithms use the power
of classical computing to help overcome current technology limitations of quantum
computing. Specifically, they work with parameterized quantum circuits of limited
depth and number of qubits, using classical optimizers that use strategies based
on optimization or training to iteratively update the optimization parameters aim-
ing extremize1 a function based on observables measured from the quantum circuit.
There are several algorithms and classes of algorithms in the VQAs context, en-
compassing a wide range of tasks, from quantum chemistry and quantum physics to
combinatorial optimization and mathematical applications.

One of the most prominent cases of VQA is the Quantum Approximate Op-
timization Algorithm (QAOA) [5], which can be generalized to the Quantum Al-
ternating Operator Ansatz (QAOA) [6]. QAOA is a class of algorithms derived
from the Quantum Adiabatic Algorithm (QAA) [7, 8] and used heuristically to find

1Minimize or maximize.
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solutions to combinatorial optimization problems (COP) [9]. An extensive list of
optimization problems has already been considered in the context of QAOA, being
likely the Max-Cut problem the most well-studied [10]. The algorithm consists of
a given number of rounds of alternating application of two parameterized operators
in an initial state. The first is the phase separation operator, which changes the
relative phases between states according to the cost function (the objective function
of the COP), while the last one is the mixing operator, responsible for generating
interference between the states, changing its amplitudes [11, 12].

The original mixing operator of QAOA uses the transverse field mixer Hamil-
tonian [5], which is given by a sum of Pauli-X operators. Since then, many other
variations with different types of mixers have already been introduced in the lit-
erature [6, 12–15]. There is numerical evidence that the choice of mixing operator
significantly affects the performance of QAOA [11, 16, 17] and therefore choosing the
ideal mixer for a given optimization problem is an important research topic. One
variant of particular interest is the Grover Mixer Quantum Alternating Operator
Ansatz (GM-QAOA) [13]. The mixing operator of GM-QAOA is a variational ver-
sion of Grover’s diffusion operator of Grover’s algorithm [18, 19] called Grover mixer
operator. In GM-QAOA formulation, a necessary condition to the construction of
the mixing operator is the existence of an efficient2 preparation of uniform superpo-
sition over the feasible states—which covers problems like the Traveling Salesman
Problem, the Max k-Vertex Cover, and the Discrete Portfolio Rebalancing. Alter-
natively, the operator of Grover mixer can be constructed with the formulation of
Quantum Walk-based Optimization Algorithm (QWOA) [12, 14], a generalization
of QAOA that interprets the mixing operator as a Continuous-time Quantum Walk
(CTQW) operator [20–22]. In that case, the Grover mixer operator is equivalent to
QWOA on the complete graph up to a change of the scale on the operator param-
eter [23]. Problems such as the Capacitated Vehicle Routing [24] and the Portfolio
Optimization [25] have already been numerically studied within the QWOA frame-
work.

Another variant of Quantum Alternating Operator Ansatz using the Grover
mixer is the so-called Grover Mixer Threshold QAOA (GM-Th-QAOA) [26], an
algorithm combing such mixing operator with the more general Threshold QAOA
(Th-QAOA), which in turn changes the original phase separation to encode a compi-
lation of the cost function into a threshold function splitting the solution space from
a value. In particular, the choice of all angles as being equal to π reduces the GM-
Th-QAOA to Grover’s algorithm for marked states above (considering the original

2In this work, we use the terminology efficient for its well-known meaning in the complexity
theory, i.e., an efficient algorithm means an algorithm with runtime upper bounded by a polynomial
function on the size of the input of the problem.
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definition) a given threshold. An advantage of this variant is admitting an efficient
procedure to find optimal parameters—the angles and the threshold value—that
eliminates the costly variational loop of the usual QAOA. Furthermore, it has been
numerically observed that the performance of GM-Th-QAOA consistently overcomes
GM-QAOA in all instances considered [11, 17, 26].

The performance of QAOA with the Grover mixer, individually or compared with
other mixers, has already been considered in the literature. The initial thought, cor-
roborated by numerical experiments on small instances, was that the Grover mixer
would overcome transverse field mixer due to its ability to mix quickly and its global
symmetry among states [12, 16, 25]. However, later experiments on larger instances
indicated that this advantage soon disappeared with Grover mixer losing to trans-
verse field mixer [17] and performing even exponentially worse [11] than the clique
mixer [27, 28]. One can argue, summarizing insights and conclusions from these
recent studies, that the worst performance of the Grover mixer may be due to the
fact that it depends only on the distribution of the solution space and the algorithm
does not see the structure of the optimization problem and possibly is limited to the
bound of the unstructured search problem [29], drastically compromising algorithm
performance on large instances. On the other hand, other mixers, such as transverse
field and clique, could, in principle, overcome that limit by exploiting the underlying
problem structure.

Despite the performance limitation, the Grover mixer provides a unique oppor-
tunity to get analytical studies for QAOA. Historically, analytical results for QAOA
are rare and sparse due to the high complexity of the algorithm [11]. However, the
independence of the structure of the Grover mixer can greatly simplify the anal-
ysis. That has been noticed by Bennett and Wang [23], who used degeneracy in
solution space to make edge contractions on the complete graph of QWOA. Headley
and Wilhelm [30] went further and introduced a statistical approach (i.e., an ap-
proach based on Probability Theory [31, 32]) using random variables to model the
problem that led to an analytical expression of the expectation value of GM-QAOA
depending only on the probability distribution associated with the problem Hamil-
tonian spectrum—the solution space of the optimization problem. The prominent
statistical quantity of the resulting expression is the characteristic function, i.e., the
Fourier transform of the probability distribution. Although the complexity of that
expression scales exponentially with O(4r), where r is the number of layers, it does
not depend on the size of the problems, which allows computing the optimal pa-
rameter (or near-optimal) in size limit for problems with instances that converge
asymptotically towards a fixed distribution, such as the Number Partition Problem
with independent and identically distributed choice of the numbers. The statistical
approach was later generalized by Headley [33] to the structure-dependent trans-
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verse field mixer and the so-called line mixer, in a work that establishes how QAOA
can actually exploit the underlying structure of the problem.

1.1 Contributions

The main results of the present work can be divided into two parts. The first, present
on Sec. 4.1, is equivalent to the aforementioned statistical approach of Headley
and Wilhelm [30] for GM-QAOA. We develop it while working in the context of
QWOA on the complete graph before becoming aware of the existence of Headley
and Wilhelm [30] paper. As the results of the second part are a direct continuation
of the first one, we decided to keep it in the text. Furthermore, some differences
between our text and the work of Headley and Wilhelm [30] are listed.

• Headley and Wilhelm [30] use continuous random variables to model the so-
lution space as an asymptotic approximation on the limit of large size. We
use the exact case of discrete random variables, assuming the approximation
of continuous random variables only at times when it is convenient;

• We consider negative exponents on phase separation and mixing operators,
which by the symmetry of Grover mixer results exactly in the same expectation
value as when assuming positive exponents, the definition used by Headley and
Wilhelm [30];

• Headley and Wilhelm [30] assume on the analysis the context of unconstrained
optimization. We, on the other hand, define GM-QAOA as acting in a generic
feasible subspace. The equivalence is direct;

• As discussed previously, Headley and Wilhelm [30] applied the analysis to the
Number Partition Problem. That example is not present in our work;

• Headley and Wilhelm [30] make a brief discussion about the circuit compilation
of the Grover mixer operator, a topic not covered here;

• On the expectation value expression of arbitrary numbers of layers, we replace
our original notation with the Headley and Wilhelm [30] because we find it
more elegant. The same happens with the proof of Theorem 7;

• The original results of the present work are the following: the simplification
of one layer case given Theorem 9 and Corollary 1; the exact number of terms
of the general expectation value expression of GM-QAOA, given by Lemma 2;
Corollary 3 and the discussion on standard score, which cover all Subsec. 4.1.3;
the analytical results for the binary function on Subsec. 4.1.4; and the some
of the numerical experiments and discussions for GM-QAOA of Chapter 5.
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In his PhD thesis Ref. [33], David Headley includes some additional topics com-
pared to the paper Ref. [30]: an alternative method to the Lemma 1 to get Eq. (4.7)
from the last equality of Eq. (4.14); the conclusion that the performance of GM-
QAOA is invariant over the two first statistical moments (we get the same con-
clusion here with a slightly different approach); the connection of GM-QAOA with
Grover’s search (which is deeper explored here on the binary function analysis of
Subsec. 4.1.4); the use of the quantile of the expectation value as a metric of perfor-
mance for GM-QAOA (here, we consider it from the analysis of the GM-Th-QAOA
onwards); and numerical experiments with the continuous uniform distribution (nu-
merically studied here), the triangle distribution, and unstructured search problem
instances (i.e., bernoulli distributions)—in a comparative study that also includes
the normal distribution, a probability distribution already considered in Ref. [30].

The second part of this work is the extension of the statistical approach to
GM-Th-QAOA in Sec. 4.2 and the generalization of these results to a more general
framework we called Grover-based Quantum Alternating Operator Ansatz or simply
Grover-based QAOA in Chapter 5. These results are available on the preprint paper
of Bridi and Marquezino [34]. Beyond the results on GM-Th-QAOA and Grover-
based QAOA, we include in the paper some of the aforementioned original results
of GM-QAOA, such as the application of the binary function and the discussion on
the standard score.

The motivation for the analysis of GM-Th-QAOA is that although the statistical
approach provides surprising simplifications in GM-QAOA expectation value calcu-
lations, the expression is still too complicated to obtain formal bounds on the algo-
rithm’s performance through direct analytical treatment. Thus, to understand the
theoretical potential of the Grover mixer on combinatorial optimization—especially
to investigate the issue concerning the quadratic speed-up over classical brute force—
it is convenient to extend the analysis to the more simple case of GM-Th-QAOA.
Using the well-known formula of probability of Grover’s algorithm and its optimality
on average probability for the unstructured search [35, 36], we provide an expres-
sion for the expectation value with complexity independent on the number of layers,
which allows to study the asymptotic behavior of the algorithm. Rather than the
characteristic function, the prominent statistical quantity here is the conditional ex-
pected value. With a closed-form expression, we prove the conjecture on which the
efficient method of Golden et al. [26] of finding the optimization parameters is based
(see Subsec. 3.8.2 and 4.2.1). Furthermore, we provide bounds on the performance
of the expectation value of GM-Th-QAOA with the statistical quantities of quantile
and the standard score. On the first, we get an asymptotic tight bound that implies
the expected quadratic speed-up of GM-Th-QAOA over classical brute force. On the
second, we conclude that the maximum standard score achieved by the expectation

5



value of GM-Th-QAOA, hit by binary functions with specific ratios, scales linearly
with the number of rounds. As an immediate consequence, we bound the number of
layers to achieve a fixed approximation ratio. Finally, we combine both bounds to
argue that the algorithm’s performance is closely related to the asymptotic behavior
of the probability distribution on the limit of its support.

To get stronger results about the Grover mixer, we introduced the more general
Grover-based QAOA. In that framework, which includes both GM-QAOA and GM-
Th-QAOA, is allowed that the phase separation operator codifies any compilation
of the cost function in a real-valued function. We generalize all bounds of GM-
Th-QAOA to Grover-based QAOA with a technique that consists of bounding the
maximum amplification of the probability of measuring a set of degenerate states.
The argument used for this is based on showing that if there is an amplification
greater than the one provided by Grover’s search, we contradict the optimality of av-
erage provability on unstructured search [35, 36], building an explicit algorithm that
performance better than Grover’s algorithm. All bounds on Grover-based QAOA
follow the same asymptotic behavior as its correspondents on GM-Th-QAOA. As
a consequence, we get the principal contribution of this work, the formalization of
the notion that the Grover mixer is limited to the quadratic speed-up over classi-
cal brute force with an asymptotic performance, for instance, analog to the Grover
Adaptive Search (GAS) [37–40]. We apply the bounds in the context of the Max-
Cut problem. That way, by using the knowledge of the asymptotic behavior of the
probability distribution associated with the particular case of complete bipartite
graphs, we argue that for this class of graphs, the number of rounds required to
achieve a fixed approximation ratio must grow exponentially with the number of
vertices/edges, a severe limitation on the performance of the Grover mixer. More
than that, the construction suggests that it is likely that the same happens with
other classes of graphs and even with other combinatorial optimization problems.

1.2 Roadmap and general comments

The structure of the dissertation is as follows.

• In Chapter 2, we present a brief review of Probability Theory, highlighting
important concepts for understanding this work;

• The Chapter 3 has the main objective of presenting GM-QAOA and GM-
Th-QAOA. To get that, we present the more general context in which these
variants are inserted— thereby reviewing the literature;

• In Chapter 4, we present the statistical approach, proving the analytical results
of both GM-QAOA and GM-Th-QAOA;
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• In Chapter 5, we provide numerical experiments involving probability distribu-
tions to emphasize and illustrate important aspects of the results of Chapter 4;

• In Chapter 6, we generalize the analytical bounds of GM-Th-QAOA to Grover-
based QAOA and apply it to the Max-Cut problem;

• In Chapter 7, we present our conclusions and suggestions for future work.

Before proceeding, we need to make some general comments.

• We mention the work of Zhang et al. [41] in the conclusions of Chapter 7. That
paper, released after the first version of Bridi and Marquezino [34] preprint,
provides numerical evidence of quadratic speed-up of GM-QAOA over classical
brute force;

• We emphasize a notation convention widely used throughout the present text
from here. In particular, we distinguish between objects based on the presence
of subscripts and superscripts; and by the present and the number of argu-
ments. Some examples include: δ(x) denotes delta function, δ(x, y) denotes
the Kronecker delta, and δ is a free symbol; the symbols Er(β,γ), Er(t), and
Er denotes respectively the expectation value of GM-QAOA, GM-Th-QAOA,
and Grover-based QAOA, while E[X] is the expected value of random variable
X; fX(x) indicates the probability distribution of random variable X, fG

X(x)

the generalized probability density function of a discrete random variable X,
and f(x) a free choice of function;

• All figures of this work were produced by the author. In particular, with the
exception of Fig. 3.1 and Fig. 4.1(a), all graphics and numerical experimental
(not limited to just Chapter 5) of this work were done using resources of
Python [42], with the graphics specifically being produced with the Python
package Mathplotlib [43];

• To get the numerical experiments of Chapter 5 (and other few situations),
we need several statistical quantities, such as mean, standard deviation, and
characteristic functions, for some families of probability distributions, such
as the normal, Laplace, and gamma distributions. As the total number of
used statistical quantities is large, it is unfeasible to demonstrate or cite all of
them. Because of that, we assume that they are well-known. Most of them
can be calculated using basic integration techniques, especially the quantity
GX(x), defined on Subsec. 2.7.1, which is harder to find in the literature. An
alternative for slightly more complicated cases is to compute it on algebraic
software, such as Maple [44] or Mathematica [45].
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Chapter 2

A Review on Probability Theory

The analysis method of QAOA with Grover mixer, addressed in Chapter 4, is based
on Probability Theory. That way, in the present chapter, we do a brief review of
this branch of mathematics, highlighting important concepts for understanding our
results and introducing the notation to be used throughout this work. The main
references used here are the book of Hoel, Port, and Stone [31] and Pishro-Nik’s [32]
book, using their definitions and concepts throughout this chapter. For specific
topics, in addition to the papers and books cited throughout the text, the books
of Spanos [46] and Sugiyama [47] are used especially but not limited to the topics
of quantile and standardized moments, and Hoel, Port, and Stone [48] book for
estimators and confidence intervals.

As the terminology suggests, Probability Theory deals with the mathematical
concept of probability. Historically, it was developed to form the foundation for the
mathematical treatment of random phenomena [49]. In contemporary times, it finds
applications in numerous areas of knowledge, such as physics, biology, engineering,
and finance [31]. Although there are different interpretations of the meaning of prob-
ability in the physical world, Probability Theory is independent of them, treating
probability as a rigorous mathematical concept dependent only on its axioms [32]. In
this chapter, we present Probability Theory from the point of view of mathematics,
eventually citing some motivation from the physical world, such as rolling dice, to
gain intuition. In particular, in Sec. 2.5, we present the concepts of estimators and
confidence intervals, which are more associated with Statistics. Briefly, that field
deals with the interpretation and inference of random phenomena from observed
data, using techniques and mathematical models based on Probability Theory [48].

2.1 Probability spaces

The notion of probability as a numerical value between 0 and 1 to "something
happens" is abstracted on probability theory by the concept of probability spaces.
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In such mathematical objects, we assign measures with values on the aforementioned
range to a set of abstract points termed sample space. That assignment is done
through a real-valued function known as a probability measure. Formally, we define
it as follows.

Definition 1 (Probability space) A probability space is a tuple (Ω,A,P), where
Ω is the sample space; A is a nonempty collection1 of subsets of Ω called events,
that is a σ-field, i.e., that is closed under the set theory operations of complement,
a countable number of unions, and countable number of intersections; and P is a
probability measure defined on A, denoted P[A] when applied to an event A, that
satisfies the conditions

• P[Ω] = 1;

• P[A] ≥ 0 ∀A ∈ A;

• If A is a countable collection of mutually disjoint events in Ω, then

P [⋃
a∈A

a] = ∑
a∈A

P[a]. (2.1)

According to the discussion of Hoel, Port, and Stone [31], on the one hand, it
is straightforward to define probability spaces for discrete sample spaces—i.e., on a
countable subset of the real numbers—such as to model the experiment of drawing
a ball from a box. On the other, the definition of probability space on continuous
sample spaces (uncountable subset), as the modeling of the isotope disintegration
experiment, is much deeper and involves questions answered by the advanced branch
of measure theory. Fortunately, the results of measure theory, which are beyond the
scope of this work, guarantee that constructions of continuous probability spaces
are possible.

An example considered in that book is the important class of uniform probability
spaces. In the discrete case, we can think of the intuitive notion of picking "at
random" from a set C with c elements. That way, Ω = C, A consist in all 2c

subsets of Ω, and P[A] = j/c for a event A with j elements. Each element has the
same probability of 1/c. The continuous case can be thought of as the experiment
of choosing a point "at random" from an interval C = [a, b] on the real line for
−∞ < a < b <∞. Now, we measure the "size" of an event C by its length, given by
b−a and denoted by ∣C ∣. Thus, by taking Ω = C, measure theory results confirm the
existence of a σ-field of subsets A of C, which in particular consist in all intervals of
C. The probability measure defined on A is given by P[A] = ∣A∣/∣C ∣ for any interval

1The terminology collection is used here as a synonym for set.
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A. Of course, if A is a single point, P[A] = 0 since ∣A∣ = 0. More generally, if C is
a n-dimensional Euclidean space with finite and non-zero n-dimensional volume, it
follows an analogous construction of probability space but with the measure of the
n-dimensional volume instead of the particular case of length.

2.1.1 Properties of probability

We list some basic properties of the probability measure. Let A and B be two events
and C a collection of events, then

• P[∅] = 0;

• P[A] = 1 −P[A]2 and

P [⋃
c∈C

c] = 1 − P [⋃
c∈C

c] ; (2.2)

• P[B] = P[A ∩B] +P[A ∩B];

• (Monotonicity of probabilities) P[B] ≥ P[A] if A ⊆ B;

• (Inclusion-exclusion principle for 2 sets3) P[A∪B] = P[A]+P[B]−P[A∩
B];

• (Union bound)

P [⋃
c∈C

c] ≤∑
c∈C

P[c]. (2.3)

2.1.2 Conditional probability

Consider the problem of finding the probability of an event given that another event
occurred, such as the probability of an honest dice of 6 sides outcomes the number
5 given that the outcome is odd. That probability is called conditional probability,
which is formally defined as follows.

Definition 2 (Conditional probability) Let A and B be two events. Provided
that P[A] > 0, the conditional probability of B given A, is denoted by P[B∣A] and
given by

P[B∣A] =
P[B ∩A]

P[A]
. (2.4)

Intuitively, we can think of conditional expectation as a "cut" of the probability
space. We consider the probability of both events occurring P[B ∩ A] and then
normalized by P[A] since we are restricted to the subset corresponding to the event
A.

2A denotes the complement of A.
3There is a well-known formula for n sets.
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2.1.3 Independence of events

Consider the case in which the knowledge that the event A such that P[A] > 0 occurs
does not affect the probability of an event B, i.e., P[B∣A] = P[B]. By Eq. (2.4),
P[A ∩B] = P[A]P[B], which can be trivially extended to the case of P[A] = 0. By
symmetry, we get the same result by interchanging the sets A and B. In this case,
we say that the events are independent, which leads to the following definitions.

Definition 3 (Independence of 2 events) Two events A and B are said to be
independent if

P[A ∩B] = P[A]P[B]. (2.5)

Definition 4 (Independence of n events) The events A1,A2, . . . ,An for n ≥ 3

are said to be pairwise independent if every pair of events Ai and Aj with 1 ≤ i < j ≤ n

are independent, and to be mutually independent if for any subcollection A of events
containing at least two elements,

P [⋂
a∈A

a] =∏
a∈A

P[a]. (2.6)

Every collection of mutually independent events is pairwise independent, but a
reciprocal is false.

Note that the formal definition of independence is different from its intuitive
notion. For instance, one can verify that the events of taking a prime number and
a number greater than 4 on an honest dice of 6 sides are independent.

2.2 Random variables

Instead of dealing with the explicit constructions of probability spaces, we can use
the auxiliaries quantities called random variables, which are usually simpler and
more convenient. Indeed, probability space are, in general, placed as background
in the Probability Theory to make room for auxiliary quantities, as in the case of
random variables [31].

Random variables are functions that assign values to outcomes of sample space.
It can be discrete, continuous, or even mixed. As the terminology suggests, a mixed
random variable contains discrete and continuous components. In this work, ex-
cept for the definition of characteristic functions on Sec. 2.8, we restrict the random
variables to real-valued functions. Although our following definition includes all
aforementioned types of random variables, we consider only the discrete and contin-
uous cases during this dissertation.
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Definition 5 (Random variable) A random variable X on a probability space
(Ω,A,P) is a function X(ω) ∶ Ω→R in which {ω ∶X(ω) ≤ x} is an event such that
for all −∞ < x <∞.

We simplify the notation of the event {ω ∶X(ω) ≤ x} as {X ≤ x}. We distinguish
between discrete and continuous random variables by the following definition.

Definition 6 (Discrete and continuous random variables) A random vari-
able X is discrete if the set of possible values of X is countable and continuous
if

P[X = x] = 0, −∞ < x <∞. (2.7)

A mixed random variable, which combines discrete and continuous components,
could be defined as a random variable with an uncountable set of possible values
that do not satisfy Eq. (2.7). Immediate examples of discrete random variables
are the constant random variable, defined by X(ω) = c for any ω where c is a real
number, and the indicator random variable, which for an event A, X(ω) = 1 if ω ∈ A
and X(ω) = 0 otherwise. To continuous case, we can cite the continuous uniform
random variable, defined on Ω = [a, b] such that the event {X ≤ x} have probability
(x − b)/(b − a) if x ∈ [a, b], 0 if x < a, and 1 if x > b.

2.2.1 Cumulative distribution function

A function closely related to our definition of random variables is the cumulative
distribution function (cdf), defined as follows.

Definition 7 (Cumulative distribution function) The cumulative distribution
function of a random variable X, denoted FX(x)4, is given by

FX(x) = P[X ≤ x], −∞ < x <∞. (2.8)

The cdf presents the properties

• 0 ≤ FX(x) ≤ 1 for all x;

• FX(x) is a non-decreasing function of x;

• Taking the limits on x→ −∞ and x→∞,

lim
x→−∞

FX(x) = 0, lim
x→∞

FX(x) = 1; (2.9)
4In general, for the statistical quantities to be defined from here, we use the subscript to distinct

between different random variables.
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• For all x,
lim
k→x+

FX(k) = FX(x). (2.10)

For any real-valued function f(x) that satisfies these four properties, there is a
probability space and a random variable X such that FX(x) = f(x) is the cdf.

An equivalent characterization for continuous random variables can be obtained
in terms of the cdf as follows. Consider a related result to the fourth property given
by

lim
k→x−

FX(k) = P[X < x] (2.11)

for all x. Combining Eq. (2.10) and (2.11) gives, for all x,

lim
k→x+

FX(k) − lim
k→x−

FX(k) = P[X ≤ x] −P[X < x] = P[X = x], (2.12)

which implies, by Def. 6, that X is continuous if and only if FX(x) is a continuous
function.

Furthermore, the cdf can be used to compute the probability P[a <X ≤ b] as

P[a <X ≤ b] = P[X ≤ b] −P[X ≤ a] = FX(b) − FX(a). (2.13)

In particular,
P[X > a] = 1 − FX(a). (2.14)

2.2.2 Probability distribution

In this work, we use the terminology probability distribution as a general term to
combine the concepts of probability mass function (pmf) of discrete random variables
and probability density function (pdf) of continuous random variables. Mass and
density on pmf and pdf, respectively, are analogous to their use in physics [32].
In general terms, the probability distribution, denoted by fX(x), is a real-valued
function whose output is related to the probability of the point x.

Probability mass function

For discrete random variables, the probability distribution is called probability mass
function since we take directly the probability of the point x, which leads to the
following definition.

Definition 8 (Probability mass function) The probability mass function of a
discrete random variable X is a real-valued function given by

fX(x) = P[X = x], −∞ < x <∞. (2.15)
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Given a pmf fX(x), we can calculate the cdf by the summation

FX(x) = ∑
k∶fX(k)>0,k≤x

fX(k). (2.16)

Note that we could define discrete random variables based on their pmf, replacing
on Def. 5 the event {ω ∶ X(ω) ≤ x} by {ω ∶ X(ω) = x}. However, that definition
would not work for continuous random variables since these random variables must
satisfy P[X = x] = 0 for all x. A consequence of this condition is that the definition
of probability distribution on continuous random variables needs to be different.

Probability density function

In the continuous case, instead of directly taking the value of probability as in the
case of pmf, the probability distribution considers the probability per unit length,
being because of it, known as the probability density function. Thus, taking the
limit of length approaches 0 leads to

fX(x) = lim
∆→0+

P[x <X ≤ x +∆]

∆
= lim

∆→0+

FX(x +∆) − FX(x)

∆
=
FX(x)

dx
, (2.17)

if the limit exists. Thus, we obtain the Def. 9.

Definition 9 (Probability density function) The probability density function
of a continuous random variable X is given by

fX(x) =
dFX(x)

dx
, −∞ < x <∞, (2.18)

for all points in which FX(x) is differentiable.

Analogously to pmf, we can calculate the cdf from a fX(x) by the integral

FX(x) = ∫
x

−∞
fX(k) dk. (2.19)

We also assume that the cdf of a continuous random variable is not differentiable
at most in a finite set of points. In that case, we can arbitrate the respective values
of fX(x) of these points without changing integral calculations.

General discussions

To condensate discrete and continuous random variables in a single case, we intro-
duce the notation

⨋
x∈A

f(x), (2.20)
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which means that for a subset A of the domain of the function f(x), we sum the
discrete values of x and integrate over the continuous interval concerning x. Similar
notation is used, for instance, on the Deffner and Campbell [50] work.

To apply that notation in the context of random variables, we define RX = {x ∶

fX(x) > 0}, a set known as the support of X. The minimum and the maximum
values of the support RX are denoted by Rmin

X and Rmax
X , respectively5. Thus, for

instance, we can combine Eq. (2.16) and (2.19) to write FX(x) as

FX(x) = ⨋
k∈RX ∶k≤x

fX(k), (2.21)

or write the probability of an event A by

P[X ∈ A] = ⨋
x∈A

fX(x). (2.22)

The probability distribution has the properties fX(x) ≥ 0 for any x ∈ R and

⨋x∈RX
fX(x) = 1.

In this work, we name the random variable −X by the reflected random vari-
able of X. From the definition of cdf and from Eq. (2.14), follows that F−X(x) =
1 − FX(−x) + P[X = −x]. Similarly, considering individually both pmf and pmf,
we can conclude that f−X(x) = fX(−x). That way, we can also use the terminol-
ogy reflected probability distribution or simply reflected distribution. Moreover, if
fX(x) = fX(−x) for all x, we say that the random variable/distribution is symmetric.

Generalized probability distribution function

The concept of probability density function can be extended also to discrete (and
mixed) random variables, which allows to unify of the theory of random vari-
ables [32]. To get that, note that since the cdf of a discrete random variable evolves
through discrete jumps, it can be written by using the Heaviside step function θ(x),
given by

θ(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, x ≥ 0

0, otherwise.
(2.23)

Thus,

FX(x) = ∑
k∈RX

fX(k)θ(x − k). (2.24)

5If, for instance, RX = (−∞,∞) or RX = Z, then Rmin
X → −∞ and Rmax

X →∞.
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The derivative of the step function is the delta function or delta Dirac function, a
generalized function denoted by δ(x) and given by

δ(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∞, x = 0

0, otherwise.
(2.25)

That way, the derivative of FX(x) is given by

dFX(x)

dx
= ∑

k∈RX

fX(k)δ(x − k), (2.26)

which leads us to the next definition.

Definition 10 (Generalized probability density function) The generalized
probability density function for a discrete random variable X with probability mass
function fX(x), denoted by fG

X(x), is given by

fG
X(x) = ∑

k∈RX

fX(k)δ(x − k). (2.27)

The generalized pdf is particularly useful when we need to take the derivative of
a discrete random variable, as in the case of the problem considered on Subsec. 4.2.1.
However, in all other situations from here onwards, we consider the usual pmf to
deal with discrete random variables.

2.2.3 Quantile function

The called quantile function, QX(y), outputs a specific value of the random variable
X such that the cdf evaluates in that value is greater or equal to y for y ∈ [0,1].
For a continuous and strictly increasing cdf, the quantile is the inverse cdf, i.e.,
QX(y) = F −1X (y). In the general case, to handle jumps and intervals of constant
value on cdf, we extend the definition to

QX(y) =min{x ∈ R ∶ y ≤ FX(x)}, (2.28)

that is, we take the minimum value of x amongst all those values in which the cdf
exceeds y. If QX(y) = x, we say that the value of x is at the yth quantile, or equiv-
alently that y = FX(x) gives the quantile in which x is associated. Some important
quantiles are the 0.5th, 0.25th, and 0.01th, known respectively as median, quartile,
and percentiles. The quantile can be a useful metric for comparing distributions, as
considered in Subsec. 4.2.2.
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2.2.4 Random vectors

It is common in Probability Theory to be interested in examining the relationship
of two or more random variables [31]. To deal with these issues, we can introduce
the concept of random vectors. Let X1, . . . ,Xn be a set of random variables. Then,
the n-dimensional vector X = (X1, . . . ,Xn) is called random vector. We also set the
vector n-dimensional x = (x1, . . . , xn) ∈ Rn. The analog of cdf on random vectors,
called joint cumulative distribution function (joint cdf), is given by

FX(x) = P[X1 ≤ x1, . . . ,Xn ≤ xn]. (2.29)

For probability distributions, the joint pmf and joint pdf are given analogously to
the one-dimensional case by

fX(x) = P[X1 = x1, . . . ,Xn = xn], fX(x) =
∂nFX(x)

∂x1 . . . ∂xn
, (2.30)

respectively.
If we are interested in getting the individual probability distributions of random

variables X, Y from a random vector (X,Y ), called marginal probability distribu-
tions (marginal pmf/pdf), it can be showed analyzing individually the discrete and
continuous cases that

fX(x) = ⨋
y∈RY

fX,Y (x, y), fY (y) = ⨋
x∈RX

fX,Y (x, y). (2.31)

In an analogous way, for a n-dimensional random vector, the marginal probability
distribution of a particular random variable Xk such that 1 ≤ k ≤ n, is

fXk
(xk) = ⨋

x1∈RX1

. . .⨋
xk−1∈RXk−1

⨋
xk+1∈RXk+1

. . .⨋
xn∈RXn

fX(x). (2.32)

The marginal cdf can be obtained by simply taking the limit of the remainder
variables to approach infinity, i.e.,

FXk
(xk) = lim

x1→∞
. . . lim

xk−1→∞
lim

xk+1→∞
. . . lim

xn→∞
FX(x). (2.33)

2.2.5 Independence of random variables

Consider the experiment of rolling a dice two times. Intuitively, we have the notion
that the output of the first dice does not affect the result of the second one [31].
This notion can be precisely stated by saying that two random variables X and Y
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are called independent if

FX,Y (x, y) = FX(x)FY (y). (2.34)

for all x, y. This definition is generalized to n random variables in Def. 11.

Definition 11 (Independence of random variables) The random variables
X1, X2, . . . ,Xn are said to be mutually independent, or simply independent, if

FX(x) = FX1(x1) . . . FXn(xn), (2.35)

where X = (X1, . . . ,Xn) and x = (x1, . . . , xn) ∈ Rn.

If a set of independent random variables share the same cdf, we say that they
are independent and identically distributed (i.i.d.) random variables.

2.2.6 Sum of independent random variables

Many algebraic operators can be performed with random variables, from the sum
or multiplication of a random variable by a scalar, a topic covered in Sec. 2.4, to
arithmetic operations between random variables. Now, in particular, we consider
the sum of independent random variables. By considering individually both discrete
and continuous, we can conclude for independent random variables X and Y that

fX+Y (x) = ⨋
y∈RX

fX(y)fY (x − y), −∞ < x <∞. (2.36)

That operation is a convolution, denoted by [fX∗fY ](x). In general, for independent
random variables X1, . . . ,Xn holds

fX1+...+Xn(x) = [fX1 ∗ . . . ∗ fXn](x), −∞ < x <∞. (2.37)

2.3 Families of probability distributions

In this section, we present all probability distributions (continuous and discrete)
relevant to this work, encompassing some of the most important probability distri-
butions of the literature. although we abbreviate by probability distributions, they
are families of parameterized probability distributions. In general, we introduce the
distributions directly together with its support instead of defining explicitly random
variables.
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• (Degenerate distribution) We begin with the trivial degenerate distribu-
tion, denoted by Degenerate(c)6, for c ∈ R, with pmf given by fX(c) = 17. Note
that Degenerate(c) is the distribution of the constant random variable. We
also refer to degenerate distribution as a single-point distribution.

• (Bernoulli distribution) The distribution Bernoulli(p) with 0 ≤ p ≤ 1 has
pmf given by

fX(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p, x = 1

1 − p, x = 0.
(2.38)

That distribution can be seen intuitively as the distribution of tossing a coin
with arbitrary probability p. Note that the random variable associated with
the Bernoulli distribution is the indicator random variable and that p = 0 or
p = 1 reduces it to a degenerate distribution. The Bernoulli distribution is a
particular case of the family of two-point distributions, defined similarly to the
Bernoulli distribution but in which the support is given by arbitrary points a
and b instead of 0 and 1.

• (Binomial distribution) The distribution Binomial(n, p) with 0 ≤ p ≤ 1

and n ∈ {0,1,2, . . .} is the sum of n i.i.d. random variables with distribution
Bernoulli(p). The pmf is given by

fX(x) = (
n

x
)pk(1 − p)n−x, x ∈ {0,1, . . . , n}. (2.39)

• (Discrete uniform distribution) The probability distribution
DUniform(a, b) with a, b ∈ Z such that b ≥ a and pmf

fX(x) =
1

b − a + 1
, x ∈ {a, a + 1, . . . , b − 1, b} (2.40)

is a discrete example of uniform probability space.

• (Continuous uniform distribution) The distribution CUniform(a, b) with
−∞ < a < b <∞ has pdf given by

fX(x) =
1

b − a
, x ∈ [a, b]. (2.41)

That distribution is a continuous example of uniform probability space.
6We follow that pattern of notation for probability distributions. To denote the reflected dis-

tribution, we distinguish with the letter R. For instance, RDegenerate(c) is the reflected version of
the degenerate distribution.

7To simplify notation, we ignore the values of x such that x ∉ RX in the writing of pmf.
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• (Normal distribution) The normal distribution is a distribution of unique
importance, for reasons that should be clear when we discuss the central limit
theorem in Subsec. 2.5.2. Denoted by Normal(u, s2) with u ∈ R and s > 0, its
pdf is given by

fX(x) =
1

s
√
2π
e−

1
2
(x−u

s
)2 , x ∈ (−∞,∞). (2.42)

Eq. (2.42) is also well-known as the Gaussian function.

• (Discrete Gaussian kernel (DGK)) To discretize the normal distribution,
one can simply consider a discrete support for the Gaussian function. A more
refined approach is the discrete Gaussian kernel [51, 52]. While the Gaussian
function is a solution of the diffusion equation with continuous time and space,
DGK is the correspondent solution for the diffusion equation with discrete
space (and continuous time). The distribution DGK(s2) has pmf is given by

fX(x) = e
s2Ix(s

2), x ∈ Z, (2.43)

where Ix(s2) is the modified Bessel function of integer order x [53].

• (Chi-squared distribution) The chi-squared distribution raises naturally
when we consider the squared of the normal distribution. More precisely, if
X1, . . . ,Xk are i.i.d. random variables with distribution Normal(0,1) and k ∈

{1,2, . . .}, then the distribution of the sum X2
1 + . . .+X

2
k is the Chi-squared(k)

of k degree of freedom, which has pdf

fX(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, (2.44)

with RX = (0,∞) if k = 1 and RX = [0,∞) otherwise. The function Γ(z) =

∫
∞
0 τ z−1e−τ dτ is the well-known gamma function, the extension of factorial to

complex numbers.

• (Gamma distribution) Gamma(a, b) with a, b > 0 is a generalization of the
chi-squared distribution. In particular, Chi-squared(k) is given by setting
a = k/2 and b = 1/2. The pdf of the gamma distribution is given by

fX(x) =
ba

Γ(a)
xa−1e−bx, (2.45)

with RX = (0,∞) if k ≤ 1 and RX = [0,∞) otherwise.

• (Exponential distribution) The distribution Exponential(l) with l > 0 is
another special case of gamma distribution. In this case, we set a = 1 and
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b = l, which gives the pdf

fX(x) = le
−lx, x ∈ [0,∞). (2.46)

• (Laplace distribution) The distribution Laplace(u, b) with u ∈ R and b > 0

has pdf given by

fX(x) =
1

2b
e−
∣x−u∣

b , x ∈ (−∞,∞). (2.47)

The difference between two i.i.d. Exponential(l) random variables has a dis-
tribution Laplace(0,1/l).

