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Capítulo 1 

Introdução 

Análise de andadura é uma ciência antiga. Já a dois mil anos atrás, Aristóteles [4] descre- 

veu o passeio de um cavalo em seu tratado De Incessu Animalium: "Aspernas departe de 

trás movem-se diagonalmente em relação as pernas dianteiras; depois do movimento de 

perna dianteira direita os animais movem aperna esquerda traseira, então a perna dian- 

teira esquerda, e depois disto aperna traseira direita. Porém, ele acreditou erroneamente 

que o salto era impossível: Se os cavalos movessem as pernas dianteiras ao mesmo tempo 

e primeiro, a progressão seria interrompida ou eles tropeçariam até mesmo adiante ... Por 

isto, então, animais não moveriam separadamente suas pernas traseiras e dianteiras. 

De acordo com uma estória, a análise de andadura moderna originou também com um 

cavalo: isto é, uma aposta relativa a andadura do animal [73]. Nos anos 1870s, Leland 

Stanford, ex-governador do estado da Califómia, foi envolvido num argumento com Fre- 

derick MacCrellish sobre o posicionamento dos pés de um cavalo trotando. Stanford pôs 

25,000 dólares em sua convicção de que as vezes durante o trote um cavalo coloca todos 

os seus pés fora o solo. Para realizar a aposta, um fotógrafo local, Eadweard Muybrid- 

ge, foi requisitado a fotografar as diferentes fases da andadura de um cavalo. De fato, 

Stanford estava correto na afirmação corajosa dele [2 11. 

As percepções do Aristótele e Stanford em andaduras do cavalo podem ser entendidas 

como representações clássicas das idéias embrionárias que guiam os estudos modernos 

da formação dos padrões. Depois do caso de Stanford, seguiram-se aproximadamente 

oitenta anos de tempo silencioso até os anos cinqüenta, quando Turing [75] analisou anéis 

de celas como modelos de morphogenesis e propôs que aqueles anéis isolados poderiam 

responder pelos tentáculos de hidrante e enrolamento de folhas de certas plantas. En- 



quanto isso Hodgkin e Huxley publicaram um interessante artigo [50] sobre um circuito 

e modelo matemático do potencial de membrana de superfície e corrente de uma fibra de 

nervo gigante. A história nunca tinha visto uma era tão próspera no desenvolvimento de 

ciência e tecnologia durante os recentes quarenta anos. Com a explosão de métodos e 

técnicas computacionais, nasceram muitas grande interdisciplinas científicas como redes 

neurais e estas cresceram incrivelmente. Obviamente não é nenhum exagero dizer que os 

trabalhos pioneiros de Turing et al. em formação de padrões são o berço de conexionis- 

mo moderno. Também é interessante notar que as aproximações micro e macroscópicas 

coexistiram desde a fase inicial da pesquisa moderna sobre padrões rítmicos biológicos, 

da mesma maneira que os dois exemplos acima estabelecem. 

1.1 Motivações nas Pesquisas sobre Padrões Biológicos 

Assuntos biológicos relacionados, incluindo inteligência biológica e fenômenos de 

comportamento, foram mantidos indubitavelmente como um dos assuntos mais ativamen- 

te investigados, como resultado do aparecimento de modernas metodologias de pesquisa 

científica. Por exemplo, Inteligência ArtiJical e Redes Neurais ArtiJiciais são inspiradas 

pelos fenômenos biológicos. Diferentemente do mecanismo implícito das atividades in- 

teligentes, a existência do comportamento biológico é explícita e visível, porém, de modo 

algum, significa que a pesquisa de comportamento é um trabalho trivial. 

Para realizar um análogo artificial para exploração adaptável da natureza, compor- 

tamentos rítmicos tais como locomoção, respiração, pulso de coracão e mastigação fo- 

ram estudadas intensivamente como exemplos de sistemas biológicos de motor complexo 

[371[631[131- 

Apesar da diversidade de ritmos e movimentos exibidos, não só em um único or- 

ganismo mas também por espécies, a geração de movimentos rítmicos compartilha um 

base neuronal comum [3 81, isto é, o animal poderia produzir comportamentos bastante 

diferentes por modulação contínua de uma única rede [47]. Esta declaração heurística é 

fundamental para pesquisas futuras sobre neurolocomoção e sua implementação possível 

em VLSI. 



11.1 Padrões rítmicos em ANNs Biológicas 

Acredita-se amplamente que a locomoção de animais é gerada e controlada, em parte 

por Central Pattern Generators (CPGs), os quais seriam redes de neurônios no Sistema 

Nervoso Central - CNS (Central Newous System)capazes de produzirem saída rítmica. 

Técnicas atuais de neurofisiologia são incapazes de isolar tais circuitos de conexões neu- 

rais complicadas em animais complexos, mas a evidência experimental indireta para a 

existência de GPCs é forte [44] [45] [64] [70]. 

Padrões rítmicos biológicos são as saídas de sistemas neuro-osciladores governadas 

por CPGs. O estudo de CPGs é um ramo interdisciplinar da computação neural que envol- 

ve matemática, biologia, neurofisiologia e ciência da computação. Embora o mecanismo 

de CNS explicando os CPGs não seja bastante claro até agora [23], Redes Neurais AtiJi- 

ciais - ANN -(ArtiJicial Neural Networh) tem sido amplamente aplicadas para mapear a 

possível organização funcional de redes CPGs em sistemas de motor muscular orientado 

a locomoção. 

Os componentes do sistema locomotivo motor são osciladores não lineares acoplados 

e representamJexor e extensor como dois neurônios simplificados neurofisiologicamente. 

Tipos diferentes de neuro-osciladores podem ser escolhidos e organizados em um modo 

acoplado projetado e normalmente com a topologia satisfatóriamente amoldada para si- 

mular a locomoção de animais parecidos [56] [74][10]. Todos os parâmetros internos e 

pesos de conexão acopladas da rede osciladora são controlados pela entradas externas, 

instruções do CNS e pela própria rede. Processamento Paralelo e Distribuído - PDP - 

(Parallel and Distributed Processing) é a característica mais eminente deste circuito os- 

cilatório que pode ser canonicamente descrita por um grupo de Equações Diferenciais 

Ordinárias - ODE -(Ordinay Dzferential Equation) como um sistema autônomo. Em 

outras palavras, um sistema gerador de ritmos biológicos, i.e., CPGs e redes oscilatórias, 

pode ter uma implementação artificial concreta como uma ANN. 

1.1.2 Implementação de CPGs Artificiais como Sistemas 
Restritos por Vizinhança 

Do ponto de vista filosófico, o mundo está repleto de sistemas restritos-por-vizinhança, 

talvez o maior sistema restrito-por-vizinhanqt seja o próprio universo [35]. Para nosso 



caso de CPGs compostos de conexões de neurônios puramente inhbitórios que é essen- 

cialmente um sistema restrito-por-vizinhança, o método de pesquisa tradicional é investi- 

gar ODE ou PDE estabelecido para todos os neurônios. A solução numérica precisa para 

um grupo de ODE não tem um significado físico explícito, no sentido de que um esta- 

do fixo definido de locomoção normalmente corresponde a um padrão periódico estável. 

Além disso, é difícil construir um grupo de ODE que represente uma arquitetura de CPGs 

complicada com várias soluções periódicas para várias andaduras. Assim, análise quali- 

tativa dinâmica poderia ser uma estratégia muito mais popular que aproximação numérica 

quantitativa. 

Porém, por causa da complexidade do sistema neuronal locomotor, descrições ma- 

temáticas precisas são normalmente impossíveis, de modo que simplificações devem ser 

feitas. Como uma alternativa, uma série de fundamentos e algoritmos modernos utili- 

zando PDP, que seriam Scheduling by Edge Reversal (SER) e Scheduling by Multiple 

Edge Reversal (SMER) [7] [35],  mostram-se eficientes especialmente tratando CPGs cu- 

ja topologia seria representável. Adotando um esquema auto-temporizado, que é uma 

técnica chave na aproximação de SERISMER, sistemas de CPGs em alta-escala podem 

ser construídos naturalmente, com imunidade de fome (stawation) e bloqueio perpétuo 

(deadlock), ou melhor dizendo, estes CPGs construídos artificialmente podem operar sem 

problemas indesejados. 