• (Logistic distribution) The distribution Logistic(u, s) with u ∈ R and s > 0

has pdf given by

fX(x) =
e−(x−u)/s

s(1 + e−(x−u)/s)2
, x ∈ (−∞,∞). (2.48)

• (Pareto distribution) The distribution Pareto(α,xm) with α,xm > 0 has pdf
given by

fX(x) =
αxαm
xα+1

, x ∈ [xm,∞). (2.49)

Note that the decay of that distribution is rigid by a power-law relationship,
a characteristic that is important for the discussion of Subsec. 4.2.4.

2.4 Moments

The moments, or statistical moments, are numerical values used to make educated
guesses regarding the form of probability distributions [46]. To introduce the mo-
ments, we begin discussing the two main moments, the expectation and the variance,
to later generalize the concept. As noticed by Hoel, Port, and Stone [31], the general
definition of expectation has details that require further background in the theory
of measure and integration, which, in particular, is beside the point of this work.
That way, is enough to present the "computational" Def. 12. Furthermore, since
the moments are defined in terms of the expectation, the conclusion is the same in
general.

2.4.1 Expectation

The expectation8 of a random variable, denoted E[X], is a sum/integral of its pos-
sible values weighted by their respective mass/density of probability, i.e., E[X] =

8Also named expected value, average, or mean.
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⨋x∈RX
xfX(x). That definition is valid if the sum/integral is well-defined, that is,

⨋x∈RX
∣x∣fX(x) <∞.

Definition 12 (Expectation) Let X be a random variable. Provided that

⨋x∈RX
∣x∣fX(x) <∞, we say that X have finite expectation, defined by

E[X] = ⨋
x∈RX

xfX(x). (2.50)

Other notation for the mean is µX . Some important basic properties of the
expected value are listed.

• Expectation is linear;

• ∣E[X]∣ ≤ E[∣X ∣];

• If for some constant c, P[∣X ∣ ≤ c] = 1, then X has finite expectation and follows
the inequality ∣E[X]∣ ≤ c;

• For independent random variables X and Y with finite expectation, E[XY ] =
E[X]E[Y ].

A crucial result involving expected value is the law of the unconscious statistician
(LOTUS), which calculates the expectation of a real-valued function f(X).

Theorem 1 (LOTUS) Let f(x) be a real-valued function defined on the real line.
If ⨋x∈RX

∣f(x)∣fX(x) <∞, then

E[f(X)] = ⨋
x∈RX

f(x)fX(x). (2.51)

2.4.2 Variance and standard deviation

As discussed by Hoel, Port, and Stone [31], the expected value is tentative to sum-
marize a probability distribution by a number representing its "typical value". The
quality of that information depends on how clustered the values are about the ex-
pected value. A quantity that measures that spread from the mean is the variance,
defined as follows.

Definition 13 (Variance and standard deviation) Let X be a random vari-
able. If X2 has a finite expectation, then

Var[X] = E[(X − µX)
2] (2.52)

is a non-negative number called the variance of X, and we say that X has finite
variance. The number σX =

√
Var[X] is the standard deviation of X.
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The variance can be computed using LOTUS. Furthermore, from the linearity of
expectation follows that Var[X] = E[X2]−E[X]2. Other basic facts about variance
are the following.

• Var[X] = 0 if and only if X is a constant random variable;

• For a, b ∈ R, Var[aX] = a2Var[X], Var[X + b] = Var[X], and Var[X] =

Var[−X];

• For independent random variables X1, . . . ,Xn with finite variance such that
X =X1 + . . . +Xn, Var[X] = ∑n

j=1Var[Xj].

2.4.3 Generalizing the moments

The expectation and the variance are known as the first and the second moments,
respectively. We can extend it and define the nth moment. Indeed, there are (at
least) three distinct types of moments: the raw moment, the central moment, and
the standardized moment.

Definition 14 (Moments) Let X be a random variable. If Xn has a finite expec-
tation, we say that X has the nth moment or the moment of order n. In this case,
the nth raw moment, the nth central moment, and the nth standardized moment are
defined by E[Xn], E[(X − µX)

n], and E [(X−µX

σ
)
n
], respectively.

We can compute the moments via LOTUS. If X has the nth moment, then it
also has the kth moment for all k ≤ n. Moreover, if the random variables X and Y

have the nth moment, then X + Y also does have.
The mean is the first raw moment, or simply the first moment since both first

central and standardized moments trivially are 0. The variance is the second central
moment. Here, we refer to variance as just the second moment because it has
greater theoretical and practical importance than the second raw moment E[X2].
Furthermore, the second standardized moment is trivially 1.

Location shifting and changing the scale

The first and second moments are related to the location and the scale, respectively,
of the probability distribution. To see it, let X be a random variable and a ∈

R. Directly from the definition of cdf, pmf, and pdf, FX+a(x) = FX(x − a) and
fX+a(x) = fX(x − a), that is, a location shifting on probability distribution. As
E[X +a] = E[X]+a and σX+a = σX , the location shifting affects the first but not the
second moment. Now, consider b > 0. Then, FbX(x) = FX(x/b), fbX(x) = fX(x/b) for
pmf, and a simple substitution on derivative shows that the pdf is given by fbX(x) =
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1
bfX(x/b), which means a change of the scale. Intuitively, the factor 1/b on pdf can
be seen as a normalization for the area under the curve on probability distribution
to keep it equal to 1, which, of course, is not necessary on pmf. As E[bX] = bE[X]

and σbX = bσX , it affect both first and second moments if E[X] ≠ 0. Usually, families
of distributions have parameters that correspond to location shifting and changing
the scale. For instance, in distribution Normal(u, s2), u and s2 concerning location
and scale, respectively, being, in that particular case, the mean and the variance of
the distribution.

To combining both cases, let Y and Z be random variables such that X = Y +µX

andX = σXZ+µX . Follows that E[Y ] = E[Z] = 0 and σZ = 1. The random Y changes
the location to make the mean equal to 0. Because of that, we can extend the defi-
nition of symmetric random variable/distribution to say that if fY (x) = fY (−x) for
all x, the random variable/distribution is symmetric around the mean. The random
variable Z additionally changes the scale to get unit standard deviation, therefore
being invariant under the two first moments. For that reason, we call it in this work
by the standard random variable associated with X. For named distributions, we
call, for instance, the standard version of normal distribution as standard normal
distribution. A value z of the support RZ is called standard score [54]. The corre-
spondence of z with an element x of RX is given by z = (x−µX)/σX , which means it
measures the number of standard deviations away from the mean. As well as quan-
tile, the standard score, can be used as a metric to compare different distributions,
as done in Subsections 4.1.3 and 4.2.3, and in Chapter 6. Note that the three defined
types of moments are directly related to X, Y , and Z. The nth raw, central, and
standardized moments are given by E[Xn], E[Y n], and E[Zn], respectively. Fig. 2.1
illustrates the location shifting and the change of the scale on random variables X,
Y , and Z for the normal distribution.

Due to its importance for this work, we address the effect of location shifting
and changing the scale for statistical quantities of interest defined from now on. The
same holds with the reflected distributions.

Changing the shape

From the third moment onwards, it is reasonable to give the protagonism on the
discussion of statistical moments to the standardized moments. The reason behind
this is that, as discussed, the first and the second moments are related, respectively,
to the location and scale of the probability distribution. Moments of higher order,
on the other hand, concern the shape of the distribution. In that way, the stan-
dardized moment is usually the ideal choice, once it abstracts the location and scale
by taking the corresponding random variable with zero mean and unit standard
score. Some families of distributions have a parameter of shape, as gamma distri-
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Figure 2.1: Probability density functions of the random variable X given by the
distribution Normal(u, s2) with u = 3 and s = 2, and its associated Y and Z random
variables. The random variable Y is a location shifting to get zero expectation,
while Z is additionally a change of the scale to get a unit standard deviation.

bution with parameter a. Such distributions have variable standardized moments,
while distributions without shape parameters, as the normal distribution, have fixed
standardized moments.

The third moment measures the asymmetry of the probability distribution
about its mean, with the standardized moment known as skewness and denoted
as Skew[X]. Since we exponentiate Z with an odd power, the points below the
mean contribute negatively to the sum/integral, while points above the mean con-
tribute positively in such a way that the skewness, if exists, can be positive, negative,
or zero. That naturally induces a graphic interpretation of the skewness by the tails
of distribution, i.e., the appendages on the sides of a distribution. If the right tail
is longer than the left tail, the mass/density is concentrated on the right side of the
distribution, and the skewness tends to be positive. On the other hand, if the left tail
is longer, the concentration is on the left side, and the skewness tends to be negative.
Because of this, we say that the distribution is right-skewed or skewed to the right
if has positive skewness and left-skewed or skewed to the left for negative skewness.
Furthermore, if a probability distribution fX(x) is right-skewed, than the reflected
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distribution f−X(x) is left-skewed since Skew[X] = Skew[−X], and vice-versa.
Two aspects of the skewness must be considered. First, a distribution that

is symmetric around its mean has Skew[X] = 0, but the converse, in general, is
not true, since skewness is not linear. For instance, one can verify that the non-
symmetric distribution

fX(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0.4, x = −2

0.5, x = 1

0.1, x = 3,

(2.53)

has Skew[X] = 0 [46]. Second, in right-skewed distribution, the mean is often larger
than the median, while in left-skewed distributions, the mean is often smaller than
the median. However, as well as the issue of Skew[X] = 0 and symmetric distribu-
tions, that is not always valid, as discussed in von Hippel’s [55] paper. On the other
hand, a distribution symmetric around its mean always has a median equal to the
mean. Both observations emphasize the limitation of the interpretation of skewness
and the importance of looking not only at the moments but also at the graphic of the
distribution—also emphasized by Spanos [46]. Furthermore, in the particular case
of the third moment, it raises the possibility of alternative metrics for measuring the
asymmetry, such as the Pearson formula [55], that considers the difference between
mean and median normalized by the standard deviation. Fig. 2.2 illustrates the
graphic interpretation of positive and negative skewness for a distribution in which
it holds.

(a) (b)

Figure 2.2: Graphic interpretation of skewness. (a) The right-skewed distribution
Chi-squared(k) with 4 degrees of freedom. The skewness is

√
2, the mean 4, and the

median ≈ 3.5679. (b) The left-skewed RChi-squared(k) with 4 degrees of freedom.
The skewness is −

√
2, the mean −4, and the median ≈ −3.5679. These specific

distributions follow the described "rule" that relates skewness and mean/median
positions.
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The fourth moment, with a standardized moment named by kurtosis and de-
noted Kurt[X], should be interpreted more carefully. Historically, kurtosis has been
incorrectly interpreted as a measure of "peakedness" of the distribution, i.e., high
kurtosis indicates a distribution with a higher peak, and low kurtosis is a flatter
distribution [56]. In 2014, Westfall [56] settled the issue, establishing that the in-
terpretation of kurtosis must be unequivocally in terms of tail extremity, i.e., the
propensity to produce outliers. From the definition of kurtosis, we exponentiate Z
at the fourth power. Thus, differently from skewness, all values contribute positively
from the sum/integral, and consequently, outliers have a stronger impact. Fig. 2.3
illustrates the impact of outliers on kurtosis comparing distinct distributions.

Figure 2.3: Log-linear graphic of the pdf of the standardized distributions fZ(x)
of continuous uniform, normal, logistic, and Laplace distributions. All of them are
symmetric around the mean distributions without a shape parameter. The choice
of parameters to get Z gives CUniform(−

√
3,
√
3), Normal(0,1), Logistic(0,

√
3/π),

and Laplace(0,
√
2/2), with the kurtosis given respectively by 9/5, 3, 21/5, and

6. The continuous uniform distribution, since is zero for ∣x∣ >
√
3, has a smaller

impact on outliers and presents the lowest kurtosis between the distributions. To the
remainder distributions, from a certain value of ∣x∣, the pdf of normal distribution
decays more quickly than logistic distribution, which in turn decays faster than
Laplace distribution. Therefore, the increasing order of the impact of outliers, given
by normal, logistic, and Laplace distributions, fits with the increasing order of their
kurtosis values.
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The minimum kurtosis is 1, hit by any two-point distribution with ratio p = 0.5—
in particular, the Z random variable of two-point distribution depends only on the
ratio (see Subsec. 2.6.2 for a proof). The normal distribution, which has kurtosis
equal to 3, was historically used as a reference point of measure. Subtracting 3 from
kurtosis gives the called excess kurtosis. Distributions with zero excess kurtosis are
called mesokurtic, while distributions with positive and negative excess kurtosis are
called leptokurtic and platykurtic, respectively. Furthermore, since kurtosis is an
even moment, Kurt[X] = Kurt[−X].

Naturally, one can generalize the arguments of the above discussion to moments
of order above 4. Odd moments above skewness also measure the asymmetry but
with an increasingly greater impact on the outliers. Even moments above kurtosis
also measure the tail extremity with an increasingly greater impact on the outliers.

2.5 Random sample

We say that n i.i.d. random variables, each with the cdf FX(x), form a random
sample9 of size n from a population characterized by FX(x). We call here the
process of taking a random sample from a population by random sampling. We also
refer to sampling over a uniform sample space as uniformly sampling or choosing
uniformly at random.

Let X1, . . . ,Xn be a random sample. If we order the random variables in ascend-
ing order and denote the resulting sequence of random variables byX(1,n), . . . ,X(n,n),
follows that X(1,n) = min{X1, . . . ,Xn} and X(n,n) = max{X1, . . . ,Xn}, and we say
that X(k,n) is the kth order statistics of the random sample of size n.

2.5.1 Estimators and confidence intervals

In Statistic, an estimator is a function d(X1, . . . ,Xn) of a random sample X1, . . . ,Xn

for estimate an unknown parameter θ̂ of the population. We call the numerical value
resulting from observable values by an estimate of θ̂. An estimator for a parameter
θ̂ is said to be unbiased if E[d(X1, . . . ,Xn)] = θ̂ for any value of θ̂.

Estimators of particular interest are the sample moments, which are estimators
for the population moments. For a random sample X1, . . . ,Xn, the kth sample raw,
central and standardized moments are given by

mr
k =

1

n

n

∑
j=1
Xk

j , m
c
k =

1

n

n

∑
j=1
(Xj − µ̂X)

k, ms
k =

1

n

n

∑
j=1
(
Xj − µ̂X

σ̂X
)

k

, (2.54)

respectively, where µ̂X = mr
1 is the sample mean and σ̂2

X = mc
2 is the sample

9With replacement, of course.
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variance—σ̂X is the sample standard deviation. The sample mean is unbiased, while
the sample variance is not10.

A way to estimate the accuracy of estimators is by building a confidence interval,
which gives a bound on the probability of an estimator being on a specific inter-
val. We say that a confidence interval has a confidence level 1 − α on an interval
[θ̂min, θ̂max] if

P[θ̂min ≤ θ̂ ≤ θ̂max] ≤ 1 − α. (2.55)

We consider here as an example the confidence interval of the sample mean for
a population with distribution Normal(u, s2). The pdf of the sample mean is the
distribution Normal(u, s/

√
n). Thus, we have the confidence interval of

P [µ̂X − z
σ̂X
√
n
≤ θ̂ ≤ µ̂X − z

σ̂X
√
n
] = 1 − α, (2.56)

where z is the standard score associated with the confidence level, which can be
obtained with tables or numerical methods. For instance, z = 1 is associated with
α ≈ 0.3173 and z = 2 with α ≈ 0.0455. As discussed in detail by Hoel, Port, and
Stone [48], a confidence interval for the sample variance on a population normally
distributed can be built in terms of the chi-squared distribution.

2.5.2 Central limit theorem

A result related to random samples is the central limit theorem (CLT), which is
one of the most remarkable theorems in Probability Theory [31]. It states that the
sum of n i.i.d. random variables with finite second moment approaches the normal
distribution when n→∞.

Theorem 2 (Central limit theorem) Let X1, . . . ,Xn be i.i.d. random variables
with non-zero finite variance. Set Sn =X1 + . . .+Xn and Zn as the standard random
variable of Sn. Thus,

lim
n→∞

FZn(x) = FN(x), −∞ < x <∞, (2.57)

where N is a random variable with standard normal distribution.

The CLT explains, at least partially, the ubiquitousness of the normal distribu-
tion in the fields of Probability Theory and Statistics. The sum of i.i.d. random
variables appears in many situations, such as when an experiment is repeated as-
suming ideal conditions. Note that, for instance, the distributions Binomial(n, p)

10The sample variance would be unbiased if we defined it as 1
n−1 ∑

n
j=1(Xj − µ̂X)2.
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and Chi-squared(k) approaches normal distribution when n → ∞ and k → ∞, re-
spectively. Naturally, as noticed by Hoel, Port, and Stone [31], the CLT suggests
the approximation FZn(x) ≈ FN(x) for large n to compute the sum of arbitrary i.i.d.
random variables, a useful formula in practical applications.

2.6 Probability bounds

Many probability inequalities are useful not just for proving theorems on Probability
Theory but also for applied Statistics, especially when the exact calculation is com-
plicated or the probability distribution is unknown [32]. An example of probability
bound is the union bound, shown on Subsec. 2.1.1. In this section, we first show the
Markov and Chebyshev inequalities, and then the Jensen’s inequality. However, we
can cite others, such as the Chernoff bounds, and the Cauchy-Schwarz and Hölder
inequalities.

2.6.1 Markov and Chebyshev inequalities

Markov and Chebyshev inequalities bound the probability in terms of the first and
second moments, respectively. For the first one, let X be a non-negative random
variable. Then, for a given a > 0,

E[X] = ⨋
x∈RX

xfX(x) ≥ ⨋
x∈RX ∶x≥a

xfX(x) ≥ ⨋
x∈RX ∶x≥a

afX(x) = aP[X ≥ a], (2.58)

and we get the following result.

Theorem 3 (Markov’s inequality) If X is a non-negative random variable and
a > 0, then

P[X ≥ a] ≤
E[X]

a
. (2.59)

Applying Marvok’s inequality to a random variable (X −µX)
2 and a constant b2

proves Chebyshev’s inequality, given by the following theorem.

Theorem 4 (Chebyshev’s inequality) If X is random variable and b > 0, then

P[∣X − µX ∣ ≥ b] ≤
Var[X]

b2
. (2.60)

Chebyshev’s inequality tends to provide better bounds than Markov’s inequality,
while the aforementioned Chernoff bounds tend to overcome both.
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2.6.2 Jensen’s inequality

The Jensen’s inequality uses the concept of convex function. As noticed by Pishro-
Nik’s [32], intuitively, a function is considered convex when, upon selecting two
points from its graph and connecting them with a line segment, the entire segment
is positioned above the graph. Formally, we define it as follows. Let a function
f(x) ∶ A → R with A being an interval on the real line. If, for any pair of points x
and y on the interval A and any ρ between 0 and 1,

f(ρx + (1 − ρ)y) ≤ ρf(x) + (1 − ρ)f(y), (2.61)

we say that the function f(x) is convex. So, Jensen’s inequality states the following.

Theorem 5 (Jensen’s inequality) If f(x) is a convex function on the support
RX of a random variable X in which E[f(x)] and f(E[X]) are finite, then E[f(x)] ≥

f(E[X]). The equality is hit if and only f(x) is affine or X is a constant random
variable.

An immediate application of Jensen’s inequality is to prove the trivial fact that
Var[X] = E[X2]−E[X]2 ≥ 0, which follows since x2 is a convex function. Note that
we also prove the property that Var[X] = 0 if and only if X is a constant random
variable. Another application is to prove that the minimum value of kurtosis, hit by
two-point distributions with p = 0.5, is 1. For a random variable X with standard
random variable Z, follows that Kurt[X] = E[Z4] ≥ E[(Z2)]2 = 1 by setting Z2 and
the function x2 on Jensen’s inequality. The unique distribution for Z such that Z2

to be a constant random variable is the symmetric standard two-point distribution,
and therefore, the ratio is ρ = 0.5, as desired.

2.7 Conditional probability distribution

To introduce the discussion about conditional probability distributions, following
the structure of Hoel, Port, and Stone [31], we start considering the discrete case.
Let X and Y be discrete random variables. If we want to get the pmf of the random
variable such that Y given that X = x, denoted Y ∣X, we get it directly from Def. 2.
Thus,

fY ∣X(y∣x) = P[Y = y∣X = x] =
P[X = x,Y = y]

P[X = x]
=
fX,Y (x, y)

fX(x)
, (2.62)

for x ∈ RX . On the other hand, if X is continuous, then P[X = x] = 0 and therefore
P[Y = y∣X = x] is always undefined. To handle this case, we consider firstly the cdf.
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Thus, for finite x ∈ RX , we consider the concept of limit in such a way that

FY ∣X(y∣x) = P[Y ≤ y∣X = x] = lim
∆→0+

P[Y ≤ y∣x −∆ ≤X ≤ x +∆]. (2.63)

It can be shown that the limit results in

FY ∣X(y∣x) =
∫

y

−∞ fX,Y (x, y) dy

fX(x)
. (2.64)

Taking the derivative with respect to y gives the same as Eq. (2.62), leading to the
following definition.

Definition 15 (Conditional probability distribution) For random variables
X and Y , the conditional probability distribution of Y given X = x, denoted fY ∣X

for an associated random variable Y ∣X, is given by

fY ∣X(y∣x) =
fX,Y (x, y)

fX(x)
, (2.65)

with RY ∣X = {x ∶ 0 < fX(x) <∞}.

As fY ∣X(y∣x) is a probability distribution like any other, everything that has
been discussed about probability distribution and will be discussed from here on
applies to conditional distributions. The expectation of fY ∣X(y∣x) is referred to as
conditional expectation, the variance as conditional variance, and so on.

2.7.1 Truncated distribution

A particular case of conditional probability of much importance for this work is the
truncated distributions. Let X be a random variable and X(a,b] be another random
variable such that X given a <X ≤ b. Follows from Def. 15 that

fX(a,b](x) =
fX(x)

FX(b) − FX(a)
, (2.66)

with RX(a,b] = {x ∈ RX ∶ a < x ≤ b}. The distribution fX(a,b](x) is known as trun-
cated probability distribution or simply truncated distribution, since it restricts the
support of the original probability distribution fX(x).

The conditional expectation can be calculated as

E[X(a,b]] =
⨋x∈RX(a,b]

xfX(x)

FX(b) − FX(a)
. (2.67)

In particular, if X≤x and X>x are the random variables of X given X ≤ x and X
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given X > x, respectively, we have

fX≤x(k) =
fX(k)

FX(x)
, fX>x(k) =

fX(k)

1 − FX(x)
, (2.68)

with RX≤x = {k ∈ RX ∶ k ≤ x} and RX>x = {k ∈ RX ∶ k > x}, and

E[X≤x] =
⨋k∈RX ∶k≤x kfX(k)

FX(x)
, E[X>x] =

⨋k∈RX ∶k>x kfX(k)

1 − FX(x)
. (2.69)

Denoting E[X≤x] and E[X>x] by E[X ∣X ≤ x] and E[X ∣X > x], respectively, and
introducing the quantity

GX(x) = ⨋
k∈RX ∶k≤x

kfX(k), (2.70)

we have
E[X ∣X ≤ x] =

GX(x)

FX(x)
, E[X ∣X > x] =

µX −GX(x)

1 − FX(x)
, (2.71)

since
µX = ⨋

x∈RX

xfX(x) = GX(t) + ⨋
x∈RX ∶x>t

xfX(x). (2.72)

A basic fact of GX(x) is that

lim
x→Rmax

X

GX(x) = µX . (2.73)

Note that for continuous distributions dGX(x)
dx = xfX(x), while for discrete ones we

can write GX(x) by using the step function in an analog way to FX(x) as

GX(x) = ∑
k∈RX

kfX(k)θ(x − k). (2.74)

That way, we have dGX(x)
dx = xfG

X(x).
Furthermore, the quantity GX(x) is affected by location shifting and change of

the scale with a ∈ R and b > 0 by GX+a(x) = aFX(x − a) +GX(x − a) and GbX(x) =

bGX(x/b), respectively. For the discrete case, it follows from

GX+a(x) = ∑
k∈RX+a∶k≤x

kfX+a(k) = ∑
k∈RX ∶k≤x−a

(k + a)fX(k)

= aFX(x − a) +GX(x − a)

(2.75)

and
GbX(x) = ∑

k∈RbX ∶k≤x
kfbX(k) = ∑

k∈RX ∶k≤x/b
bkfX(k) = bGX(x/b). (2.76)

The continuous is analogous but by using substituting of variables on the integration.
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To finish, the reflected effect on GX(x) is given by

G−X(x) = ⨋
k∈R−X ∶k≤x

kf−X(k) = −⨋
k∈RX ∶k≥−x

kfX(k)

= GX(−x) − µX + xP[X = −x],
(2.77)

where the last equality follows from Eq. (2.72).

2.8 Characteristic function

Characteristic functions (CF) are the Fourier transforms of probability distributions,
an example of the concept of Probability Theory brought from other branches of
mathematics [31]. These quantities are a convenient way to represent distributions
in many situations since there is a one-to-one correspondence between cumulative
distribution functions and characteristic functions, a result known as the uniqueness
theorem. The characteristic functions are defined as follows.

Definition 16 (Characteristic function) The characteristic function of a ran-
dom variable X, denoted φX(ω), is given by φX(ω) = E[eiωX] for −∞ < ω <∞.

Note that eiωX is a complex-valued random variable. The definition of complex
random variables is analog to the real-valued ones. A complex random variable Z
can be written with its real and imaginary components in such a way that Z =X+iY ,
where X and Y are real-valued random variables. Provided that E[X] and E[Y ]

are well-defined, the expected value of Z is defined as

E[Z] = E[X + iY ] = E[X] + iE[Y ]. (2.78)

Such as on real-valued random variables, Z has finite expectation if E[∣Z ∣] ≤ ∞.
Since, by linearly, LOTUS can be extended to complex-valued function, we get

φX(ω) = ⨋
x∈RX

fX(x)e
iωx, (2.79)

which means that the characteristic function is equivalent to continuous-time Fourier
transform in continuous case and to discrete-time Fourier transform in discrete
case [57], sharing their properties.

There is a quantity closed related to characteristic functions, the moment gen-
erating functions (MGF), denoted MX(ω) and defined as MX(ω) = E[eωX]. The
domain of MX(ω) is restricted to the values of ω in which eωX has finite expec-
tation. With LOTUS, MX(ω) = ⨋x∈RX

fX(x)eωx. Note that MGF for continuous
random variables is equivalent to bilateral Laplace transform, while for discrete is
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equivalent to bilateral Z-transform up to a change on the variable [57]. It can be
shown that if MX(ω) is finite on −ω0 ≤ ω ≤ ω0 for some positive ω0, then all moments
of X are finite. In that case, the expansion

MX(ω) =
∞
∑
n=0

E[Xn]

n!
ωn (2.80)

holds for −ω0 ≤ ω ≤ ω0. Comparing the coefficients of Eq. (2.80) with the coefficients
of the Taylor expansion of the own MX(ω), we can get an expression to calculate
the nth raw moment with

E[Xn] =
dn

dωn
MX(ω)∣

ω=0
, (2.81)

justifying the terminology of the moment generating function.
We can apply it also to characteristic functions. If X has the nth moment, the

nth derivative of φX(ω) is given by

dφX(ω)

dω
= inE[eiωXXn], (2.82)

which given in the particular of ω = 0,

E[Xn] = i−n
d

dω
φX(ω)∣

ω=0
. (2.83)

Furthermore, provided that the expansion of Eq. (2.80) holds in the interval for
−ω0 ≤ ω ≤ ω0, the expansion

φX(ω) = 1 +
∞
∑
n=1

inE[Xn]

n!
ωn (2.84)

also holds in the same interval.
Characteristic functions are a complex extension of moment generating functions,

consequently containing convenient algebraic properties that allow, for instance, to
prove the CLT [31]. Another important vantage of characteristic functions is to be
finite for all real numbers ω. The reason is because ∣eiωx∣ is bounded. More strongly,
the characteristic function has the property

∣φX(ω)∣ = ∣E[e
iωX]∣ ≤ E[∣eiωX ∣] = 1. (2.85)

In particular, φX(0) = 1. In general, assuming that the nth moment exist, the nth
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derivative can be bounded from Eq. (2.82) as

∣
dnφX(ω)

dωn
∣ ≤ E[∣X ∣n]. (2.86)

Now, recall that the sum of i.i.d. random variables X1, . . . ,Xn is a sequence of
convolutions. Thus, we know from Fourier transform theory that

φX1+...+Xn(ω) = φX1(ω) . . . φXn(ω). (2.87)

As the characteristic function admits an inverse function (that can be founded, for
instance, in Hoel, Port, and Stone [31]), the property of Eq. (2.87) is a convenient
manner of computing the sum of the i.i.d. random variables. Other important
properties of the characteristic function, some of them brought from known results
of Fourier transform theory, are listed.

• A characteristic function φX(ω) is a continuous function of ω;

• (Location shifting) For any a ∈ R, φX+a(ω) = eiωaφX(ω);

• (Change of the scale) For any b > 0, φbX(ω) = φX(bω);

• (Reflected random variable/Hermiticity) φ−X(ω) = φX(−ω) = φ∗X(ω)
11;

• (Symmetric distributions)12 If fX(x) is a symmetric distribution (even
function), then φX(ω) is real and even.

To finish, let’s give attention to the first derivative of the characteristic function,
an important quantity for the results of this work. From Eq. (2.82),

φ′X(ω) = i⨋
x∈RX

xfX(x)e
iωx. (2.88)

For a ∈ R and b > 0,

φ′X+a(ω) =
d

dω
[eiωaφX(ω)] = e

iaω(iaφX(ω) + φ
′
X(ω)) (2.89)

and a changing of variable gives φ′bX(ω) = bφ′X(bω). Furthermore, φ′−X(ω) =
d
dωφX(−ω) = −φ′X(−ω).

11The symbol z∗ on a complex number z denotes the complex conjugate of z.
12Of course, we can ignore the analog property for odd functions on probability distributions.
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Chapter 3

The Quantum Alternating Operator
Ansatz and the Grover Mixer

This chapter has the main objective of presenting the two variants of Quantum
Alternating Operator Ansatz that are the main object of study of this work, the
GM-QAOA, and GM-Th-QAOA. To get that, we go through the important topics
of combinatorial optimization, Grover’s algorithm, VQAs, QAA, and QAOA (both
the Quantum Approximate Optimization Algorithm and the Quantum Alternating
Operator Ansatz). We also present the QWOA, in which the particular case of the
complete graph can be seen as an alternative formulation of the Grover mixer; and
the algorithms GAS and MAOA, both relevant to the discussion.

We assume that the reader has knowledge of quantum computing. If this is not
the case, we recommend for an extensive study the traditional books of Nielsen and
Chuang [1] and Kaye, Laflamme, and Mosca [58] or for a more introductory study
the books of Marquezino, Portugal, and Lavor [59], and Portugal [60]. In addition to
the articles cited throughout the chapter, we use the Nielsen and Chuang [1] book
to the geometric interpretation of Grover’s algorithm, and for some sections, the
review papers Cerezo et al. [4] and Blekos et al. [10] of VQA and QAOA, respec-
tively. In particular, to the discussion of combinatorial optimization on Sec. 3.1,
we use the books of Cormen et al. [61], Szwarcfiter [62], Bernhard and Vygen [9],
and Skiena [63]. We also assume a basic knowledge of graph theory, such as in
the concepts of vertex cover and the Hamiltonian cycle, recommending the Bondy
and Murty [64] book, and on (classical) algorithms and complexity of algorithms,
recommending the book of Cormen et al. [61].
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3.1 Combinatorial optimization

Combinatorial optimization is an area of discrete mathematics that deals with op-
timization problems in finite sets. It is related to several other branches, such as
combinatorics, operations research, graph theory, and theoretical computer science.
Although problems of this nature date back to much older times, combinatorial op-
timization became an independent field only in the middle of the last century, and
since then, countless real-world applications can be formulated as abstract combi-
natorial optimization problems [9].

A combinatorial optimization problem (COP) consists of finding the best object,
called optimal object (or global optima), among a finite set S of discrete objects eval-
uated through the extremization of a real-valued function c(k) ∶ S → R called the
objective function. The objects are also called solutions or feasible solutions. In
the present work, we assume that the objective function must be minimized. It is
straightforward to convert a maximization problem into a minimization one by mul-
tiplying the cost function by −1. Any algorithm defined from here for minimization,
such as the Quantum Alternating Operator Ansatz, could be equivalently defined
for maximization problems. The set of combinatorial objects S is called also the
combinatorial domain, the set of feasible solutions, or the solution space.

For this work, we assume that the discrete objects are labeled by n-bit strings
such that S ⊆ {0,1}n. Following the widely used terminology in QAOA literature,
we say a combinatorial optimization problem is unconstrained if S = {0,1}n and
constrained otherwise. That classification is natural in the context of the gate
model of quantum computing since we usually codify the combinatorial domain
using qubits. Some constrained problems can be defined into known families of
combinatorial objects, such as all permutations of n elements and all k-combinations
of n elements [12].

3.1.1 Combinatorial optimization problems

In this subsection, we present the combinatorial optimization problems cited during
this work. Since most of them are graph problems, we standardized the notation
to G = (V ,E) representing a graph G with a set of vertices V and a set of edges E .
We also denote an edge with extremes on vertices u and v by (u, v). Some classes
of graphs have their own symbol, such as Kn for a complete graph with n vertices
and Kj,k for the complete bipartite graph with partitions of j and k vertices. For
each COP listed, we present the input of the problem, the objective that must be
codified on the objective function, and the combinatorial domain. A specific input
is known as an instance of the problem.
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• Max-Cut [10].

– Input: a graph G.

– Objective: find a partition of the set of vertices V into two complementary
subsets that maximize the number of edges between both subsets, called
cut edges.

– Combinatorial domain: unconstrained problem of ∣V ∣ bits.

• Max k-SAT [17].

– Input: n boolean variables organized into m clauses of length k1.

– Objective: find a variable assignment that satisfies the maximum number
of clauses.

– Combinatorial domain: unconstrained problem of n bits.

• Number Partition Problem [30].

– Input: set a positive real numbers {x0, . . . , xn}.

– Objective: find a partition of the set {x0, . . . , xn} into two complementary
subsets that minimize the difference between the sum of both subsets.

– Combinatorial domain: unconstrained problem of n bits.

• Traveling Salesman Problem (or Traveling Salesperson Problem) [13].

– Input: a complete graph Kn in which each edge of E is associated with a
non-negative real number called weight (i.e., a weighted graph).

– Objective: find a Hamiltonian cycle with the lowest sum of the weights
of their edges.

– Combinatorial domain: some bit string codifying the permutations of n
elements.

• Minimum Vertex Cover [14].

– Input: a graph G.

– Objective: find a vertex cover with the minimum number of vertices.

– Combinatorial domain: until the author’s knowledge, not identifiable
with a known combinatorial family in general graphs.

• Max k-Vertex Cover [11].
1Here, a clause with length k is a disjunction of k literals. A literal is either a boolean variable

or the negation of a boolean variable.
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– Input: a graph G.

– Objective: find a set of k vertices that cover the largest number of edges.

– Combinatorial domain: k-combinations of ∣V ∣ bits. Alternatively, we can
say that the combinatorial domain consists of the ∣V ∣-bit strings with
Hamming weight equal to k.

• k-Densest Subgraph [11].

– Input: a graph G.

– Objective: find a subgraph with k vertices that have the largest number
of edges.

– Combinatorial domain: k-combinations of ∣V ∣ bits/∣V ∣-bit strings with
Hamming weight equal to k.

• Max Bisection [11].

– Input: a graph G with an even number of vertices.

– Objective: find a partition of G into two subgraphs with the same number
of vertices that maximize the edges between the partitions—note that
Max-Cut with the restriction of the partitions has the same size becomes
Max Bisection.

– Combinatorial domain: k-combinations of ∣V ∣ bits/∣V ∣-bit strings with
Hamming weight equal to k.

The problem of Capacitated Vehicle Routing [24] and the problems based on
Portfolio Optimization [13, 25, 40] have more elaborate definitions that can be found
in their own papers.

3.1.2 Decisions problems and complexity classes

The class of combinatorial optimization problems belongs to the more general class
of optimization problems, which can be defined as the class of problems in which we
must find a structure that satisfies certain optimization criteria. Two other classes
of problems are search problems and decision problems. The first one consists of the
problems in which we have to find a structure that satisfies a property, such as the
unstructured search problem, presented in the next section. In the last one, we do
not want to find the structure that satisfies a given property, but only decide if this
structure exists. Decision problems are questions of yes or no answers. An example
of a decision problem is the illustrious Satisfiability problem or SAT problem, the
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first problem to be proved as NP-Complete [65]2. The SAT problem asks if there
is an assignment of the boolean variables of a given set of clauses such that all
clauses are satisfied. Note that the Max k-SAT problem, presented in the previous
subsection, is an optimization variation of SAT.

Historically, the theory of computational complexity was developed concerning
decision problems [65, 66], with that well-known class of complexity P, NP, NP-Hard,
NP-Complete, in which the definitions can be founded, for instance, in Cormen et
al. [61] book, being directly classifications for decision problems. Although the issue
of NP-Completeness for optimization problems in general case is something more
delicate [67], in this work, we say that an optimization problem belongs to one of
these classes if its associated decision problem also belongs. That is because an
optimization problem can be immediately converted into a decision problem. For
a given value k, we can ask if there is a solution such that the objective function
outputs a value equal/larger or equal/smaller than k. For instance, for the Max-Cut
problem, we can consider that problem that asks for given a graph G and a positive
integer k if there is a partition of the set of vertices V into two complementary
subsets such that number of edges between both subsets is at least k.