Como sabemos, qualquer atividade no mundo físico poderia ser expressa e investiga- 

da em um eixo espaço-temporal. As perguntas tempo-relacionadas são tópicos eternos 

comum a todos os problemas científicos. É comum em trabalhos de pesquisa pergun- 

tar algo como " Quando seráífoi isto..."?, como nas vidas ordinárias. Em nosso campo 

acadêmico, onde estudamos sistemas distribuídos compartilhando recursos atômicos e sua 

implementação em forma de circuitos eletrônicos, o esquema de temporização possui uma 

função crucial no sentido de que sistemas e circuitos normalmente são classificados em 

modos de operação como síncronos e assíncronos de acordo com os padrões pelos quais as 

informações dos sistemas ou circuitos poderiam ser processadas e trocadas. Não importa 

que tipo de esquema de temporização um sistema compartilhando recurso poderia adotar, 

'0s  neurônios dentro CPGs pode ser acoplado com tipos de conexão diferentes, por exemplo, exci- 
tatório, inhibitório ou conexões híbridas. Sem perda de generalidade, nós poremos muito mais ênfase nas 
conexões inhibitórias. 



(i) concorrência, (ii) bloqueio perpétuo, e (iii) fome são as principais preocupações nas 

estratégias de escalonamento para tais sistemas. Naturalmente, concorrências deveriam 

ser maximizadas enquanto bloqueio perpétuo e fome devem ser eliminadas [35]. 

Baseado nestes fundamentos, SER, estudado por Barbosa e Gafni [6], fornece uma 

solução potencialmente ótima para o problema dosjlósofos jantando de Dijkstra que é 

um problema de compartilhamento de recursos canônico. SER foi inventado na suposição 

de que os sistemas designados estavam debaixo da alta carga e em ambientes restritos-por- 

vizinhança, isto é, processos estão constantemente exigindo acesso a todos os recursos 

compartilhados, e processos vizinhos no sistema têm que se alternar em suas vezes para 

operar. Este mecanismo de escalonamento foi demonstrado como tendo o potencial pa- 

ra prover a maior concorrência entre os esquemas de escalonamento com característica 

de restrição-por-vizinhança, enquanto também é capaz de evitar problemas tradicionais 

como bloqueio perpétuo e fome. 

Como um primeiro estudo, SMER, uma generalização de SER, foi proposto por 

França para modelar prioridades de operação diferentes entre processos coexistindo em 

um sistema restrito-por-vizinhança concorrente [35]. Diferente da definição de alta car- 

ga que SER possui implícito, a justiça é um das considerações básicas de estratégias 

de escalonamento para sistemas compartilhando recursos, SMER permite a modelagem 

de políticas de escalonamento injustas. A suposição de alta carga na definição original 

de SER é relaxada para modelar processos com prioridades de acesso diferentes aos re- 

cursos compartilhados. Com SMER é possível aos processos operar com freqüências 

diferentes sem comprometer as propriedades de fome-livres e paralisações-livres. Em 

descrição adicional, veremos a fundo como SERISMER e as metodologias de otimização 

e implementação relacionadas a eles podem ser utilizadas como uma ferramenta de 

reconstrução para nossas pesquisas de formação de padrões [36]. 

Postinhibitory Rebound (PIR) é adotado para explicar o mecanismo de fuga de mui- 

tos sistemas motores biológicos que oscilam alternativamente [38] [3]. Este mecanismo 

simples pode ser descrito como um par de neurônios acoplado e oscilando alternadamen- 

te: um deles é ativo enquanto o outro é refratário. Para uma cela inativa, seu potencial 

'Uma operação é uma ação do nó na transição do estado ativo para inativo. Sob SER, a justiça pode ser 
entendida como que, qualquer nó da uma rede não pode operar menos que todos os outros nós observando- 
se o sistema durante um tempo relativamente longo. 



é fortemente inativado de forma que uma hiperpolarização de duração e amplitude sufi- 

ciente é requerida para desativar o potencial e assim produzir um potencial despolarizado 

transitório e excitação de rebote depois da remoção da hiperpolarização [77]. Este meca- 

nismo tem uma equivalência quase direta com sistemas SERISMER-dirigidos no sentido 

de que cada nodo inibe a operação simultânea de todos seus nodos vizinhos que, ao seu 

redor, o estimularam a operar ao final da operação do nodo inibido durante esse intervalo 

[3 51. A Figura 1.1 é a demonstração gráfica desta idéia. 

Figura 1.1 : Imitando CPGs com redes SERISMER-dirigidas - atividade de neurônios motores 
de músculo flexor e extensor durante a caminhada de uma barata e sua simulação utilizando 
SERISMER análoga (reproduzido da tese de França [35]). 

Outra vantagem da abordagem SENSMER é que, ao contrário de muitas soluções por 

redes neurais tradicionais como a rede de Hopfield 1521 que é baseada na conexão global 

entre todos os componentes, um neurônio em rede SENSMER pode ser conectado local- 

mente, somente com seus vizinhos acoplados. Esta característica facilitará grandemente 

implementações VLSI no futuro. 

1.2 Objetivos 

Entre os numerosos estudos em comportamento animal, oscilações acopladas e mecanis- 

mos de CPGs foram pesquisados (veja Apêndice B para referência). No entanto, embora 

as tentativas de empregar propriedades emergentes de ANNs nestes estudos pareçam ter 

êxito, contribuições aplicáveis na implementação de sistemas neurolocomotores artificiais 

são escassas. 

Este trabalho propõe uma nova abordagem quanto a previsão ou simulação da 

dinâmica de comportamentos oscilatórios complexos baseado em building blocks. Como 



veremos, podem ser concebidos vários sub-blocos funcionais, isto é Oscillatory Building 

Blocks (OBBs), de acordo com a relação de fase coordenada entre as pernas do animal 

alvo. Cada building block consiste em dois neurônios, um visando o músculo flexor e 

o outro o músculo extensor, e são constsuídos usando estratégia de SEWSMER. Então, 

via seleção e organização satisfatória de diversos building blocks, diferentes modelos de 

padrão de andadura podem ser alcançados por recobrar protótipos realistas e facilitar sua 

síntese em VLSI. 

Macroscopic 

Oscillating Building Blocks 
Distributed Algorithms 

Rhythmic 

Mimoscopic 

Physical Parameters 
Membrane Potential 

Figura 1.2: Dois fluxos de projeto de aproximação macro e microscópica para reconstrução de 
modelo de CPGs. 

Neste trabalho, nós recorremos a Teoria da Representação de Grupos [42] como uma 

solução matemática formal para os problemas de geração dos padrões de andaduras dos 

animais, onde o esquema de SEWSMER está no papel da máquina de dinâmica de grafos, 

ou o núcleo da implementação. Nós mostraremos que estes dois métodos podem ser 

combinados perfeitamente devido que todos eles dependam da expressão da topologia 

dos objetos. Este método híbrido é considerado como macroscópico, no sentido de que 

em ambos, computação distribuída e teoria de grupo (que não se envolvem nos detalhes 

da dinâmica), o objetivo comum é o comportamento global de uma rede de neurônios. 

A expressão da topologia dos objetos deveria conter as relações de fase ou temporização 

rotuladas explicitamente, com os parâmetros de resultado da análise de teoria de grupo e 

os parâmetros de entrada do estágio de implementação. 

Outra possível abordagem que é considerada como estratégia microscópica pode ser 

induzida de Cellular Neural Networks (CNN), um circuito não linear proposto inicial- 

mente em 1988 [16] [ 171 com a capacidade de produzir muitos fenômenos dinâmicos. O 

sistema completo geralmente é descrito por um grupo de ODE autônomo, embora o tem- 



po não seja expresso explicitamente, representa um papel importante no comportamento 

dinâmico. Fazendo proveito da característica de conexão local possuída por CNN, que é 

um pouco análogo com a máquina dinâmica dos algoritmos SERISMER, algumas formas 

das ondas bidimensionais e tridimensionais como o autowave e ondas espirais [19][5] 

podem ser gerados devido a reação-difusão no meio. A breve introdução de CNN neste 

capítulo visa dar um exemplo concreto do método microscópico, entretanto esta tese é 

dedicada as metodologias macroscópicas. 

1.3 Trabalhos relacionados 

Aqui alguns tópicos teóricos, ou sejam, neurodinâmica e teoria de grupo para bifurcação 

com simetria e suas aplicagões na formação de padrões, são escolhidos para discussão. 

Além disso, o emergente campo das chamadas CNN será introduzido brevemente em 

seu grande potencial na dinâmica de padrões, como uma contrapartida à abordagem ma- 

croscópica desta tese. É mostrado mais adiante como esses padrões rítmicos gerados pelas 

bifurcações de Hopf com característica de quebra-de-simetria podem ser sintetizados com 

redes SMER. 

1.3.1 Teoria de Grupo para Bifurcação com Simetria 

Entre vários tipos de bifurcações, a bifurcação de Hopf pode ser aplicada com sucesso 

a análise de diferentes sistemas físicos [ 58 ] .  A bifurcação de Hopf é uma das fontes 

mais comuns de estados periódicos em sistemas nonlineares. Porém, bifurcação de Hopf 

ordinária não pode ser aplicada aos sistemas dinâmicos com simetria devido ao fato que 

a mesma não pode ser possível para autovalores imaginários simples de acontecer. De 

fato, quando um sistema tem simetria, os autovalores podem geralmente ser forçados a 

ser múltiplos [42]. 

Uma teoria geral de simetrias espaço-temporais em bifurcação de Hopf foi desenvol- 

vida por Golubitsky e Stewart [42]. Tal trabalho provê técnicas abstratas baseadas em 

teoria de grupo para predizer a ocorrência de combinações particulares de simetrias espa- 

ciais e temporais quando uma rede simétrica de osciladores nonlineares sofre bifurcação 

de Hopf. É concluído que sua análise pode ser aplicada a qualquer sistema dinâmico com 



simetria. 

Em resumo, o teorema de Golubitsky afirma que para um análogo simétrico de uma 

bifurcação de Hopf, um ou mais ramos de soluções periódicas, normalmente vários, se 

bifurque. Estas oscilações podem ser distinguidas por seus grupos de simetria espaço- 

temporais C, os quais são subgmpos do r x S1. Os subgrupos isotrópicos medem a 

quantidade de simetria presente nas soluções de ramo. O problema da existência de 

simetria-quebrando oscilações é reduzida assim para cálculo da teoria de grupo pura- 

mente e só depende da simetria assumida no sistema. O ponto principal aqui é que os 

padrões de oscilação típicos do sistema podem ser preditos em termos de suas simetrias, 

sem investigar os detalhes de suas equações dinâmicas . 
Uma aproximação geral para estudar osciladores biológicos acoplados foi proposta 

por Collins e Stewart, que utilizou teoria de grupo na natureza, baseado no achado de 

que cadeias de aneis simétricos de osciladores nonlineares acoplados possuem padrões 

genéricos de oscilações de fase-fechadas [22] [23]. A análise associada é independente dos 

detalhes matemáticos da dinâmica intrínseca dos osciladores e a natureza do acoplamento 

entre eles, desde que eles adotaram a metodologia de bifurcação de Hopf com simetria 

de Golubitsky. Esta abordagem provê um trabalho para distinguir o comportamento da 

dinâmica universal dado que depende de estrutura simetria adicional. Como discutido, 

transições entre padrões diferentes de atividade, por exemplo, a transição de andadura de 

um animal, pode ser modelada como bifurcação de Hopf com quebra-de-simetria. 

1.3.2 Cellular Neural Networks 

Desde sua invenção em 1988, Cellular Neural Networks tem sido utilizada em vários 

campos, tais como processamento de imagem, formação e reconhecimento de padrões 

[16] [17], e muitas outras pesquisas relacionadas com sistemas dinâmicos. A unidade de 

circuito básico das CNN é chamada de célula, que contém elementos de circuitos lineares 

e não lineares que tipicamente são capacitores e resistores lineares, fontes lineares e não 

lineares controladas, e fontes independentes não lineares. 

Como um modelo geral, CNN possui a característica chave das redes neurais artifi- 

ciais, isto é, processamento paralelo assíncrono, com dinâmica de tempo continuo; em- 

bora substituindo a interação global dos elementos das redes neurais, CNN mantêm uma 



arquitetura de conexão local dentro dos vizinhos mais próximos. Projetando e ajustando 

os modelos clones dos operadores das células interativas da CNN, vários tipos de saídas, 

incluindo ordenadas e caóticas, podem ser geradas refletindo a relação entre a entrada, 

estados internos e a saída dos parâmetros de espaço. Por exemplo, em uma aplicação em 

processamento de imagem, definindo alguma função de restrição, se tivermos um estado 

inicial IV,, (O) 1 < 1, depois da dinâmica, adquirimos um estado de equilíbrio IV&I > 1, 

e a saída será (-1, 1lM N .  Isto significa que foi obtida uma matriz M x N com todos 

os dados que são f 1 nisto, onde cada elemento da matriz representa um pixel em uma 

imagem preta e branca. 

Como redes neurais, CNN é um circuito analógico não linear em largo escalo que pro- 

cessa sinais em tempo real. Como automata celular, CNN é feito de um agregado volu- 

moso de clones de circuito regularmente espaçados, chamadas células, que comunicam-se 

com outros diretamente apenas através de seus vizinhos mais próximos [16] [18]. Assim, 

CNN compartilha as melhores características de ambos os mundos e sua característica 

de continuidade no tempo permite o processamento de sinais em tempo real procurado 

no domínio digital e sua característica de interconexão local toma-a implementável em 

VLSI. 

1.4 Esboqo da Tese 

Antes de entrar em uma visão mais detalhada dos conteúdos de cada capítulo e apêndice 

seguinte, uma explicação sobre a estrutura básica do trabalho inteiro será oferecida aqui. 

São distribuídas as contribuições práticas e teóricas entre apêndices diferentes de modo 

a tomar ao máximo cada apêndice auto-contido em seu tópico específico baseado na li- 

nha principal da computação paralela de geração de andadura animal. Por exemplo, o 

Apêndice C provê um método de geração de andadura na visão macroscópica através da 

aplicação de algoritmos SMER, uma pessoa também pode obter só algumas percepções 

úteis do seu conteúdo de um ponto de vista de passatempo. Como um tratamento formal 

para os fenômenos biológicos, esta tese é organizada em um estilo rígido com todos os 

fenômenos descritos formalmente. 

O Capítulo 2 apresenta a conclusão desta tese. Uma avaliação global é feita e é seguida 



por alguma discussão na relação entre os temas principais deste trabalho e certas ativida- 

des em estudos neurobiológicos encontradas na literatura, como a análise de andadura. 

Também são apresentadas sugestões para trabalhos futuros. 

O Apêndice A introduz dois modelos teóricos importantes: Teorema da Bifurcação de 

Hopf Equivariante e o mecanismo de SEWSMER. Na Seção A.2 existe uma descrição 

detalhada do teorema da bifurcação de Hopf equivariante, incluindo o conhecimen- 

to necessário de teoria de grupo. Seção A.3 contém os princípios das estratégias de 

SEWSMER. Um resumo é determinado na Seção A.4. Embora ambos sejam necessários 

para entender as declarações dos apêndices subsequentes, a aplicação do algoritmo de 

SMER em geração de andadura é uma ênfase da tese. 

O Apêndice B é uma introdução do estado-da-arte de pesquisas recentes em 

neurolocomoção, do ponto de vista dos aspectos macroscópicos e microscópicos. Ele 

inclui alguns modelos dinâmicos da formação de padrões que é utilizada amplamente, e 

o estado recente das pesquisas em andadura. Seção B.2 enumera os modelos mais po- 

pulares de neuro-oscilador. Seção B.3 esboça brevemente alguns resultados atuais em 

pesquisa de andadura, especialmente com o método macroscópico. Seção B.4 exempli- 

fica um modelo moderno que é desenvolvido em teoria de grupo e teoria da bifurcação 

como uma plataforma física de computação paralela. 

O Apêndice C apresenta a primeira aplicação do algoritmo de SMER em pesquisa 

de andadura, empregando vários casos de estudo de animais hexapodais para os quais 

é mostrado, do ponto de vista macroscópico, que a dinâmica SMER é um mecanismo 

satisfatório em imitar a computação neuronal assíncrona com características discretas em 

larga escala. Seção (7.4 contém uma estratégia baseada na SMER para robôs com pernas. 