3.1.3 Classical approaches

Usually, the combinatorial optimization problems of interest are NP-Hard—as the
case of the problems presented on Subsec. 3.1.1. To these problems, there is no
efficient algorithm for exact optimization (or global optimization) unless P=NP. In
that case, we can only resort to the pursuit of algorithms that output approximate
solutions. In the terminology of this work, we split the algorithms that do not aim
the exact optimization into approximation algorithms and heuristics. The differ-
ence between them is that only approximation algorithms provide some guarantee
based on the metric that relates the output solution to the minimum one. In the
majority of cases in the literature, the metric used as a performance guarantee is the
approximation ratio (or approximation factor) λ, defined if the minimum solution
is non-zero as

λ =
cout
cmin

, (3.1)

where cout is the output solution and copt minimum one. Although it is not orthodox,
for technical purposes, we allow in this work the approximation ratio to be negative
in situations when the objective function can output both positive and negative
values. For instance, if cout = 2 and cmin = −4, then λ = −0.5. The approximation
ratio of a maximization problem with non-negative values, such as Max-Cut, is not
affected by the conversion on a minimization problem. Follows that if cmin < 0, then

2Although the concept of NP-Completeness was later introduced by Karp [66].
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λ ≤ 1 and if cmin > 0, then cmin ≥ 1.
In classical computing, examples of approximation algorithms for specific prob-

lems are the Christofides algorithm [9] for Traveling Salesman Problem, which guar-
antees λ = 3/2 for metric instances, i.e., in which the weights of edges obey the trian-
gle inequality; and the Goemans-Williamson algorithm [68], which gives a guarantee
of λ ≈ 0.8786 on Max-Cut problem. In particular, unless P=NP, there is no efficient
algorithm to approximate the Traveling Salesman Problem with general instances
on a constant approximation ratio [9]; and approximate Max-Cut beyond the ap-
proximate ratio λ = 16/17 ≈ 0.9412 in general case is proved to be NP-Hard [69, 70].

On the other hand, there are classical approaches used for general combinatorial
optimization problems. The most rudimentary of all is the classical brute force
approach. To the exact optimization, the classical brute force consists of simply
verifying all possible feasible solutions, which has the runtime Θ(∣S∣) if we do not
know how to identify when a solution is optimal. On non-exact optimization, we
can consider the called classical random sampling (CRS) [24], in which we uniformly
sampling a given number of times the solution space and take the smallest one. If
we model the random sample of the solution space with random variables3, CRS is
equivalent to the first order statistic. One refinement of the classical brute force to
exact optimization approach is called backtracking. It refers to a general technique in
which the solution space is systematically enumerated, allowing sets of solutions can
be discarded without explicit consultation by detecting some certificate indicating
these solutions are not optimal.

A heuristic still very simple is the Hill Climbing [71], which starts from a given
solution and evaluates the objective function for some defined neighboring solutions.
We pick the best neighbor and repeat the process until finding a solution better than
all its neighbors. The main problem with this approach is that it can fall into so-
called local minima, which may correspond to unsatisfactory solutions. More robust
heuristics are simulated annealing, an algorithm inspired by the cooling of physical
systems, and genetic algorithms, which are a class of algorithms inspired by the
process of natural selection of the Theory of Evolution. Furthermore, several COPs
can be formulated as integer programming problems, which have their own arsenal
of algorithms [72].

In the quantum computing case, it is safe to say that the most prominent general
heuristic for combinatorial optimization is the QAOA, discussed further. The state-
of-art for quantum computing for combinatorial optimization (and optimization in
general) can be founded on the review paper of Abbas et al. [73].

3See Chapter 4 to a more precise definition of the model of the solution space with random
variables.
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3.2 Grover’s algorithm and the unstructured search

problem

The unstructured search problem can be stated as follows. Consider the function

f(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, x ∈ A

0, otherwise,
(3.2)

with a finite domain of size N and where A is a subset of that domain of size
n. Suppose that the elements of the A are unknown, and we want to find it with
as few evaluations of any point of the domain as possible. The function f(x) is
called an oracle, and the elements of A are known as marked elements4. We denote
the ratio n/N of marked elements on the entire domain by ρ. The complexity in
terms of the number of calls of the oracle is called query complexity. Although the
unstructured search problem is essentially a search problem, it can be formulated as
an optimization problem, for instance, for the context of the VQAs [74, 75].

Of course, we are not interested in best-case complexity since, in classical com-
puting, we could find a marked element on the first evaluation if it happens to be
in the first position consulted. In the quantum computing case, we could build an
algorithm that only amplifies the probability of specific states that, by chance, could
be marked in a given instance. Therefore, it is reasonable to consider both average
and worst cases. For this work, we are considering the average-case complexity.
Respecting our intuition, the best classical algorithm for unstructured search prob-
lems on the average-case is a classical brute force evaluation of the oracle to distinct
points on the domain until finding a marked element. In that case, the average-case
query complexity is Θ(1/ρ) as ρ→ 0.

In the quantum computing case, the situation becomes more interesting due to
the possibility of simultaneous evaluations of different points of domains. Combining
it with an intelligent exploration of the quantum interference phenomenon, we can
go beyond the classical brute force. In this sense, quantum computing has Grover’s
algorithm, also called Grover’s search, originally introduced to the unstructured
search problem with a single marked element, i.e., n = 1, and with N being a power
of 2 [18, 19]—to encode the points of the domain precisely on log2(N) qubits—and
later generalized to the version presented here [76]. Grover’s algorithm has a query
complexity of Θ(1/√ρ) as ρ→ 0, a quadratic gain over classical brute force.

The evaluation of function f(x) is given on quantum computing by the called
quantum oracle O, which is a black box unitary that is somehow able to distinguish

4The marked/non-marked elements also can be called good/bad elements or elements as win-
ning/losing.
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between marked and non-marked elements. In particular, the oracle of Grover’s
algorithm, also called phase oracle, denoted OG, acts in a state ∣x⟩ as

OG∣x⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∣x⟩, x ∈ A

∣x⟩, otherwise
= (−1)f(x)∣x⟩. (3.3)

Grover’s algorithm can be present also with the standard oracle OS, which uses
an ancilla qubit and acts as OS ∣x⟩∣j⟩ = ∣x⟩∣j ⊕ f(x)⟩, where ⊕ is the binary sum or
bitwise xor. In this work, we consider only the phase oracle.

On a quantum algorithm for the unstructured search problem, the alone oracle’s
action is not enough to measure the marked elements with high probability. We
need an operator to generate interference between states with the goal of amplifying
the probability of measuring the marked states. That type of operator is usually
called the diffusion operator. In Grover’s algorithm, the diffusion operator, denoted
by DG, is known as Grover’s diffusion operator and is given by

DG = 2∣d⟩⟨d∣ − I. (3.4)

The symbol I denotes the identity matrix, and ∣d⟩ is a uniform superposition over
all states of the computational basis codifying points of the domain of f(x), that is,

∣d⟩ =
1
√
M

∑
x∈Dom{f}

∣x⟩. (3.5)

Denoting the combining application of both operators by G =DGOG, the final state
of the unitary evolution of Grover’s algorithm, denoted ∣ψ(r)⟩, consists in a number
of r of applications of the operator G on the initial uniform superposition ∣d⟩. A
single application of G is called Grover’s iteration or Grover’s round. The number
of rounds to measure a marked state with high probability from the state ∣ψ(r)⟩ is
of order Θ(1/

√
ρ) as ρ→ 0.

The compilation of Grover’s diffusion operator on a quantum circuit can be
done with time complexity O(log(N)) in terms of universal gates. Combining it
with the query complexity gives a general runtime of O(1/√ρ log(N)). The space
complexity is in order of O(log(N)). The procedure is discussed by Portugal [22]
for standard oracle formulation and N as a power of 2. However, we can convert
in the phase oracle formulation with the procedure of Portugal [60], and for general
N , as suggested by Boyer et al. [76], we can use the approximate Fourier transform
given by Kitaev [77].
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3.2.1 Geometric interpretation of Grover’s algorithm

For the purposes of this work, we ignore the quantum circuit compilation of Grover’s
algorithm and focus only on the analysis of the unitary dynamics of the algorithm.
Since Grover’s algorithm acts on the subspace of real numbers and all marked/non-
marked elements share the same amplitudes, it admits a geometric interpretation in
a two-dimensional reduced subspace.

Denoting by ∣a⟩ and ∣b⟩ uniform superpositions over all non-marked elements and
marked elements, respectively, we can write the initial state as

∣d⟩ = cos (θ/2)∣a⟩ + sin (θ/2)∣b⟩ (3.6)

where θ/2 = arcsin (ρ) is angle of the vector ∣d⟩ with the axis ∣a⟩. The application
of the oracle operator is a reflection over the vector ∣a⟩ while the diffusion operator
acts as a reflection on the own ∣d⟩ vector. The combined action of both increases
the angle of the state vector to 3θ/2 radians. Fig. 3.1 illustrates the geometrical
interpretation for a single iteration.

∣a⟩

∣b⟩

∣d⟩

OG∣d⟩

G∣d⟩

θ/2

θ/2

3θ/2

Figure 3.1: Geometric interpretation of a single Grover’s iteration. Two-dimensional
subspace spanned by the vectors ∣b⟩ and ∣a⟩. The initial state ∣d⟩ makes an angle
of θ/2 with the axis ∣a⟩. The application of the oracle and diffusion operator are
reflections over ∣a⟩ and ∣d⟩, respectively, which results in an angle of 3θ/2 for G∣d⟩.
The creation of this figure by the author was inspired by Figure 6.3 of Nielsen and
Chuang [1].

In general, one can show that each iteration increases the angle of the state
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vector in θ radians. Therefore,

∣ψ(r)⟩ = Gr∣d⟩ = cos ((2r + 1)θ/2)∣a⟩ + sin ((2r + 1)θ/2)∣b⟩. (3.7)

Denoting the event ”suc” as the success of the algorithm, that is, the measurement
of a marked element, we have

P[suc] = sin2 ((2r + 1)arcsin (
√
ρ)). (3.8)

In particular, if the angle of geometric interpretation (2r + 1)θ/2 is π/2 radians,
then P[suc] = 1. Solving it gives the runtime ropt = ⌊ π

4
√
ρ⌋. One can verify that, for

instance, ρ = 0.25 gives ropt = 1 with exact P[suc] = 1. Of course, the probability
of being equal to 1 does not hold in general. However, the optimal probability is
bounded by P[suc] ≥ 1−ρ, being therefore 1 asymptotically on ρ→ 0. Furthermore,
note that since the position of the marked elements on the domain is irrelevant to
the performance of the algorithm, the complexity of worst, best, and average cases
are the same.

3.2.2 The low-convergence regime and the maximum ampli-

fication

Taking ρ → 0 and ρ << 1/(2r + 1)2 in Eq. (3.8) reduce the probability P[suc] of
Grover’s algorithm to ρ(2r + 1)2 since sin (x) → x and arcsin (x) → x. Bennett and
Wang [23] refer to it by the low-convergence regime of Grover’s search.

Until the angle of π/2 radians on a geometric interpretation of Grover’s algorithm,
we denote the ratio P[suc]/ρ by η. That represents the ratio of the probability of
measuring a marked state before and after the application of Grover’s iterations, i.e.,
the amplification of probability realized by Grover’s algorithm. The low-convergence
regime maximizes the amplification with (2r + 1)2. We prove it in Appendix A,
showing additionally that for a fixed r, η is strictly decreasing in the function of ρ.
Fig. 3.2 illustrates how small values of ρ get closer to the low-convergence regime
for r = 1. As noticed by Bennett and Wang [23], the accuracy between the low-
convergence regime and the true amplification is within 1% when the amplified
probability is less than 1/40.

3.2.3 Optimality of Grover’s algorithm on the unstructured

search problem

A natural question is whether Grover’s algorithm is optimal on average-case for
the unstructured search problem on quantum computing. The answer is yes. The
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Figure 3.2: Amplification η versus the ratio ρ for the range 10−5 until 0.25 on linear-
log scale and r = 1. The ratio r = 0.25, which has an amplification of η = 4, gives
the π/2 radians of the geometric interpretation of Grover’s algorithm. We normalize
η by the maximum amplification of (2r + 1)2. For low ratios, the amplification
gets closer to the maximum amplification, while for ratios near to π/2 radians on
geometric interpretation, η is considerably lower than (2r + 1)2.

first result concerning the optimality of Grover’s algorithm was present in Bennett
et al. [29] paper, which proves that for n = 1 case, the number of oracle calls of
a quantum algorithm must be Ω(

√
N), establishing the asymptotic optimality of

Grover’s algorithm. Subsequently, Boyer et al. [76] consider arbitrary n and show
that Grover’s search is at least near in a factor of 2 to be optimal in terms of
the number of rounds. Zalka [35] went further and proved the strongest possible
result for n = 1 case: Grover’s algorithm is exactly optimal for the probability until
the threshold angle of π/2 radians on the geometric interpretation—from which the
probability starts to decrease. Finally, Hamann, Dunjko, and Wölk [36] generalize
Zalka’s proof for arbitrary n. Solving P[suc] = π/2 for ρ, we can conclude that the
ratio point of π/2 radians is sin2 (π/(4r + 2)). We enunciate the result of Hamann,
Dunjko, and Wölk [36] adapting to our notation on the following theorem.

Theorem 6 (Optimality of Grover’s algorithm) For an oracle O that marks
exact n over N elements and such ρ = n/N , Grover’s algorithm gives the maximum
possible average probability of measuring a marked element for a quantum algorithm,
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given by Eq. (3.8) for up to the interval ρ ≤ sin2 (π/(4r + 2)).

3.3 Grover Adaptive Search

The insights provided by Grover’s algorithm go far beyond the unstructured search
problem. The essence of the algorithm is a technique called amplitude amplifica-
tion [78] that is used in several quantum algorithms. For instance, a more general
version of the amplitude amplification can be used to improve the runtime complex-
ity of the Harrow–Hassidim–Lloyd (HHL) algorithm [79] for the problem of linear
system of equations [80]. Beyond amplitude amplification, Grover’s algorithm can
used as a subroutine on algorithms for combinatorial optimization with the tar-
get of providing a quadratic speed-up over classical brute force [40]. An illustrious
algorithm among them is the Grover Adaptive Search (GAS).

The origin of GAS goes back to the unstructured search problem for arbitrary n
when the value of n is unknown. Note that the algorithm presented in the previous
section started from the premise that the value of n is known. Otherwise, we would
not know the required number of Grover’s iterations. On the other hand, if the
value of n is not known, we can apply a procedure called exponential quantum
search, introduced by Boyer et al. [76]. Exponential quantum search is based on the
classical algorithm of exponential search [81, 82], and the expected runtime is kept
to the order O(1/√ρ). The procedure is the following.

• Set l = 1 and 1 <K < 4/3;

• Choose j uniformly at random among the elements of the set {0,1, . . . , ⌈l−1⌉};

• Apply j Grover’s iterations and denote the outcome as k;

• If k is a marked element, the procedure is over. Otherwise, update l to
min{Kl,

√
N} and back to the second item.

That method is the heart of the minimization algorithm introduced by Durr and
Hoyer [37], which can be seen as a variant of GAS, introduced in the papers [38, 39].
Grover Adaptive Search is a quantum computing implementation of a stochastic
algorithm for global optimization called Hesitant Adaptive Search (HAS) [83].

Grover’s algorithm is used iteratively in the GAS framework. In particular, the
best value known so far is chosen as a threshold in which all values smaller than
it are the marked elements of Grover’s search. For exact optimization, GAS finds
a minimum value of a given COP with probability at least 1/2 with a runtime of
O(
√
∣S∣), quadratic speed-up over the classical brute force algorithm. In general,

when a quantum algorithm performs quadratically better than the classical brute
force on some metric, we called a Grover-style speed-up or Grover-like speed-up.
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Considering the Gilliam, Woerner, and Gonciulea [40] description, the procedure
of GAS is following: the input is a K > 1 and a COP with combinatorial domain
S and objective function c(k). The algorithm begins uniformly sampling k1 ∈ S

and setting y1 = c(k1), l = 1, j = 1. Then, we repeat the following steps until a
termination condition is met.

• Choose uniformly rj from the set {0,1, . . . , ⌈l − 1⌉};

• Apply the Grover’s algorithm of rj iterations with an oracle that marks all
states k ∈ S such that c(k) < yj. The output solution is denoted k, while
y = c(k);

• If y < yj then kj+1 = k, yj+1 = y. and l = 1. Otherwise, kj+1 = kj, yj+1 = yj and
updated l to Kl;

• Update j to j + 1.

The termination condition can be on the number of repetitions of the steps, the
runtime, or even another metric. Although the usual goal is the exact optimization
for a runtime of O(

√
∣S∣), one can use it as a heuristic algorithm with a more limiting

termination condition.
The greatest challenge in the implementation of GAS is the compilation of the

subroutine of Grover’s algorithm, a topic discussed in Gilliam, Woerner, and Gonci-
ulea [40] paper. In particular, an efficient implementation of Grover’s oracle in
general can be done with quantum arithmetic. However, this approach can become
costly due to the Toffoli gates, making it prohibitive for NISQ devices. For this
context, the aforementioned work presents a more appropriate method to build or-
acles for the class of problems called Constrained Polynomial Binary Optimization
(CPBO), which generalizes the well-known Quadratic Unconstrained Binary Opti-
mization (QUBO) problems, applying that framework to the Portfolio Optimization
problem.

3.4 Variational Quantum Algorithms

The Variational Quantum Algorithms (VQA) [4] are a prominent class of optimiza-
tion algorithms used to target optimization problems in the NISQ era. The opti-
mization process is only possible because of the variational principle of quantum
mechanics, which states that the expectation value of an observable for a given trial
wave function is always equal to or greater than the ground state energy. With
the variational principle, we can optimize the expectation value varying the trial
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wave function upon an ansatz5 until finding the ground state. On quantum circuit
model, the expectation value of a Hamiltonian H on a state ∣ψ⟩, given by ⟨ψ∣H ∣ψ⟩,
is expected value of energy (eigenvalues) spectrum of H weighted by the probability
of the states on ∣ψ⟩. Mathematically, the variational principle states

λmin ≤ ⟨ψ∣H ∣ψ⟩, (3.9)

where λmin is the lowest eigenvalue of H. Eq. (3.9) holds for Hermitian operators,
which is the case of Hamiltonian operators.

VQAs are algorithms that combine quantum and classical computing through a
hybrid loop, also called an outer loop or variational loop. On the quantum part,
the ansatz, we apply on an initial state a parameterized unitary transformation
U(θ) for some set of discrete or continuous (or both) optimization parameters θ

called variational parameters and then we make measurements. By a given number
of measurements of the quantum circuit, we get a statistical estimator of a set of
observables {Ok}. Classically, based on the quantum experiments, we update the
optimization parameters using an optimizer with the goal of minimizing a real-
valued function c(θ) called cost function that depends on the observables {Ok}

given by measurements. When applied to COPs, it is straightforward to consider
the objective function as the cost function. The cost function induces a hyper-
surface called the cost landscape such that the task of the classical optimizer is to
navigate through the landscape until finds a global minima, in a process also called
training. We can think of VQAs as the quantum analog of classical machine learning
methods, such as neural networks [4].

3.4.1 Ansatzes

As discussed in detail by Cerezo et al. [4], there are different classifications for the
ansatzes. If the architecture used on the ansatz depends on the task that we are deal-
ing with, we called problem-inspired ansatz. An example is the Unitary Coupled
Clustered (UCC) [85] ansatz, used on quantum chemistry problems. In contrast,
there are generic ansatz architectures called problem-agnostic, used independent of
the availability of information on the problem. In some sense, the Quantum Alter-
nating Operator Ansatz, present in Sec. 3.7, is an example of a problem-agnostic
ansatz.

Another classification is the variable structure ansatz, which beyond the usual
optimization of variational parameters on quantum gates of a fixed structure, opti-
mizes the structure itself, adding and removing parts of the circuit—that propose

5In a general sense, an ansatz in physics and mathematics is an educated guess for the functional
form of a solution of an equation or other problem [84].
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of ansatz is introduced in a framework called ADAPT-VQE [86]; and the hardware
efficient ansatz, that as the terminology suggests, are designed to reduce the depth
on specific quantum hardware—an example is found on Kandala et al. [87] paper.

3.4.2 Optimizers and the barren plateau phenomena

The training of VQAs is a huge challenge since globally optimizing the classical
optimization problems associated with VQAs is expected to be NP-Hard in many
cases [88]. That issue, added to other challenges such as the barren plateau (BP) [89]
problem—discussed further—underscore the importance and the necessity of the
study of classical optimizers in the VQA’s research. Following the classification of
Cerezo et al. [4], the classical optimizers can be split into two categories. The first
one is the gradient-based optimizer, which navigates the landscape iteratively using
the direction indicated by the gradient as a compass. As the observables of VQAs are
estimated by statistical estimators, they fit under the general method of Stochastic
Gradient Descent (SGD). By the natural similarity of VQAs with machine learning,
some used SGD on VQAs are inspired or imported from machine learning, such as
Adam [90] and the individual Coupled Adaptive Number of Shots (iCANS) [91]. On
the other hand, there are approaches that do not use gradient (at least directly)
called gradient-free [92–94].

The aforementioned barren plateau is a phenomenon that occurs in many classes
of VQAs in which the cost landscape becomes flatter as we increase the number of
qubits of the quantum circuit, meaning that the gradient becomes exponentially
small and the optimization process becomes inert. Following the description of
Blekos et al. [10], formally, the barren plateau phenomena arise for a cost function
c(θ) if for all optimization parameters θj ∈ θ,

Var [
∂c(θ)

∂θj
] = O(b−n), (3.10)

where n is the number of qubits and b a constant such as b > 1. Since the vari-
ance is a concept—as we discussed in Subsec. 2.4.2—related to the spread from the
mean, the gradient of the cost function is exponentially small on average. Further-
more, Chebyshev’s inequality finds importance in this context in such a way that
its application gives

P [∣
∂c(θ)

∂θj
∣ ≥ k] ≤

1

k2
Var [

∂c(θ)

∂θj
] = O(b−n) (3.11)

for a given k > 0. The implication of the exponential decay of the probability of the
absolute value of gradient being equal to or greater than k is a flatter landscape.
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The barren plateau phenomena affect not only gradient-based but also the gradient-
free approaches [95]. There is a connection between BPs and the randomness of the
ansatz in such a way that if an ansatz forms a 2-design, i.e., matches the uniform
distribution of unitaries up to the second statistical moment, it presents BPs [89].
In the presence of noise, the problem is more relentless since barren plateaus appear
independently of the ansatz used [96].

The barren plateau problem draws attention to the issue of parameter initializa-
tion. The most common strategy, random initializing, can lead to an unfavorable
region, such as regions of barren plateaus. However, in some situations, such as
in Zhou et al. [97] paper, heuristic strategies based on empirical observation of the
optimal parameters can be used to get better results than random initialization.

3.4.3 Applications

A notable advantage of the VQAs framework is its applicability, widely discussed
in Cerezo et al. [4] paper. The range of tasks that VQAs can tackle is quite wide,
much broader than the context of combinatorial optimization. Indeed, VQAs even
support universal quantum computing [98]. The two main classes of VQAs are
the Quantum Approximate Optimization Algorithm, applied mainly on combinato-
rial optimization, discussed in Sec. 3.6, and the Variational Quantum Eigensolver
(VQE), originally introduced by Peruzzo et al. [99] and subsequently improved and
extended by McClean et al. [100]. The VQE is a most direct application of the vari-
ational principle, used to find the ground state of quantum systems in the physics
and chemistry context.

Among the VQAs for specific tasks, we cite for mathematical applications the
Variational Quantum Factoring (VQF) [101] and the Variational Quantum Linear
Solver (VQLS) [102], NISQ alternatives for the Shor’s algorithm [103, 104] on integer
factorization problem and the HHL algorithm [79] on the problem of linear system
of equations, respectively. Other general applications of VQAs are compilation of
quantum circuits, dynamical simulations, error correction, machine learning, and
quantum information.

3.5 Quantum Adiabatic Algorithm

The Quantum Approximate Optimization Algorithm is derived from the Quantum
Adiabatic Algorithm (QAA), which, in turn, fits under the more general universal
model of quantum computing called Adiabatic Quantum Computation (AQC) [105].
The idea behind QAA came from a fundamental result of quantum mechanics, the
adiabatic theorem, originally stated by Born and Fock [106]. Consider that we are
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interested in finding the ground state of a Hamiltonian HC , of difficult preparation.
In a combinatorial optimization context, HC codifies the solution space of a given
COP. The QAA, introduced on the papers [7, 8], consists in preparing the system
on the known ground state of a second Hamiltonian HM , of easy preparation and
that does not commute with HC , and then evolving continuously on the time τ 6

the system from HM to HC on a transitional time-dependent Hamiltonian H(τ) by
the interpolation

H(τ) = f(τ)HC + g(τ)HM (3.12)

for τ = [0, τmax], where f(τ) = τ/τmax and g(τ) = 1 − τ/τmax. By the adiabatic
theorem, if the evolution is slow enough—that is, sufficiently large τmax—the system
keeps on its ground state throughout the process, and we find the desired ground
state of HC at the end of interpolation.

A condition for the adiabatic theorem to be applicable is that there must be
an energy gap between the ground state and the first excited state. The smaller
the gap, the slower the evolution must be to avoid "mixing" between both states,
since the quantum system needs a certain amount of time to "adapt" to external
disturbances. Furthermore, as emphasized in the original article of QAA [7], HC and
HM must not commute. Otherwise, from a well-known result of linear algebra, they
share the same eigenvectors, changing only the eigenvalues. That way, at some point
in the interpolation, the energy gap would become zero and therefore the algorithm
would fail.

Following the description Blekos et al. [10], the evolution unitary is defined as
U(τ) = e−i ∫

τ
0 H(u)du. Since HC and HM do not commute, we compile approximately

the continuous evolution of the evolution unitary on the gate model quantum com-
puting by the Trotterization [107] process. That way, from the Trotter-Suzuki for-
mula on r steps,

U(τ) ≈
r−1
∏
k=0

exp [−iH(k∆τ)∆τ]

=
r−1
∏
k=0

exp [−if(k∆τ)HC∆τ] exp [−ig(k∆τ)HM∆τ],

(3.13)

where ∆τ = τ/r.
6We do not use the usual symbol t for the time to avoid confusion with the threshold value of

GM-Th-QAOA, introduced on of Subsec. 3.8.2.
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3.6 Quantum Approximate Optimization Algo-

rithm

The Quantum Approximate Optimization Algorithm (QAOA) was originally in-
troduced by Farhi, Goldstone, and Gutmann [5] as a heuristic VQA to Max-Cut
problem in the NISQ context, being until today likely the most well-studied prob-
lem in this context [10]. However, that original framework is directly applicable to
unconstrained optimization problems and indirectly applicable to constrained opti-
mization by adding “penalties” to the cost function on states considered unfeasible,
compromising the performance of the algorithm—see Slate et al. [25] for an exam-
ple of application on constrained optimization context. QAOA is a modification
of QAA on the Trotterization form of Eq. (3.13), replacing the functions f(τ) and
g(τ) by variational parameters to be optimized. Specifically, for all k such that
1 ≤ k ≤ r, f((k − 1)∆τ)∆τ becomes the parameter γk and g((k − 1)∆τ)∆τ becomes
the parameter βk. Thus, we introduce 2r parameters in the vectors γ = (γ1, . . . , γr)

e β = (β1, . . . , βr).
In particular, the Hamiltonian HC , diagonal in the computational basis, encodes

Max-Cut or other unconstrained problems on n qubits such that

HC ∣k⟩ = c(k)∣k⟩, (3.14)

where c(k) is the cost function and ∣k⟩ is the quantum state encoding the solution
given by a n-bit string k. The spectrum of the Hamiltonian HC corresponds to the
solution space of the problem. The Hamiltonian HM , in turn, is given by

HM = −
n

∑
j=1
σX
j , (3.15)

where σX
j is the Pauli-X operator applied on the jth qubit. The ground state of

HM is given by the uniform superposition ∣+⟩⊗n = 1√
2n
∑

2n−1
k=0 ∣k⟩, where ⊗ denotes the

Kronecker product. Thus, the evolution of QAOA with r layers, given by the state
∣ψ(r)⟩, is the alternate application the operators UP (γ) = e−iγHC and UM(β) = e−iβHM

on the initial state ∣+⟩⊗n, that is,

∣ψ(r)⟩ = UM(βr)UP (γr) . . . UM(β1)UP (γ1)∣+⟩
⊗n
. (3.16)

We optimize the parameters in the variational manner aiming to minimize7 the
7The original definition of Farhi, Goldstone, and Gutmann [5] is for maximization problems, in

which HM is given without the minus sign on Eq. (3.15).
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expectation value ⟨ψ(r)∣HC ∣ψ
(r)⟩, given by

⟨ψ(r)∣HC ∣ψ
(r)⟩ =

2n−1
∑
k=0
∣αk∣

2c(k), (3.17)

where αk is the amplitude of the state ∣k⟩. The search space of βj can be restricted to
(0, π] and, if the cost function has only integer values, such as the Max-Cut problem
case, γj can be restricted to (0,2π].

The expectation value can be statistically estimated with an estimator from the
solutions obtained by the measurement of the state ∣ψ(r)⟩. Marsh and Wang [14]
show that if the optimization problem is an NP optimization problem polynomially
bounded—that is, an NP optimization problem with the values of the cost function
bounded by a polynomial function on the size of the instance—we can obtain the
expectation value on a fixed confidence interval with a random sample of polynomial
size. Furthermore, follows that the minimum expectation value of r layers is smaller
or equal to the minimum expectation value of r − 1 layers and that the minimum
expectation value on r →∞ gives the optimal solution.

The compilation of the quantum circuit of UM(β), in addition to the UP (γ) for
Max-Cut, can be found in details on Blekos et al. [10] review paper.

3.7 Quantum Alternating Operator Ansatz

The Quantum Alternating Operator Ansatz (QAOA), introduced by Hadfield et
al. [6], is a generalization of the Quantum Approximate Optimization Algorithm.
While the last is directly applicable only to unconstrained optimization problems,
the first generalizes the framework to a constrained optimization context. Instead
of acting as a Hilbert space of dimension 2n, where n is the number of qubits,
the Quantum Alternating Operator Ansatz acts in a generic subspace of M feasible
solutions of the problem, where M is not necessarily a power of 2. The operators are
also generalized: UM(β) beyond the Hamiltonian of Eq. (3.15) and UP (γ) beyond
directly codifying the cost function.

As emphasized by Hadfield et al. [6], the main application of QAOA is to heuris-
tic8 optimization of NP-Hard optimization problems. However, also can be used, for
instance, to exact optimization [74, 75, 108]. As aforementioned—and indicated in
its terminology—the QAOA can also be seen as an ansatz in the context of VQAs,
being applicable, for instance, to VQAs of specific purpose such as VQF [101] and
VQLS [102]. Focusing on combinatorial optimization context, we define QAOA as
follows.

8Approximation ratio guarantees are rare in the context of QAOA, as discussed on Subsec. 3.7.2.
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Definition 17 (Quantum Alternating Operator Ansatz) Consider an in-
stance of a combinatorial optimization problem defined on a domain S with a cost
function (the objective function) c(k) ∶ S → R be minimized. For some Hilbert space
known as configuration space, the algorithm acts in some subspace called feasible
subspace spanned by M = ∣S∣ basis states (the feasible states) codifying the solutions
of S. The state final of QAOA, denoted ∣ψ(r)⟩, is given by

∣ψ(r)⟩ = UM(βr)UP (γr) . . . UM(β1)UP (γ1)∣ψ⟩. (3.18)

Here,

• r is the number of rounds/layers/iterations9 or the depth of QAOA;

• ∣ψ⟩ is a generic initial state;

• UP (γ) = e−iγHQ is the phase separation operator (or phase separator), where
HQ is a Hamiltonian that encodes a real-valued function q(k) compiled from
the cost function such that

HQ∣k⟩ = q(k)∣k⟩ (3.19)

for any feasible state ∣k⟩;

• UM(β) = e−iβHM is the mixing operator (or mixer operator), where HM is mixer
Hamiltonian (or mixing Hamiltonian or even driver Hamiltonian);

• sets b = (β1, . . . , βr) and γ = (γ1, . . . , γr) are the optimization parameters (or
angles), with search space depending on the mixing operator and phase sepa-
ration operator, respectively.

To this work, we assume that the goal of QAOA is to minimize the expectation
value ⟨ψ(r)∣HC ∣ψ

(r)⟩. The diagonal Hamiltonian HC called the Hamiltonian problem
is defined analogously as on Quantum Approximate Optimization Algorithm with
HC ∣k⟩ = c(k)∣k⟩ for any feasible state ∣k⟩. Furthermore, we also assume HQ is
diagonal on the computational basis and that the Hilbert space of the configuration
space is defined on a qubit system.

3.7.1 Phase separation and mixing operators

The mixing operator depends on the structure of the combinatorial, while the phase
separation operator depends on the cost function. For a given combinatorial domain

9For this work, these terminologies always refer to r and not to the variational loop of the
classical optimizer of QAOA.
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corresponding to a given feasible subspace, there are many possibilities of mixing
operators, while for a given cost function, there are a variety of possible compilations
for the phase separation operator. Because of that, we say that UM(β) and UP (γ)

are families of operators.
Beyond the original interpretation of Quantum Approximate Optimization Al-

gorithm from the points of view of the QAA, we can interpret the operators of
Quantum Alternating Operator Ansatz as follows [11, 12]. The phase separation
operator changes the relative phases between states by introducing bias according
to the cost function to be optimized, acting as the "oracle" of the problem. The
mixing operator is responsible for generating interference between the states, "mix-
ing" its amplitudes to amplify the probability of measuring states corresponding to
high-quality solutions, i.e., desirable solutions from a heuristic algorithm point of
view.

In the original Quantum Approximate Optimization Algorithm framework, the
mixer Hamiltonian is the mixer of Eq. (3.15) (without the minus sign), called trans-
verse field mixer (or single-qubit-X mixer); the phase separation encodes precisely
the cost function, that is, q(k) = c(k) and HQ = HC ; and the initial is given by
∣+⟩
⊗n. In that case, the configuration space is equal to the feasible subspace, which,

in general, is straightforward on unconstrained optimization. The transverse field
mixer connects pairs of states with unit Hamming distance, that is, ⟨x∣HC ∣y⟩ = 1 if
the Hamming distance of the binary representations of x and y is equal to 1 and
⟨x∣HC ∣y⟩ = 0 otherwise.

The phase separation operator, the problem Hamiltonian, and the Hamiltonian
HQ can be written using projectors as

UP (γ) =∑
k∈S

e−iγq(k)∣k⟩⟨k∣, HC =∑
k∈S

c(k)∣k⟩⟨k∣, HQ =∑
k∈S

q(k)∣k⟩⟨k∣. (3.20)

Provided that the function q(k) is efficiently computable, we can compile efficiently
the phase separation operator UP (γ) with the procedure of Childs [109] (see the
quantum circuit of Figure 1-1 on the thesis of Childs [109]).

Although there are exceptions such as GM-Th-QAOA, discussed on Subsec. 3.8.2,
in almost all cases, q(k) = c(k). On the other hand, concerning the mixing operators,
Hadfield et al. [6] define several families that apply to a wide range of optimization
problems. We highlight the family of XY -mixers, which are a sum of the 2-local
operators σX

j σ
X
k +σ

Y
j σ

Y
k

10, where j and k are arbitrary qubits. Each operator behaves
exactly as a SWAP gate on the subspace spanned by {∣0j1k⟩, ∣1j0k⟩}, preserving the
Hamming weight. That naturally induces application on problems defined on the
combinatorial domain of the Hamming weight k bit strings, such as Max k-Vertex

10The operator σY
j is the Pauli-Y gate applied to the jth qubit.
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Cover, k-Densest Subgraph, Max Bisection [11, 28]. Two prominent mixers of the
XY -mixers family are the ring and clique (complete graph) mixers, given for n
qubits by

HM = ∑
j,k∶k=j+1 mod n

σX
j σ

X
k + σ

Y
j σ

Y
k , HM = ∑

j,k∶k>j
σX
j σ

X
k + σ

Y
j σ

Y
k , (3.21)

respectively. Ring mixer sum over cyclically adjacent qubits and clique mixer sum
over all pairs of qubits. Other mixers were introduced later, such as line mixer [33],
given by

HM = ∑
j,k∶∣k−j∣=1

∣j⟩⟨k∣ + ∣k⟩⟨j∣, (3.22)

which connects states with a metric based on the arithmetic distance of feasible
solutions, and the Grover mixer, discussed in the next section.

3.7.2 Angles finding and analytical results

The optimal (or at least near-optimal) angles of QAOA are obtained in the majority
of cases with the usual but costly outer loop by using classical optimizers, such as
Nelder-Mead [110] and Broyden Fletcher, Goldfarb, Shanno (BFGS) [111]. However,
in some very particular cases, such as in this work for Grover mixer variants, it is
possible to compute the parameters analytically [74, 112–114].

In fact, as discussed by Golden et al. [11], the difficulty of analytically obtaining
the optimal parameters is a consequence of the more general issue that analytical
results are historically rare and sparse in QAOA literature due to the high complexity
of quantum operators. Furthermore, the number of optimization parameters grows
with the number of layers, making it difficult to generalize methods beyond a small
number of layers. Thus, little is known about the theoretical performance11 of
QAOA and its potential when compared to the classical algorithms, being much of
the knowledge based on numerical evidence, also limited by the inherent challenges
of the classical simulation of quantum circuits. As Golden et al. [11] mention, the
most well-known analytical result of QAOA is the approximation ratio guarantees on
3-regular graphs of the Max-Cut problem for a small number of layers [5, 115, 116].
In general, approximation ratio guarantee is likely the most common performance
metric in the analytical results of QAOA literature, a topic discussed in detail in
Blekos et al. [10] review paper. In the present dissertation, we provide bounds on
the performance of QAOA on Grover mixer variants with the alternative metrics of
the standard score and the quantile of the solution space.

Other aspects that can be considered in QAOA research, such as computational
11The performance of QAOA throughout this work refers to the quality of the result obtained

by the algorithm provided from some metric, such as the approximation ratio.
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resource efficiency, noise and error considerations, and hardware-specific approaches,
all covered by Blekos et al. [10] review, are outside the scope of this work. Through-
out this work, we consider QAOA in its ideal conditions, without considering the
noise or the complexity of the compilation on the algorithm in a quantum circuit.