O Apêndice D apresenta um modelo de rede neural artificial com características de 

tempo contínuo e estado contínuo que se comporta como o mecanismo distribído de 

SMER a qual, como uma rede de Hopfield assimétrica, conserva todas as características 

das redes neurais artificiais tais como o processamento paralelo e auto-organização. Este 

novo modelo de rede estende a dinâmica de SMER do domínio de análise discreto pa- 

ra o domínio de sistema autônomo contínuo onde uma rede neuronal oscilatória que se 

comporta como SMER pode ser formulada para muitos padrões organizados complexa- 

mente. Uma descrição rígida e detalhada da conversão SMER-ANN está disponível ao 



longo deste apêndice. 

São apresentadas muitas andaduras diferentes no Apêndice E através de um método 

unificado induzido a partir das redes neuronais propostas anteriormente. A partir des- 

te apêndice pode-se verificar que os padrões rítmicos biológicos arbitrários podem ser 

controladas por um mecanismo unificado que é conhecido amplamente como CPG. Nes- 

te apêndice o novo modelo, chamado SMER-like asyrnmetric Hopfield neural networks, 

provê uma simulação perfeita da fmcionalidade dos CPGs biológicos. 



Capítulo 2 

Conclusão e Estudos Adicionais 

Esta tese apresenta uma aproximação distinta de ponto-de-visão macroscópico, baseado 

em computação paralela ampla exercitada em espécimes biológicas com pernas. O sig- 

nificado deste método macroscópico e modelo relacionado é duplo. Primeiro, é possível 

aplicar o método macroscópico e modelo relacionado diretamente em recobrar cada an- 

dadura de um animal independentemente, como mostrado no Apèndice 5; segundo, este 

método enfatiza em prover uma simulação geral e de espectro inteiro de qualquer tipo de 

andadura sem os limites de modelos matemáticos. A presunção exclusiva em relação ao 

objeto é saber sua existência espaço-tempora!. 

Avaliação 

Em consistência com a contribuição de trabalhos originais de Barbosa e França [6][35], 

a motivação central desta tese é o conceito de sistemas vizinhança-constrangidos que 

apóiam implementação maciçamente paralela e distribuída de ANN modelos. TJm mode- 

lo geral que pode produzir numerosos padrões rítmicos biológicos foi desenvolvido como 

redes neurais de Hopfield modificadas combinando método de computação de SMER. No 

Apêndice 5 foi mostrado que este modelo é capaz de recuperar todos os padrões de an- 

dadura propostos pela teoria de geração de padrão geral do Golubitsky através do cálculo 

de matrizes amplas em ambiente de equações discretas. Uma descrição matemática pre- 

cisa é determinada no Apêndice 4 para construir tais redes neurais oscilatórias bem como 

projetar equaqões de sistema e matrizes de parâmetros críticos. 

A característica mais significante de redes neurais de Hopfield modificadas, ou redes 

neurais assimétricas de Hopfield combinando SMER em sentido mais geral, fica em que 



cada entrada booleana de cada macroneurônio pode influenciar sua saída significativa- 

mente por causa da relação de multiplicação entre entradas e saída de macroneurônios. 

Porém, a influência de uma entrada sozinha da célula da rede de Hopfield tradicional pode 

não ser determinante para a sua saída, a influência pode ser só gradiente a menos que a 

acumulação de valores de entradas de uma célula tenha ultrapassado o limiar dela que 

conduz a uma mudança de saída abruptamente. 

As contribuições principais deste trabalho podem ser resumidas da seguinte forma: 

1. Um modelo geral de ANN embutindo algoritmo de SEMISMER foi proposto. Fo- 

ram demonstradas definições preliminares que incluem exigências de topologias 

básicas e as características de novas redes. 

2. As equivalências entre o modelo de ANN novo e as funcionalidades plausíveis 

de CPGs foram produzidas. Mostraram-se OBBs básicos e compostos para pa- 

drões rítmicos diferentes especialmente eficientes em construir o sistema discre- 

to interno-analógico, externo-booleana com características de ego-cronometrado e 

implementação extremista-ampla de redes neurais oscilatórias. 

3. A estimação e conexão nova entre ANN e teoria computacional paralela e distri- 

buída foram feitas com exatidão matemática. Uma estratégia generalizada e distri- 

buída para atualizar o controle na implementação de sistemas neurais paralelos foi 

definido ainda consistentemente com as contribuições de [35]. Domínios temporais 

e de espaço de padrões rítmicos biológicos eram integrados em uma esquema gene- 

ralizado atualizado. Também foram abordados aspectos de consistência de sistemas 

SMER-dirigidos com topologias dinâmicas. 

4. As simulações numéricas ilustraram a eficiência deste modelo de ANN na 

recuperação de padrões rítmicos biológicos, i.e., o comportamento de locomoção 

comum. Um procedimento completo, de aspectos teóricos e aplicáveis, é ilustrado 

com ajuda de conceitos matemáticos como a teoria de grupo. 



Embora a prova fisiológica direta da existência de CPG seja difícil, muitos cientistas 

demonstraram as possibilidades de sua existência. A análise de andadura clínica é, por 

exemplo, um dos tópicos favoritos em centros médicos no mundo inteiro. Como um resul- 

tado de pesquisa, é bem conhecido que o centro depressão (CoP) oscila aproximadamen- 

te com o centro de massa (COM) enquanto uma pessoa está ficando de pé estaticamente. 

Devido as demoras de condução de CNS para a estrutura muscular (principalmente tor- 

nozelo) da perna, uma demora de fase entre COM e CoP deveria ser perceptível se um 

processo de controle central estivesse ativo [80]. Num experimento administrado recente- 

mente por um gmpo de pesquisa, um voluntário ficou de pé em um par de platafosmas de 

força e voluntariamente balançou para trás e para frente, lentamente, sincronizado por um 

metrônomo. O COM era medido usando um sistema com 6 câmeras de Viçon e modelo 

de corpo inteiro de BodyBuilder [29]. Pela lógica acima, poderia ser esperado ver um 

atraso de fase (tempo), provavelmente ao redor 150-250 ms, entre COM e CoP dado que 

o movimento foi gerado conscientemente pelo voluntário. Porém, como podemos ver na 

Figura 2.1, não há nenhum atraso de tempo (atraso de fase) entre os dois sinais. 

Figura 2.1 : A relação de fase entre CoP e COM da posição estática de uma pessoa. 

Uma explicação razoável pode ser que, o significado biológico de atraso de fase po- 

de ser dupla na sensação que, se o voluntário é consciente do movimento dele durante 

posição estática, parece que deveria existir algum atraso por causa da demora de condução 

do CNS; caso contrário o comportamento dele poderia ser controlado por C 



biologicamente plausível de padrão pré-programado ou estrutura equivalente provavel- 

mente localizada na corda espinhal. Neste caso o atraso poderia ser desprezível. Baseado 

nesta suposição, o modelo de CPG introduzido nesta tese seria especialmente valioso para 

recuperar padrões biológicos, como nós esperamos. 

Esta tese provê uma arquitetura e metodologia geral em modelagem de andadura em 

um estilo coincidente, sendo que algumas modificações adicionais podem ser esperadas 

enquanto a pessoa emprega este método em assuntos relacionados com desenvolvimento 

individual de andadura. Por exemplo, no projeto de um robô com cada perna (ou dizendo 

juntas) tendo múltiplos graus de liberdade, a pessoa pode considerar organizar uma rede 

de OBB para cada junta e fazer conexões entre todas as redes de OBB. Deste modo uma 

aiquiretura cie CPG diferente e concebivei, mas ainaa baseado nas SIZEK-iikt: asy~nmeiric 

Hopfield neural networks, que e o modelo geral. 

2 3  Trabalhos Futuros 

Como uma aproximação recentemente proposta em estrutura de CPG e computação 

biológica, haverá alguns trabalhos adicionais para explorar. Um dos trabalhos previsíveis 

é determinar características dinâmicas de modelos de OBB em uma armação matemática 

mais detalhada, por exemplo, a investigação de estabilidade de sistema analisando as ca- 

racterísticas de simetria de matrizes de parâmetros de sistema. 