3.8 Grover mixer

The Grover mixer Hamiltonian is given by

HM = ∣s⟩⟨s∣, (3.23)

where ∣s⟩ is a uniform superposition over all feasible states, that is,

∣s⟩ =
1
√
M
∑
k∈S
∣k⟩. (3.24)

It can be shown that the mixing operator of Grover mixer Hamiltonian, called Grover
mixer operator or simply Grover mixer, is given by

UM(β) = I +B(β)∣s⟩⟨s∣, (3.25)

where B(β) = −1+e−iβ. Taking β = π reduces the Grover mixer to Grover’s diffusion
operator of Eq. (3.4) up to a global phase, justifying its terminology. The period of
this operator is 2π. In particular, here we set the search space of β as (−π,π]. The
search space of γ depends on the optimization problem. In the general case, γ ∈ R,
while assuming integer costs, we can restrict it to (−π,π].

Unlike the traverse field mixer, which connects the states of unit Hamming dis-
tance, the Grover mixer connects all pairs of states. This characteristic is central
to this work and culminates in the fact that the Grover mixer is invariant over any
permutation of states, discussed in Chapter 4. Another significant property of the
Grover mixer is that assuming the initial state is ∣s⟩, degenerate solutions—solutions
with the same cost—share the same amplitudes throughout the algorithm [13].

3.8.1 Grover Mixer Quantum Alternating Operator Ansatz

The Grover Mixer Quantum Alternating Operator Ansatz (GM-QAOA) was intro-
duced formally by Bärtschi and Eidenbenz [13]. The Grover mixer had already
been used at least by Morales, Tlyachev, and Biamonte [75], Akshay et al. [16],
and Sundar et al. [117]. All mentioned situations are in an unconstrained context.
The framework of Bärtschi and Eidenbenz [13] generalizes Grover mixer to include
constrained optimization. Here, we define GM-QAOA as follows.
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Definition 18 (GM-QAOA) GM-QAOA is the particular case of QAOA on
Def. 17 in which the mixer Hamiltonian is the Grover mixer, given by Eq. (3.23);
the phase separation operator codifies the own cost function, that is, HQ = HC; the
initial state is ∣s⟩, given by Eq. (3.24); and the goal is to minimize expectation value
⟨ψ(r)∣HC ∣ψ

(r)⟩, particularly denoted Er(β,γ).

The framework of Bärtschi and Eidenbenz [13] gives an efficient algorithm to
any NP optimization problem which admits an efficient preparation of the uniform
superposition ∣s⟩, which encompasses several optimization problems. Beyond the
trivial case of unconstrained problems in which ∣s⟩ = ∣+⟩⊗n, we can cite the prob-
lems with combinatorial domain on Hamming weight k bit strings (the optimization
problems in which the XY -mixers can be used), the problems with combinatorial
domain on permutations such as Traveling Salesman Problem, and the Discrete
Portfolio Rebalancing.

3.8.2 Grover Mixer Threshold Quantum Alternating Opera-

tor Ansatz

Before defining the Grover Mixer Threshold Quantum Alternating Operator Ansatz
(GM-Th-QAOA), we must consider the Threshold QAOA (Th-QAOA). Both Th-
QAOA and GM-Th-QAOA are introduced by Golden et al. [26]. Adapting the
original definition to consider minimization problems, the Th-QAOA is a variant of
QAOA in which the phase separation operator, instead codifies, as usual, the cost
function, it codifies the compilation of the c(k) into the threshold function given by

Th(k) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1, c(k) ≤ t

0, otherwise,
(3.26)

for a threshold value t that must be optimized. We can consider as candidates of
optimal threshold all possible values of the cost function except the maximum cost,
which results in a trivial compilation. Combining Th-QAOA with the choice of
Grover mixer as the mixer Hamiltonian gives the GM-Th-QAOA, which leads to
the following definition.

Definition 19 (GM-Th-QAOA) GM-Th-QAOA is the particular case of QAOA
on Def. 17 in which the mixer Hamiltonian is the Grover mixer, given by Eq. (3.23);
the phase separation operator codifies the function q(k) = Th(k); the initial state is
∣s⟩, given by Eq. (3.24); and the goal is to minimize expectation value ⟨ψ(r)∣HC ∣ψ

(r)⟩,
particularly denoted Er(t).
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One significant aspect of the GM-Th-QAOA is that for a fixed threshold t, it can
emulate the execution of Grover’s algorithm with the marked elements being states k
such that c(k) ≤ t. To notice that, recall that β = π reduces Grover mixer to Grover’s
diffusion operator up a global phase. In GM-Th-QAOA, additionally, taking γ = π
reduces the phase separation to Grover’s oracle of Eq. (3.3) for the claimed marked
elements. Combining it with the initial condition of uniform superposition over all
states, if we set π for both angles on all the layers, we emulate Grover’s algorithm.
Furthermore, note that the procedure of applying Grover’s algorithm to a solution
space split by a threshold function on GM-Th-QAOA resembles GAS. However,
both algorithms are conceptually distinct since the metric of the choice of threshold
on GM-Th-QAOA is the expectation value, while the threshold used on GAS is the
best value known so far, obtained iteratively.

Optimal angles of GM-Th-QAOA

Since degenerate solutions share the same amplitude on Grover mixer variants, the
final state of GM-Th-QAOA for r rounds can be written as

∣ψ(r)⟩ = c
(r)
1 ∑

k∈S∶c(k)≤t
∣k⟩ + c

(r)
0 ∑

k∈S∶c(k)>t
∣k⟩, (3.27)

where c
(r)
1 and c

(r)
0 are generic amplitudes for states below/equal and above the

threshold value, respectively. We denote by ρ the ratio of states below/equal on the
entire domain of S. For a given t, ρ is fixed and we minimize the expectation value
of GM-Th-QAOA by maximizing ∣c(r)1 ∣

2—or equivalently minimizing ∣c(r)0 ∣
2.

Golden et al. [26] find analytically the optimal angles β and γ 12 for r = 1.
Adapting to our notation and minimization problems, we have β = γ = π if ρ ≤ 0.25—
reducing the operators to a Grover iteration—and

β = −γ = arctan (−
√
4ρ − 1,2ρ − 1) (3.28)

otherwise, where the function arctan (a, b) for a, b ∈ R calculates arc tangent con-
sidering the quadrant. In particular, for r > 0.25, the optimal angles maximize the
amplitude of ∣c(1)1 ∣

2 as maximum as possible since it gives ∣c(r)0 ∣
2 = 0. For arbitrary r,

Golden et al. [26] conclude that set the angles βj = γj = π for all j < r and

βr = arctan(−
√
∆∣c

(r−1)
0 ∣,

2ρ

M
− (c

(r−1)
0 )2),

γr = −arctan
⎛

⎝
−

√
∆

c
(r−1)
1 sgn (c

(r−1)
0 )

,
c
(r−1)
0,π (2r − 1)

c
(r−1)
1

⎞

⎠
,

(3.29)

12For QAOA with a single layer, we simplify the notation with β = β1 and γ = γ1.
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13 where
∆ =

4ρ

M
− (c

(r−1)
0 )2, (3.30)

is a optimal choice of angles for GM-Th-QAOA if ∆ > 0. In that case, follows
∣c
(r)
0 ∣

2 = 0. Golden et al. [26] numerically observe that set βj = γj = π for all j gives
the minimum expectation value if the condition ∆ > 0 is not satisfied. We prove in
Subsec. 4.1.4 that these angles are indeed optimal.

Efficient parameter finding

An advantage of GM-Th-QAOA over GM-QAOA is that it admits an efficient
method for finding the parameters (the angles β and γ, and the threshold t) that
eliminates the costly outer loop parameter finding of QAOA. The method, intro-
duced by Golden et al. [26], is based on the previous results, and for a fixed r, has
complexity given by O(log(r) log(tdif)), where tdif is the number of non-degenerate
costs of the cost function. The factor log(r) concern about finding the angles β and
γ, while log(tdif) concern about finding the threshold.

The optimization procedure of β and γ, for a fixed threshold t, consists in find
out if there a transition round τ such that τ ≤ r in which βj = γj = π for all j < τ
and the angles of Eq. (3.29) on the τth layer gives the optimal ∣c(τ)0 ∣

2 = 0. If so, we
set, in addition to that angles, βj = γj = 0 for all j > τ to make the operators trivial.
Otherwise, we set βj = γj = π for all j. The optimality of the angles of the last case,
hitherto based on numerical evidence, is proved in the present work. The procedure,
which resembles the exponential quantum search, is the following.

• Make a exponential search over the number of rounds rk = ⌈Kk⌉ for K > 1 using
the angles βj = γj = π for all j to find values such that rk+1 rounds gives a
lower expectation than rk+2 rounds. These values exist if the transition round
exists;

• Make a binary search on the interval rk between rk+2 to find the round ro

which gives the minimum expectation value with angles βj = γj = π for all j;

• Since r0 could overshoot or undershot the optimal number of layers, we must
test either τ = ro or τ = ro + 1 if the transition round.

In particular, if the number of layers is small, it would be more efficient to do a
linear search instead of the previous procedure to find the transition layer.

The method of finding the best threshold t between all tdif candidates is based
on the numerical observation that the curve of the expectation value versus the

13The real-valued function sgn (x) is the sign function, such that sgn (x) = −1 if x < 0, sgn (x) = 0
if x = 0, and sgn (x) = 1 otherwise.
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threshold value for angles β and γ obtained on the previous procedure decreases
monotonically up to a valley value and then increases monotonically—recall that we
are considering minimization problems. Observe, for instance, the Fig. 1 of Golden
et al. [26] paper. That way, conjecturing that behavior holds in general, we can
apply an analog procedure of the one used to find the transition round of the angles
finding, but now, with the "transition" being the threshold value of the minimum
expectation value. If that does not hold generally, would be required a linear search
to find the threshold, which represents an exponential loss. Although usually tdif is
bounded on combinatorial optimization problems, such as the numbers of edges plus
one in Max-Cut, an exponential gain is always desirable. We prove that conjecture
in Subsec. 4.2.1.

3.8.3 Classical simulation of QAOA with Groxer mixer

In addition to introducing Th-QAOA and GM-Th-QAOA, the Golden et al. [26] pa-
per introduce a method of classical simulation of QAOA with Grover mixer—which
includes both GM-QAOA and GM-Th-QAOA—that allows simulate the GM-Th-
QAOA with 16,384 rounds on instances that would require 100 qubits, far beyond
the limit classical simulation of quantum circuit in the general case. In the GM-
QAOA case, which, on the other hand, does not have an efficient parameters finding,
the simulation goes to 20 rounds and 40 qubits. Although the scale is much smaller
than GM-Th-QAOA, it is beyond current general QAOA simulations— until the
knowledge of the author. In that simulation method, instead of decomposing the
unitaries into quantum gates, we algebraically calculate the expectation value. Here,
we provide an intuitive notion of the concept on which its the method is based. Pre-
cise details can be found in the original paper.

The method takes advantage of the fact that degenerate solutions share the
same amplitudes, grouping these solutions and thus working in the subspace of non-
degenerate solutions, which has dimension tdif (recall that tdif denoted the number
of non-degenerate costs of the cost function). To get that, we make a preprocessing
in which we compute via brute force all feasible solutions and then build a reduced
space with two sets, one that stores all non-degenerate solutions and the other
with the numbers of solutions with each cost. In that subspace, we can simulate
the matrix dynamics of the application of the unitaries UP (γ) and UM(β) on an
arbitrary state with complexity linear on tdif for both time and space. For UP (γ),
since that operator is diagonal, it is trivial to compute its dynamics linearly. On the
other hand, for UM(β), we present the intuition of the simpler case of the original
feasible space. For a generic state ∣α⟩,

UM(β)∣α⟩ = ∣α⟩ +B(β)⟨s∣α⟩∣s⟩. (3.31)
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Eq. (3.31) can be computed with linear time and space on the dimension of the
feasible subspace M since the inner product ⟨s∣α⟩ has linear complexity on M .
On the reduced subspace, we can simulate it by taking a sum ponderated by the
"weight" of each cost, that is, the number of degenerate solutions stored on the
second mentioned set obtained in the preprocessing—a procedure that also has linear
complexity on the space dimension.

The number of non-degenerate solutions tdif can be exponentially smaller than
the number of feasible solutions M . For instance, in Max-Cut while M = 2∣V ∣,
tdif is in the worst case O(∣V ∣2), since it is bounded by the numbers of edges. In
constrained problems, the gain from the circuit simulation can be even greater since
the configuration space is larger than the feasible subspace. In these cases, the
bottleneck of the simulation is the number of solutions we can compute on the
preprocessing, allowing the simulation of a huge number of layers since the non-
degenerate subspace is small.

3.9 Quantum Walk-based Optimization Algorithm

The Quantum Walk-based Optimization Algorithm (QWOA) is a generalization of
the Quantum Approximate Optimization Algorithm that introduces a new interpre-
tation for the algorithm. The mixing operator UM(β) = e−iβHM , from QWOA view,
is a Continuous-time Quantum Walk (CTWQ) [20–22] operator of time β on the
graph with Laplacian or adjacency matrix given by HM . A CTWQ is the quantum
analog to the classical continuous-time Markov chain [118]. Details about CTQWs
and general quantum walks can be found in Portugal’s [22] book. The transverse
field, the original mixer, is a CTWQ on a hypercube graph.

The original formulation of QWOA is from Marsh and Wang [14]. In it, the
CTQW is on a modified hypercube graph, that is, a subgraph of the hypercube
graph with vertices corresponds to the feasible solutions. That framework includes
efficient circuits for any polynomial bounded NP optimization problem, which is par-
ticularly interesting for problems with combinatorial domains naturally difficult to
connect with mixing operators, such as the Minimum Vertex Cover. Subsequently,
Marsh and Wang [12] introduce a new formulation for QWOA, considering now
CTQW on the class of circulant graphs [119], with adjacency matrix diagonalizable
by the efficient Quantum Fourier Transform (QFT). That formulation requires an
efficient indexing function, i.e., a bijection id ∶ S → {0,1, . . . ,M − 1} that associate
uniquely each element of S with a numerical index14. Furthermore, the inverse
id−1 ∶ {0,1, . . . ,M −1}→ S, called un-indexing function, also must be efficient. Ana-
log quantum operators can be built with these functions, and the CTQW can be

14Also known in the literature as ranking.
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implemented in an indexed subspace. The paper of Marsh and Wang [12] brings ef-
ficient indexing functions for permutations, states with k-combinations, and lattice
paths. Indexing functions for other several families of combinatorial objects can be
found in Loehr’s [120] book. Later works considered numerical studies of QWOA
on the problems of Capacitated Vehicle Routing [24] and the Portfolio Optimiza-
tion [25].

A graph with particular interest is the complete graph, which has Laplacian
matrix L =M(I − ∣s⟩⟨s∣) and mixing operator, up to a global phase,

UM(τ) = I + (−1 + eiMτ)∣s⟩⟨s∣. (3.32)

A quantum circuit to implement the operator of Eq. (3.32) that is distinct from the
framework of circulant graphs can be found in Bennett et al. [24]. Taking β = −τM
gives exact the mixing operator of Eq. (3.25). As M is constant for a given instance,
QWOA on the complete graph and GM-QAOA are equivalent, up to a scale change
on the parameter—that equivalence was noted by Bennett and Wang [23]. Thus,
the framework of QWOA on the complete graph can be viewed as an alternative
implementation of the Grover mixer operator. Furthermore, the intuition provided
by the complete graph can be particularly useful to view the properties of the Grover
mixer, as emphasized in Chapter 4.

3.10 Maximum Amplification Optimization Algo-

rithm

The Maximum Amplification Optimization Algorithm (MAOA) is an algorithm in-
troduced by Bennett and Wang [23] to correct a weakness of QWOA on the complete
graph. Specifically, it was observed in the previous work of Bennett et al. [24] that
the algorithm tends to amplify the probability of near-optimal solutions more than
the probability of optimal ones. To bypass this issue, Bennett and Wang [23] con-
clude that the amplification of the probability of the optimal solution can be a more
effective metric than the usual expectation value of QAOA. Then, systematic nu-
merical experiments were done to determine the combination of the graph of the
CTQW and the number of non-degenerate solutions codified on the phase separa-
tion in which the probability of measuring a given state is most amplified. The
conclusion is that the best combination is the complete graph with 2 degenerate
solutions—a function similar to Th(k)—and choices of angles equal to π. As dis-
cussed for GM-Th-QAOA, that combined choice reduces the algorithm to Grover’s
algorithm.

From these findings, MAOA is developing to act approximately on the low-
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convergence regime of Grover’s search. That is because, recall from Subsec. 3.2.2,
that the largest amplification of Grover’s algorithm is provided on a low-convergence
regime with η = (2r + 1)2. The algorithm, whose details are omitted here, consists
of two steps. Firstly, we estimate efficiently, for a given number of layers r, the
threshold value in which the final probability of r Grover’s iterations is close to 1/40

(to get accurate within 1% with respect to the low-convergence regime). Then, we
make repeated measurements of r Grover’s iterations with the obtained threshold
to get high-quality solutions with a rate of ≈ 1/40.

The performance of MAOA was compared directly with a modified version of
the GAS so-called restricted Grover Adaptive Search (RGAS), in which the proce-
dure is the same as GAS, except that the maximum allowed number of iterations
of Grover’s algorithm is restricted. Considering the same number of Grover’s it-
erations, both algorithms are compared in terms of the probability of measuring
an optimal solution in the function of the computational effort for the problems of
Capacitated Vehicle Routing and Portfolio Optimization, and for arbitrarily large
instances with solution space normally distributed15. MAOA consistently overcomes
RGAS, although reflecting the same quadratic Grover-like speed-up.

It is worth mentioning that Bennett and Wang [23] paper introduces a method of
analysis of QWOA on the complete graph with phase separation codifying a function
with 2 non-degenerate solutions. Specifically, that method uses the degeneracy on
the solution space to make edge contractions on the complete graph of QWOA
and work on a reduced subspace of 2 dimensions. In a certain sense, the statistic
approach of Chapter 4 is a generalization of this analysis method on a solution space
with an arbitrary number of non-degenerate solutions codified by its probability
distribution.

3.11 Performance of QAOA with Grover mixer

The individual and comparative performance of QAOA with Grover mixer, which
is the main motivation of this work, has been considered in the literature on some
occasions. Firstly, within its variants, in numerical experiments, the performance
of GM-Th-QAOA consistently overcomes GM-QAOA in all instances considered.
Beginning on the original paper of GM-Th-QAOA [26] on the problems of Max-
Cut, Max k-Vertex Cover, k-Densest Subgraph, and Max Bisection, and later on
subsequent works with Max 2-SAT, Max 3-SAT problems [17] and Max k-Vertex
Cover, k-Densest Subgraph, and Max Bisection problems [11]. It is an open question
if the superior performance of GM-Th-QAOA over GM-QAOA holds in general.

15In Chapter 4 we provide a precise definition for the probability distribution of the solution
space of combinatorial optimization problems.
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Concerning comparative performance, especially with the Grover transverse, the
initial thought was that the Grover mixer would have better performance since,
as it admits all state transitions, the mixing process is faster, and the symmetry
among states is global [12, 16, 25]. The numerical experiments given by Akshay et
al. [16] on the unconstrained problems Max 2-SAT and Max 3-SAT with 6 qubits
corroborated that argument with the Grover mixer (GM-QAOA) having a superior
performance than the transverse field mixer. However, the latter experiment of
Golden et al. [17] went against the initial thought. In particular, the numerical
study of Akshay et al. [16] was scaled by Golden et al. [17] up to 14 qubits, and the
situation has reversed, with both GM-QAOA and GM-Th-QAOA doing worse than
the transverse field mixer on both Max 2-SAT and Max 3-SAT problems. Although,
of course, that does not imply that the results can be automatically generalized
to even larger instances, there is a theoretical argument in this direction: by its
global symmetry among the vertices, Grover mixer does not see the structure of the
problem16, being possibly limited to the bound of the unstructured search problem.
In other words, QAOA with Grover mixer would be limited by a quadratic speed-
up over classical brute force. This limit, in principle, could be overcome by other
mixers if they are capable of exploring the underlying problem structure of the
COPs. That would explain the aforementioned numerical experiments since, while
in small solutions spaces, the Grover mixer provides good results by the ability to
mix quickly, in larger solutions spaces, the quadratic progress would it is not enough
to get satisfactory results with a small number of layers, drastically compromising
algorithm performance.

That idea is strongly endorsed by the numerical study of Golden et al. [11] for
the constrained problems Max k-Vertex Cover, k-Densest Subgraph, and Max Bi-
section. In particular, for simulations up to 18 qubits, the clique mixer performs
exponentially better than the GM-Th-QAOA concerning the number of layers to
achieve a fixed approximation. Furthermore, direct comparisons with Grover’s algo-
rithms were realized, with GM-Th-QAOA performing in the same asymptotic scale
and, consequently, with clique mixer performing exponentially better.

Other works corroborate the argument that the Grover mixer is limited to the
bound of the unstructured search problem. McClean et al. [121] show that the
expectation value of QAOA of a single round with Grover mixer evolves at most
as Grover’s algorithm. Bennett and Wang [23] on the context of QWOA on the
complete graph—recall from Sec. 3.10—provides numerical evidence that a phase
separation codifying a threshold function with angles choices that emulate Grover’s

16In Chapter 4, we prove that the expectation value of the variants of QAOA with Grover mixer
is invariant over any permutation of states, which means that instances with the same solution
space must have the same performance, independently of the structure of the problem.
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algorithm provides the maximum amplification of the probability of measuring a
given state. In contrast, Benchasattabuse et al. [122] argue that the worst of Grover
mixer on the numerical experiments of Golden et al. [17] and Golden et al. [11] could
be due to the fact the classical optimizer does not find the optimal angles. In the
present work, the main obtained result is the formal proof that the performance of
QAOA with the Grover mixer is indeed limited by a quadratic Grover-style speed-up.

Another result that must be commented on is the lower bounds on the perfor-
mance of GM-QAOA obtained recently by Benchasattabuse et al. [122]. By intro-
ducing an original approach based on the use of bounds at the time of the adiabatic
evolution associated with the QAOA, Benchasattabuse et al. [122] obtain the mini-
mum number of layers required to achieve a fixed approximation ratio. Adapting to
minimization problems, we assume unconstrained optimization problems with non-
positive integers costs17 and define the average (mean), the standard deviation, and
minimum solution of the instance as

cavg =
1

M
∑
k∈S

c(k), csd =

√

∑k∈S(c(k) − cavg)
2

M
, cmin =min{c(k) ∶ k ∈ S}, (3.33)

respectively18. That way, fixing an approximation ratio λ, the Theorem 3 of Ben-
chasattabuse et al. [122] paper gives

r ≥
1 − ∣⟨s∣ψ(r)⟩∣2 + cavg − λcmin

4πcsd
≥
cavg − λcmin

4πcsd
, (3.34)

where ∣s⟩ = ∣+⟩⊗n and the last inequality follows from ∣⟨s∣ψ(r)⟩∣ ≤ 1.
Benchasattabuse et al. [122] apply the lower bound of Eq. (3.34) for the class

of bipartite graphs on the Max-Cut problem. The mean and standard deviation
of Max-Cut were analytically computed, resulting in ∣E ∣/2 and

√
∣E ∣/2, respectively.

The maximum cut has ∣E ∣ edges for bipartite graphs. Since we deal with minimiza-
tion context, cavg and cmin are −∣E ∣/2 and −∣E ∣, respectively. Thus,

r ≥
2λ − 1

4π

√
∣E ∣ = Ω(

√
∣E ∣). (3.35)

As NISQ devices require a quantum circuit of low depth, Eq. (3.35) indicates a severe
limitation of GM-QAOA once to keep the performance asymptotically on the size
of the instances, the number of layers cannot be constant, scaling with the square
root of the number of edges.

17Therefore, unconstrained maximization problems with non-negative integers costs are applica-
ble.

18In Chapter 4, we define these statistical quantities using random variables.
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Chapter 4

The Statistical Approach

In this chapter, we consider an analysis method for the variants of QAOA with
the Grover mixer—GM-QAOA and GM-Th-QAOA—that looks directly into the
spectrum of the problem Hamiltonian (i.e., the solution space of the optimization
problem). Specifically, we perform the calculations over the probability distribution
associated with the Hamiltonian spectrum. Such a statistical approach takes advan-
tage of the property that QAOA with Grover mixer, provided that the initial state is
a uniform superposition over the feasible states, is invariant under any permutation
of states, allowing abstracting the combinatorial structure of the problem.

More precisely, the Grover mixer operator being invariant under any permutation
means that the action operator keeps the same with the relabelling of any pair of
states. With the interpretation of QWOA on the complete graph, the intuition about
that property is clear since all one-to-one correspondence of vertices on the complete
graph is an automorphism [123]. However, we need to prove that the quantity of
our interest, the expectation value, is also invariant under any permutation, which
is done in Theorem 7.

Theorem 7 The expectation value ⟨ψ(r)∣HC ∣ψ
(r)⟩ of any QAOA variant with initial

state ∣s⟩ that uses the Grover mixer as the Hamiltonian mixer is invariant over any
permutation of states.

Proof: Defining the permutation operator Uj↔k as

Uj↔k = I − ∣j⟩⟨j∣ − ∣k⟩⟨k∣ + ∣k⟩⟨j∣ + ∣j⟩⟨k∣, (4.1)

direct calculations using

⟨x∣s⟩ =
1
√
M

M−1
∑
y=0
⟨x∣y⟩ =

1
√
M

(4.2)
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and ⟨s∣x⟩ = 1/
√
M lead to Uj↔kHMUj↔k = HM and therefore HM is invariant under

any relabelling of a pair of states. The initial state ∣s⟩ have the same property since
Uj↔k∣s⟩ = ∣s⟩. On the other hand, the phase separation does not have that property
in general. Despite this, it is transmitted to the expectation value of the QAOA.
To show it, we denote by Up an arbitrary sequence of permutation operators. Let
E
(p)
r be the expectation value of the operator U †

pHCUp. Then, as Up is unitary and
Hermitian, using the property eU†HU = U †eHU , which follows from

eU
†HU =

∞
∑
k=0

(U †HU)k

k!
=
∞
∑
k=0

U †HkU

k!
= U †eHU, (4.3)

1 we get

E
(p)
r = ⟨s∣ (

1

∏
j=r
eiγjU

†
pHQUpeiβjHM)U †

pHCUp (
r

∏
j=1
e−iβjHM e−iγjU

†
pHQUp) ∣s⟩

= ⟨s∣ (
1

∏
j=r
U †
pe

iγjHQUpe
iβjHM)U †

pHCUp (
r

∏
j=1
e−iβjHMU †

pe
−iγjHQUp) ∣s⟩

= ⟨s∣U †
p (

1

∏
j=r
eiγjHQUpe

iβjHMU †
p)HC (

r

∏
j=1
Upe

−iβjHMU †
pe
−iγjHQ)Up∣s⟩

= ⟨s∣ (
1

∏
j=r
eiγjHQeiβjUpHMU†

p)HC (
r

∏
j=1
e−iβjUpHMU†

pe−iγjHQ) ∣s⟩

= ⟨s∣ (
1

∏
j=r
eiγjHCeiβjHM)HQ (

r

∏
j=1
e−iβjHM e−iγjHQ) ∣s⟩,

(4.4)

which is the original expectation value, as claimed. ◻

Note that the theorem is applicable to both GM-QAOA and GM-Th-QAOA since
their initial state are ∣s⟩. The main consequence of Theorem 7 is that two problem
Hamiltonians that share the same spectrums must share the same expectation value.
That implies that QAOA with Grover mixer on the condition of Theorem 7 is in-
dependent of the problem structure, and then, all information required for analysis
is provided by the probability distribution. Furthermore, if a given type of instance
of a problem converges asymptotically toward a fixed distribution, the result is in-
dependent of the size of the instance, avoiding the problem of the barren plateaus.

The mathematical modeling of our analysis is done by using random variables.
For a given instance on GM-QAOA or GM-Th-QAOA, let X be the random variable
of uniformly sampling an element on the set S and calculating the cost function.
The function fX(x) = ∣{k ∈ S ∶ c(k) = x}∣/M is the probability mass function of X,
and the support RX of X is a countable subset of real numbers. We denote the mean
and standard deviation of X by µ = E[X] and σ =

√
E[X − µ]2, respectively, and

1For non-commutative objects such as matrices, we use the notation convention ∑b
j=a xj =

xbxb−1 . . . xa+1xa.
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assume 0 < σ < ∞—ignoring the degenerate distribution and taking distributions
with finite expectation and standard deviation. Provided that Rmin

X ≠ 0 and ∣Rmin
X ∣ <

∞, the approximation ratio, from Eq. (3.1), can be written in terms of X as λ =
Er(β,γ)/Rmin

X for GM-QAOA and λ = Er(t)/Rmin
X for GM-Th-QAOA. We also

define the random variables Y and Z such that X = Y + µ and Z is the standard
random variable associated with X. Fig. 4.1 shows an example of the probability
distribution for an instance of the Max-Cut problem.

(a) (b)

Figure 4.1: (a) Graph of an instance of Max-Cut problem with 5 vertices andM = 32.
(b) Probability mass function fX(x) associated with the instance of (a). We multiply
the solutions by −1 to convert it into a minimization problem. The optimal solution
has cost Rmin

X = −6 and is given by the partition of the vertices into {1,3,4} and
{2,5}. The maximum solution is given by Rmax

X = 0, with trivial partition into
{1,2,3,4,5} and ∅. Note that all partitions are duplicates on the binary codification
of the problem.

Before proceeding to our results, note that if M < ∞, we cannot consider any
probability mass function as fX(x). This happens because fX(x) with finite M
have rational codomain since the value fX(x) of an arbitrary x ∈ RX is restricted
to assume k/M , where k is an integer between 1 and M − 1. Then, functions with
irrational ranges, as Bernoulli with general p, cannot be analyzed. To bypass this
issue, we must assume that M → ∞ and conclude that any real-valued pmf fX(x)
can be obtained in that limit. The proof of that claim follows immediately by a
well-known mathematical result that for any a ∈ R, there is some rational sequence
that converges to a on the large limit.

Although M →∞ is not a real scenario, it is useful for obtaining theoretical re-
sults. Furthermore, in some situations, it is convenient for X to be continuous as an
asymptotic approximation, either for the theoretical reason of making the cdf contin-
uous or for the practical reason of studying particular continuous distributions, such
as the normal distribution. In that approach, all the summations presented from
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now on are replaced by the respective integrals, with the probability mass function
giving way to the probability density function. Both assumptions are quite reason-
able in the QAOA context since its main target is NP-Hard optimization problems
in which the number of solutions grows exponentially with the size of the entry in
such a way that the infinite size limit provides good asymptotic approximations.

Furthermore, although QAOA primarily must be proper to NISQ devices in
such a way that the number of layers must be low, in that work, we consider the
asymptotic limit of r to several analytical results of this chapter and on Chapter 6,
as well as we simulate large values of r for the numerical experiments of Chapter 5.
The main reason for this study is to consider the question discussed in Sub. 3.11
of deciding if QAOA with the Grover mixer is limited to a quadratic Grover-like
speed-up over classical brute force, addressed in Sec. 4.2 for GM-Th-QAOA and in
Chapter 6 for a more general context of QAOA with Grover mixer.

4.1 GM-QAOA analysis

Over this section, we provide explicit expressions for the expectation value of GM-
QAOA with statistical quantities of the random variables X, Y , and Z, beginning
with r = 1 and generalizing for an arbitrary number of layers. Applied to a COP
in which the probability distribution is known or even can be approximated, these
expressions allow us to obtain analytically the variational parameters β and γ and
compute the expectation value directly from sampling the quantum circuit, avoiding
the costly outer loop optimization procedure. Additionally, in cases where the dis-
tribution is just partially known, the analytical expression could be used to propose
a heuristic method of parameter initialization that at least would be better than the
random initialization.

Before enunciating and proving our results, we must prove Lemma 1 and establish
the impact on the expectation value of changing the random variable from X to Y .

Lemma 1 Let HCY
be the problem Hamiltonian associated with the random variable

Y . Then, the expectation value of GM-QAOA can be written as Er(β,γ) = µ +

⟨ψ(r)∣HCY
∣ψ(r)⟩.

Proof: The problem Hamiltonian associated with Y is given by HCY
= HC − µI.

The application of it phase separation, denoted UPY
(γ), is equal to the UP (γ) up

to a global phase since

UPY
(γ) = e−iγHCY = e−iγ(HC−µI) = eiγµIe−iγHC = eiγµe−iγHC . (4.5)
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Therefore, we can rewrite the expectation value Er(β,γ) as

Er(β,γ) = ⟨ψ
(r)∣HC ∣ψ

(r)⟩ = ⟨ψ(r)∣(HCY
+ µI)∣ψ(r)⟩

= ⟨ψ(r)∣HCY
∣ψ(r)⟩ + ⟨ψ(r)∣µI∣ψ(r)⟩ = µ + ⟨ψ(r)∣HCY

∣ψ(r)⟩.
(4.6)

◻

4.1.1 Depth 1

For one layer, Theorems 8 and 9 provide explicit expressions in terms of the mean
of X, as well as the characteristic function of Y and its derivative.

Theorem 8 The expectation value of GM-QAOA for a single round is given by

E1(β,γ) = µ + 2 Im{B(β)φ
∗
Y (γ)φ

′
Y (γ)}. (4.7)

Proof: For r = 1, the final state of GM-QAOA is given by

∣ψ(1)⟩ = UM(β)UP (γ)∣s⟩ = (I +B(β)∣s⟩⟨s∣)UP (γ)∣s⟩

= UP (γ)∣s⟩ +B(β)⟨s∣UP (γ)∣s⟩∣s⟩.
(4.8)

The quantity ⟨s∣UP (γ)∣s⟩ is explicitly given by

⟨s∣UP (γ)∣s⟩ = ⟨s∣ (
1
√
M
∑
k∈S

e−iγc(k)∣k⟩) =
1

M
∑
k∈S
∑
j∈S
e−iγc(k)⟨j∣k⟩

=
1

M
∑
k∈S

e−iγc(k).

(4.9)

That summation can be equivalently performed by counting the number of solutions
such that c(k) = x for each possible value’s cost, x ∈ RX , i.e., MfX(x). In that way,
we link the characteristic function of X with argument γ by

φ∗X(γ) = ⟨s∣UP (γ)∣s⟩ = ∑
x∈RX

fX(x)e
−iγx, (4.10)

and then

∣ψ(1)⟩ = UP (γ)∣s⟩ +B(β)φ
∗
X(γ)∣s⟩ = (UP (γ) +B(β)φ

∗
X(γ)I)∣s⟩. (4.11)

The expectation value E1(β,γ) is given by

E1(β,γ) = ⟨s∣(U
†
P (γ) +B

∗(β)φX(γ)I)HC(UP (γ) +B(β)φ
∗
X(γ)I)∣s⟩

= ⟨s∣U †
P (γ)HCUP (γ)∣s⟩ + ⟨s∣U

†
P (γ)HCB(β)φ

∗
X(γ)∣s⟩

+ ⟨s∣B∗(β)φX(γ)HCUP (γ)∣s⟩ + ⟨s∣B
∗(β)φX(γ)HCB(β)φ

∗
X(γ)∣s⟩.

(4.12)
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As HC and UP (γ) are diagonal operators and ∣s⟩ is an uniform superposition, we
have ⟨s∣U †

P (γ)HCUP (γ)∣s⟩ = ⟨s∣HC ∣s⟩ = µ. Furthermore, similarly to ⟨s∣UP (γ)∣s⟩,
⟨s∣HCUP (γ)∣s⟩ can be expressed as

⟨s∣HCUP (γ)∣s⟩ =
1

M
∑
k∈S

c(k)e−iγc(k) = ∑
x∈RX

xfX(x)e
−iγx. (4.13)

To write Eq. (4.13) in terms of a statistical quantity, note that by Eq. (2.88),
⟨s∣HCUP (γ)∣s⟩

∗
= ⟨s∣HCU

†
P (γ)∣s⟩ = −iφ

′
Y (γ). With these considerations, and using

the properties of complex numbers, ∣z∣2 = zz∗, z+z∗ = 2Re{z}, and Im{z} = Re{−iz},
we have

E1(β,γ) = µ − iB(β)φ
∗
X(γ)φ

′
X(γ) + iB

∗(β)φX(γ)φ
′∗
X(γ)

+B(β)φ∗X(γ)B
∗(β)φX(γ)µ

= µ + ∣B(β)∣2∣φX(γ)∣
2µ + 2 Im{B(β)φ∗X(γ)φ

′
X(γ)}.

(4.14)

To finish, with Lemma 1, since the mean of Y is 0, we can eliminate one term of the
expression and get Eq. (4.7).

◻

To simplify the expression of Theorem 8 and facilitate the analytical optimization
of particular distributions, in Theorem 9 we reduce the number of optimization
parameters to 1 by using calculus arguments to explicitly give the optimal β value as
a function of γ. Before proceeding, we introduce the notation Arg(z) for a complex
number z, which represents the phase of z on the interval (−π,π]. Explicitly, can
get Arg(z) for z = a + ib where a, b ∈ R by Arg(z) = arctan (b, a), since arctan (a, b)

consider the quadrant of the complex plane.

Theorem 9 The expectation value of GM-QAOA for a single round is given by

E1(β,γ) = µ − 2∣ϕY (γ)∣(1 + sin (Arg(ϕY (γ)))), (4.15)

with an associated parameter β optimal for fixed γ given by

β =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π
2 +Arg(ϕY (γ)), Arg(ϕY (γ)) ≤

π
2

−3π
2 +Arg(ϕY (γ)), Arg(ϕY (γ)) >

π
2 ,

(4.16)

where ϕY (γ) = φ∗Y (γ)φ
′
Y (γ).