Hi outra direção interessante na qual a metodologia geral.de SMER-like asymmetric 

Hopfield neural networks pode ser aplicado e pode ser melhorado. Como um dos objetos 

desejados desta tese é prover uma estrutura de redes reconfiguráveis em OBBs simples e 

composto, uma arquitetura de CPGs acoplada específica deveria ser construída de acordo 

com o espécime diferente sob pesquisa. Falando de modo geral, quanto mais informações 

detalhadas na arquitetura de CPGs, tal como o número de neurônios ou situação acoplada, 

são determinadas, mais percepçòes podem ser obtidas para melhorar as caracierísticas do 

modelo como tolerância de erro. No apêndice 5. as andaduras de bípede são recuperadas 

com um modelo composto asperamente de só quatro macroneurônios para a oscilação 

de relaxamento das duas pernas, porém, é possivel trabalhar um modelo muito mais de- 

talhado que consiste em mais rnacroneurônios acoplados com uma força de acoplação 



diferente. Deste modo uma arquitetura CPGs de bípede pode ter 11 macroneurônios fle- 

xores acoplados significando dedões do pé, calcanhares, tornozelos, joelhos, tronco e até 

mesmo dois braços respectivamente, com a força de acoplação maior entre um par de 

dedões do pé e calcanhares enquanto o menor entre um par de braços e joelhos. É espe- 

rado que o modelo mais detalhado seja mais razoável fisiologicamente na sensação que, 

lá existe algumas relações de acoplação fracas entre um par de braços e joelhos durante o 

cammhar, e nenhum grande impacto em locomoção pode ser alcançado depois que dois 

braços são amputados a menos que algum tipo de instabilidade seja introduzido. 



Apêndice A 

Background and preliminary studies 

A.1 Introduction 

Two distinct concepts, i.e., equivariant Hopf bifurcation theorem and scheduling by mul- 

tiple edge reversal (SMER) are introduced in this appendix as a theoretical background 

for our pattem generation strategy. SER and SMER mechanisms have been shown to 

offer a potentially powerful method for sirnulating physical systems with asynchronous, 

signal-driven circuits, with special efficiency. For instance, in synthesizing time-evolving, 

distributed dynarnical models [36]. However, since SERISMER strategies depends hea- 

vily on the graph theoretic description, for our realization purpose of various animal gait 

patterns' generation and transition, it is necessary to build up the general topological 

models from the corresponding biological prototypes as the first step. In this general, 

unbifurcated model, we assume that the whole syrnrnetries are retained, i.e., the model 

can undergo various bifurcations, which are equivalent to various gait pattern transitions, 

to break some syrnrnetries while keep the others, hence the new gait patterns are gene- 

rated in the meantime. This transition procedure is called the syrnrnetry-breaking Hopf 

bifurcation in the sense that, when it proceeds, more and more symrnetries are broken 

and simultaneously more and more complicated periodic movements can be achieved. 

Theoretically this procedure could continue until the chaotic phenomena are observed. 

Equivariant Hopf bifurcation theory, developed by Golubitsky et al., is a formal ma- 

thematical method to treat the Hopf bifurcation phenomenon in presence of symmetry 

[39] [40] [41] [42]. This theory will be exploited as a theoretic background for our pat- 

tem formation research. After we've gotten a reasonable explanation of the locomotive 

mechanism, the following step is, naturally, to take advantage of the dynamical engine 



Chaos 
Stat 

L turbulence 

a 

Figura A.l: A demonstration of bikcation diagram, which shows bifurcation may lead to 
symetry-breaking branch and íkally chaos. 

underlying SERISMER for implementation purposes. In future works we'll see that this 

engine is capable of retrieving the whole range of gait patterns, or say, arbitrary gait pat- 

terns, without comprornising the major feature of the real world such as the distributed 

and real-time dynamics, provided that the suitable biological building blocks are correctly 

constructed and configured. 

With these ideas in mind, the concepts of the two methodologies are indispensable. 

This appendix is so organized as following: Section A.2 is a brief description of equiva- 

riant Hopf bifurcation theory, with Subsection A.2.1- A.2.2 designed as background and 

basic concepts. The SER/SMER strategies can be found in Section A.3, and followed by 

Section A.4, the surnmary. 

A.2 Rationale of the Equivariant Hopf Bifurcation 
Theorem 

A.2.1 Standard Hopf Bifurcation Theorem 

The terminology, namely Hopf bifurcation, refers to a phenomenon in which a steady state 

of a dynamical system evolves into a periodic orbit as a bifurcation parameter is varied. 

It is the most common source of periodic behavior in nature, and the Hopf bifurcation 

theorem provides sufficient conditions for determining when this behavior occurs[4 11. 

Linear and Nonlinear examples of Hopf bifurcation 

Example 1 : Linear system case. 

Consider a two order linear dynamical system of ODE 



With initial condition x (0) = (a, O), it's easy to get the solution as 

~ ( t )  = (xi(t), x ~ ( t ) )  = aext(cost, sint) 

When X changes, we can get the corresponding phase portrait as Fig.A.2. 

Figura A.2: Phase portraits for a linear ODE. (a) X < 0, the steady state x = O is stable. (b) 
X = 0, the steady state x = O is center. (c) X > 0, the steady state x = O is unstable. 

Example 2: Nonlinear system case. 

Consider a two order nonlinear dynamical system of ODE 

or it may be written in another form as 

The phase portrait for this system are given in Figure A.3, when X < 0, its steady 

state x = O is stable; The new phenomenon is that for each X > O there is exactly one 

periodic solution of (A.3) .  Moreover, this periodic solution is stable in the sense that a11 

nearby orbits approach this periodic solution, which is known as a stable limit cycle ', a 

more concrete example of this kind can be found in appendix B, the Fitzhugh-Nagumo 

oscillation model. 

'~oughly speaking, in real life stable oscillation must be produced by nonlinear system. There are 
nonlinear systems which can go into an oscillation of fixed amplitude and frequency, irrespective of the 
initial state, this type of oscillation is known as a lirnit cycle. 



Figura A.3: Phase portrait for a nonlinear ODE. (a) X < 0, the steady state x = O is stable. (b) 
X > 0, the steady state x = O is unstable, there is a lirnit cycle formed. 

Standard Hopf Bifurcation Theorem 

Consider an autonomous system of ODEs 

dx/dt = f (x, A) ,  f (O, A) = O (As51 

where x E Rn, X E % is the bifurcationparameter, and f : gn x R -+ Rn is a smooth 

(C") mapping defined near (O, Ao). In general f is nonlinear and we suppose x = O is 

always a steady state solution for a11 A. Let J(X) = (df)o,x be the n * n Jacobian matrix 

of f along the steady state. There are two main Hopf assumption as following. 

The first Hopf assumption is: 

o J(0) has simple eigenvalues f iw, and 

o J(0) has no other eigenvalues lying on the imaginary axis. (Hl) 

Norrnally J(X) has simple eigenvalues of the form a(X) f iw (A), where o(0) = 0, 

w(0) = 1, a and w are smooth. It implies that the ordinary eigenvalues of J ( X )  have both 

real and imaginary parts. The second Hopf assumption is: 

It means at the bifurcation point(X = O), the imaginary eigenvalues of J ( X )  cross the 

imaginary axis with nonzero speed. There are also other two Hopf assumptions, concer- 

ning bifurcation directions and stability conditions respectively, but they don't influente 

the generation of Hopf bifurcation, thus we don't consider them so far. 

2~ere, without loss of generality, X = O is regarded as the bifurcation parameter. 

2 1 



With the assumed system shown above, and specially the two main Hopf assumptions, 

we've got a sufficient condition for standard Hopf bifurcation to occur, i.e., a branch of 

small amplitude periodic solutions to (A.5) bifurcates from the steady state x = O at 

X = 0, the period approaches 27r (or 2nlw if the simple purely imaginary eigenvalues are 

f iw) as X approaches O [41]. 

A.2.2 Some Basic Terminologies of Group Theory 

There must exist, more or less, some kinds of symmetries in the animal locomotion beha- 

vior, e.g., quadrupedal bound gait is syrnrnetric in the sense that two pairs of fore and hind 

limbs move in phase respectively while half period of phase lag existed between the two 

pairs. As we'll see, animal's gait transition can be regarded, theoretically, as syrnrnetry- 

breaking Hopf bifurcation. When more such bifurcations occur, more gait transitions will 

be achieved, i.e., from the trivial gait to primary gaits, to secondary gaits, ..., and the 

amount of symmetry in the locomotion structure will also be less and less, at last the 

chaotic phenomenon can be imagined in theory, which is out of our concerned scope. The 

amount of symmetry in every bifurcation leve1 can be measured by its relative isotropic 

subgroups 1231, which is a concept in the group representation theory. In order to ma- 

ke precise statements about symmetries, the language and viewpoint of group theory are 

indispensable as a preliminary study. However, since group theory is a comprehensive 

mathematical branch, here we'll only investigate our research related topics. 