Proof: By Eq. (4.7),

E1(β,γ) = µ + 2 Im{[(cos (β) − 1) − i sin (β)][Re{ϕY (γ)} + i Im{ϕY (γ)}]}

= µ + 2(cos (β) − 1) Im{ϕY (γ)} − 2 sin (β)Re{ϕY (γ)} .
(4.17)
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As ϕY (γ) for given γ is a complex number, we can write it by ∣ϕY (γ)∣eiθ, where
θ = Arg(ϕY (γ)). Replacing it in Eq. (4.17), we have

E1(β,γ) = µ + 2(cos (β) − 1)∣ϕY (γ)∣ sin (θ) − 2 sin (β)∣ϕY (γ)∣ cos (θ)

= µ − 2∣ϕY (γ)∣(sin (β) cos (θ) − cos (β) sin (θ) + sin (θ))

= µ − 2∣ϕY (γ)∣(sin (β − θ) + sin (θ)),

(4.18)

where in the last equality we use the trigonometric identity sin (x − y) = sinx cos y −

cosx sin y. As the factor 2∣ϕY (γ)∣ is non-negative, the optimal parameter for β for
a fixed γ, is totally determined by θ, which is, in turn, dependent on γ. Finding
the minimum of E1(β,γ) in that condition is equivalent to finding the maximum of
sin (β − θ) + sin (θ). Taking the first and the second partial derivatives with respect
to β,

∂

∂β
[sin (β − θ) + sin (θ)], = cos (β − θ)

∂2

∂β2
[sin (β − θ) + sin (θ)] = − sin (β − θ).

(4.19)

With the first derivative, the extreme points are the solutions of the equation
cos (β − θ) = 0, that is, β = π(n− 1/2)+ θ, ∀n ∈ Z. Conversely, by the second deriva-
tive, n = 1 gives a maximum point because − sin (π/2 + θ − θ) = −1 is negative. There-
fore, β = π/2+θ is optimal for the given γ. Replacing it in Eq. (4.18) we get Eq. (4.15).
For the optimal value of β, note that β ∈ (−π,π] and Arg(ϕY (γ)) ∈ (−π,π] and
therefore we have to adjust β = π/2 + θ to Eq. (4.16).

◻

A particular case, given by Corollary 1, is when the distribution fY (x) is sym-
metric, or equivalently, fX(x) is symmetric around the mean.

Corollary 1 For an instance of GM-QAOA with a random variable X such that
fY (x) is a symmetric distribution, the expectation value for a single round is given
by

E1(β,γ) = µ − 2∣ϕY (γ)∣, (4.20)

with an associated parameter β optimal for fixed γ given by

β =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π
2 , Arg (ϕY (γ)) = 0

−π
2 , Arg (ϕY (γ)) = π.

(4.21)

Proof: With the well-known property that the Fourier transform of an even and an
odd function are a real-valued function and a purely imaginary function, respectively,
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as fY (x) is even and xfY (x) odd,

ϕY (γ) = ( ∑
x∈RY

fY (x)e
−iγx)(i ∑

x∈RY

xfY (x)e
iγx)

= −( ∑
x∈RY

fY (x) cos (γx))( ∑
x∈RY

xfY (x) sin (γx)) ,

(4.22)

which is a real-valued function. The phase of ϕY (γ) is 0 or π. Both gives from
Eq. (4.15), Eq. (4.20). Replacing each one in Eq. (4.16) we get Eq. (4.21).

◻

Another consequence in symmetric around the mean distributions is that since
φ∗Y (γ) and φ′Y (γ) are real-valued functions in that case, we can rewrite Eq. (4.7) as

E1(β,γ) = µ + 2φY (γ)φ
′
Y (γ) Im{B(β)}. (4.23)

Now, note that the product φY (γ)φ′Y (γ) is odd function on γ—since φY (γ) and
φ′Y (γ) are even and odd functions on γ, respectively—and Im{B(β)} is a odd func-
tion on β. Thus, the landscape of GM-QAOA is symmetric for diagonally opposite
quadrants on the range β ∈ (−π,π] and γ ∈ (−x,x] for some 0 < x <∞. Consequently,
we must have two symmetric global minima in diagonally opposite quadrants and
two symmetric global maxima in the other diagonally opposite quadrants. An ex-
ample can be found in Fig. 5.2, on Chapter 5.

4.1.2 Arbitrary depth

Theorem 10 generalizes the result of Theorem 8 for arbitrary r, providing an ex-
pectation value expression with the same statistical quantities. For reading fluidity
purposes, the proof of the theorem is shown before its statement so that the notation
is introduced naturally.

For arbitrary r, the final state of GM-QAOA can be written as

∣ψ(r)⟩ =
r

∏
j=1
UM(βj)UP (γj)∣s⟩ =

r

∏
j=1
(I +B(βj)∣s⟩⟨s∣)UP (γj)∣s⟩. (4.24)

Representing UP (γj) as the sum of projections and introducing the r-dimensional
vector z = (z1, . . . , zr), where each element runs over the set of M feasible solutions
of S, we can rewrite Eq. (4.24) as

∣ψ(r)⟩ = (∑
z

r

∏
j=1
(I +B(βj)∣s⟩⟨s∣)e−iγjc(zj)∣zj⟩⟨zj ∣) ∣s⟩. (4.25)

The expression can be written in an equivalent manner using the r-bit string x =
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(x1, . . . , xr) in such a way that

∣ψ(r)⟩ = (∑
x
∑
z

r

∏
j=1
(B(βj)∣s⟩⟨s∣)

xje−iγjc(zj)∣zj⟩⟨zj ∣) ∣s⟩. (4.26)

The string x acts like an incident vector to the presence of the factor B(βj)∣s⟩⟨s∣ for
each index j. If xj = 0, (B(βj)∣s⟩⟨s∣)xj = I and if xj = 1, (B(βj)∣s⟩⟨s∣)xj = B(βj)∣s⟩⟨s∣.
Using the projection representation of problem Hamiltonian and superscripts L and
R replacing the original x and z to differ the left (bra) and right (ket) part of the
expression, respectively, we express the expectation value as

Er(β,γ) = ⟨s∣ (∑
x(L)
∑
z(L)

1

∏
j=r
∣z
(L)
j ⟩⟨z

(L)
j ∣e

iγjc(z(L)j )
(B∗(βj)∣s⟩⟨s∣)

x
(L)
j )

(∑
z

c(z)∣z⟩⟨z∣) (∑
x(R)
∑
z(R)

r

∏
j=1
(B(βj)∣s⟩⟨s∣)

x
(R)
j e−iγjc(z

(R)
j )
∣z
(R)
j ⟩⟨z

(R)
j ∣) ∣s⟩.

(4.27)

Rearranging the factors,

Er(β,γ) = ⟨s∣
⎛

⎝
∑
x(L)
∑
z(L)

e∑
r
j=1 iγjc(z

(L)
j )
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
1

∏
j=r
∣z
(L)
j ⟩⟨z

(L)
j ∣(∣s⟩⟨s∣)

x
(L)
j ]
⎞

⎠
(∑

z

c(z)∣z⟩⟨z∣)
⎛

⎝
∑
x(R)
∑
z(R)

e∑
r
j=1 −iγjc(z

(R)
j )

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
r

∏
j=1
(∣s⟩⟨s∣)x

(R)
j ∣z

(R)
j ⟩⟨z

(R)
j ∣]

⎞

⎠
∣s⟩.

(4.28)

With ⟨s∣z(L)1 ⟩ = ⟨z
(R)
1 ∣s⟩ = 1/

√
M , we can write Eq. (4.28) as

Er(β,γ) = ∑
x(L),x(R)

∑
z
∑

z(L),z(R)

e∑
r
j=1 iγjc(z

(L)
j )e∑

r
j=1 −iγjc(z

(R)
j )
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[⟨z
(L)
1 ∣(∣s⟩⟨s∣)

x
(L)
1 ] [

2

∏
j=r
∣z
(L)
j ⟩⟨z

(L)
j ∣(∣s⟩⟨s∣)

x
(L)
j ]

(
1

M
c(z)∣z⟩⟨z∣) [

r

∏
j=2
(∣s⟩⟨s∣)x

(R)
j ∣z

(R)
j ⟩⟨z

(R)
j ∣] [(∣s⟩⟨s∣)

x
(R)
1 ∣z

(R)
1 ⟩] .

(4.29)

To proceed, consider two situations on the left side portion of the expression.
Firstly, if we have a sequence of adjacent indices in left side of expression such that
x
(L)
k = x

(L)
k+1 = . . . = x

(L)
k+l−1 = x

(L)
k+l = 0 for arbitrary k ≥ 2 and l ≥ k, then the product
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involving such indices results

k

∏
j=k+l
∣z
(L)
j ⟩⟨z

(L)
j ∣(∣s⟩⟨s∣)

x
(L)
j =

⎛

⎝

k+l−1
∏
j=k

δ(z
(L)
j , z

(L)
j+1)
⎞

⎠
∣z
(L)
k ⟩⟨z

(L)
k+l ∣, (4.30)

where δ(x, y) denotes the Kronecker delta. Next, if x(L)k = 1 for some k ≥ 2, then for
the indices k and k + 1 we have

k

∏
j=k+1

∣z
(L)
j ⟩⟨z

(L)
j ∣(∣s⟩⟨s∣)

x
(L)
j =

1

M
∣z
(L)
k ⟩⟨z

(L)
k+1∣(∣s⟩⟨s∣)

x
(L)
k+1 . (4.31)

That is, the projector ∣s⟩⟨s∣ breaks the chain of Kronecker delta factors with ⟨z(L)k ∣s⟩ =

⟨s∣z
(L)
k+1⟩ = 1/

√
M .

Combining both situations in a sequence of x(L)k = x
(R)
k+1 = . . . = x

(L)
k+l−2 = x

(L)
k+l−1 = 0

and x(L)k+l = 1 for the indices k up to k + l + 1, the product is given by

k

∏
j=k+l+1

∣z
(L)
j ⟩⟨z

(L)
j ∣(∣s⟩⟨s∣)

x
(L)
j =

⎛

⎝

1

M

k+l−1
∏
j=k

δ(z
(L)
j , z

(L)
j+1)
⎞

⎠

∣z
(L)
k ⟩⟨z

(L)
k+l+1∣(∣s⟩⟨s∣)

x
(L)
k+l+1 .

(4.32)

Since the ket ∣z(L)1 ⟩ is already cancel in Eq. (4.29), we can apply recursively the
above process for all elements of the set

PL = {{k, k + 1, . . . , k + l − 1, k + j} ∶x
(L)
k−1 = x

(L)
k+j = 1,

x
(L)
j = 0 ∀k − 1 < j < k + l},

(4.33)

where we conveniently set x(L)0 = 1. Let Lmax be the biggest index j such that
x
(L)
j = 1. Note that the indices j such that j > Lmax are not considered on the set
PL. For them, we define P0L = {j ∶ j > Lmax}. If Lmax = r, then the ket ∣z⟩ is break
with ⟨s∣z⟩ = 1/

√
M . Otherwise, we have δ(z(L)r , z). Thus, we can extend z as the

(r + 1)th index of the right size with z(L)r+1 = z.
Following analog arguments we set for the right side of the expression

PR = {{k, k + 1, . . . , k + l − 1, k + j} ∶x
(R)
k−1 = x

(R)
k+j = 1,

x
(R)
j = 0 ∀k − 1 < j < k + l},

(4.34)

with x
(R)
0 = 1, z(R)r+1 = z, P0R = {j ∶ j > Rmax}, and Rmax being the biggest index j

such that x(R)j = 1.
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Therefore, we can express Eq. (4.29) as

Er(β,γ) = ∑
x(L),x(R)

∑
z
∑

z(L),z(R)

e∑
r
j=1 iγjc(z

(L)
j )e∑

r
j=1 −iγjc(z

(R)
j )
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

∏
P∈PL

⎛

⎝

1

M
∏

j∈P∖{k+l}
δ(z

(L)
j , z

(L)
j+1)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

( ∏
j∈P0L

δ(z
(L)
j , z

(L)
j+1))(

1

M
c(z))( ∏

j∈P0R

δ(z
(R)
j+1 , z

(R)
j ))

⎡
⎢
⎢
⎢
⎢
⎣

∏
P∈PR

⎛

⎝

1

M
∏

j∈P∖{k+l}
δ(z

(R)
j+1 , z

(R)
j )
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(4.35)

Note that for a given element of PL, the product

1

M
∏

j∈P∖{k+l}
δ(z

(L)
j , z

(L)
j+1) (4.36)

is equal to 1/M if z(L)k = z
(L)
k+1 = . . . = z

(L)
k+l−1 = z

(L)
k+l , and 0 otherwise. That way, we can

condensate variables z(L)k , z
(L)
k+1, . . . , z

(L)
k+l−1, z

(L)
k+l in a single variable. The same can be

done for the set PL. By an analogous argument, for the product

( ∏
j∈P0L

δ(z
(L)
j , z

(L)
j+1))(

1

M
c(z))( ∏

j∈P0R

δ(z
(R)
j , z

(R)
j+1 )) , (4.37)

we can combine the variables z
(L)
Lmax+1, z

(L)
Lmax+2, . . . , z

(L)
r−1, z

(L)
r , z,

z
(R)
Rmax+1, z

(R)
Rmax+2, . . . , z

(R)
r−1 , z

(R)
r . Then, follows

Er(β,γ) = ∑
x(L),x(R)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

1

M
∑
z

exp(∑
j∈P

iγjc(z))] [ ∏
P∈PR

1

M
∑
z

exp(∑
j∈P
−iγjc(z))]

[
1

M
∑
z

c(z) exp(( ∑
j∈P0L

iγjc(z)) + ( ∑
j∈P0R

−iγjc(z)))] .

(4.38)

The factor involving the sets P0L and P0R can be simplified by noting that for
a j such that j ∈ Q0L and j ∈ Q0R, γj − γj = 0. To consider all simplification, we
define the set P0 as {−j ∶ Lmax ≥ j > Rmax} if Lmax > Rmax, {j ∶ Rmax ≥ j > Lmax} if
Lmax < Rmax, and null if Lmax = Rmax. Thus,

( ∑
j∈P0L

iγjc(z)) + ( ∑
j∈P0R

−iγjc(z)) = ∑
j∈P0

iγjc(z). (4.39)
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Moreover, we can replace the characteristic functions and their derivatives in the
expression in an analogous way to depth 1 analysis, resulting in

Er(β,γ) = −i ∑
x(L),x(R)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φX (∑
j∈P

γj)][ ∏
P∈PR

φ∗X (∑
j∈P

γj)][φ
′
X (∑

j∈P0

γj)] .

(4.40)

For any order pair of x(L) and x(R) in which x(L) ≠ x(R), if x(L) = x1 and x(R) =

x2, than the term with (x2,x1) is the complex conjugate of the term with (x1,x2).
Therefore, with the property z+z∗ = 2Re{z} and noticing that if x(L) = x(R), P0 = ∅
and the derivative of characteristic function is reduced to φ′X (0), we get

Er(β,γ) =
⎛

⎝
∑

x(L)=x(R)
φ′X (0)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
∣B(βj)∣

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

∏
P∈PL

∣φX (∑
j∈P

γj)∣

2⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

+
⎛

⎝
2 Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
x(L)<x(R)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φX (∑
j∈P

γj)][ ∏
P∈PR

φ∗X (∑
j∈P

γj)][φ
′
X (∑

j∈P0

γj)]

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠
,

(4.41)

where x(L) < x(R) is an abuse of notation to compare the respective numbers of
the binary representation of x(L) and x(R). As φ′X(0) = −iµ, by Lemma 1, we can
cancel the first main summation of Eq. (4.41) and restrict the second summation to
Lmax < Rmax terms. With this, we prove Theorem 10.

Theorem 10 The expectation value of GM-QAOA for an arbitrary number of
rounds r is given by

Er(β,γ) = µ + 2 Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
x(L)<x(R)∶Lmax<Rmax

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φY (∑
j∈P

γj)][ ∏
P∈PR

φ∗Y (∑
j∈P

γj)][φ
′
Y (∑

j∈P0

γj)]

⎫⎪⎪
⎬
⎪⎪⎭

.

(4.42)

Corollary 2 gives the complexity of Eq. (4.42). To prove it, we need to count
the number of terms of the main summation of the expression, which is done in
Lemma 2. The original summation of Eq. (4.40) has 4r terms, but even canceling
terms on Eq. (4.42), the complexity is still of order Θ(4r).

Lemma 2 The number of terms of the main summation of Eq. (4.42) is 4r−1
3 .
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Proof: We need to count the number of order pair (x(L),x(R)) such that Lmax =

Rmax, subtract it from the original 4r terms and cut off half of them. There is a
single combination in which Lmax = 0 and 4L

max−1 if Lmax > 0. The last case can be
seen as the number of combinations of the remainder Lmax − 1 most significant bits
of both x(L) and x(R). Therefore, by counting all possibilities of Lmax, the number
of terms, using the summation

n

∑
j=0
xj =

xn+1 − 1

x − 1
, (4.43)

which follows denoting it by Sn and taking,

xSn = x + x
2 + . . . + xn + xn+1 = Sn − 1 + x

n+1 ⇒ Sn =
xn+1 − 1

x − 1
, (4.44)

is computed by
1

2
(4r − (1 +

r

∑
j=1

4j−1)) =
4r − 1

3
, (4.45)

as desired. ◻

Corollary 2 Given attributions for the angles β and γ, the complexity of the expec-
tation value expression of GM-QAOA, given by Eq. (4.42), depends on the numbers
of layers r by O(4r).

Proof: To begin, for a given order pair (x(L),x(R)), the sets PL, PR, P0, as well
as the quantities Lmax and Rmax can be computed in polynomial time on r. Then,
by Lemma 2, the number of terms of the main summation of Eq. (4.42) is Θ(4r).
For each term, the number of any of the products has at most 2r factors, and each
characteristic function or derivative has at most r parameters γj to add. Therefore,
the whole expression has the claimed complexity. ◻

For r = 1, Eq. (4.42) is reduced to Eq. (4.7). That is the only depth in which we
can optimize GM-QAOA analytically given a particular distribution (especially with
Theorem 9). From 2 layers onwards, we optimize numerically using computational
tools. For r = 2, the main summation has 5 terms and we can explicitly give the
expression using Theorem 10, resulting in

E2(β,γ) = µ + 2 Im{B(β1)φ
∗
Y (γ1)φ

′
Y (γ1)}

+ 2 Im{B(β2)φ
∗
Y (γ1 + γ2)φ

′
Y (γ1 + γ2)}

+ 2∣B(β1)∣
2∣φY (γ1)∣

2 Im{B(β2)φ
∗
Y (γ2)φ

′
Y (γ2)}

+ 2 Im{B(β1)B(β2)φ
∗
Y (γ1)φ

∗
Y (γ2)φ

′
Y (γ1 + γ2)}

+ 2 Im{B∗(β1)B(β2)φY (γ1)φ
∗
Y (γ1 + γ2)φ

′
Y (γ2)}.

(4.46)
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Unfortunately, we cannot keep showing explicit expressions for larger values of
r due to the exponential number of terms on r. For instance, the sequence of the
number of non-trivial terms of the expectation value for the first 8 depth levels is
1,5,21,85,341,1365,5461,21845.

Recall that by introducing the auxiliary random variable Y , we neutralize the
impact of the mean of X with the trivial term µ in the expression of expectation
value. The analog can be done for the standard deviation by introducing the stan-
dard random variable Z with the properties φY (γ) = φZ(σγ) and φ′Y (γ) = σφ

′
Z(σγ),

resulting immediately in Corollary 3.

Corollary 3 The expectation value of GM-QAOA for an arbitrary number of rounds
r is given by

Er(β,γ) = µ + 2σ Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
x(L)<x(R)∶Lmax<Rmax

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φZ (σ∑
j∈P

γj)][ ∏
P∈PR

φ∗Z (σ∑
j∈P

γj)][φ
′
Z (σ∑

j∈P0

γj)]

⎫⎪⎪
⎬
⎪⎪⎭

.

(4.47)

The corollary implies that Er(β,γ) deviates from the mean proportionally to
σ. Therefore, for a given X, it is straightforward to consider the negative of the
standard score, i.e., a Cr(β,γ) such that Er(β,γ) = µ−Cr(β,γ)σ, as a performance
metric. To to simplify writing, we call Cr(β,γ) by standard score. Furthermore,
the angles γj are inversely proportional to σ—i.e., it modifies inversely proportional
with changes on the scale of the distribution.

The standard score has an advantage over the expectation value and the approx-
imation ratio since it can be used as a comparison between distinct distributions
and combinatorial optimization problems. The expectation value can vary greatly
between different instances by shifting location and changing the scale, and even the
approximation ratio, for instance, is not applicable for distribution with Rmin

X → −∞

or Rmin
X = 0. Furthermore, note that GM-QAOA performance is not affected by

the two first statistical moments, since shifting location and changing the scale on
probability distribution results in the same transformations of the outcome of GM-
QAOA. Therefore, the performance depends only on moments of higher order, such
as skewness and kurtosis. In particular, if X has all finite moments, from Eq. (2.84)
we can expand the characteristic function of Z by

φZ(ω) = 1 −
ω2

2
−
iSkew[X]ω3

6
+
Kurt[X]ω4

24
+
∞
∑
n=5

inE[Zn]ωn

n!
. (4.48)
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4.1.3 Upper bounds on the standard score for GM-QAOA

A natural question that arises on Corollary 3 concerns the general upper bounds for
Cr(β,γ). We denote the maximum possible value of Cr(β,γ) by CGM(r). Applying
the individual bounds φY (γ) ≤ 1 and φ′Y (γ) ≤ E[∣Y ∣] ≤ σ on either Eq. (4.7) or
Eq. (4.15) gives the bound CGM(1) ≤ 4. The inequality E[∣Y ∣] ≤ σ follows by
setting the random variable ∣Y ∣ and the convex function x2 on Jensen’s inequality.
Theorem 11 refine the bound for CGM(1) ≤ 8

√
6

9 ≈ 2.178 by using calculus arguments
with a bound on the second derivative of the characteristic function.

Theorem 11 For a single round, the maximum standard score C1(β,γ) achieved
by GM-QAOA is bounded by CGM(1) ≤ 8

√
6

9 .

Proof: The second derivative of the characteristic function is bounded by φ′′Y (γ) ≤
E[∣Y ∣2] = σ2. Translated the our three individual bounds into the random variable
Z, we have ∣φZ(σγ)∣, ∣φ′Z(σγ)∣, ∣φ

′′
Z(σγ)∣ ≤ 1. We are interested in bound the quantity

∣φ∗Z(σγ)φ
′
Z(σγ)∣. To get that, we can think of our problem as the kinematics problem

of maximizing the product of the distance and velocity given that both and the
acceleration are bounded. As φZ(σγ) is a complex number in the general case, the
problem has two dimensions. Do we ask what the maximum scalar distance ∣φZ(σγ)∣

for a fixed scalar velocity ∣φ′Z(σγ)∣ in which we do not violate the maximum distance
of 1 unit? Of course, we minimize the distance traveled by assuming the maximum
deceleration, which in our case is ∣φ′′Z(σγ)∣ = 1. Thus, for a scalar velocity 0 ≤ x ≤ 1,
the scalar distance traveled until deceleration completely is x2/2, and we must be in
a distance of at most 1 − x2/2. Therefore,

∣φ∗Z(σγ)φ
′
Z(σγ)∣ ≤ (1 −

x2

2
)x. (4.49)

The derivative equal to zero gives the maximum on the point x =
√

2
3 , which is

evaluated on the bound to (23)
3/2

and by Eq. (4.15) the claimed bound follows. ◻

For general r, on the other hand, applying inequalities on ∣φY (γ)∣, ∣φ′Y (γ)∣ and
∣B(β)∣ is insufficient to obtain a satisfactory bound since it would grow exponentially
on r. Directly from Lemma 2, we see the growth would be at least on 4r order.
Indeed, the growth is of an order of 9r. We get the exact number in the following
way.

Firstly, we count the individual bound over all 4r terms of Eq. (4.40) and in
sequence, we subtract the number of terms canceled on Eq. (4.42), that is, the
terms in which Lmax = Rmax. For each term, the bound is determined exclusively
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by the number of B(β) terms. The bound over Eq. (4.40) gives

∑
x(L),x(R)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶ x(L)j =1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶ x(R)j =1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (
r

∑
j=0
(
r

j
)2j)

2

= 9r, (4.50)

where the first equality follows from noting that the number of factors of each
product on a given term is the Hamming weight of the binary representation of x(L)

or x(R), and the last from the expansion of (1 + 2)r with the binomial theorem.
To the terms in which Lmax = Rmax, if Lmax = 0, there is a unique combination

that sums 1 unit to the bound. For Lmax > 0, in both x(L) or x(R), the Lmaxth bit is
1. We must count the Hamming weight of the Lmax − 1 remainder most significant
bits. Thus, for a given Lmax, we add

Lmax−1
∑
x=0

Lmax−1
∑
y=0
(
Lmax − 1

x
)(
Lmax − 1

y
)22+x+y

= 4(
Lmax−1
∑
j=0
(
Lmax − 1

j
)2j)

2

= 4 9L
max−1

(4.51)

units. Considering the subtraction over the initial 9r and summing over all possible
Lmax, we conclude using the summation of Eq. (4.43) that

CGM(r) ≤ 9r − (1 + 4
r

∑
j=1

9j−1) =
9r − 1

2
. (4.52)

Unfortunately, due to the complexity of the expression of Theorem 10, direct
analytical treatment to improve the bound of Eq. (4.52) is unfeasible. This topic is
returned on Chapter 6, in which we use an indirect method to bound the expectation
value of Grover-based QAOA, the more general version of GM-QAOA.

4.1.4 The binary function

Before proceeding to the analysis of GM-Th-QAOA, we present the binary function,
an application of GM-QAOA, which is the core of that analysis. In that work, we
define the binary function as a function that assigns value −1 for elements belonging
to a subset of marked elements and 0 otherwise. We denote by ρ the ratio of marked
elements to the entire domain of the function. Note that the binary function is
similar to the function of Eq. (3.2) used on the unstructured search problem but
adapted to the context of minimization problems. By the statistical interpretation of
optimization problems, the distribution of the binary function follows RBernoulli(ρ).

Note that minimizing GM-QAOA with the binary function of ratio ρ as input
is equivalent to minimizing GM-Th-QAOA with a fixed threshold value in which
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the ratio of states equal or below the threshold is ρ. The operators are identical,
and the observable, although different, have the equivalent goal of maximizing the
probability of measuring a set of states with ratio ρ. Therefore, we can use Golden
et al. [26] result on r = 1 of GM-Th-QAOA, discussed on Subsec. 3.8.2. That way,
if ρ > 0.25 we have E1(β,γ)opt = −1—since ∣c(r)0 ∣

2 = 0 means probability 1 of find
marked elements—and otherwise the optimal angles are β = γ = π. To get the
expectation value on the range ρ ≤ 0.25, we compute ϕY (γ) from the distribution
fY (x), given by

fY (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρ, x = ρ − 1

1 − ρ, x = ρ,
(4.53)

since the mean of fX(x) is −ρ. Thus,

ϕY (γ) = i( ∑
x∈RY

fY (x)e
−iγx)( ∑

x∈RY

xfY (x)e
iγx)

= i[ρe−iγ(ρ−1) + (1 − ρ)e−iγρ][(ρ − 1)ρeiγ(ρ−1) + ρ(1 − ρ)eiγρ]

= i[e−iγρ(ρeiγ + 1 − ρ)][ρ(1 − ρ)eiγρ(1 − e−iγ)]

= iρ(1 − ρ)((1 − 2ρ) + ρ(eiγ + e−iγ) − e−iγ)

= iρ(1 − ρ)((1 − 2ρ) + 2ρ cos (γ) − cos (γ) + i sin (γ))

= iρ(1 − ρ)[(1 − 2ρ)(1 − cos (γ)) + i sin (γ)].

(4.54)

Replacing γ = π, we get ϕY (π) = 2iρ(1 − ρ)(1 − 2ρ). Thus, since ϕY (π) is positive
purely imaginary, ∣ϕY (π)∣ = Im{ϕY (π)} and by Eq. (4.15),

E1(β,γ) = −ρ − 8ρ(1 − ρ)(1 − 2ρ) = −ρ(16ρ
2 − 24p + 9) = −ρ(4ρ − 3)2, (4.55)

and therefore,

E1(β,γ)opt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−ρ(4ρ − 3)2, ρ ≤ 0.25

−1, otherwise.
(4.56)

The angle β obtained by using Eq. (4.16) is the expected optimal β = π.
Generalizing the result for arbitrary r is unfeasible through the analytical ex-

pression of Eq. (4.42). However, there is an alternative way based on the optimality
of Grover’s algorithm on unstructured search problem. To get that, firstly note
that GM-QAOA applied to binary function is equivalent to the unstructured search
problem with an arbitrary number of marked elements. This equivalence arises from
the fact that there are r calls to an oracle for the binary function, and the objective
of minimizing the expectation value aligns to maximize the probability of measuring
a marked state. Not by coincidence, for r = 1 on ρ ≤ 0.25 interval, the optimal angles
β = γ = π reduces a GM-QAOA round to a Grover’s iteration. Indeed, ρ = 0.25 is
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the ratio in which Grover’s algorithm with a single round reaches the probability 1

on measuring a marked element, so that if ρ ≤ 0.25, Grover’s operators are optimal,
and if ρ > 0.25, the angles of Eq. (3.28) make the fine-tuning not to exceed the point
of probability 1.

The aforementioned ratio that reaches probability 1, named here threshold ratio
and denoted as ρTh(r) for arbitrary r, is the point of π/2 radians angle of the geo-
metric interpretation of Grover’s algorithm, showed on Subsec. 3.2.1. The value of
the threshold ratio, as discussed on Subsec. 3.2.3, is ρTh(r) = sin

2 (π/(4r + 2)). Up
to this point, for any number of iterations, Theorem 6 guarantees that Grover’s al-
gorithm gives the maximal average probability for measuring a marked state on the
unstructured search problem. Note that, for instance, the variational approach done
by Morales, Tlyachev, and Biamonte [75] performs slightly better than Grover’s al-
gorithm because the marked element ratio of the instances surpassed ρTh(r). Using
that result, we generalize GM-QAOA performance on binary function for an arbi-
trary number of layers with a constant time expression on Theorem 12. We denote
by P (ρ, r) the optimal probability of measuring a marked element of the binary
function with GM-QAOA, which is the negative of the optimal expectation value.

Theorem 12 For any number of rounds r and a binary function with ratio ρ, the
optimal probability P (ρ, r) of measuring a marked element with GM-QAOA is

P (ρ, r) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin2 ((2r + 1)arcsin (
√
ρ)), ρ ≤ ρTh(r)

1, otherwise.
(4.57)

Proof: The first interval is the probability of Eq. (3.8), which follows from Grover’s
optimality on average probability, applicable to GM-QAOA since the expectation
value of QAOA with Grover mixer operator is invariant under any permutation
of states—i.e., the positions of marked elements—and the capacity of GM-QAOA
emulates Grover’s algorithm. To establish the other interval, we split into ρ ≤

ρTh(r − 1) and ρ > ρTh(r − 1) cases. To the first, we set βj = γj = π for all j < r and
the angles of Eq. (3.29) for the rth layer. Recall that by Golden et al. [26] analysis,
P (ρ, r) = 1 is achieved for ∆ > 0. We need to prove that this inequality holds on
the interval ρTh(r) < ρ ≤ ρTh(r−1). The interval is entirely contained on the proved
interval of Eq. (4.57) for P (ρ, r − 1). Therefore, since (1 − ρ)M gives the number
of non-marked elements, the probability of measuring non-marked elements can be
written as 1 − P (ρ, r − 1) = (1 − ρ)M(cr−10,π )

2. Replacing it in Eq. (3.30) gives

∆ =
1

M
(4ρ −

1 − P (ρ, r − 1)

1 − ρ
) =

1

M
(
P (ρ, r − 1) − (1 − 2ρ)2

1 − ρ
) . (4.58)
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Since P (ρ, r−1) is increasing on range ρTh(r) < ρ ≤ ρTh(r−1), ∆ also does. Thus, to
establish the positivity of ∆ is enough to prove that ∆ = 0 at the point ρ = ρTh(r).
Applying trigonometric identities cos (x + π/2) = − sin (x), sin (−x) = − sin (x),
2 sin2 (x) = 1 − cos (2x), and 2 cos2 (x) = 1 + cos (2x) on the Eq. (4.58) at that point
results

∆ =
1

M(1 − ρ)
(sin2 (

π(2r − 1)

4r + 2
) − (1 − 2 sin2 (

π

4r + 2
))

2

)

=
1

M(1 − ρ)
(
1

2
−
1

2
cos(

2π(2r − 1)

4r + 2
) − cos2 (

2π

4r + 2
))

=
1

2M(1 − ρ)
(− cos(

2π(1 − 2r)

4r + 2
) − cos(

4π

4r + 2
))

=
1

2M(1 − ρ)
(sin(

π(2r − 3)

4r + 2
) − sin(

π(2r − 3)

4r + 2
)) = 0,

(4.59)

as desired. To finish, in the case where ρ > ρTh(r − 1), there exists k such that
1 ≤ k < r on which ρTh(k − 1) ≥ ρ > ρTh(k) (since ρTh(0) = 1). Probability 1 can
be reached with the earlier attribution on the kth first layers and βj = γj = 0 to the
remainder parameters to make the operators trivial.

◻

Note that by proving the optimality of the choice of all the angles on β and
γ being equal to π on ρ ≤ ρTh(r) interval, we prove that the efficient method of
parameter finding of Golden et al. [26] indeed finds the optimal angles for a fixed t.

The probability P (ρ, r) admits to be written as a polynomial function in terms
of ρ on ρ ≤ ρTh(r) interval. To obtain it, we need the trigonometric identity
cos (arcsin (x)) =

√
1 − x2 and the expansion of sin(nx) in terms of a summation

of products of sin(x) and cos(x) given by, for an integer n ≥ 1,

sin (nx) =
⌊n−1

2
⌋

∑
k=0
(−1)k(

n

2k + 1
) sin2k+1 (x) cosn−2k−1 (x), (4.60)

an identity closely related to the Chebyshev polynomials [124]. With them, we can
finally get

P (ρ, r) = (
r

∑
k=0
(−1)k(

2r + 1

2k + 1
) sin2k+1 (arcsin (

√
ρ)) cos2(r−k) (arcsin (

√
ρ)))

2

= ρ(
r

∑
k=0
(−1)k(

2r + 1

2k + 1
)ρk(1 − ρ)r−k)

2

.

(4.61)

The higher order of a term inside the parenthesis is r. Squaring and multiplying by
ρ gives the maximum term of order 2r + 1. For r = 1, Eq. (4.61) gives the first case
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of Eq. (4.56). We show also r = 2, in which

P (ρ,2) = ρ(16ρ2 − 20ρ + 5)2. (4.62)

4.2 GM-Th-QAOA analysis

Due to the simplicity of the binary phase separation on GM-Th-QAOA compared to
a phase separation codifying a general cost function on GM-QAOA, and the results
of the binary function on GM-QAOA, proved on Subsec. 4.1.4, the analysis of GM-
Th-QAOA is much simpler than of the GM-QAOA. That way, Theorem 13 provides
a formula for the expectation value of GM-Th-QAOA based on the optimal proba-
bility P (ρ, r) of measuring a marked element on the binary function on GM-QAOA,
proved on Theorem 12, assuming as input the optimal angles already established.
Furthermore, instead of using the characteristic function, as done in GM-QAOA, the
main statistical quantity of the expression is the conditional expectation, expressed
in terms of GY (⋅) and FY (⋅). For technical purposes, we allow for threshold value
any t ∈ R and even the limit on t→ −∞ and t→∞ cases.

Theorem 13 For any number r of layers in GM-Th-QAOA with optimal angles,
the expectation value is given by

Er(t) = µ −GY (T )
1 − P (ρ, r)/FY (T )

1 − FY (T )
, (4.63)

where T = t−µ and P (ρ, r) is the optimal probability of measuring a marked solution
in the binary function of ratio ρ = FY (T ) on GM-QAOA, given by Eq. (4.57). For
FY (T ) = 0 and FY (T ) = 1, we consider the respective limits on Eq. (4.63).

Proof: From Eq. (3.27), we can computed the expectation value of GM-Th-QAOA
as

Er(t) = ∣c
(r)
1 ∣

2
∑

k∈S∶c(k)≤t
c(k) + ∣c

(r)
0 ∣

2
∑

k∈S∶c(k)>t
c(k). (4.64)

Similarly with GM-QAOA analysis, these summations can be performed equivalently
using the pmf of X. For each possible cost, x ∈ RX , we count the number of solutions
k such that c(k) = x, i.e., MfX(x). Then,

Er(t) =M ∣c
(r)
1 ∣

2
∑

x∈RX ∶ x≤t
xfX(x) +M ∣c

(r)
0 ∣

2
∑

x∈RX ∶ x>t
xfX(x). (4.65)

Let m be the number of states smaller or equal to t. We assume for now that
0 < m < M . We can link our expression with the statistical quantities FX(t) and
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GX(t). Using FX(t) =m/M , 1 − FX(t) = (M −m)/M and the definition of GX(t),

Er(t) =
GX(t)

FX(t)
m∣c

(r)
1 ∣

2 +
µ −GX(t)

1 − FX(t)
(M −m)∣c

(r)
0 ∣

2. (4.66)

Note that the probability P (ρ, r) of measuring a state smaller or equal to t is m∣c(r)1 ∣
2

and the probability 1 − P (ρ, r) for states above t is (M −m)∣c(r)0 ∣
2. Replacing it in

Eq. (4.66),

Er(t) =
GX(t)

FX(t)
P (ρ, r) +

µ −GX(t)

1 − FX(t)
(1 − P (ρ, r)). (4.67)

The random variable Y is introduced on our expression by using the properties
FX(t) = FY (T ) and GX(t) = µFY (T ) +GY (T ). Thus,

Er(t) = µ +
GY (T )

FY (T )
P (ρ, r) −

GY (T )

1 − FY (T )
(1 − P (ρ, r))

= µ −GY (T )
1 − P (ρ, r)/FY (T )

1 − FY (T )
.

(4.68)

Now, note that both FY (T ) = 0 (m = 0) and FY (T ) = 1 (m = M) gets Er(t) →

µ. The first follows from GY (T ) = 0 and P (ρ, r)/FY (T ) → (2r + 1)2 (recall the
maximum amplification of the low-convergence regime of Subsec. 3.2.2), and for the
last, replacing P (ρ, r) = 1 on Eq. (4.63) gives Er(t) = µ +GY (T )/FY (T ) with the
limit holding from GY (T ) → µY = 0. That is the desired value since in both cases,
the final state of GM-Th-QAOA is a uniform superposition.

◻

Some aspects and consequences of the above theorem are worth commenting
on. Firstly, given FY (T ), GY (T ), and µ, we have a formula to compute Er(t)

with complexity independent of r, as establishes Corollary 4. That allows us to
analyze distributions with an arbitrary number of layers, far beyond the exponential
complexity expression of GM-QAOA, and look at the asymptotic behavior on the
number of layers.

Corollary 4 Given a fixed threshold value t, the complexity of the expectation value
expression of GM-Th-QAOA, given by Eq. (4.63), has complexity independent of the
number of layers.

Secondly, by Eq. (4.67) and the definition of conditional expectation,

Er(t) = E[X ∣X ≤ t]P (ρ, r) +E[X ∣X > t](1 − P (ρ, r)). (4.69)

The above equation gives an important intuition on the operation of GM-Th-QAOA.
The expectation value Er(t) is a weighted sum by P (ρ, r) of the expected value of
the two sets split by the threshold value t.
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Proceeding, the intuitive notion that Er(t) < µ on 0 < FY (T ) < 1 follows since
P (ρ, r)/FY (T ) is larger than 1, and from the fact, recurrent from here, that GY (T )

is negative because the mean of Y is zero and always there is a least one element
positive and one negative on its support (since we eliminate the degenerate distribu-
tion). We also extend the definition of η (recall Subsec. 3.2.2) to η = P (ρ, r)/FY (T )

to consider also ratios above the threshold ratio ρTh(r).
Now, if FY (T ) ≥ ρTh(r), then P (ρ, r) = 1 and we have immediately the Corol-

lary 5 using definitions on the conditional expectation.

Corollary 5 For any number r of layers in GM-Th-QAOA with optimal angles, if
FX(t) ≥ ρTh(r), the expectation value is given by

Er(t) = µ +
GY (T )

FY (T )
= µ +E [Y ∣Y ≤ T ] = E [X ∣X ≤ t] . (4.70)

Moreover, we can write the expression of Er(t) in a polynomial form on FY (T ) ≤

ρTh interval by using Eq. (4.61) for P (ρ, r). Let

Q(ρ, r) =
r−1
∑
k=0
(−1)k(

2r + 1

2k + 1
)ρk(1 − ρ)r−k−1. (4.71)

Using the factorization 1 − xn = (1 − x)(∑
r−1
k=0 x

k), we can prove that the polynomial
is of order 2r − 1 by eliminating the denominator 1 − FY (T ) with

Er(t) = µ −GY (T )(
1 − FY (T )2r

1 − FY (T )
−
P (ρ, r)/FY (T ) − FY (T )2r

1 − FY (T )
)

= µ −GY (T )(
2r−1
∑
k=0

FY (T )
k −
((1 − FY (T ))Q(ρ, r) + (−1)rFY (T )r)

2
− FY (T )2r

1 − FY (T )
)

= µ −GY (T )(
2r−1
∑
k=0

FY (T )
k − (1 − FY (T ))Q

2(ρ, r) − 2(−1)rQ(ρ, r)FY (T )
r) .

(4.72)

Eq. (4.72) gives a polynomial expression on FY (T ) multiplying GY (T ) on the non-
trivial terms. The case r = 1 is significant due to its simplicity and therefore is
established in Corollary 6, which follows combining Eq. (4.72) and Corollary 5.

Corollary 6 For a single layer in GM-Th-QAOA with optimal angles, the expecta-
tion value is given by

E1(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ + 8GY (T )(1 − 2FY (T )), FY (T ) ≤ 0.25

µ + GY (T )
FY (T ) , otherwise.

(4.73)

With Eq. (4.73), we can optimize analytically for some particular distributions.
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We show also r = 2, in which the polynomial expression has a cubic order. So,

E2(t) = µ + 8GY (Y )(3 − 22FY (T ) + 48FY (T )
2 − 32FY (T )

3) (4.74)

on FY (T ) ≤ ρTh(2) range. For higher r, the polynomial expression becomes pro-
gressively more complicated than the trigonometric. However, the polynomial form
cannot be discarded since someone might find a utility in an eventual analytical
proof.

Subsequently, note that Corollary 5 induces a tight lower bound on GM-Th-
QAOA performance (upper bound on Er(t) since we are minimizing it) and an
upper bound on topt, given both by Corollary 7.

Corollary 7 For any number r of layers in GM-Th-QAOA, the optimal threshold
value is bounded by topt ≤ τ , where τ is the minimum t in which P (ρ, r) = 1, and we
have a tight bound in the optimal expectation value given by

Er(t)opt ≤ E [X ∣X ≤ τ] ≤ τ. (4.75)

Proof: First, note that there always exists a t for which P (ρ, r) = 1 because
taking t as the maximum solution gives FX(t) = 1. Then, by the definition of
conditional expectation, E [X ∣X ≤ t1] ≤ E [X ∣X ≤ t2] for t1 < t2 and therefore the
minimum t gives the best expectation value among the candidates of threshold in
which P (ρ, r) = 1. To conclude the tightness of the bound, we consider the binary
function with a parameter ρ such that P (ρ, r) = 1. In that case, ρ = FX(τ) and then
Er(t) = E [X ∣X ≤ τ] = τ = −1. Finally, if topt ≠ τ , FX(topt) is smaller than ρTh(r)

and therefore topt < τ . ◻

Another upper bound on topt, the intuitive notion that topt ≤ µ, is proven in
Corollary 8.

Corollary 8 For any number r of layers in GM-Th-QAOA, the optimal threshold
value is bounded by topt ≤ µ.

Proof: Suppose by contradiction that topt > µ. Thus, Topt > 0 and by definition of
GY (⋅), ∣GY (Topt)∣ ≤ ∣GY (u)∣, where u is the first u ∈ RX such that u ≤ µ. Therefore,
by Eq. (4.63), as FY (Topt) ≥ FY (u), we just need to prove that the factor

P (ρ, r)/FY (T ) − 1

1 − FY (T )
(4.76)
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is strictly decreasing on FY (T ). Defining R = 2r+1 and u = R arcsin (
√
ρ) in a same

way as in Appendix A, we can rewrite Eq. (4.76) as

sin2 (u)/ sin2 (u/R) − 1

1 − sin2 (u/R)
=

4 sin2 (u)

sin2 (2u/R)
− sec2 (u/R) (4.77)

using the trigonometric identity sin (2x) = 2 sin (x) cos (x). On 0 < u ≤ π/2, the first
term is strictly decreasing by the same argument used in Appendix A on η case and
is direct that − sec2 (u/R) also does. ◻

To finish, analogously to GM-QAOA, Corollary 9 neutralizes the impact of the
standard deviation of X with the auxiliary Z. The corollary follows directly from
the properties FY (T ) = FZ(T /σ) and GY (T ) = σGZ(T /σ).

Corollary 9 For any number r of layers in GM-Th-QAOA with optimal angles, the
expectation value is given by

Er(t) = µ − σGZ(T /σ)
1 − P (ρ, r)/FZ(T /σ)

1 − FZ(T /σ)
, (4.78)

where ρ = FZ(T /σ).

As well as the GM-QAOA, the GM-Th-QAOA also depends only on the moments
of order beyond expectation and variance. Thus, we denote Cr(t), where Er(t) =

µ −Cr(t)σ, and CTh(r) as the maximum Cr(t) achieved by GM-Th-QAOA.

4.2.1 Threshold curve problem

Recall the conjecture present on Subsec. 3.8.2 that the curve of the expectation value
versus the threshold value for angles obtained by the procedure of Golden et al. [26]
decreases monotonically up to a valley value and then increases monotonically. In-
deed, the method of Golden et al. [26], for fixed t, gives the optimal angles, as we
establish on Subsec. 4.1.4. We call that curve by threshold curve and the conjecture
by threshold curve problem. Since Theorem 13 gives a closed-form expression for
the expectation value, we can directly tackle the threshold curve problem. To in-
clude the possibility of the threshold curve being constant for a consecutive pair of
points, the considered behaviors in our proof are non-increasing and non-decreasing
monotonicity instead of strictly decreasing and strictly increasing, respectively. We
proved that the threshold curve must change its monotonicity only one time by
establishing the derivative change of the sign one time. Using the step function
form of FY (T ) and GY (T ), we can extend results about monotonicity for the origi-
nal discrete random variable since it preserves the monotone behavior between any
pair of consecutive points of the support. That was done in Theorem 14, proved in
Appendix B.
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Theorem 14 For any number of layers in GM-Th-QAOA, the threshold curve is
monotonically non-increasing up to a valley value and monotonically non-decreasing
from there.

4.2.2 Asymptotic tight bound on quantile

An alternative metric on the performance of GM-Th-QAOA is the quantity
FX(Er(t)), which corresponds to the quantile in which the expectation value of
GM-Th-QAOA is associated (obviously, we can use the quantile for GM-QAOA or
any QAOA variant). That metric has as a strong point the possibility of comparing
the obtained result with the spectrum of distribution itself. An immediate upper
bound on FX(Er(t)) can be obtained by applying the cdf to both sides of the inequal-
ity in Corollary 7. Since cdf is a non-decreasing function, FX(Er(t)opt) ≤ FX(τ). If
we assume a continuous distribution, there is a t in which FX(t) = ρTh(r) for all r
and then FX(τ) = ρTh(r) for any r. That way, FX(Er(t)opt) is bounded by ρTh(r)

and therefore
FX(Er(t)opt) ≤ sin

2 (
π

4r + 2
) = O (

1

r2
) . (4.79)

The assumption X as a continuous random variable is convenient since discussing
quantiles is more naturally suited for such distributions. We demonstrate in Theo-
rem 15 that the asymptotic bound of Eq. (4.79) is tight. To do so, we rely on the
supposition that Rmin

X has a finite and non-zero value in pdf. That assumption is
also quite reasonable since all target problems of QAOA have a finite optimal value,
and the limits fX(Rmin

X ) → 0 or fX(Rmin
X ) → ∞ are just convenient mathematical

abstractions in some situations.

Theorem 15 For GM-Th-QAOA, if X is a continuous distribution and fX(Rmin
X ) =

a, where 0 < a < ∞, then the quantile achieved by the optimal expectation value is
asymptotically given by

FX(Er(t)opt) = Θ(
1

r2
) . (4.80)

Proof: The upper bound has already been established on Eq. (4.79). For the
lower bound, let t be a fixed optimal threshold. We claim that FX(t) = FY (T ) =

Θ(1/r2). The bound FX(t) = O(1/r2) follows from FX(t) ≤ ρTh(r) and to prove
FX(t) = Ω(1/r2), consider the expectation value asymptotically on r knowing that
FX(t) = O(1/r2), which gives, from Eq. (4.63),

Er(t)opt → µ +E[Y ∣Y ≤ T ]P (ρ, r). (4.81)
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If FX(t) ∉ Ω(1/r2),

P (ρ, r) = sin2 ((2r + 1)arcsin (
√
ρ)))→ sin2 (2r

√
ρ)→ 0, (4.82)

and as E[Y ∣Y ≤ T ] must be bounded by assumption (if Rmin
X → −∞, we must have

a → 0), E[Y ∣Y ≤ T ]P (ρ, r) → 0 and then Er(t)opt → µ, which of course is not an
optimal threshold, concluding by contradiction that FX(t) = Ω(1/r2).

Now, consider the bound

Er(t)opt ≥ µ +E[Y ∣Y ≤ T ]P (ρ, r) ≥ µ +E[Y ∣Y ≤ T ] = E[X ∣X ≤ t]. (4.83)

The first inequality holds from GX(t) ≤ 0 on the first equality of Eq. (4.68) and the
second by P (ρ, r) ≤ 1. Applying cdf on both slides of Eq. (4.83) gives FX(Er(t)opt) ≥

FX(E[X ∣X ≤ t]). Using the relation

0 < lim
n→∞

f(n)

g(n)
<∞ ⇒ f(n) = Θ(g(n)) as n→∞, (4.84)

since FX(t) = Θ(1/r2), by transitivity, we just need to prove that the limit

L = lim
t→Rmin

X

FX(E[X ∣X ≤ t])

FX(t)
(4.85)

is always non-zero finite. Note that denoting by X≤t the random variable X given
X ≤ t, we have

FX(E[X ∣X ≤ t])

FX(t)
= FX≤t(E[X ∣X ≤ t]) = FX≤t(E[X≤t]), (4.86)

since the pdf of X≤t is fX(t)/FX(t). Therefore, the statistical interpretation of the
limit L is that it calculates the cdf of the expected value of X≤t on t → Rmin

X . The
limit is an indeterminate of 0/0 type. The denominator follows from the definition
of cdf, and for the numerator, using L’Hôpital’s rule,

lim
t→Rmin

X

E[X ∣X ≤ t] = lim
t→Rmin

X

GX(t)

FX(t)
= lim

t→Rmin
X

tfX(t)

fX(t)
= Rmin

X , (4.87)

and then by the continuity of cdf,

lim
t→Rmin

X

FX(E[X ∣X ≤ t]) = FX ( lim
t→Rmin

X

E[X ∣X ≤ t]) = FX(R
min
X ) = 0. (4.88)
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Applying L’Hôpital’s rule in L gives

L = lim
t→Rmin

X

fX (
GX(t)
FX(t) ) fX(t)

tFX(t)−GX(t)
FX(t)2

fX(t)
= a lim

t→Rmin
X

tFX(t) −GX(t)

FX(t)2
, (4.89)

where limit of fX(GX(t)/FX(t)) → a follows by the continuity of pdf in the point
Rmin

X . We have another 0/0 indeterminate that follows immediately from the limit
of Eq. (4.87). Therefore,

L = a lim
t→Rmin

X

tfX(t) + FX(t) − tfX(t)

2FX(t)fX(t)
= lim

t→Rmin
X

FX(t)

2FX(t)
= lim

t→Rmin
X

fX(t)

2fX(t)

=
1

2
,

(4.90)

as desired.
◻

The theorem establishes a tight quadratic Grover-style speed-up of GM-Th-
QAOA over classical brute force in the asymptotic limit, as it takes r rounds to
attain an expectation value at a quantile of order 1/r2, in contrast to classical brute
force, such as CRS, that with those number of round achieves a quantile of order of
1/r. The result is expected since the optimal angles of GM-Th-QAOA reduce it to
the execution of Grover’s algorithm.

4.2.3 Upper bounds on the standard score for GM-Th-QAOA

Retaking the discussion of upper bounds on the standard score of Subsec. 4.1.3,
now for GM-Th-QAOA, the problem the becomes feasible with our closed-form ex-
pression for Er(t). To begin with, similar to GM-QAOA, we provide the bound
CTh(1) ≤ 4 with individual bounds. Specifically, applying ∣GY (T )∣ ≤ 0.5σ on Corol-
lary 6 gives C1(t) ≤ 4 on FY (T ) ≤ 0.25 interval. It is unnecessary to check the other
interval once by the definition of conditional expectation, setting FY (T ) = 0.25, in-
cluded on the limit of the other interval, gives the best bound on the range in which
P (ρ, r) = 1 holds. To prove that the inequality holds, consider

E[∣Y ∣] = ∑
x∈RY

∣x∣fY (x) = − ∑
x∈RY ∶x≤0

xfY (x) + ∑
x∈RY ∶x>0

xfY (x)

= −GY (0) + (−GY (0)) = −2GY (0).

(4.91)

The maximum of ∣GY (⋅)∣ is given when the argument is 0. Therefore ∣GY (T )∣ ≤

∣GY (0)∣ = 0.5E[∣Y ∣] ≤ 0.5σ, as claimed.
For general r we can go far beyond the exponential bound of GM-QAOA. For

that, using the bound of low-convergence regime η ≤ (2r + 1)2 in addiction to
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∣GY (T )∣ ≤ 0.5σ on Theorem 13,

Er(t) ≥ µ −
(2r + 1)2 − 1

2(1 − FY (T ))
σ ≥ µ −

(2r + 1)2 − 1

2(1 − ρTh(r))
σ

= µ − 2r(r + 1) sec2 (
π

4r + 2
)σ,

(4.92)

and we can conclude that

CTh(r) ≤ 2r(r + 1) sec2 (
π

4r + 2
) = O(r2). (4.93)

Indeed, the above bound is not tight, nor asymptotically. The tight upper bound
is established through the assistance of Lemma 3, which claims that CTh(r) is
attained by a particular family of distribution: the two-point distributions.

Lemma 3 For any number r of layers in GM-Th-QAOA, the maximum standard
score Cr(t) achieved by GM-Th-QAOA, CTh(r), is hit by a two-point distribution.

Proof: By Eq. (4.63), since Er(t) ≤ µ and GY (T ) is negative, for a fixed FY (T ),
the maximum possible Cr(t) is given when we maximize the ratio ∣GY (T )∣/σ. Elim-
inating the trivial cases of FY (T ) = 0 and FY (T ) = 1 in which Cr(t) = 0, the key
idea of the proof is that the distribution that maximizes that ratio is a two-point
distribution for all the range 0 < FY (T ) < 1 and therefore CTh(r) necessarily be
there.

To get it, we split the distribution into two parts by the threshold value defining
Y≤T as the random variable Y given Y ≤ T and Y>T as the random variable Y given
Y > T . We also split the summation that computes σ2 into two contributions

σ2
≤T = ∑

x∈RY ∶x≤T
x2fY (x), σ

2
>T = ∑

x∈RY ∶x>T
x2fY (x), (4.94)

where σ =
√
σ2
≤T + σ

2
>T . Thus, using the definitions of the conditional random vari-

ables,

E[Y≤T ] =
GY (T )

FY (T )
, E[Y 2

≤T ] =
σ2
≤T

FY (T )
,

E[Y>T ] = −
GY (T )

1 − FY (T )
, E[Y 2

>T ] =
σ2
>T

1 − FY (T )
,

(4.95)

to computed the bounds E[Y 2
≤T ] ≥ E[Y≤T ]

2 and E[Y 2
<T ] ≥ E[Y<T ]

2, we have

GY (T )2

FY (T )
≤ σ2
≤T ,

GY (T )2

1 − FY (T )
≤ σ2
>T . (4.96)
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Combining both bounds gives

GY (T )2

FY (T )
+

GY (T )2

1 − FY (T )
≤ σ2
≤T + σ

2
>T ⇒

GY (T )2

FY (T )(1 − FY (T ))
≤ σ2

⇒
∣GY (T )∣

σ
≤
√
FY (T )(1 − FY (T )),

(4.97)

and the equality is hit when the variance is 0, that is, if and only if both Y≤T and
Y>T are single-point distributions, combining to get Y with two points. ◻

Since the random variable Z associated with any two-point distributions depends
only on the ratio between the points, we can consider without loss of generality the
binary function. Therefore, with Lemma 3, for a given r, CTh(r) can be founded by
systematically varying the parameter ρ on binary function in the range 0 < ρ < 1.
The choice of threshold trivially is t = −1 for binary function, and in that way, Th(k)
is precisely the original binary function. Therefore, since Er(t) = −P (ρ, r), from the
definition of Cr(t),

Cr(t) =
P (ρ, r) + µ

σ
=
P (ρ, r) − ρ
√
ρ(1 − ρ)

. (4.98)

Note that an alternative way to get Eq. (4.98) is to replace the bound of Eq. (4.97)—
which is tight for binary function—on Eq. (4.63). For r = 1, with the polynomial
form of P (ρ,1) on ρ ≤ 0.25 and 1 otherwise,

C1(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρ(4ρ−3)2−ρ√
ρ(1−ρ) ρ ≤ 0.25

1−ρ√
ρ(1−ρ) , otherwise.

(4.99)

For ρ > 0.25, we can simplify to C1(t) =
√

1−ρ
ρ and since its derivative

dC1(t)

dρ
= −

1

2ρ
√
ρ(1 − ρ)

(4.100)

is negative in the considered interval, the maximum is given on the limit at the
point ρ = 0.25. Therefore, we can ignore that interval since the point is included on
ρ ≤ 0.25. Thus, for ρ ≤ 0.25, we manipulate C1(t) to

C1(t) =
ρ(4ρ − 3)2 − ρ
√
ρ(1 − ρ)

=
8ρ(ρ − 1)(2ρ − 1)
√
ρ(1 − ρ)

= 8(1 − 2ρ)
√
ρ(1 − ρ), (4.101)

and take the derivative equalling zero giving

dC1(t)

dρ
= −16

√
ρ(1 − ρ) +

4(1 − 2ρ)2
√
ρ(1 − ρ)

=
4(8ρ2 − 8ρ + 1)
√
ρ(1 − ρ)

= 0. (4.102)

97



Since the expression of the denominator has solutions ρ = 0 and ρ = 1, we only
need to solve the quadratic equation on the numerator, which gives ρ =

√
2∓1

2
√
2

. Since

ρ =
√
2+1

2
√
2
> 0.25, replacing the remainder solution ρ =

√
2−1

2
√
2

on Eq. (4.101) establishes
the tight bound of CTh(1) = 2.

We solve numerically for r > 1 using Nelder-Mead optimizer on the Python
package SciPy [125]. The growth observed is linear in r, as shown by Fig. 4.2(a),
which plots the ratio CTh(r)/r versus r up to 50 layers. The inclination of the
linear curve converges to a value called κ. In fact, we prove in Theorem 16 that
CTh(r) = Θ(r) and the value of κ is a function of the solution of a transcendental
equation, numerically evaluated to approximately 1.4482. In Fig. 4.2(b) we show,
also up to r = 50, the curve of ρr2 versus r, where ρ is the ratio what maximize
Cr(t). That quantity scales in the order 1/r2.

(a) (b)

Figure 4.2: (a) The inclination of the curve CTh(r) versus r asymptotically converges
to a certain value. (b) The ratio ρ that maximizes Cr(t) scales with 1/r2, with a
constant that asymptotically converges also to a certain value.

Theorem 16 On the large limit of the number of layers r, the maximum stan-
dard score Cr(t) achieved by GM-Th-QAOA is given by CTh(r) = κr, where κ =

2 sin2 (x1)/x1 for x1 being the smallest positive solution of the equation 2x = tan(x).

Proof: By the same argument of r = 1 analysis, the optimal ρ satisfies ρ ≤

ρTh(r). Then, in the large limit of r, Eq. (4.98) in that interval becomes Cr(t) =

sin2 (2r
√
ρ)/
√
ρ. Taking the derivative of Cr(t) equal to 0 gives

dCr(t)

dρ
=
2r sin (2r

√
ρ) cos (2r

√
ρ) −

sin2 (2r√ρ)
2
√
ρ

ρ
= 0

⇒ 2r cos (2r
√
ρ) =

sin (2r
√
ρ)

2
√
ρ

⇒ 4r
√
ρ = tan (2r

√
ρ).

(4.103)
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The substitution x = 2r
√
ρ gives the trancendental equation 2x = tan (x). The

smallest positive solution x ≈ 1.1656 gives ρ ≈ 0.3397/r2 (note that Fig. 4.2(b) gets
close to that value of ρ), which is smaller than ρTh(r)→ π2/(16r2). The next solution
is x ≈ 4.604 and does not obey ρ ≤ ρTh(r). Therefore, expressing Cr(t) in terms of
x1 gives Cr(t) = 2r sin

2 (x1)/x1, and the theorem follows. ◻

Since the binary function is the same as GM-Th-QAOA in GM-QAOA, follow
the lower bound CGM(r) ≥ κr on the limit of large r. In particular, for r = 1,
combining with Theorem 11 gives 2 ≤ CGM(1) ≤ 8

√
6

9 .
Furthermore, the upper bound CTh(r) provides an explicit lower bound on the

number of round r to reach a fixed approximation ratio λ, given by Corollary 10,
that follows from the definitions of Cr(t) and λ, respectively Er(t) = µ−Cr(t)σ and
λ = Er(t)/Rmin

X .

Corollary 10 For any number r of layers in GM-Th-QAOA, provided that Rmin
X ≠ 0

and ∣Rmin
X ∣ <∞,

r ≥
µ − λRmin

X

(CTh(r)/r)σ
. (4.104)

In particular, on the large limit of r, CTh(r)/r = κ.

To finish this subsection, we show another bound on the minimum rounds
required to achieve an objective. Specifically, we get the minimum number of
rounds for the algorithm finding the optimal with probability 1 (exact optimiza-
tion). In that case, the optimal threshold must be topt = Rmin

X and we must satisfy
FX(topt) = fX(Rmin

X ) ≥ ρTh(r). Therefore,

fX(R
min
X ) ≥ sin2 (

π

4r + 2
) ⇒ r ≥

1

4

⎛

⎝

π

arcsin (
√
fX(Rmin

X ))
− 2
⎞

⎠
, (4.105)

and fX(Rmin
X )→ 0 gives

r ≥
π

4
√
fX(Rmin

X )
= Ω
⎛

⎝

1
√
fX(Rmin

X )

⎞

⎠
, (4.106)

a quadratic Grover-like speed-up.

4.2.4 Combining the bounds on the standard score and quan-

tile

The explicitly tight bound on the standard score was built using different distribu-
tions for each r. In particular, the ratio ρ of the two-point distribution that hits
CTh(r) changes with r. One can ask if a particular distribution gives an asymptotic
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optimal Cr(t) of order Θ(r). If this were not the case, we would have the possibility
of improving the bound of Corollary 10 for particular distribution on the asymptotic
limit of r. However, we can get a family of distributions in which Cr(t) scales arbi-
trarily close to Θ(r). The technique to obtain it consists of combining the bound of
the quantile of Theorem 15 with the standard score Cr(t).

To analyze the asymptotic behavior of Cr(t) in terms of r, we must assume that
Rmin

X → −∞. However, since Theorem 15 has the supposition that fX(Rmin
X ) = a,

where 0 < a <∞, and X → −∞ gives a → 0, is necessary the reasonable assumption
that the limit L of Eq. (4.85) is non-zero finite. With the assumption on L, so that
the result of Theorem 15 be applicable, analyzing the structure of its proof, remains
to demonstrate that FX(t) = Θ(1/r2) on Rmin

X → −∞ case, since the original one
uses the premise of a finite Rmin

X .
To get that, we assume initially a pdf with fX(−x) = Ω(1/x3). The minus sign

in the argument is used to adapt to the standard asymptotic notation on x → ∞.
Recall the traditional definitions for asymptotic notation

f(n) = O(g(n)) as n→∞ ⇒ ∃c > 0,∃no,∀n ≥ no ∶ f(n) ≤ cg(n),

f(n) = Ω(g(n)) as n→∞ ⇒ ∃c > 0,∃no,∀n ≥ no ∶ f(n) ≥ cg(n).
(4.107)

We fix the notation c and no to denote the constants on the asymptotic notation until
the end of this subsection. With the second definition and the property f−X(x) =

fX(−x), we can bound

E[X2] = E[(−X)2] = ∫
∞

−Rmax
X

x2fX(−x) dx

= ∫

no

−Rmax
X

x2fX(−x) dx + ∫
∞

no

x2fX(−x) dx

≥ ∫

no

−Rmax
X

x2fX(−x) dx + ∫
∞

no

c

x
dx→∞,

(4.108)

and therefore, X does not have a finite second moment, contradicting our assumption
at the beginning of the chapter. Thus, we must have fX(−x) = O(1/x3). By the
first definition of Eq. (4.107), choosing a x such that x ≥ no,

FX(−x) = ∫
−x

−∞
fX(k) dk = ∫

∞

x
fX(−k) dk ≤ ∫

∞

x

c

k3
dk =

c

2x2

= O (
1

x2
) .

(4.109)

We are interested in evaluating the asymptotic behavior of the quantile func-
tion, which, in our case, is the inverse cdf. Defining H(x) = FX(−x), by Eq. (4.107),
H(x) ≤ h(x), where h(x) = c/x2, for x ≥ no. As H(x) is a non-increasing func-
tion, H−1(x) also does and then H−1(H(x)) ≥ H−1(h(x)). Since H−1(H(x)) = x =
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h−1(h(x)), then H−1(h(x)) ≤ h−1(h(x)). The inequality holds for h(x) ≤ h(no)

(becomes from the original x ≥ no). Setting y = h(−x) and yo = h(−no), we have
H−1(y) ≤ h−1(y) for y ≤ yo. Introducing the definition of asymptotic notation on the
limit x→ 0,

f(n) = O(g(n)) as n→ 0 ⇒ ∃c > 0,∃no,∀n ≤ no ∶ f(n) ≤ cg(n),

f(n) = Ω(g(n)) as n→ 0 ⇒ ∃c > 0,∃no,∀n ≤ no ∶ f(n) ≥ cg(n),
(4.110)

we see that H−1(y) = O(h−1(y)) = O(1/√y) as y → 0. From the definition of H(t),
H−1(y) = −F −1X (y) and we conclude the asymptotic bound of ∣F −1X (y)∣ = O(1/

√
y) as

y → 0 for the inverse cdf. As FX(E[X ∣X ≤ x]) scales like FX(x) by the assumption
on L,

∣E[X ∣X ≤ x]∣ = ∣F −1X (FX(E[X ∣X ≤ x]))∣

= O
⎛

⎝

1
√
FX(E[X ∣X ≤ x])

⎞

⎠
= O
⎛

⎝

1
√
FX(x)

⎞

⎠

(4.111)

as FX(x)→ 0.
Let t be a fixed optimal angle for r rounds of GM-Th-QAOA. Since FX(t) ≤

ρTh(r), from Eq. (4.57), P (ρ, r) depends on FX(t) like Θ(FX(t)) as FX(t)→ 0. By
Eq. (4.81), ∣Er(t)opt∣ is maximized by maximization the product of ∣E[Y ∣Y ≤ T ]∣ and
P (ρ, r). Note that if we decrease FX(t), P (ρ, r) also decreases at the same time that
∣E[Y ∣Y ≤ T ]∣ increases. However, growth of ∣E[Y ∣Y ≤ T ]∣, bounded by Eq. (4.111),
cannot compensate the decay of P (ρ, r) and then ∣Er(t)opt∣ is maximized assuming
the slowest decay of FX(t). Therefore, since FX(t) ≤ ρTh(r), FX(t) = Θ(1/r2) and
we can extend the result of Theorem 15 to the Theorem 17.

Theorem 17 For GM-Th-QAOA, if X is a continuous distribution and the limit
L, given by Eq. (4.85), is non-zero finite, then the quantile achieved by the optimal
expectation value is asymptotically given by

FX(Er(t)opt) = Θ(
1

r2
) . (4.112)

Establishes the applicable of the scale 1/r2 on quantile for our assumption, we
can follow up with the built of a distribution in which Ct(t) scales arbitrarily close to
Θ(r). Then consider a ϵ > 0 such that fZ(−x) = Θ(1/x3+ϵ). Repeating the previous
argument we find FZ(−x) = Θ(1/x2+ϵ) and ∣F −1Z (y)∣ = Θ(1/

2+ϵ
√
y) as y → 0. So, for

a fixed optimal threshold t, FZ(−Cr(t)) = FX(Er(t)) = Θ(1/r2) makes us conclude
that Cr(t) = Θ(r2/(2+ϵ)), in which ϵ→ 0 gives exponent 1. An explicit distribution is
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RPareto(2 + ϵ, xm) for ϵ > 0, given by

fX(x) =
(ϵ + 2)xϵ+2m

(−x)ϵ+3
, x ∈ (−∞,−xm]. (4.113)

The cdf and GX(⋅) are computed with basic integration techniques as

FX(x) =
xϵ+2m

(−x)ϵ+2
, GX(x) = −

ϵ + 2

ϵ + 1

xϵ+2m

(−x)ϵ+1
, (4.114)

and E[X ∣X ≤ x] is given by E[X ∣X ≤ x] = ϵ+2
ϵ+1x. Thus, the limit L is

L = lim
x→−∞

(−x)2+ϵ

(− ϵ+2
ϵ+1x)

2+ϵ = (
ϵ + 2

ϵ + 1
)
−(2+ϵ)

= (1 +
1

1 + ϵ
)
−(2+ϵ)

. (4.115)

That limit lies between 0.25 and 1/e, with L = 0.25 in ϵ → 0 and resorting to the
traditional definition of the Euler’s number, L = 1/e in ϵ→∞.

In general, the optimal Cr(t) asymptotically depends on r as Cr(t) =

Θ(∣F −1Z (1/r
2)∣). If a distribution presents a cdf FZ(x) with exponential decay on

x → −∞, the growth of Cr(t) must be logarithm. It is the case of important distri-
butions of literature, such as the normal, Laplace, reflected gamma, and reflected
exponential distributions. Therefore, for an optimization problem with a probabil-
ity distribution that exhibits a tendency of exponential decay, the number of rounds
to achieve a fixed approximation ratio must be exponentially larger than the tight
bound of Corollary 10 once

Cr(t) =
µ − λRmin

X

σ
. (4.116)
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Chapter 5

Numerical experiments

In this chapter, we provide numerical experiments computing the formulas of The-
orem 10 and 13 for GM-QAOA and GM-Th-QAOA, respectively, with different
probability distributions to emphasize important aspects of our analytical results.
Except for the cases of a single layer for particular distributions in which it is possible
to solve analytically and for discrete distributions in which we can use the method
of Golden et al. [26] to find the optimal threshold value, we optimize the angles on
GM-QAOA and the threshold value on GM-Th-QAOA by using the Nelder-Mead
optimizer with the package SciPy. Also, in some situations, SciPy was used to com-
pute statistical quantities. Due to the exponential complexity of the expression of
the Theorem 10, we simulate GM-QAOA up to 8 layers. In contrast, for GM-Th-
QAOA, since the expression has complexity independent of the number of layers,
we simulate until 106 rounds on some occasions.

To the quadratic asymptotic speed-up of Theorem 17 be applicable, the limit L
of Eq. (4.85) must be finite non-zero. That is the case for distributions studied in
this chapter. Summarizing the results, for all considered probability distributions
with Rmin

X → −∞, except reflected Pareto distribution, the limit is L = 1/e. In
most of them, such as Laplace, reflected exponential, and reflected Pareto (given on
Eq. (4.115)) distributions, the limit can be evaluated analytically. The remainder
cases can be verified on algebraic software, as emphasized in Sec. 1.2.

5.1 Normal distribution

We begin our numerical experiments with the normal distribution. The study of
that distribution is justified by the ubiquity generated by the central limit theorem.
In combinatorial optimization context, empirically has been observed that the so-
lution space of the Capacitated Vehicle Routing and Portfolio Optimization seems
to be normally distributed [23, 24]. It would not be surprising if other optimization
problems were normally distributed. For this reason, we use the normal distribution
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as an example to illustrate many relevant issues.
The parameters u and s on distribution Normal(u, s2) are location and scale

parameters, respectively. Recall, in particular, they are the mean and standard
deviation of the distribution, respectively. Therefore, the random variable Z is
fixed, in such a way that, due to the Corollaries 3 and 9, we can assume without
loss of generality u = 0 and s = 1 to the analysis.

5.1.1 Single layer

We consider initially r = 1. For GM-Th-QAOA, since the cdf of the normal dis-
tribution involves the error function [53], that only can be evaluated numerically,
we optimize the threshold value numerically, resulting in Cr(t)opt ≈ 1.346 and
Topt/σ = −0.8769. Fig. 5.1 shows the threshold curve for r = 1 on the normal distri-
bution.

Figure 5.1: Threshold curve for r = 1 on normal distribution. Without loss of
generality, we consider Cr(t) versus T /σ as the threshold curve instead of the original
Er(t) versus T of the Subsec. 4.2.1. T /σ means the normalized threshold for any
choice of u and s. The resolution used is 2000 values of threshold, chosen uniformly
between the interval of −4 and 3.

For GM-QAOA, on the other, we can optimize analytically. The characteristic
function of the normal distribution is well-known, with φZ(ω) = e

−ω2

2 . This is the
only case in this dissertation in which we demonstrate a statistical quantity of a
particular distribution. Between existing methods to compute the integration, we
choose the following: using the parity of fZ(x) we have

φZ(ω) = ∫
∞

−∞

e−
x2

2

√
2π
eiωx dx = ∫

∞

−∞

e−
x2

2

√
2π

cos (ωx) dx. (5.1)
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Then, by the Leibniz rule for differentiation under integral sign,

dφZ(ω)

dω
= ∫

∞

−∞

d

dω

⎛

⎝

e−
x2

2

√
2π

cos (ωx)
⎞

⎠
dx = ∫

∞

−∞
−x

e−
x2

2

√
2π

sin (ωx) dx. (5.2)

Next, using integration by parts,

dφZ(ω)

dω
=
sin (ωx)
√
2π

[e−
x2

2 ]
∞

x=−∞
− ω∫

∞

−∞

e−
x2

2

√
2π

cos (ωx) dx = −ωφZ(ω). (5.3)

The solution of the resulting differential equation can be found, for instance, using
the separation of variables method in such a way that φZ(ω) = Ke

−ω2

2 , where K is
the constant to determine. To get that, we use as the initial condition the property
φZ(0) = 1. Thus, K = 1 and φZ(ω) = e

−ω2

2 , as desired.
Taking the derivative, φ′Z(ω) = −ωe

−ω2

2 , and therefore

ϕZ(ω) = −ωe
−ω2

. (5.4)

Since the normal distribution is a symmetric distribution, we can use Corollaries 1.
Combine it with Corollary 3, and taking ω = σγ we have C1(β,γ) = 2ωe−ω

2 . It is
direct to check with the derivative Cr(β,γ) that

C1(β,γ)opt =

√
2

e
≈ 0.8578 with (β,σγ)opt = ±(−

π

2
,

√
2

2
) . (5.5)

Fig. 5.2 shows the landscape of the normal distribution for a single round.
As a comparison, we can consider the algorithm CRS. As Bennett et al. [24]

suggest, the equivalent computational effort to be used on CRS is 2r, once the
general procedure of Childs [109] to compile the phase separation operator consists
of 2 oracle of the function q(k). For r = 1, the expected value of the first order
statistic of a random sample of size 2 on normal distribution is well-known and can
be found, for instance, in Arnold, Balakrishnan, and Nagaraja [126] book. The value
is E[X(1,2)] = u − 1√

π
s and therefore, the standard score is 1√

π
.