Group 

A collection of elements, R, will be called a group if its elements A, B, C, ..., can be 

combined together in a way which satisfies the four axioms: 

e Closure. The result of combining operation of any two elements of the group is a 

unique element which as10 belongs to the group. 

e Association. When three or more elements are multiplied, the order of the multipli- 

cations make no difference, i.e., A(BC) = (AB)C = ABC. 

3 ~ h e  form of combination is one in which two elements combine together to give a unique third ele- 
ment. Here, this abstract combining operation is called multiplication and denoted as one of any possible 
combining operation, not a specific or unique combining operation. 



o Identity. Among the elements there is an identity element, denoted by I, with the 

property of leaving the elements unchanged on multiplication, i.e., AI = IA = A. 

o Inverse. Each element, A, in the group has an inverse (or reciprocal) A-' such that, 

AA-l = A-lA = I .  

A group doesn't need to have an infinite number of elements, e.g., the four elements 

1, i, - 1, -i may form a f i t e  group with multiplication as the law of combination. Part 

of the fascination that group theory exercises on many people lies in the fact that the 

whole structure is erected in the logical foundation of these four simple axioms [46]. 

Thus, group theory can be utilized as a suitable mathematical simplification to01 for our 

symmetry expression of gait pattern research. 

Subgroup 

When a number of elements selected from a group do themselves form a group, it is 

known as a subgroup. It is important that subgroup itself must be a group, it should obey 

the four basic axioms. We can see that the associative law and identity law are inheritable 

from the parent group, the closure and existence of inverses are, therefore, the only laws 

that need to be verified individually. Every group has at least one subgroug, namely the 

trivial one marked as I ,  consisting of the identity element alone [46]. 

To find out the subgroup of a spatio-temporal symmetry group is a crucial work for 

our gait models construction, since theoretically the various subgroups are classified as 

corresponding gait patterns while their parent spatio-temporal symmetry group is treated 

as the CPGs collection of the whole locomotion patterns owned by different animals. 

There are different manners to determine the subgroups, and different subgroups can 

be found from a same group, depending on different rules. As an example, one easy 

way is by forming the powers of an element. The square of an element of a group A is 

conveniently written in a power notation, i.e., 

and, by the associative law, 



Figura A.4: Tabelas de multiplicação de dois grupos isomórficos 

Using induction, we can similarly get uniquely defined A" for interger n. Now assume 

the group is finite, a11 these powers of A must belong to the group and, to prevent their 

number becoming infinite, they must begin to repeat after some point. Suppose there is 

some integer m such that 

for the first time, so that there is no smaller integer satisfying the same equation. The 

elements 

then forrn a subgroup known as the cyclic subgroup generated by A, A is called its 

generator. 

Isomorphism 

If A is the generator of a cyclic group of order four4, marked as 

N4 = {I, A, A2, A3} 

and i is the generator of a numerical, cyclic group, marked as 

these two groups lead to two multiplication tables of different forms: 

It is clear that Nn,m,,;c is a particular instance of the abstract group Nq, or more gene- 

rally, these two groups are isomorphic in the sense that there is some way of relabelling 

the elements so that the multiplication tables become identical despite the fact that the 

elements themselves may be of different natures and also their laws of combination. In 

4 ~ h e  order of a finite group is the number of elements that it contains. 



more precise terms, two groups @I and Q2 will be called isomorphic if there is some one 

to one correspondence between their elements such that, if f (A) is the element of 

corresponding to A in a2, then 

f (A)  f ( B )  = f (C) iff AB=C. 

Compact Lie Group 

Let GL(n) denotes the group of a11 invertible linear transformations of the vector space 

!Rn into itself, or equivalently the group of nonsingular n * n matrices over !Rn. A linear 

Lie group can be defined to be a closed subgroup I' of GL(n). It is a theorem that 

every compact Lie group is topologically isomorphic to a linear Lie group [41], and I' is 

compact if and only if the entries in the matrices defining r are bounded. For examples: 

Example- The cyclic group 2, has order n, 2, may be identified with the group 

of 2 * 2 matrices generated by !R2,/,, obviously 2, is a Lie group. 

Example- The dihedral group Dn of order 2 n  is generated by Z,, together with an 

element of order 2 that doesn't commute with 2,. In other words, D, may 

be identified with the group of 2 * 2 matrices generated by and the flip: 

obviously D, is a Lie group and also geometrically D, is the syrnrnetry group 

of the regular n-gon. 

Representations and Actions 

It is not our purpose to only have some mathematical concepts of group theory, the ma- 

thematical method, here the group theory, is used as a formal to01 for simplifying our 

research. In fact, each element in a group denotes an action, or in another point-of-view, 

a representation. It acts on one definite space to make some transformation, after that a 

bifurcation occurs and some syrnmetries are preserved while others are broken. 

Let r be a compact Lie group and let V be a finite-dimensional real vector space. We 

say that r acts on V if there is a çontinuous mapping (or action) x V -+ V, such that: 
-- -- - 

5 ~ e r e  "closed" means that the binary operation of any two elements from subgroup I' will generate the 
unique element which still belongs to the subgroup itself. 



Figura A.5: Graphical representation of symmetric rings of coupled identical nonlinear oscilla- 
tors. (a) three-membered ring with single coupling (Z3 symmetry). (b) five-membered ring with 
single coupling (Z5 symmetry). (c) three-membered ring with reciprocal coupling (D3 symmetry). 
(d) five-membered ring with reciprocal coupling (D5 symmetry). (reproduced from [23].) 

o For each y  E r the mapping p, : V  -+ V defined by P,(v) = yv is linear. 

The mapping p  that sends y  to p, E GL(V) is then callled a representation of r on V, 

GL(V) is the group of invertible linear transformations V  -+ V. It is deserved to notice 

that linear actions and representations are essentially identical concepts, differing only 

in point-of-view, in the sense that an action tells us how a group element y transforms a 

given element v  E V, while a representation tells us how y  transforms the entire space V. 

For examples: 

Example- Every linear Lie group I' is a group of matrices in GL(n) for some n, 

i.e., r has a natural action on V  = !Rn given by matrix multiplication. 

Example- Every group I? has a trivial action on V = !Rn defined by yx = x for a11 

x € ! R n , y € r .  

Example- For every integer k the circle group S1 = SO(2) has an action on V = 

C !R2 defined by 8x = eik8x. Notice that k = O corresponds to the trivial 

action of last example. 



Irreducibility 

The study of a representation of a compact Lie group is often made easier by observing 

that it decomposes into a direct sum of simpler representations, which are said to be 

irreducible. It can be proved that the decomposition always exists and, in general it is not 

Irreducibility 

Let be a compact Lie group acting linearly on the vector space V. A subspace 

W c V is called r-invariant if y w  E W for a11 w E W, y E r. A representation or 

action of I? on V is irreducible if the only r-invariant subspaces of V are O and V. A 

subspace TV C V is said to be r-irreducible if W is r-invariant and the action of r on 

W is irreducible. As an instance, in the last example of subsection "Representations and 

actions", the actions of SO(2) on 3' are irreducible when k # O. (if k = 0, obviously it 

is a trivial action and, there exists at least another r-invariant subspace such as 3 ,  except 

O and !R2 .) 

Absolutely Irreducibility 

Let r be a compact Lie group acting linearly on V. A mapping f : V + V cornmutes 

with r or is r-invariant if 

f (yv) = y f (v) , for a11 y E I?, v E V .  (A.7) 

According to the definition of Golubitslq 1421, a representation of a group r on a 

vector space V is absolutely irreducible if the only linear mappings on V that comrnute 

with I' are scalar multiples of the identity. 

Conditions for Imaginary Eigenvalues 

It's time to recall the statement for standard Hopf theorem in subsection "Standard Hopf 

Bifurcation Theorem", but with the presence of syrnrnetry as the modification. Suppose a 

system of ODEs: 

6 ~ e  say a vector space V is a direct sum of its subspaces U and W, and marked as V = U @ W if and 
on iy i f ( i )V=U+W,( i i )UnW=O.  



where x E g2 ,  A E !R is a bifurcationparameter, and f : 3" x -+ !Rn is a smooth 

(C") mapping commuting with the action of a compact Lie group I' on !Rn. That is, 

f (yx, A) = yf (x, A), for a11 y E r. ( A 4  

fbrther assume that f (O, A) = O, so there is a trivial i'-invariant equilibrium solution 

x = O for a11 A. 

Let ,A be the n * n Jacobian matrix of derivatives of f with respect to the variable 

x;, i = 1,2, . . . , n, evaluated at (x;, A). The most important hypothesis of the standard 

Hopf bifurcation theorem is that should have a pair of simple purely imaginary 

eigenvalues [39] [42]. In the presence of a symmetry group r, it is not always possible to 

arrange for eigenvalues of df to be purely imaginary. For example, if r acts absolutely 

irreducible on !Rn, that is, the only linear mapping on !Rn that commutes with I? is scalar 

multiples of the identity, after the derivative of f with respect to the variable X we can 

get the eigenvalue equation of matrix (df )o,x as, 

det ((~!f)~,~ - a&) = 0 

where (df )o,x = kIn, for a11 A E %, is a n * n real matrix, 

det (kIn - aIn) = O 

hence the Jacobian matrix ( d f ) ~ ~  has a11 eigenvalues real. In this case, no stable 

periodic oscillation can be achieved. 

In certain circumstances, however, clf can have purely imaginary eigenvalues, the sym- 

metry group often forces these eigenvalues to be multiple, thus the standard Hopf bi- 

furcation theorem cannot be applied directly. Although the symmetries complicate the 

analysis by forcing multiple eigenvalues, they also potentially simplifying it by placing 

restrictions on the form of the mapping f. We have seen this in the static bifurcation abo- 

ve, it can also be effectively exploited for Hopf-type bifurcation to periodic solutions. To 

avoid complicated induction, the necessary conditions for allowing (df)O,o to have purely 

imaginary eigenvalues are given directly, for the detailed mathematical statements and 

proofs, see 1421 chapter XVI. 



For (df)o,o to have purely imaginary eigenvalues, where f is a smooth mapping com- 

muting with the action of a compact Lie group r on %", there must be a r-invariant 

subspace of 8" which is r-simple, i.e., this subspace must take one of the following 

foms: 

a. V $ V where V are two isomorphic absolutely irreducible subspaces; 

b. W where W is irreducible but not absolutely irreducible. 

So far, the occurence of imaginary eigenvalues in equations with symmetry group I' 

is investigated, and it is shown that there are nontrivial restrictions on the corresponding 

imaginary eigenvalue, specifically, it must contain a r-simple invariant subspace. Moreo- 

ver, generically the imaginary eigenspace itself is r-simple. Thus for purely imaginary 

eigenvalues, ''r-simple" is the equivariant analogue of "simple eigenvalue". 

As a conclusion, it is interesting to see the two statements: 

1 (clf )o,o has purely imaginary eigenvalues f iw 

2 the corresponding eigenspace of (df )o,o is I'-simple. 

We can get (1) -+ (2), but not (2) --+ (I), that is, the so-called condition (2) is truely 

not a sufficient condition for (1) to occur, we only can regard it as a necessary condition 

for (1). From the two examples of Chapter XVI ,  section 1 of [42], we can see that in 

the presence of symmetry, it is always possible for (1) to occur, but it seems impossible 

to find the sufficient conditions for (1) to occur since (1) depends strongly on specific 

models (such as the type of symmetry, ODEs, etc.). In other words, we can also regard 

the two statements take place in meta-eigenspace, where the eigenspace of statement (1) 

contains the eigenspace of statement (2), e.g., the multiple purely imaginary eigenvalues 

case. 

Equivariant Hopf Bifurcation Theorem 

For system of ordinary differential equations with symmetry, it may no longer be possible 

for simple imaginary eigenvalues to occur. Despite the limitation, it is possible for such 

dynamical system to undergo a symmetric analogue of Hopf bifurcation, whereby severa1 



branches of syrnmetry-breaking periodic states (each having prescribed symmetries) bi- 

furcate from a symmetric steady-state. A general theory of equivariant Hopf bifurcation 

was developed by Golubitsky and Stewart and is surmnarized as the following. 

Let's rewrite the object ODE, 

Suppose that f  cornrnutes with the action of a compact Lie group r on Wn, or say that 

f is r-equivariant, for Hopf bifurcation to occur, the Jacobian matrix ( d f ) z , ,  must have 

purely imaginary eigenvalues f i w  at some value Ao of A. Assume that the eigenvalues 

cross the irnaginary axis with non-zero speed. Generically the corresponding eigenspace 

of the derivative J = (df)z,,o is a r-simple representation; that is, it takes one of the two 

forms: 

e V $ V where V is absolutely irreducible, or 

e W where W is non-absolutely irreducible. 

Assume this generic hypothesis, and assume without loss of generality that Wn is the 

real eigenspace of J for eigenvalues f iw.  Define an action of the circle group S1 = 

%/Z r [O, T) on Wn by: 

- 2 d L  t9x = e 

If x E Wn then its isotropy subgroup C, C r x S1 is defined to be: 

C ~ = { ~ E ~ X S ' ~ ~ ~ : = X )  

If C C x S1 then its fixed-point space is defined to be: 

F i z  (C) = {x E  Wn lõx = x, for a11 õ E C }  

(A. 10) 

(A. 1 1) 

With these assumptions, the equivariant Hopf bifurcation theorem can be stated as: 

Let C be an isotropy subgroup of x S1 such that d i m F i x ( C )  = 2. Then there 

exists a unique branch of small amplitudeperiodic solutions to formula (2.5) with period 



near 2n/w, having C as their group of spatio-temporal symmetries, where S1 acts on a 

periodic solution by phase shift. 

The bifurcation branches of periodic solutions are thus distinguished by their syrnme- 

try C, which are subgroups of r x S1. Successive bifurcations tend to break more and 

more syrnmetry. 

SERBMER in Resource-sharing System 

A.3.1 Scheduling by Edge Reversal (SER) 

Scheduling by Edge Reversal - Fundamental 

Based on the graph theory, a potentially optimal scheduling algorithm, namely sche- 

duling by edge reversal (SER) was formulated by Barbosa [6 ] .  Many works have been 

conducted to show that this scheduling mechanism is very effective for most resource- 

sharing systems with neighborhood-constrained feature, mainly in the computer science 

scope. In this work we'll try to demonstrate its capability in the biological-related gattern 

formation applications, or say, the animal gait pattern generation, which is obviously with 

the characteristics of parallel and distributed cornputation. 

Consider a system defined by a connected unidirected graph G = (N, E), where N 

is the finite set of nodes (representing processes) and E the finite set of unidirected edges 

representing shared resource and their priorities between any two nodes. In the domain of 

SERISMER algorithm, it's important to know we'll always assume the acyclic orientation 

of G 7, then those nodes which have a11 of their incident edges directed toward them are 

called sinh and marked as sinks (w) ,  similarly those which have a11 of their incident edges 

leaving from them are called sources and marked as source(w), where w E R. G is said 

to be connected if for a11 of its n nodes there is a path to every other node. 

The typical environment in which SER works is heavily loaded and neighborhood- 

constrained, that is, each process is constantly demanding access to an entire fixed subset 

of resource associated with it in order to operate. The resources of this subset may be 

associated with many processes but each resource can be used by only one process at a 

time in a typical mutual exclusion style, so, when a node operates, its neighboring nodes 

71t shouldn't be confused with the symbol 2, of group theory, which denotes the cyclic symmetry. 



must be idle. Systems such as the one described above are representative of distribu- 

ted resource-sharing environments. Concurrency, deadlock and starvation are the main 

preocupations of scheduling strategies for such system. Naturally, concurrency should be 

maximised while deadlock and starvation must be eliminated. 

In a synchronous model of distributed computation, SER performs in the following 

way: starting from any acyclic orientation w on G there is at least one sink node, that has 

a11 its edges directed to itself. A11 sink nodes are allowed to operate while other nodes 

remain idle. After operating and before the clock pulse ends, sinks reverse the orientation 

of their edges by sending messages (or say, releasing the access of resources) to a11 their 

neighbors, each one becoming a source. After the next synchronous pulse, new acyclic 

orientation is dehed and the whole process is then repeated for the new set of sinks. Let 

w k + ~  = g(wk) denote this greedy operation, i.e., for a11 L 2 1, wk+l is obtained from wk 

by reversing a11 sinks. SER can be regarded as the endless repetition of the application 

of g(wk) upon G. Assuming that G is finite, it is intuitive that eventually a set of acyclic 

orientations will be repeated defining a period of length p. This simple dynamics ensures 

that no deadlock or starvation will ever occur since at every acyclic orientation there is at 

least one sink, i.e., one node allowed to operate. Also it is proved that inside any period 

every node operates exactly m times, m 2 1 (guaranteed by corollary A. 1) [6] [7]. 