Summarizing, for r = 1, the performance of CRS, GM-QAOA, GM-Th-QAOA
on the normal distribution is in ascending order of standard scores with 1

π ,
√

2
e , and

≈ 1.346.

5.1.2 Discretization

Since the target of QAOA is COPs, which have a discrete domain by definition, it is
natural to think of modeling the solution space as a discrete distribution. However,
in some situations, it can be convenient to take the continuous case instead of
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Figure 5.2: The landscape of GM-QAOA for r = 1 on the normal distribution. The
range considered is γ, β ∈ (π,π]. We observe two symmetric global minima and two
symmetric global maxima in the same way as discussed at the end of Subsec. 4.1.1.

dealing with the discrete solution space. In this subsection, we consider one of these
situations, with the discretization of the normal distribution, showing that it can be
quite complicated compared with the continuous ones and that the approximation
of the continuous distributions can be quite accurate asymptotically. That raises
doubts as to whether it is worth the effort to discretize.

The most natural approach to discretize the normal distribution is to discretize
its support by considering only the integer values, which leads to the following
summation (with u = 0 and s = 1) for the characteristic function,

φZ(ω) =
∞
∑

x=−∞

e
x2

2

√
2π
e−iωx =

1
√
2π
(1 + 2

∞
∑
x=1

e−
x2

2 cos(ωx)) =
ϑ3(ω/2, e

− 1
2 )

√
2π

, (5.6)

where we use the parity of φZ(ω) and ϑ3(z, q) is a Jacobi theta function defined
by ϑ3(z, q) = 1 + 2∑

∞
x=1 q

x2
cos(2xz) [53], which is a non-elementary function, and

therefore, not the best path to follow. Instead, we consider the discrete Gaussian
kernel, DGK(s2). From Lindeberg [52], DGK has mean 0 and standard deviation s,
and therefore, it is appropriate to take the random variable Y . There is a closed-form
expression for the characteristic function of DGK given by

φY (ω) = e
s2(cos (ω)−1), (5.7)
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which has derivative φ′Y (ω) = −s2 sin (ω)es
2(cos (ω)−1). Then,

ϕY (ω) = −s
2 sin (ω)e2s

2(cos (ω)−1). (5.8)

Taking the derivative of the Eq. (5.8) and equalling to 0, we have

s2e2s
2(cos (ω)−1)(2s2 sin2 (ω) − cos (ω)) = 0. (5.9)

The equation s2e2s
2(cos (ω)−1) = 0 has no solution and then we can simplify the ex-

pression of Eq. (5.9) to

2s2 sin2 (ω) − cos (ω) = 0⇒ cos2 (ω) +
cos (ω)

2s2
= 1

⇒ (
1

4s2
+ cos (ω))

2

= 1 +
1

16s4
⇒

1

4s2
+ cos (ω) = ±

√

1 +
1

16s4

⇒ ω = ± cos−1
⎛

⎝
±

√

1 +
1

16s4
−

1

4s2
⎞

⎠
= ± cos−1 (

√
1 + 16s4 − 1

4s2
),

(5.10)

where in the last equality, we eliminate half of the solutions because the argument of
the arc cosine, in that case, is smaller than −1. Now, we consider the trigonometry
identity 2 tan−1 (x) = cos−1 (1−x

2

1+x2). Set x =
√√

1 + 16s4 − 4s2. Then,

1 − x2

1 + x2
=
1 −
√
1 + 16s4 + 4s2

1 +
√
1 + 16s4 − 4s2

=
(1 −
√
1 + 16s4 + 4s2)(1 −

√
1 + 16s4 − 4s2)

(1 +
√
1 + 16s4 − 4s2)(1 −

√
1 + 16s4 − 4s2)

=

√
1 + 16s4 − 1

4s2
,

(5.11)

and therefore we rewrite Eq. (5.10) as ω = ±2 tan−1 (
√√

1 + 16s4 − 4s2). Our goal
is to obtain the asymptotic behavior of the expression concerning the standard
deviation s. To get it, we use the expansions by Taylor series

√
1 + x = 1+x/2+O(x2)

as x→ 0 and tan−1 (x) = x +O(x3) as x→ 0,

ω = ±2 tan−1
⎛
⎜
⎝
2s

¿
Á
ÁÀ
√

1 +
1

16s4
− 1
⎞
⎟
⎠
= ±2 tan−1

⎛

⎝
2s

√
1

32s4
+O (

1

s8
)
⎞

⎠

= ±2 tan−1 (
1

2
√
2s
+O (

1

s3
)) = ±

√
2

2s
+O (

1

s3
) .

(5.12)

The next step is to calculate the optimal value for the expectation value. Replacing
the optimal ω = ±

√
2/(2s)+O(1/s3) in Eq. (5.8) and using the Taylor series sin (x) =

x+O(x3) as x→ 0 and cos (x) = 1−x2/2+O(x4) as x→ 0, we get the optimal ϕY (ω)
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as

ϕY (ω) = (∓

√
2s

2
+O (

1

s
)) e−

1
2
+O(1/s2) = ∓

1

2

√
2

e
s +O (

1

s
) . (5.13)

Therefore,

C1(β,γ)opt =

√
2

e
+O (

1

σ2
) with (β,σγ)opt = ±(−

π

2
,

√
2

2
+O (

1

σ2
)) , (5.14)

In the limit of large s, Eq. (5.14) is reduced to Eq. (5.5), which means the normal
distribution is a quite accurate approximation for large instances (the usual target
of QAOA) of combinatorial optimization problems in which the variance grows with
the size of the input.

5.1.3 Scaling the number of layers

For r > 1, all algorithms are simulated numerically. To compare with CRS, we
use Blom [127] asymptotic approximation for the expected value of the first order
statistics, given by

E[X(1,n)] ≈ u + F −1N (
1 − c

n − 2c + 1
) s, (5.15)

with c = 0.375 and where N is a random variable with standard normal distribu-
tion. To get the equivalent computational effort, we set n = 2r. Fig. 5.3 shows the
simulation of distribution Normal(u, s2) for GM-Th-QAOA and CRS up to large
numbers of layers, and for GM-QAOA on the limit of simulation, considering in all
cases the expected value and the cdf achieved by it. GM-Th-QAOA consistently
overcomes GM-QAOA, as expected from the numerical results of the literature, and
CRS, consistently with the quadratic gain. The asymptotic behavior of GM-Th-
QAOA on Cr(t) indicates a logarithmic growth, according to the expected from the
exponential decay of the cdf on x → −∞, discussed on Subsec. 4.2.4. Furthermore,
the asymptotic behavior of the cdf illustrates the quadratic gain of GM-Th-QAOA
over classical brute force, given by Theorem 17, with the quantum algorithm scaling
on a 1/r2 rate and the classical on 1/r.
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(a) (b)

Figure 5.3: Simulation of distribution Normal(u, s2) for GM-Th-QAOA and CRS up
to 106 layers, and GM-QAOA up to 8 layers. (a) Standard score generically denoted
by C versus r in a linear-log scale graphic. (b) Log-log graphic of the quantile
achieved by the algorithms, generically denoted FX(E), as a function of r.

Fig. 5.4(a) illustrates the behavior of optimal threshold value, comparing it to
the expectation value of GM-Th-QAOA. Although the threshold value has a larger
value than the expectation value achieved by GM-Th-QAOA, both have the same
scale 1/r2 in terms of quantile, as observed in Fig. 5.4(b), which is expected from
the asymptotic behavior FX(t) = Θ(1/r2) obtained on the proof of Theorem 17.
Fig. 5.4(c) shows for that optimal threshold value how the probability P (ρ, r) scales
with r. The graphic indicates that the algorithm acts closer to probability 1 as the
number of layers increases.
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(a) (b)

(c)

Figure 5.4: Optimal threshold on the simulation of distribution Normal(u, s2) for
GM-Th-QAOA up to 106 layers. (a) Linear-log graphic of ∣T ∣/σ versus r, compared
with Cr(t). The absolute value of T is taken to compare directly with Cr(t). (b)
Log-log graphic of FX(t) versus r, compared with FX(Er(t)). (c) For that optimal
threshold value, the figure shows the probability P (ρ, r) on a graphic with a log-log
scale for 1 − P (ρ, r) versus r.

5.2 Outliers effect

Recall the discussion on Subsec. 2.4.3 about kurtosis and outliers. The kurtosis is
a measure connected with the propensity to produce outliers, which, in turn, are
related in distributions of Rmin

X → −∞, with the asymptotic decay of the cdf. As
discussed on Subsec. 4.2.4, since the quantile evolves asymptotically with a fixed
quadratic speed-up on GM-Th-QAOA, the standard score is determined by the
decay of the cdf, with Cr(t) = Θ(∣F −1Z (1/r

2)∣). To illustrate that issue, we deal
with the distributions Normal(u, s2), Logistic(u, s), and Laplace(u, b), illustrated
in Fig. 2.3, in addition to the reflected exponential distribution RExponential(l),
which has standard probability distribution fZ(x) = ex−1 for any l—that is, a fixed
random variable Z, such as the three other distributions. Fig. 5.5 shows that the
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cdf decay of reflected exponential distribution is slower than all three considered
distributions, not by chance having the highest kurtosis value between them with
Kurt[X] = 9. Among the remainder distributions, recall that the ascending order
of slower decay is normal, logistic, and Laplace. Therefore, the expected ascending
order on the asymptotic values of Cr(t) among the four considered distributions is
normal, logistic, Laplace, and reflected exponential distributions.

(a) (b)

Figure 5.5: Decay of the cdf of the standard reflected exponential distribution, com-
pared to the standard normal, standard logistic, and standard Laplace distributions.
The scale of both graphics is log-linear. (a) Larger range of x ∈ [−7,2]. (b) Zoom
on the range x ∈ [−3,0.5].

We begin with GM-QAOA, a good starting point, although only scaled to some-
thing similar to ten rounds and has not been proven to have quadratic speed-up.
Firstly, be worth mentioning that for r = 1, the Laplace distribution is one of the dis-
tributions that can be solved analytically. Analogously to the normal distribution,
one can get

C1(β,γ)opt =
25

108

√
10 ≈ 0.7230 with (β,σγ)opt = ±

⎛

⎝
−
π

2
,

√
2

5

⎞

⎠
. (5.16)

Retaking the discussion, Fig. 5.6 shows the performance of these four distribu-
tions up to 8 layers for GM-QAOA by showing Cr(β,γ) and FX(Cr(β,γ)). Among
the distributions normal, logistic, and Laplace, as FX(Cr(β,γ)) evolves more or less
similarly, the decays of Fig. 5.5 explain the standard score, starting with the ascend-
ing order of that quantity being normal, logistic, and Laplace, and ending reverting
to Laplace, logistic, and normal. The overtaking points more or less coincide on both
graphs of Fig. 5.5 and Fig. 5.6(a). On the other hand, the reflected exponential has
a performance harder to interpret due to its asymmetry. For instance, the quan-
tile of the mean is 1/e, smaller than the 0.5th quantile of symmetric distributions,
which means that the reflected exponential distribution starts with an "advantage"
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on small rounds of QAOA. Added to that, we have the slowest decay between all
considered distributions which contributes to the standard score far superior to oth-
ers. Fig. 5.7 plots the analogous graphics of Fig. 5.6 but for GM-Th-QAOA in a
simulation up to 106 rounds. The expected result of the ascending order of the val-
ues of Cr(t) for normal, logistic, Laplace, and reflected exponential distributions is
obtained, with the cdf scaling as 1/r2 on larger rounds with an almost imperceptible
difference.

(a) (b)

Figure 5.6: Simulation of normal, logistic, Laplace, and reflected exponential dis-
tributions for GM-QAOA up to 8 layers. (a) Cr(β,γ) versus r. (b) FX(Er(β,γ))
versus r in log-log scale.

(a) (b)

Figure 5.7: Simulation of normal, logistic, Laplace, and reflected exponential distri-
butions for GM-Th-QAOA up to 106 layers. (a) Cr(t) versus r on linear-log scale.
(b) FX(Er(t)) versus r in log-log scale.
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These results emphasize the importance of statistical moments of order from the
third onwards on the performance of GM-QAOA and GM-Th-QAOA. In GM-Th-
QAOA, the correlation with kurtosis is evident due to the fixed asymptotic quadratic
speed-up. In GM-QAOA, until someone formally decides whether that variant also
exhibits quadratic speed-up behavior, the relationship of the standard score with
the moments is less known, although Eq. (4.48) guarantees that it exists.

To finish, although we have omitted, the analogous conclusions of the graphics
of Fig. 5.4 can be obtained with logistic, Laplace, and reflected exponential distri-
butions.

5.3 Asymptotic scale of the quadratic speed-up

To emphasize the asymptotic aspect of Theorem 17, we consider the reflected gamma
distribution RGamma(a, b). For that, we simulate the distribution for values of a
and b that progressively make it left-skewer—recall the discussion of Subsec. 2.4.3
and particularly on Fig. 2.2. That way, the quantile of the expected value FX(µ)

decreases so that QAOA already begins with a low quantile, as shown in Fig. 5.8(a),
and evolves slowly in the first rounds. However, as Fig. 5.8(b) shows, given a
sufficient number of rounds, the asymptotic scale of FX(Er(t)) = Θ(1/r2) appears,
since the cdf of the expected value of the distribution X given X ≤ t approaches the
limit L.

(a) (b)

Figure 5.8: Distribution RGamma(a, b) with b = 1/2 and a = k/2 for values of k = 2
and then decreasing with powers of 10 such that k = 10−j for j = 2,4,6,8. Note that
if k were a positive integer, we would have the chi-squared distribution of k degrees
of freedom and that the case of a = 2 and b = 1/2 reduce the reflected distribution
gamma to the reflected exponential distribution with l = 1/2. (a) FX(µ) versus k on
log-log scale from 10−8 to 2 with 10000 values of resolution. (b) Log-log graphic of
FX(Er(t)) versus r up to 105 rounds.
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Furthermore, although we have omitted, one can observe logarithm scales on
Cr(t) by plotting RGamma(a, b) on sufficient numbers of layers for the values of a
and b considered in Fig. 5.8.

5.4 Near optimal asymptotic standard score

In Subsec. 4.2.4, we conclude that distributions that scales like reflected Pareto
distribution RPareto(2 + ϵ, xm) with small ϵ, have asymptotic standard score close
to the bound CTh(r) = Θ(r) of Theorem 16. We numerically illustrate it in this
section, specifically for the distribution RPareto(2 + ϵ, xm). To a desired 0 < j < 1

such that Cr(t) = Θ(rj), we can choose the parameter ϵ = 2(1− j)/j. The parameter
xm is a scale parameter and, therefore, irrelevant to the analysis. Fig. 5.9 shows the
simulation of RPareto(2+ϵ, xm) on GM-Th-QAOA up to 105 rounds for the values j =
0.1,0.3,0.5,0.7,0.9,0.99. Fitting all curves [128] with a power-law (using SciPy), we
found the exponents 0.99,0.9,0.7703,0.5023,0.3136,0.1570 for the respective values
of j in descending order. Although the behavior is more precise with the theoretical
results on higher values of j, the confluence is just a matter of simulating sufficient
numbers of layers. For instance, for j = 0.1, fitting on r = 1 up to r = x for
the range x = 10,102,103,104,105 gives the progressive improvement of respectively
0.5087,0.3222,0.2301,0.1834,0.1570 on the coefficients.
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Figure 5.9: Standard score achieved by GM-Th-QAOA up to 105 rounds for
Pareto(ϵ, xm) with different values of j. For viewing purposes, we normalize Cr(t)
by Cmax, where Cmax is the value of C105(t).

Of course, FX(Er(t)) scales 1/r2 for the instances of Fig. 5.9, although it does
not add to the content of the work to explicitly show the graphics.

5.5 Discrete distributions

Until now, except for DGK on a single round for GM-QAOA, we only consider
continuous distributions throughout this chapter. In this section, we address the
differences between discrete and continuous distributions, directly comparing the
binomial and discrete uniform distributions with normal and continuous uniform
distributions, respectively. The similarity with the discrete uniform and continuous
uniform distributions is immediate, and since Binomial(n, p) is the sum of n inde-
pendent Bernoulli random variables with probability p, by the CLT, it approaches
normal distribution on n→∞.

In GM-QAOA, since the statistical quantity is the characteristic function, both
discrete and continuous distribution have a similar nature from the algorithm’s point
of view. On the other hand, for GM-Th-QAOA, a continuous spectrum for the
threshold value changes the dynamics of the algorithm compared with a discrete set
of choices of candidates of the threshold.
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5.5.1 Binomial distribution

We choose the values of n = 200 and p = 0.5 for Binomial(n, p). The value of
p = 0.5 is to get a symmetric distribution, and the value n = 200 is not a much
larger so that the differences can be perceivable. Fig. 5.10 plots Cr(t), FX(Er(t)),
and FX(t) versus r for both binomial and normal distributions. As expected from
the CLT, all scales similarly. However, note that from a certain r on the binomial
distribution, Cr(t), FX(Er(t)), and FX(Er(t)) do not grow for every increase in
r, keeping stagnant for some rounds. The cases of FX(Er(t)) and FX(t) can be
partially explained by the definition of the cdf on points outside the support RX ,
but the complete picture is explained in Fig. 5.11, which shows the optimal threshold
and its associated probability P (ρ, r), both in a function of r.

(a)

(b) (c)

Figure 5.10: Simulation of Binomial(n, p) with n = 200 and p = 0.5 for GM-Th-
QAOA up to 100 rounds, compared with the distribution Normal(u, s2). (a) Cr(t)
versus r on the linear-log scale and (b) FX(Er(t)) versus r on log-log scale. (b)
FX(t) versus r on log-log scale.
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(a) (b)

Figure 5.11: (a) The optimal threshold of GM-Th-QAOA and its probability (b)
P (ρ, r) (we also show P (ρ, r) of the normal distribution as background) versus r in
linear-log scale for the distribution Binomial(n, p) with n = 200 and p = 0.5 up to
100 rounds. By plot (a), the threshold value starts to stagnate for some rounds after
a certain point. For a given value of optimal threshold t, evolving the number of
rounds, the probability P (ρ, r) increases until eventually arriving at the maximum
value of 1, as observed in the plot of (b). From there, the only way to improve the
performance of GM-Th-QAOA is by changing the threshold to the next value, t− 1.
However, we may need more than one round for the change to be advantageous,
and thus, the algorithm stagnates in that interval. Upon reaching t − 1, probability
returns to below 1, and the process repeats, which explains the behavior of Fig. 5.10.
Indeed, we can observe that the points with probability 1 of the plot (b) match the
stagnation points of Fig. 5.10.

Fig. 5.12 shows the threshold curve of binomial and normal distributions for
different values of r. Again, without loss of generality, we consider a different metric
as the threshold curve, being now Cr(t) versus FX(t). Both curves are similar and
illustrate the result of Theorem 14, monotonically increasing Cr(t) to up the optimal
point and then monotonically decreasing.
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(a) (b)

Figure 5.12: Threshold curve of distributions (a) Normal(u, s2) and (b)
Binomial(n, p) (n = 200 and p = 0.5) with Cr(t) versus FX(t) on a linear-log scale.
The resolution considered on the continuous distribution was of 2000 values for the
threshold. For viewing purposes, we show only the values of r in terms of pow-
ers of 10 from 1 up to 106. The envelope that unites the curves is the interval of
P (ρ, r) = 1.

5.5.2 Uniform distributions

We begin with the continuous uniform distribution, a distribution with fixed ran-
dom variable Z. That is a distribution that, for GM-Th-QAOA, we can analytically
optimize the threshold value for r = 1 by using the polynomial expression of Corol-
lary 6. As the distribution is continuous, we can ignore the range FY (T ) > ρTh(r)

by the analog reason as discussed on Subsec. 4.2.3. Combining Corollary 6 with
Corollary 9, since FZ(x) =

1
6(3 +

√
3x) and GZ(x) =

x2−3
4
√
3
, we have

C1(t) = −8
x2 − 3

4
√
3
(1 −

1

3
(3 +
√
3x)) =

2

3
x3 − 2x. (5.17)

with x = T /σ. It is direct to check with the derivative that

C1(t)opt =
4

3
with Topt/σ = −1. (5.18)

Since Rmin
Z = −

√
3, the maximum achievable by the standard score is

√
3. Fig. 5.13

shows the standard score obtained on the simulation of continuous uniform distri-
bution in the algorithms GM-QAOA and GM-Th-QAOA up to 8 rounds. Again,
GM-Th-QAOA consistently overcomes GM-QAOA.
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Figure 5.13: The standard score achieved by GM-QAOA and GM-Th-QAOA, gener-
ically denoted by C, versus r, up to 8 rounds for the distribution CUniform(a, b).
We indicate the maximum achievable standard score

√
3 with a line segment.

For a finite number of rounds, we cannot achieve C =
√
3 on GM-Th-QAOA

and GM-QAOA since on the continuous distribution approximation, the "number
of states" to amplify is uncountable. On the other hand, for discrete distribution,
such as the case of DUniform(a, b), we can get the optimal solution with probability
1 since it involves a countable number of states. The discrete uniform distribution
does not have a fixed random variable Z. Thus, taking n > 0 for the distribution
DUniform(−n,n), since the mean is 0 and the standard deviation is

√
n(n+1)

3 , we
have

Rmin
Z = −

√
n

n + 1

√
3. (5.19)

Note that if n → ∞, then Rmin
Z → −

√
3. For a finite n, GM-Th-QAOA can find

the optimal standard score with a finite number of layers—follows since fZ(Rmin
Z ) ≥

ρTh(r) for some finite r. In this sense, Fig. 5.14 compares Cr(t) for the continuous
uniform distribution and for the discrete uniform distribution with different values
of n. We see that while the continuous distribution evolves progressively without
reaching its optimal, each discrete distribution gets the optimal on the minimum
value given by Eq. (5.19) for some number of rounds.
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Figure 5.14: Standard score achieved by GM-Th-QAOA up to 20 layers for the
distributions CUniform(a, b) and DUniform(−n,n), with n increasing with powers
of 2 such as 2j for j = 1,2,3,4,5,6. The graphic is a log-linear of

√
3 −Cr(t) versus

r.
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Chapter 6

Bounds on Grover-based Quantum
Alternating Operator Ansatz

In Subsec. 4.2.2, we prove an asymptotic tight bound that implies GM-Th-QAOA
has a quadratic speed up over the classical brute force approach. That raises the
question of whether that bound is general for any variant of QAOA with Grover
mixer, whether GM-QAOA or any potential new variation that can emerge, an
issue related to the discussion of Sub. 3.11. To answer that question, we extend
the definition of QAOA with the Grover mixer for the aforementioned Grover-based
QAOA, encompassing a phase separation operator that encodes any real-valued
function compiled from the cost function. Using that generalization, we develop
a technique to get a general upper bound that consists of getting the maximum
amplification of the probability over any set of degenerate states. With that upper
bound established, we explicitly construct the minimum expectation value within
that constrained framework.

6.1 The Grover-based Quantum Alternating Oper-

ator Ansatz

From Def. 17 of QAOA, we define Grover-based QAOA as follows.

Definition 20 (Grover-based QAOA) Grover-based QAOA is the particular
case of QAOA on Def. 17 in which the mixer Hamiltonian is the Grover mixer,
given by Eq. (3.23); the initial state is ∣s⟩, given by Eq. (3.24); and the goal is to
minimize expectation value ⟨ψ(r)∣HC ∣ψ

(r)⟩, particularly denoted Er.

Note that the Theorem 7 is applicable to that framework. For GM-QAOA, the
function q(k) is precisely the cost function, and for GM-Th-QAOA, q(k) = Th(k).
The statistical analysis, introduced in Chapter 4, can be applied to Grover-based.

121



For that, we introduce the subscript on random variables to differ between the
distributions of the functions c(k) and q(k). Specifically, for the originals X, Y ,
and Z we respectively denoted Xc, Yc, and Zc for c(k), and Xq, Yq, and Zq for
q(k). The random variable Xq can be expressed as a mapping from Xc such that
Xq = q(Xc). For instance, in GM-Th-QAOA, we have

Xq = q(Xc) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1, Xc ≤ t

0, otherwise.
(6.1)

Applying the analogous analysis of GM-QAOA, the characteristic function fac-
tors now refer to the random variable Xq, such that φX(γ) becomes φXq(γ), while
the derivative of the characteristic function is changed from φ′X(γ) to ΨX(γ), where

ΨX(γ) = i⟨s∣HCU
†
P (γ)∣s⟩ = i

1

M
∑
k∈S

c(k)eiγq(k)

= i ∑
x∈RXc

xfXc(x)e
iγq(x) = i ∑

y∈RXq

eiγy ∑
x∈RXc ∶q(x)=y

xfXc(x).
(6.2)

We do not find a statistical interpretation of the quantity ΨX(γ). The symbols µ
and σ continue to denote the mean and standard deviation associated with the cost
function. In particular, µ = −iΨX(0), and to change from Y to Z, we have, in a
similar way to the derivative of the characteristic function,

ΨY (γ) = i ∑
x∈RYc

xfZc(x/σ)e
iγqY (x) = iσ ∑

x∈RZc

xfZc(x)e
iγqY (σx)

= iσ ∑
x∈RZc

xfZc(x)e
iγσqZ(x) = σΨZ(σγ),

(6.3)

where qY (x) and qZ(x) are the analogs of q(x) to Y and Z, respectively. Using
directly the aforementioned changes, we generalize Theorem 10 and Corollary 3 to
Theorem 18, which provides three expectation value expressions, one as a function
of each random variable Xc/Xq, Yc/Yq, and Zc/Zq, given from Eq. (4.40), (4.42),
and (4.47), respectively. For the standard score, we denote Cr, where Er = µ −Crσ,
and C(r) denotes the maximum Cr achieved by Grover-based QAOA.

Theorem 18 For any number r of layers in Grover-based QAOA, the expectation
value is given

Er = −i ∑
x(L),x(R)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φXq (∑
j∈P

γj)][ ∏
P∈PR

φ∗Xq
(∑
j∈P

γj)][ΨX (∑
j∈P0

γj)] ,

(6.4)
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Er = µ + 2 Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
x(L)<x(R)∶Lmax<Rmax

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φYq (∑
j∈P

γj)][ ∏
P∈PR

φ∗Yq
(∑
j∈P

γj)][ΨY (∑
j∈P0

γj)]

⎫⎪⎪
⎬
⎪⎪⎭

,

(6.5)

Er = µ + 2σ Im

⎧⎪⎪
⎨
⎪⎪⎩

∑
x(L)<x(R)∶Lmax<Rmax

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φZq (σ∑
j∈P

γj)][ ∏
P∈PR

φ∗Zq
(σ∑

j∈P
γj)][ΨZ (σ∑

j∈P0

γj)]

⎫⎪⎪
⎬
⎪⎪⎭

.

(6.6)

6.2 General bounds

To bound the maximum amplification of the probability over any set of degenerate
states, we define ST as a set of elements on the spectrum of the Hamiltonian HQ with
some fixed cost xo. Suppose that HQ is built from an arbitrary problem Hamiltonian
HC . For a given r, our goal is to maximize the ratio between the probability of
measuring a state on ST before and after the application of the QAOA operators
optimizing the choices of the ratio ∣ST ∣/M and the probability distribution fXq(x).
The only restriction on the choice of the distribution fXq(x) is sign the probability
∣ST ∣/M on value xo. To get it, consider taking the expectation value on the final state
of Grover-based QAOA of a third HamiltonianHmax that encodes xo to ∣ST ∣ elements
and 0 to the remainders, with ratio ρ = ∣ST ∣/M . The probability of measuring an
element of ST on the initial state is ρ, while after the application of QAOA operators
is Emax

r (ST , fXq)/xo, where Emax
r (ST , fXq) denotes the expectation value of that

configuration. We want to maximize the ratio between then, named ηr(ST , fXq),
and use it bound to explicitly build the minimum expectation value on an arbitrary
instance of some Grover-based QAOA by sequentially maximally amplifying the
states in ascending order of cost until the sum of probabilities reaches 1. As the
amplitudes of degenerate states are equal, the amplification is in ascending order of
the support of Xc.

For r = 1, we get the maximum amplification analytically. The mean and ΨX(γ)

are with respect to Hmax, giving µ = xoρ and

ΨX(γ) = i⟨s∣HmaxU
†
P (γ)∣s⟩ = ixoρe

iγxo , (6.7)
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Consequently, by Eq. (6.4),

Emax
1 (ST , fXq) = xoρ + ∣B(β)∣

2∣φXq(γ)∣
2xoρ + 2 Im{ixoρe

iγxoB(β)φ∗Xq
(γ)}

⇒ η1(ST , fXq) = 1 + ∣B(β)∣
2∣φXq(γ)∣

2 + 2Re{eiγxoB(β)φ∗Xq
(γ)}.

(6.8)

Since ∣B(β)∣ ≤ 2 and ∣φXq(γ)∣ ≤ 1, then η1(ST , fXq) ≤ 9. That value is saturated
if ρ → 0 and the remainder probability of fXq(x) is completed on value 0, i.e., if
fXq(x) represents a binary function up to a scale change of ratio ρ, in which β = π

and γ = π/xo is optimal. In particular, it can be seen with φXq(π/xo) → 1 and
B(π) = −2.

Note that the maximum amplification is (2r + 1)2, the exact amplification of
Grover’s algorithm on the low-convergence regime. One can ask if the maximum
amplification is on the low-convergence regime for any r. Recall from Sec. 3.10 that
there is numerical evidence for that from Bennett and Wang [23] in the context of
QWOA on the complete graph. Unfortunately, applying the individual bounds of
∣B(β)∣ and ∣φXq(γ)∣ on general r expression gives an amplification of exponential
order, which does not help us. To be more precise, following steps similar to those
of r = 1 case, we get the general expression

ηr(ST , fXq) = ∑
x(L),x(R)

[exp(ixo∑
j∈P0

γj)]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(L)j =1
B∗(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∏

j∶x(R)j =1
B(βj)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[ ∏
P∈PL

φXq (∑
j∈P

γj)][ ∏
P∈PR

φ∗Xq
(∑
j∈P

γj)] ,

(6.9)

and apply the individual bounds given, from the analysis of Subsec. 4.1.3,
ηr(ST , fXq) ≤ 9r. Moreover, like in the standard score bound of GM-QAOA, di-
rect analytical treatment is unfeasible, necessitating indirect methods. Specifically,
we demonstrate in Lemma 4 that the maximum amplification is (2r+1)2 by showing
that the existence of a distribution that can achieve a larger amplification implies
in an explicit algorithm for the unstructured search problem with a larger average
probability than the bound of Theorem 6. With Lemma 4, we can prove the lower
bound on Er (i.e., a general upper bound on Grover-based QAOA performance),
given by Theorem 19.

Lemma 4 For any number r of layers on Grover-based QAOA with a set ST of ratio
ρ, the amplification of the probability of measuring the elements of ST is bounded by

ηr(ST , fXq) ≤ (2r + 1)
2, (6.10)

where the tight bound is achieved with ρ → 0 and q(k) equal to the binary function
up to a scale change.
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Proof: To simplify the notation in this proof, we hide the subscript with the ran-
dom variable on the probability distribution and the characteristic function. In
contrast, we distinguish between various probability distributions, their character-
istic functions, and specific components of their summations through superscripts,
without defining explicitly random variables. We also say the phase separation op-
erator computes the probability distribution f if the distribution associated with
q(k) is f . Furthermore, to compact the notation of Eq. (6.9), we group under
the notation Φ(φ,Nφ, k) both products involving characteristic functions, and we
group under the notation B(NB, k) the exponential factor as well as both products
involving B(β). Thus,

ηr(ST , f) = ∑
x(L),x(R)

B(NB, k)Φ(φ,Nφ, k), (6.11)

where k is the ordered pair (kbra, kket), Nφ is the number of characteristic functions
factors, and NB is the number of B(β) factors.

Suppose by contradiction that for some ϵ > 0, there is an choice of distribution
fO(x) (original distribution) in which ηr(ST , fO) = (2r + 1)2 + ϵ. We fix the optimal
variational parameters. Moreover, we can set xo = 1 by a shifting location without
loss of generality. Note that we can express the characteristic function of fO(x) as

φO(γ) = ρeiγ + φrem(γ), (6.12)

where the first term represents the portion of the summation of the characteristic
function for ST with ratio ρ and φrem(γ) is the remainder portion. Let δ be a rational
such that 0 < δ ≤ 2ρ. We can rewrite φO(γ) as

φO(γ) = 0.5δeiγ + (ρ − 0.5δ)eiγ + φrem(γ) = 0.5δeiγ + φR(γ), (6.13)

where φR(γ) = (ρ−0.5δ)eiγ+φrem(γ) and 0.5δeiγ represents the portion of the summa-
tion for a subset Sδ of ST . Since Grover-based QAOA preserves the equality of am-
plitudes in degenerate states during the unitary evolution, ηr(Sδ, fO) = ηr(ST , fO).

Consider the following algorithm for the unstructured search problem with m

marked elements over M solutions with 0.5δ =m/M and r rounds. The kth diffusion
operator is the sequential application of a phase separation operator that computes
a target distribution fT(x) and the Grover mixer operator. Both with the fixed
parameters of the kth layer of Grover-based QAOA. The distribution fT(x) has the
characteristic function

φT(γ) = eiθγ(φrea(γ) + φR(γ)). (6.14)
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The term φrea(γ) represents an arbitrary reassignment of the costs of the marked
elements of the original distribution replacing 0.5δeiγ and the factor eiθγ is a location
shift of the distribution of size θ > 0. The quantity m can be chosen as the minimum
number of marked elements required for computing the distribution fT(x).

On the other hand, for marked elements, the oracle reverses the action of the
defined phase separation and then applies a phase shift of e−iγ, i.e., a mapping on
the cost 1. In practice, the oracle interrupts the computation of target distribution
fT(x) of the phase separation on specific marked values in such a way that the
combined action of diffusion and oracle operators encodes the value 1 (note that
location shift of eiθγ was introduced so that just marked elements be mapped on
the cost 1). Consequently, the algorithm’s performance depends on the positions of
the marked elements, and thereby the average probability is unknown. For using
the optimality of Theorem 6, we bound the minimum probability value in terms of
the known performance of original distribution fO(x) by choosing values of δ and θ
sufficiently small.

Let f sp(x) (search problem) be a distribution computed by the combined action
of the phase separation and the oracle for an arbitrary instance of the search problem
algorithm. The characteristic function of f sp(x) can be expressed expressed without
loss of generality by

φsp(γ) = 0.5δeiγ + eiθγφR(γ) + φ1(γ) − φ2(γ), (6.15)

where 0.5δeiγ represents the oracle finding the marked elements; eiθγφR(γ) is the
portion of fT(x) computed up to the phase shifting eiθγ on the original characteristic
function φO(x); φ1(γ) represents the non-computed part of fT(x) on the original
distribution fO(x), that is computed with on distribution f sp(x); and φ2(γ), in
contrast, represents the non-computed part of fT(x) on the distribution f sp(x),
that is computed on fO(x). We denote

φeq(γ) = 0.5δeiγ + eiθγφR(γ), φdif(γ) = φ1(γ) − φ2(γ). (6.16)

The first definition, φeq(γ) (equal), represents the original distribution fO(x) up to
the location shifting on fR(x). The second definition, φdif(γ) (different), represents
the divergence between positions of fO(x) and f sp(x). If the marked elements on
both distributions are at the same positions, φdif(γ) = 0, and since at worst case it
diverges on all their 2m marked elements, ∣φdif(γ)∣ ≤ δ. By Eq. (6.13) and (6.16),
φeq(γ) can be written as φeq(γ) = φO(γ) + (eiθγ − 1)φR(γ) and then we can write
φsp(γ) from Eq. (6.15) in terms of φO(γ) by

φsp(γ) = φO(γ) + (eiθγ − 1)φR(γ) + φdif(γ). (6.17)
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Using γ(j) as a generic notation for the argument of the jth characteristic function
on the product (for any arbitrary order) and setting ϑ = θγmax with γmax being the
maximum absolute value of an argument, we bound Φ(φsp,Nφ, k) by

Φ(φsp,Nφ, k) =
Nφ

∏
j=1
φsp(γ(j))

=

Nφ

∏
j=1
φO(γ(j)) + ((eiθγ

(j)
− 1)φR(γ(j)) + φdif(γ(j)))

=∑
x

Nφ

∏
j=1
(φO(γ(j)))1−xj((eiθγ

(j)
− 1)φR(γ(j)) + φdif(γ(j)))xj

=

Nφ

∏
j=1
φO(γ(j)) + ∑

x∖0

Nφ

∏
j=1
(φO(γ(j)))1−xj((eiθγ

(j)
− 1)φR(γ(j)) + φdif(γ(j)))xj

≥ Φ(φO,Nφ, k) − 2
Nφ(δ + ϑ),

(6.18)

where x = (x1, . . . , xNφ) is a Nφ-bit string and 0 is a vector of Nφ zeros. The inequal-
ity follows from the individual bounds ∣φO(γ(j))∣ ≤ 1, ∣φR(γ(j))∣ ≤ 1, ∣φdif(γ(j))∣ ≤ δ,
and

∣eiθγ
(j)
− 1∣ =

√
2
√
1 − cos (θγ(j)) ≤ θγ(j) ≤ ϑ, (6.19)

and the fact that there is at least one j in each term of the summation in which
x(j) = 1. The first inequality of Eq. (6.19) follows from cos (x) ≥ 1 − x2/2. The
maximum value of both Nφ and NB are 2r and ∣B(NB, k)∣, which is equal for both
fO(x) and f sp(x) distributions since we fix the parameters, is bounded by 2NB .
Combining those results with Eq. (6.11) gives

ηr(Sδ, f
sp) ≥ ηr(Sδ, f

O) − 64r(δ + ϑ) = (2r + 1)2 + ϵ − 64r(δ + ϑ). (6.20)

For any r, there is a choices of δ and ϑ in which ϵ > 64r(δ + ϑ). Combining it with
the fact that the maximum amplification on Grover’s algorithm is (2r + 1)2, the
optimality of Theorem 6 is contradicted and establishes the lemma. ◻

Theorem 19 For any number r of layers in Grover-based QAOA, the expectation
value is bounded by

Er ≥ GXc(τ1)(2r + 1)
2 + τ2(1 − FXc(τ1)(2r + 1)

2), (6.21)

where τ1 is the maximum element of the support of Xc in which FXc(t) ≤ 1/(2r+1)
2

and τ2 is the minimum element in which FXc(t) > 1/(2r + 1)2. In particular, if
FXc(τ1) = 1/(2r + 1)

2, then Er ≥ E[Xc∣Xc ≤ τ1].
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Proof: To build our upper bound on expectation value, we assume the largest
amplification of (2r + 1)2, bounded by Lemma 4, for the smallest solutions until τ1.
The remainder probability is assigned to τ2. The expectation value Er is bounded
with a weighted sum of the expectation values of Xc given Xc ≤ τ1 and Xc given
Xc = τ2 by its amplified probabilities. Thus,

E1 ≥ E[Xc∣Xc ≤ τ1]FXc(τ1)(2r + 1)
2 +E[Xc∣Xc = τ2](1 − FXc(τ1)(2r + 1)

2)

= GXc(τ1)(2r + 1)
2 + τ2(1 − FXc(τ1)(2r + 1)

2).
(6.22)

If FXc(τ1) = 1/(2r + 1)
2, the second term vanishes and Er ≥ E[Xc∣Xc ≤ τ1]. ◻

The equality of Eq. (6.21) is referred to as the maximum amplification bound.
The bound is not tight since we can reach probability 1 on the search problem
only if ρ is at least the larger ratio of ρTh(r), a consequence of the fact that the
amplification decreases as we move away from the low-convergence regime. For in-
stance, we need to a ratio of ρ = 0.25 to achieve probability 1 on r = 1, instead of
ρ = 1/(2r + 1)2 = 1/9. Note that the MAOA operates close to the regime of the
maximum amplification, although it does not use the expectation value as a metric.
Despite this, the maximum amplification has the same asymptotic behavior as GM-
Th-QAOA in all aspects considered—as a result, the same asymptotic behavior em-
phasized in the numerical experiments of Chapter 5 could be reached by computing
the maximum amplification bound. Firstly, if X is continuous, FXc(τ1) = 1/(2r+1)

2

for any r and the bound Er ≥ E[Xc∣Xc ≤ τ1] combined with FXc(τ1) = Θ(1/r2)

gives Corollary 11, a generalization of Theorem 15 which follows using analogous
arguments.

Corollary 11 For Grover-based QAOA, if Xc is a continuous distribution and
fXc(R

min
Xc
) = a, where 0 < a < ∞, then the quantile achieved by the expectation

value is asymptotically bounded by

FXc(Er) = Ω(
1

r2
) . (6.23)

Corollary 11 implies that any Grover-based QAOA cannot be asymptotic better
than the quadratic Grover-like speed-up, confirming the motivation for the discus-
sion of this chapter and establishing the most important conclusion of this disserta-
tion. Moreover, all the constructions of Subsec. 4.2.4 are applicable to the maximum
amplification bound. Now, combining Corollary 7 and Theorem 19 and assuming
X continuous gives a comparison of GM-Th-QAOA with maximum amplification
bound on the large limit of r. Using the definition of L of Eq. (4.85) on Eq. (4.75)
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gives FXc(Er(t)) ≤
Lπ2

16r2 and on Eq. (6.21), FXc(Er(t)) ≥
L
4r2 . Therefore,

L

4r2
≤ FXc(Er(t)) ≤

Lπ2

16r2
, (6.24)

and thus GM-Th-QAOA is, in the worst case, π2/4 times worse than the maximum
amplification bound in terms of the cdf.

With the maximum amplification bound, we can also bound C(r)—and conse-
quently on the number of rounds to achieve a fixed approximation ratio—obtaining
the analogous of Theorem 16 and Corollary 10 for Grover-based QAOA, synthesized
in Theorem 20. In a similar way to GM-Th-QAOA, the proof consists of concluding
that the binary function achieves the maximum Cr, but now by slightly modifying
the argument of Lemma 3.

Theorem 20 For any number r of layers in Grover-based QAOA, C(r) ≤

2
√
r(r + 1) and, provided that Rmin

X ≠ 0 and ∣Rmin
X ∣ <∞,

r ≥
µ − λRmin

Xc

2σ
√
1 + 1/r

. (6.25)

Proof: Consider τ1 and τ2 from Theorem 19. Let X1 and X2 be random variables
where the probability distribution fX1(x) is given by fX1(x) = fXc(x) for all x ≠ τ2
on the support RXc , fX1(τ2) = 1/(2r+1)

2−FXc(τ1), and the remainder probability to
reach the summation of probabilities equal to 1 can be arbitrarily assigned on values
above τ2; and the probability distribution fX2(x) is fX2(x) = fXc(x) for all x ≠ τ2
on RXc , fX2(τ2) = fXc(τ2)−fX1(τ2) with the remainder probability again arbitrarily
assigned but for values below τ2.

We can think of X1 and X2 as a partition of the probability of the value τ2 of the
distribution Xc preserving the remainder values of RXc . The first takes the exact
probability necessary to complete 1/(2r+1)2, i.e., 1/(2r+1)2−FXc(τ1), while the last
takes the remainder fXc(τ2) − fX1(τ2). Consequently, Xc is connected with random
variables X1 and X2 by the property that for any function f(x), from LOTUS,

E[f(Xc)] = ∑
x∈RXc

f(x)fXc(x)

=
⎛

⎝
∑

x∈RX1
∶x≤τ2

f(x)fX1(x)
⎞

⎠
+
⎛

⎝
∑

x∈RX2
∶x≥τ2

f(x)fX2(x)
⎞

⎠
.

(6.26)

.
Furthermore, the random variableX1 allows us to write the bound of Theorem 19

as
Er ≥ E[X1∣X1 ≤ τ2] =

GX1(τ2)

FX1(τ2)
, (6.27)
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since we choose the probability for the value τ2 such that FX1(τ2) = 1/(2r + 1)
2. We

can assume, without loss of generality, that µ = 0 since a location shift does not
affect Cr. Following the analogous step of Lemma 3, we split σ2 summation into

σ2
≤τ2 = ∑

x∈RX1
∶x≤τ2

x2fX1(x), σ
2
≥τ2 = ∑

x∈RX2
∶x≥τ2

x2fX2(x), (6.28)

where σ =
√
σ2
≤τ2 + σ

2
≥τ2 . Let X≤τ2 be the random variable X1 given X1 ≤ τ2 and X≥τ2

the random variable X2 given X2 ≥ τ2. By Eq. (6.26),

E[X≤τ2] =
GX1(τ2)

FX1(τ2)
, E[X2

≤τ2] =
σ2
≤τ2

FX1(τ2)
,

E[X≥τ2] = −
GX1(τ2)

1 − FX1(τ2)
, E[X2

≥τ2] =
σ2
≥τ2

1 − FX1(τ2)
,

(6.29)

which results in
∣GX1(τ2)∣

σ
≤
√
FX1(τ2)(1 − FX1(τ2)). (6.30)

Combining it with Eq. (6.27) gives

Cr ≤

√
FX1(τ2)(1 − FX1(τ2))

FX1(τ2)
=

√
1

FX1(τ2)
− 1 =

√
(2r + 1)2 − 1

= 2
√
r(r + 1),

(6.31)

as desired. The bound of Eq. (6.25) follows from

r ≥
µ − λRmin

Xc

(Cr/r)σ
, (6.32)

and Cr/r ≤ 2
√
1 + 1/r. ◻

The bound on the quantity C(r)/r is decreasing in r, with a maximum of 2
√
2 in

r = 1 and a minimum of 2 in r →∞. Combining Theorems 16 and 20, κr ≤ CGM(r) ≤

2r on large r. Note that Theorem 20 improve Benchasattabuse et al. [122] bound
of Eq. (3.34) by a constant factor of

√
2π on r = 1 and 2π on r → ∞. Beyond the

more general context of Grover-based QAOA, our lower bound has the advantage of
allowing any cost function instead of only cost functions with non-positive integer
costs. We get also the analogous of the Eq. (4.105) and (4.106) for the number of
rounds to reached probability 1 of measuring a optimal solution with

fXc(R
min
Xc
) ≥

1

(2r + 1)2
⇒ r ≥

1

2

⎛
⎜
⎝

1
√
fXc(R

min
Xc
)
− 1
⎞
⎟
⎠
, (6.33)
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and

r ≥
1

2
√
fXc(R

min
Xc
)
= Ω
⎛
⎜
⎝

1
√
fXc(R

min
Xc
)

⎞
⎟
⎠

(6.34)

as fXc(R
min
Xc
)→ 0, respectively.

To finish, a direct comparison with Grover Adaptive Search concerning exact
optimization follows directly from the bound on amplification of Lemma 4. Since
the probability is bounded by fXc(R

min
Xc
)(2r+1)2, finding an optimal solution for an

optimization problem with Grover-based QAOA with probability as least 1/2 needs
Ω(1/

√
fXc(R

min
Xc
)) rounds, the analog complexity of GAS.

6.3 Bounds on Max-Cut

One application of our bounds is the Max-Cut problem. Firstly, we can improve
by a constant factor the Max-Cut lower bound of Benchasattabuse et al. [122] on
bipartite graphs, given by Eq. (3.35), with

r ≥
2λ − 1

2
√
1 + 1/r

√
∣E ∣. (6.35)

The analogous bound with GM-Th-QAOA, by Corollary 10 on large limit of r, is

r ≥
2λ − 1

κ

√
∣E ∣. (6.36)

In general, if the statistical quantity (µ − Rmin
Xc
)/σ grows with the size of the

instance to a given COP, we cannot achieve a fixed approximation ratio with a
constant number of layers, which, as emphasized on Sec. 3.11, is a severe limitation
for the NISQ context. However, at least in Max-Cut, the situation seems to be even
worse, as we can see applying the bound of Eq. (6.33) and (6.34).

In that case, we consider additionally that the bipartite graph is connected. By
the well-known fact that these graphs have a unique bipartition and that in the
binary codification of Max-Cut on QAOA the solutions are duplicated, the number
of cuts of maximum size is 2 and thus fXc(R

min
Xc
) = 1/2∣V ∣−1. Therefore, Eq. (6.33)

and (6.34) give

r ≥
1

2
(2

∣V ∣−1
2 − 1) ⇒ r ≥ 2

∣V ∣−3
2 = Ω(

√
2∣V ∣) as ∣V ∣→∞. (6.37)

Doing the same for GM-Th-QAOA with Eq. (4.105) and (4.106), we get

r ≥
1

4
(

π

arcsin (1/
√
2∣V ∣−1)

− 2) ⇒ r ≥ π 2
∣V ∣−5

2 = Ω(
√
2∣V ∣) as ∣V ∣→∞. (6.38)
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Both scale exponentially with the number of vertices. As connected graphs have at
least ∣V ∣ − 1 edges, it scales exponentially also with the number of edges. Of course,
the bound is not applicable on approximate solutions with λ < 1. Nevertheless, at
least for the class of the complete bipartite graphs, we can argue that the growth is
exponential by analyzing its probability distribution.

Let us consider the complete bipartite graph Kn,n with bipartition on the sets
V1 and V2. Suppose a solution of Max-Cut as a partition on the sets S1 and S2 in
which among the vertices of S1, the number of vertices that belong to V1 and V2

are respectively j and k. Note that an edge (u, v) of Kn,n does not belong to the
cut if and only if both vertices u and v are at the same cut partition (S1 or S2).
Therefore, the size of the cut can be computed by discounting to the total number
of edges n2 of the whole graph, jk+ (n− j)(n−k), i.e., the number of edges induced
by the union of both complete bipartite graph Kj,k and Kn−j,n−k within the sets S1

and S2, respectively. Thus, with our definition of considering minimization problems
and using the random variable Y by subtraction of the mean −n2/2, the cost of the
solution is 1

2(n − 2j)(n − 2k). The number of solutions to a given j and k is count
by choosing j between n vertices of V1 and k between n vertices of V2, resulting in
(
n
j
)(

n
k
). That way, we can characterize the solution space by

(
n

j
)(
n

k
) solutions of cost

1

2
(n − 2j)(n − 2k) for all 0 ≤ j, k ≤ n. (6.39)

Although we do not have the explicit distribution, once, in general, there are
different combined choices of j and k with the same cost, this is sufficient to see
that it presents an exponential decay toward the optimal solution. To get that, note
that if we fix j and go through all the values of k, the induced function is a multiple
of a symmetric binomial distribution with a change on the scale. By CLT, we know
that binomial distribution gets closer to a normal distribution with large n, which
explicitly has an exponential decay in the tails. By symmetric, the same happens by
fixing k and varying j. The combined behavior implies a trend of a linear increase
of the costs to lower values of k and j, accompanied by an exponential decay of
their probabilities. Fig. 6.1 illustrates the decay of the distribution for the graph
K50,50 by showing the graphics of fY (x) and FY (x). The exponential decay, with
the arguments of the Subsec. 4.2.4 on the asymptotic limit, infers in a logarithmic
increase of Cr with the number of layers, and therefore, as (µ−Rmin

Xc
)/σ grows with

the square root on the number of edges for bipartite graphs, the number of layers to
a achieves a fixed λ must increase exponentially with the number of vertices/edges.
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(a) (b)

Figure 6.1: (a) Probability mass function and (b) cumulative distribution function
concerning the random variable Y for the Max-Cut problem on the graph K50,50. We
compute efficiently the explicit distribution from our characterization of the solution
space given by Eq. (6.39). Both graphs are on a log-linear scale. As the possible
values for the cost are given by 1

2(n− 2j)(n− 2k) for all 0 ≤ j, k ≤ n, the region near
to 0 is denser than the regions near to Rmin

Xc
and Rmax

X . Although the decay is not
uniform, the general trend is clearly exponential.

To illustrate our arguments, we simulate the maximum amplification bound
on the complete bipartite graphs of different sizes. Fig. 6.2(a) shows the loga-
rithm growth of the approximation ratio on r to the graph K50,50. Fig. 6.2(b) and
Fig. 6.2(c) display the exponential dependence on the number of rounds to achieve
different values of approximation ratio when we scale n. In the first between the last
two figures mentioned, we choose approximation ratios with practical interest, while
in the last one, we consider an extremely low approximation ratio to emphasize the
stiffness of the limitation.

In a more general context, a given type of instance must suffer from the same
limitation if there is simultaneously a distribution with exponential decay and the
quantity (µ −Rmin

Xc
)/σ grows above the logarithmic rate with the size of the prob-

lem. Thus, it is likely that there are other classes of graphs on Max-Cut and other
types of instances beyond the Max-Cut problem that fit into these conditions. For
example, we can mention the aforementioned normally distributed instances of the
Capacitated Vehicle Routing and Portfolio Optimization problems [23, 24], which
meet the first criterion.
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(a)

(b) (c)

Figure 6.2: (a) Linear-log base 2 plot of approximation ratio versus the number of
layers considering the application of the maximum amplification bound for the graph
K50,50 on Max-Cut. As expected, the growth rate is logarithmic. The resolution used
on the number of layers (due to the extremely high number of layers to get λ = 1)
is ⌈2x/100⌉ for x = 0,1, . . . ,5000. Since the probability distribution is discrete, the
values τ1 and τ2 on Eq. (6.21) were obtained via testing the point of the support via
brute force. (b) The minimum number of layers required to maximum amplification
bound achieves three different values of approximation ratio on the Max-Cut with
the graph Kn,n for n = 4,5, . . . ,100. The considered values of λ are λ = 1, in which we
calculate analytically that r = ⌈20.5(∣V ∣−3)⌉; λ = 16/17 ≈ 0.9412, the λ value in which
Max-Cut becomes NP-Hard; and the approximation ratio guaranteed by the classical
Goemans-Williamson algorithm, given by λ ≈ 0.8786. The scale is log-linear with
base 2. The value of r in which the approximation ratio is achieved was efficiently
found with a binary search. As predicted, the number of layers scales exponentially
in all of them. (c) The same as (b), but with n = 4,5, . . . ,300 and λ = 0.52. As the
expectation value of a uniform superposition gives λ = 0.5, this approximation ratio
is extremely low. However, even for such low performance, given a sufficient number
of vertices, we observe the exponential dependence on the number of layers r.
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Chapter 7

Conclusion

In the present work, we first develop independently a similar statistical approach
to the Headley and Wilhelm [30] paper for GM-QAOA, obtaining the equivalent
expression for expectation value of complexity O(4r). Although the method is in-
sightful and allows obtaining angles up to almost something close to ten rounds, the
expression is a dead end for obtaining theoretical bound on the performance through
direct analytical treatment that contributed to the discussion of Sec. 3.11, especially
for the issue of whether the Grover mixer variants of QAOA are limited to quadratic
Grover-style speed-up. To bypass that issue, we extend the statistical approach to
GM-Th-QAOA, which is simpler due to its binary phase separation operator, taking
advantage of the optimality of Grover’s algorithm on the unstructured search to ob-
taining an expression for the expectation value with complexity independent of the
number of layers. With the expression, we first solve the threshold curve problem
and then get bounds of different natures, including on the statistical quantities of
quantile and the standard score, and on the minimum number of layers required to
get a fixed approximation ratio. The bound on the quantile is of particular interest
since it reflects explicitly a quadratic Grover-style speed-up. Subsequently, we gener-
alize the GM-Th-QAOA bounds to the general Grover-based QAOA framework, by
using an indirect argument with the optimality of the unstructured search problem,
achieving the same asymptotic performance and obtaining the main contribution of
this work, that is, the formal establishment that the Grover mixer has the perfor-
mance bounded by the quadratic bound of the unstructured search problem, i.e.,
a quadratic Grover-style speedup over classical brute force. That limiting can be
severe for combinatorial optimization, as evidenced by the application of Max-Cut
on the complete bipartite graph, which requires an exponential number of layers to
maintain constant performance.

In this way, to get significant results with QAOA, especially in the NISQ era, it
is essential for the algorithm to explore the structure of the optimization problems.
Indeed, recall the numerical evidence of Golden et al. [11] that suggests the possibil-
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ity of exponential gain of QAOA with structure-dependent mixer over Grover mixer
variants. Thus, research should be directed toward understanding the mechanisms
by which different types of mixers can benefit from the structure of particular prob-
lems, a path opened by Headley [33] with the statistical approach on the transverse
field mixer and the line mixer.

These contributions are significant within a broader context. Despite the QAOA
being the most prominent quantum algorithm for combinatorial optimization, much
of our knowledge of its general performance is heuristic. Thus, this work signifies a
pivotal step towards a solid understanding of the performance and limitations of this
class of algorithms, consequently providing insights into the potential of quantum
computing for tackling combinatorial optimization problems.

Yet in the Grover mixer context, there are still open questions and paths to
exploit.

• Decide whether GM-Th-QAOA is the best Grover-based QAOA for all possible
instances, or at least whether GM-Th-QAOA outperforms GM-QAOA always,
confirming the numerical evidence (of the previous literature and of this work).
Intuitively, it is reasonable to think that the most efficient agnostic-structure
method possible is to compile the cost function on a binary function and
perform Grover’s algorithm. The results and insights of the present work
indicate that this can be the case. However, formal proof is still needed;

• Decide whether GM-QAOA even reflected the quadratic Grover-like speed-
up in the sense of Theorems 15 and 17 or with another metric. However,
insights would be needed to answer that question analytically since direct
analytical treatment to bound the equations of Theorem 18 is infeasible. In an
empirical sense, as mentioned in the introduction of Chapter 1, the recent work
of Zhang et al. [41] provides numerical evidence of the quadratic speed-up. In
particular, that work studied a version of the Satisfiability problem in which
every clause has exact 3 literals, called 3-SAT. That decision problem was
translated into QAOA language as a Max-3-SAT, and a metric of performance
considered was the number of rounds to reach at least a probability 0.5 of
measuring a quantum state corresponding to the solution of the original 3-SAT
decision problem. Denoting by p the ratio of assignments that are solutions,
the numerical experiments on several random instances considering the range
of n = 10, . . . ,26 boolean variables indicate that the aforementioned metric
scales as 1/

√
p, which is a quadratic speed-up over CRS;

• Decide whether the limit L of Eq. (4.85) is finite non-zero for any continuous
probability probability, relaxing the hypothesis of fX(Rmin

X ) = a, where 0 < a <

∞ on Theorem 15 if the answer is yes;
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• The application of the maximum amplification bound to more graph classes on
Max-Cut and other combinatorial optimization problems would be welcome.
This way, we could know how common is the need for exponential growth on
the layers. Fortunately, explicit knowledge of the distribution is not necessarily
required to find the asymptotic behavior and establish how the performance
scales, as was the case of complete bipartite graphs on Max-Cut;

• The numerical experiments for families of probability distribution in Chapter 5
were considerably comprehensive. However, more cases could be investigated.
For example, the instances of Capacitated Vehicle Routing observed by Ben-
nett and Wang [23] are not normally perfectly distributed, presenting asymme-
try. That way, it would be convenient to consider the skew normal [129–131]
distributions, a class of distributions that generalize normal distribution by
adding shape parameters related to the skewness. It would also be interesting
to consider relaxing the hypothesis of a finite second moment to consider dis-
tributions such as Pareto(α,xm) with α ≤ 2. Another family of distributions
worth mentioning is distributions with 3 points. Since we proved that the
maximum standard score is achieved by distributions with 2 points, it would
be intriguing to see what happens by adding a third point. Finally, we can
cite traditional distributions of the literature, such as beta, Poisson, geometric,
and negative binomial distributions [31];

• Develop statistical methods to determine QAOA angles for combinatorial
optimization problems through numerical experimentation with probability
distributions—such as the numerical experiments of Chapter 5. In an ana-
lytical sense, Headley and Wilhelm [30] found the distribution of the Num-
ber Partition Problem. On the other hand, Marsh and Wang [23] observed
normally distributed instances of Capacitated Vehicle Routing and Portfolio
Optimization problems. Naturally, one can think of a method for parameter
estimation of GM-QAOA based on the assumption of the solution space nor-
mally distributed for problems, such as Capacitated Vehicle Routing, and the
obtaining of estimators with a random sample of efficient size with a fixed con-
fidence interval for the standard deviation—on the distribution Normal(u, s2),
the angles β are independent of u and s, while the angles γ depends only
on s (inversely proportional to the standard deviation, according to Corol-
lary 3). More refined methods would model the problem with a skew normal
distribution, considering an estimator for the skewness.

In general, for problems with probability distribution unknown and weakly
known, one can develop a heuristic method based on efficient estimators for
sample moments. For instance, in addition to the standard deviation, we can
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truncate the expansion of Eq. (4.48) until moments of a given order, such
as kurtosis or higher, and with the estimators of these moments, plugging
the approximation of Eq. (4.48) on Eq. (4.47). The obtained angles probably
would not be accurate enough to get desirable results by the direct sampling
of a quantum circuit, but at least maybe there could be a better parameter
initialization for the outer loop of QAOA than the random initialization.

However, we must emphasize, as concluded from the results of this work, that
GM-QAOA may not be a suitable algorithm for combinatorial optimization,
having lower performance than GM-Th-QAOA itself and exhibiting, at most,
quadratic speed-up over the classical brute force. Despite this, as indicated by
Headley [33] with the generalization of the statistical approach to the trans-
verse field and line mixer, the estimator of statistical quantities of probability
distributions is a promising path in the studies of angles finding of QAOA.
That way, GM-QAOA can be a starting point for obtaining proof of concepts
for statistical methods, having in your favor the classical simulation discussed
in Subsec. 3.8.3, which allows simulates larger instances than the transverse
field mixer on the current state-of-art.
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Appendix A

Low-convergence Regime Gives the
Maximum Amplification on Grover’s
Search

To prove that the low-convergence regime gives the maximum amplification on
Grover’s search, we show that for a fixed r, η is a strictly decreasing function on ρ.
Then, we need to prove that dη

dρ < 0 for 0 < ρ ≤ sin2 (π/(4r + 2)). We define R = 2r+1
(constant) and u = R arcsin (

√
ρ). By a simple substitution, the equivalent interval

of u in terms of ρ is 0 < u ≤ π/2. Thus,

η =
sin2 (u)

sin2 (u/R)
. (A.1)

Taking the derivative of η with respect to ρ, by chain rule on u, gives

dη

dρ
=
dη

du

du

dρ
. (A.2)

Since
du

dρ
=

R

2
√
ρ(1 − ρ)

(A.3)

is positive and u is a one-to-one correspondence of ρ on the equivalent interval, we can
analyze the derivative dη

du directly with the variable u. Furthermore, we can ignore
the squared on sine functions of Eq. (A.1) because if sin (u)/ sin (u/R)—which is
positive—is strictly decreasing on the whole interval, η also does. Therefore, taking
the derivative of sin (u)/ sin (u/R) gives

d
√
η

du
=
cos (u) sin (u/R) − cos (u/R) sin (u)/R

sin2 (u/R)
. (A.4)
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To prove that Eq. (A.4) is negative on 0 < u ≤ π/2, since the denominator sin2 (u/R)

is positive, we need to prove that the numerator is negative. To get that, we consider
the strong condition that the numerator is strictly decreasing and tends to 0 on
u → 0. Firstly, the limit on u → 0 is 0 from a simple substitution. Then, to show
the claimed monotonicity, we take the derivative of the numerator, which is

(
1

R2
− 1) sin (u/R) sin (u). (A.5)

As R ≥ 3, Eq. (A.5) is negative, as desired.
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Appendix B

Proof of Theorem 14

Firstly, note that if FY (T ) > ρTh(r), by Eq. (4.70), Er(t) is monotonically non-
decreasing and therefore since P (ρ, r) is continuous, it is enough to prove that the
monotonicity change at most one time on FY (T ) ≤ ρTh(r) interval. To get it, using
ρ = FY (T ) to simplify notation, by Eq. (4.63) and η = P (ρ, r)/ρ,

Er(t) = µ −
GY (T )

1 − ρ
+GY (T )

η

1 − ρ
. (B.1)

Taking derivative of Er(t) with respect to T gives

dEr(t)

dT
= −

fG
X(T )T (1 − ρ) + f

G
X(T )GY (T )

(1 − ρ)2
+ fG

X(T )T
η

1 − ρ

+ fG
X(T )GY (T )

ηo(1 − ρ) + η

(1 − ρ)2

= fG
X(T )(−

T (1 − ρ) +GY (T )

(1 − ρ)2
+ T

η

1 − ρ
+GY (T )

ηo(1 − ρ) + η

(1 − ρ)2
) ,

(B.2)

where dη
dT = f

G
X(T )ηo. Explicitly,

ηo =
sin ((2r + 1)arcsin (

√
ρ))

ρ2

(
(2r + 1)

√
ρ cos ((2r + 1)arcsin (

√
ρ))

√
1 − ρ

− sin ((2r + 1)arcsin (
√
ρ))) .

(B.3)

By definition, fG
X(T ) is non-negative (it is 0 on the points that do not belong to

RX), and then, as we are dealing with non-increasing/non-decreasing monotonicity,
we can ignore it. Moreover, we can ignore points in which ρ = 0 as candidates
of minimum since its expectation value is µ. As we are interested in the sign of
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Eq. (B.2), we can multiply it by positive factors. Then, set R = 2r + 1 and

D1 =

√
ρ(1 − ρ)

R arcsin (
√
ρ)
. (B.4)

Multiplying the expression by the convenient positive factor (1−ρ)D1

η , we get

T (1 −
1

η
)D1 −GY (T )

1

η

D1

1 − ρ
+GY (T ) (

ηo
η
+

1

1 − ρ
)D1. (B.5)

Denoting

D = (
ηo
η
+

1

1 − ρ
)D1, D2 =

D1

1 − ρ
, (B.6)

we can rewrite Eq. (B.5) as

T (1 −
1

η
)D1 −GY (T )

1

η
D2 +GY (T )D. (B.7)

At T → −∞, the derivative begins negative, which follows from η > 1, GY (T ) = 0,
and D1 > 0. Furthermore, we demonstrate further that D is negative. That way, if
T ≥ 0, the expression does not change the sign since all terms are non-negative. So,
we assume T < 0. As GY (T ) is non-increasing, η is strictly decreasing, and η > 1,
if we prove that (i) D1 is strictly decreasing, (ii) D2 is strictly increasing, and (iii)
D is strictly decreasing and negative, all terms of Eq. (B.7) are non-decreasing and
the monotonicity of Er(t) change one time on this interval, proving the theorem.
The minimum of the original discrete function is hit either on ρ ≤ ρTh(r) or in the
smallest defined FY (T ) in which ρ > ρTh(r).

Consider the substitution u = R arcsin (
√
ρ). By the same argument used for

η on Appendix A, we can directly analyze the derivative with respect to u on the
interval 0 < u ≤ π/2. Thus,

D1 =
sin (2u/R)

2u
, D2 =

tan (u/R)

u
, (B.8)

and as,

ηo
η
D1 =

R
√
ρ cos (R arcsin (

√
ρ)) −

√
1 − ρ sin (R arcsin (

√
ρ))

R arcsin (
√
ρ)
√
ρ sin (R arcsin (

√
ρ))

=
R sin (u/R) cos (u) − cos (u/R) sin (u)

u sin (u/R) sin (u)
=
R cot (u) − cot (u/R)

u
,

(B.9)

then
D =

R cot (u) − cot (u/R)

u
+
tan (u/R)

u
. (B.10)

We deal with (i), (ii) with a similar argument as done for η. Taking the deriva-
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tives of both

dD1

du
=
2u cos (2u/R) −R sin (2u/R)

2Ru2
,
dD2

du
=
u sec2 (u/R) −R tan (u/R)

Ru2
. (B.11)

Both denominators are positive for u > 0, and the limit of numerators on u→ 0 is 0.
Then, taking the derivatives of the numerators,

−
4u sin (2u/R)

R
,
2u sec2 (u/R) tan (u/R)

R
, (B.12)

for (i) and (ii) cases, respectively. As claimed, the first is negative and the last
positive on the whole u interval.

The claimed (iii) is more complicated. First, we must prove that the limit with
u→ 0 is negative. For that, consider the expansion of cot (x) with the Taylor series
sin (x) = x − x3/6 +O(x5) as x→ 0 and cos (x) = 1 − x2/2 +O(x4) as x→ 0,

cot (x) = cos (x)
1

sin (x)
= (1 −

x2

2
+O(x4))(

1

x − x3

6 +O(x
5)
)

=
1

x
(1 −

x2

2
+O(x4))(

1

1 − x2

6 +O(x
4)
)

(B.13)

Replacing

1

1 − x
= 1 + x +O(x2) as x→ 0 (B.14)

in Eq. (B.13) gives

cot (x) =
1

x
(1 −

x2

2
+O(x4))(1 +

x2

6
+O(x4)) =

1

x
−
x

3
+O(x3) (B.15)

as x→ 0. Furthermore, we use the well-known expansion

tan (x) =
∞
∑
n=1

B2n(−4)n(1 − 4n)

2n(2n − 1)!
x2n−1 = x +O(x3) (B.16)

as x → 0, where B2n denotes the Bernoulli number [53], that can be expressed in
terms of Riemann zeta function ζ(s) = ∑∞j=1 1

js [53] by

B2n =
(−1)n+12(2n)!

(2π)2n
ζ(2n). (B.17)

Thus, replacing the expansions in Eq. (B.10),

D = (−
R

3
+

1

3R
+O(u2)) + (

1

R
+O(u2)) =

4 −R2

3R
+O(u2), (B.18)
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and we have a negative limit

lim
u→0

D =
4 −R2

3R
, (B.19)

since R ≥ 3. That way, if we prove that the derivative of D is negative, we establish
that D is both negative and strictly decreasing.

The technique used on the proof is an extension of the technique employed at η,
D1, and D2 cases, i.e., for each derivative, we show that u → 0 is non-positive and
ignoring positive factors, consider the stronger condition that the next derivative is
also negative.

Beginning with the derivative of D,

dD

du
=
R cot (u/R) −R2 cot (u) + u csc2 (u/R) −R2u csc2 (u)

Ru2

+
u sec2 (u/R) −R tan (u/R)

Ru2
.

(B.20)

The denominators are positive on u > 0. To get the limit of u→ 0 on the numerator,
we plug the expansions of all trigonometric functions. The expansions of cot (x)

and tan (x) have already been introduced, the expansion of sec2 (x) is given by
sec2 (x) = d tan (x)

dx = 1 +O(x2), and csc2 (x) is given analogously to the expansion of
cot (x) as

csc2 (x) =
1

sin2 (x)
=

1

x2 − x4

3 +O(x
6)
=

1

x2
1

1 − x2

3 +O(x
4)

=
1

x2
+
1

3
+O(x2)

(B.21)

as x→ 0, with the expansion of sin2 (x) following from

sin2 (x) =
1

2
(1 − cos (2x)) =

1

2
(1 −

∞
∑
n=0

(−1)n

(2n)!
(2x)2n)

=
∞
∑
n=1

(−1)n+122n−1

(2n)!
x2n = x2 −

x4

3
+O(x6)

(B.22)

as x→ 0. Combining them, we conclude that the numerator has an order of O(u3),
and then, the limit is 0. Now, we must satisfy

R cot (u/R) −R2 cot (u) + u csc2 (u/R) −R2u csc2 (u) + u sec2 (u/R)

−R tan (u/R) < 0,
(B.23)
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which gives the derivative

2uR2 (
cos (u)

sin3 (u)
−

cos (u/R)

R3 sin3 (u/R)
+

sin (u/R)

R3 cos3 (u/R)
)

= 2uR2 (
cos (u)

sin3 (u)
+

sin4 (u/R) − cos4 (u/R)

R3 sin3 (u/R) cos3 (u/R)
)

= 2uR2 (
cos (u)

sin3 (u)
+
8(sin2 (u/R) − cos2 (u/R))(sin2 (u/R) + cos2 (u/R))

R3 sin3 (2u/R)
)

= 2uR2 (
cos (u)

sin3 (u)
−

8 cos (2u/R)

R3 sin3 (2u/R)
) ,

(B.24)

where we use the trigonometric identity cos (2x) = cos2 (x) − sin2 (x) in the last
equality. The inequality can be manipulated as

2uR2 (
cos (u)

sin3 (u)
−

8 cos (2u/R)

R3 sin3 (2u/R)
) < 0

⇒
1

2uR2
(
sin3 (u)

cos (u)
−
R3 sin3 (2u/R)

8 cos (2u/R)
) > 0.

(B.25)

The limit with u → 0 inside the parenthesis is immediately 0. Ignoring 1
2uR2 and

take the derivative for the last time,

tan2 (u) + 2 sin2 (u) −
R2

4
(tan2 (2u/R) + 2 sin2 (2u/R)) (B.26)

and so
tan2 (u) + 2 sin2 (u) >

R2

4
(tan2 (2u/R) + 2 sin2 (2u/R)). (B.27)

The proof of Eq. (B.27) is based on the Taylor series expansion of 2 sin2 (x) and
tan2 (x). The first is given by Eq. (B.22) and the second can be computed using the
expansion of tan (u) as

tan2 (x) = sec2 (x) − 1 =
d tan (x)

dx
− 1

=
d

dx

∞
∑
n=1

B2n(−4)n(1 − 4n)

2n(2n − 1)!
x2n−1 − 1 =

∞
∑
n=1

B2n+2(−4)n+1(1 − 4n+1)

(2n + 2)(2n)!
x2n

=
∞
∑
n=1

(−1)n2(2n + 2)!(−4)n+1(1 − 4n+1)ζ(2n + 2)

(2π)2n+2(2n + 2)(2n)!
x2n

=
∞
∑
n=1

2(2n + 1)4n+1(4n+1 − 1)ζ(2n + 2)

(2π)2n+2
x2n.

(B.28)

Note that both expansions have terms of the same order, which allows a direct
comparison. We are interested in establishing that all terms of tan2 (x) + 2 sin2 (x)

expansion are non-negative. The sine squared expansion alternates the sign, having
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a negative sign for n even, while tangent squared expansion has all positive terms.
Then, is enough to show that all even n terms of tan2 (x) expansion are equal or
greater than the absolute value of the respective terms of 2 sin2 (x). By Eq. (B.22)
and (B.28), we must satisfy the inequality

2(2n + 1)4n+1(4n+1 − 1)ζ(2n + 2)

(2π)2n+2
≥

22n

(2n)!
(B.29)

for all even n. If n = 2, since ζ(6) = π6/945, both sides of Eq. (B.29) have the same
value of 2/3. Using inequalities ζ(2n + 2) ≥ 1 and 4n+1(4n+1 − 1) ≥ π2n+2, the bound
is reduced to

2(2n + 1)

22n+2
≥

22n

(2n)!
⇒
(2n + 1)!

16n
≥ 2. (B.30)

We take it by induction. For n = 4, the inequality holds since 2835/512 > 2. Then,
we assume that is true for any n > 4 even. The left side of the inequality can be
written for n + 2 as

(2(n + 2) + 1)!

16n+2
= (
(2n + 5)(2n + 4)(2n + 3)(2n + 2)

256
)(
(2n + 1)!

16n
) . (B.31)

The second parenthesis is the bound of n, and the first is larger than 1. Therefore,
our claim follows by induction hypothesis.

To finish, we demonstrate that each expansion term on the left side of Eq. (B.27)
is equal to or greater than the analog terms of the right side expansion. To get that,
consider an arbitrary term n of the expansions. The argument of trigonometric
functions on the left side is x = u while the left side is x = 2u/R. Combining it with
the constant multiplication factor R2/4 on the right size, we must satisfy

u2n ≥
R2

4
(
2u

R
)
2n

⇒ 1 ≥ (
2

R
)
2n−2

. (B.32)

They are equal for n = 1, and as R ≥ 3, the left side is larger for n > 1. Therefore,
since we prove that all non-zero expansion terms are positives, the left side is larger
than the right for any u > 0, and the inequality of Eq. (B.27) follows, establishing
the theorem.
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