Figura A.6: A graph G under SER, with m = 1, operation cycle p = 2. 

Some fundamental properties of SER lie in Barbosa's original contribution [6]. For 

descriptive purpose, here we just list them to deepen our understanding on this distributed 

mechanism. 

Lemma A.l [6]Let w and w! be acyclic orientations of G such that w! = g(w). A sink in 

w! has at least one neighbor that is a sink in w. H 



The proof of this lernma comes from the fact that a node cannot be a sink in two 

consecutive acyclic orientations and on that a source in wi was a sink in w. Let m ; ( s ,  q )  

be the number of times that node i E N operated in the first q  orientations ( q  > 1) under 

schedule s ,  s  E S,  where S denotes the set of a11 schedules. Considering the act of edge 

reversal as the definition of a node operation, i.e. a sink in an orientation just before w 

becoming a source in w, it is clear that m ; ( s ,  1 )  = O .  The definition of this limit-case 

is necessary in the following theorems where other fundamental properties of SER are 

established. 

Theorem A.l [6](Stawation-fieedom theorem). Let the shortest path connecting nodes 

i ,  j E N have r edges, then Imi(s,  q )  - m j ( s ,  q ) ]  5 r for a11 s  E S and a11 q  2 1. 

Theorem A.2 [6](Greedy theorem). Let s  be any schedule starting at w and s, the greedy 

schedule starting at w, then m; ( s ,  q )  5 mi (s,, q )  for a11 i E N and a11 q  2 1. 

These two theorems demonstrate some essential features for any scheduling mecha- 

nisms to have. Theorem A.l  strongly guarantees starvation-freedom in the sense that 

every node under any schedule s eventually becomes a sink. Theorem A.2 describes the 

concurrency optimization of the greedy schedules over the other schedules, that is, greedy 

schedules are the ones in which nodes operate more frequently from any initial acyclic 

orientation w . 

The application of the stavation-freedom theorem to greedy schedules lead to a further 

fundamental property described in the following corollary: 

Coroliary A.l [6](Fairness corollavyl. A11 nodes become a sink the same number of 

times in a period. 

Scheduling by Edge Reversal - Concurrency measure 

Concurrency measure is the criterion with which we can estimate the degree of ex- 

ploitation of resources, we normally expect high concurrency in the computer network 

application. It is obvious that different network (denoted by the graph here) topologies 

have the different concurrency, even in the same topology but with the different initial 



orientations, concurrency is also much different. As an example, we can compare Figure 

A.6 and Figure A.7. 

Figura A.7: A graph G under SER, with initial orientationdifferent from Fig.A.6, leads to m = 1, 
operating cycle p = 4. 

A natural way to define an amount of concurrent operation among processes in a 

distributed system is to consider the average number of times a node becomes a sink in 

each of the first q orientations of a generic schedule S. Let y be a function of the form 

y : S x 1 ,2 ,  . . . + 8 such that y (s, q), which denotes the concurrency available within 

the first q orientations of schedule s, q 2 1, is given by 

The concurrency of a generic schedule s in the long run is given by g(s)  = 

liq,, y (s , q) . Another concurrency measure is the concurrency obtained from an initial 

orientation w defined by the function 70 : fl+8 so that yo(w) = m a ~ , , ~ ( ~ ) g ( s ) ,  i.e., 

the maximal potential amount of concurrency found in any schedule s E S starting from 

w. From theorem 3 it is clear that this maximal potential amount of concurrency is the 

amount of concurrency of the greedy schedule starting from w. 

Theorem A.3 [6](Amount of Concurrency theorem). Let ao, . . . , a,-1 be a period in which 

each node operates rn times, then yo (w ) = for all w E fl (ao, . . . , a,- I). 

Notice that m, p, and therefore, yo (w), are highly dependent upon an initial w. Another 

concurrency-related factor is G's connection as it is intuitive that sparse graphs will tend 



to provide greater concurrency than dense ones. For instance, in a completely connected 

system only one node can be a sink at each orientation, i.e., there is no concurrent orienta- 

tion among nodes and each node takes n orientations to become a sink. Another extreme 

example is the case of bipartite graphs where nodes can operate every other orientation, 

that is, as frequently as possible. From these observations it's easy to induce that for a11 

w E R, 5 yo(w) 2 i. 

A.3.2 Scheduling by Multiple Edge Reversal (SMER) 

Zen philosophers problem is initially proposed by França as a variation of Dijkstra's para- 

digrnatic dining philosophers problem [27], and hence scheduling by multiple edge rever- 

sal(SMER) is formulated as the generalization of SER algorithm with some conditions 

modified [3 51. In this generalized version, the fairness feature underlying each node's 

operation in SER is broken and stop to be one of the basic requisites of scheduling stra- 

tegies for resource-sharing systems, meanwhle the concept of unfairness is introduced, 

as the major characteristic of a substitute scheduling policy for distributed systems re- 

presented as multigraphs. The heavily load assumption in the original definition of SER 

is relaxed to model processes with different access priorities to shared resources. With 

SMER it is possible for processes to operate with different frequencies without compro- 

mising the starvation-free and deadlock-free properties. 

Zen Philosophers Problem 

The first original example of França is followed in order to have some idea on SMER. 

Let's imagine one definite situation and relative rules in the scenery of Zen philosophers 

problem, that is, two normal philosophers of Dijkstra's original problem are remained 

side by side along with three Zen philosophers, and instead of a fork, a pair of chopstick 

will be put on the same glace between any two philosophers with an exception that there 

is only one chopstick between the two normal philosophers. During a meal, both types 

of philosophers are either eating or thinking as in the dining philosophers problem. A 

Zen philosopher cannot eat without a pair of chopsticks in each hand while a normal 

philosopher has to have at least one chopstick in each hand in order to eat. 

With the configuration and rules in Figure A.8, two possible solutions are represented 

in Figure A.9 and Figure A. 10. The example can be described in SERISMER language as: 



Figura A.8: The Zen philosophers problem (three Zen philosophers and two normal philosophers, 
reproduced fi-om the PhD thesis of França [35]). 

supposing a system under synchronous control or asychronous equivalent to synchronous 

control, at the end of each time period during which a Zen philosopher has had some 

food, both pairs of chopsticks are given back to his neighbors. After a normal philosopher 

has had some food, just one chopstick is given back to his neighbors. Another set of 

philosophers is enabled to eat after chopsticks have reverted. Similarly to SER, an initial 

orientation defines a particular periodic scheduling of length p. 

The heuristic of Zen philosophers problem is that each node in a resource-sharing 

system can have different priorities, or say, threshold. When its individual priority is just 

satisfied (or its threshold has been just reached), this node will operate, after operation it 

will only release the minimum number of resources, which just allowed it operating, to 

its neighbors no matter how many resources it may have. In the whole orientations which 

constitute a period, different node may operate with different frequency, depending on 

its individual priority. There may also exist some nodes which operate consecutively, a 

case absolutely prohibited in SER algorithm. However, the access to shared resources in 

mutual exclusion style remains a fundamental issue and neither deadlock nor stawation 

can occur in the generalized version. SMER can be simplified to SER by forcing each 

node to have the same priority, or more exactly, SER is a special case of SMER in the 



Figura A.9: One solution for Zen philosophers problem depicted in Figure A.8, (Zen philoso- 
phers, who are out of the dashed circle: m = 1, normal philosophers: m = 2) with the shortest 
p = 4. 

Figura A. 10: Another solution for Zen philosophers problem depicted in Figure A.8, (Zen philo- 
sophers: m = 1, normal philosophers: m = 2) with the longest p = 7. 



sense that for any two nodes i ,  j E N ,  O - < e;j 5 1, r; = r j  = 1, here r;,  r j  is the 

reversability8 of node i and j respectively, e;, is the edge between node i and j [3 51. 

SMER - fundamentals 

We've known that SMER is a generalization of SER where a distributed resource- 

sharing system is represented by a multigraph M (N, E) and instead of representing a 

shared-resource by a single oriented edge, a number of oriented edges(or little circles as 

the compact version) can exist between any two nodes. Some qualitative characteristics 

such as the different operating frequencies have been introduced before, here, we can see 

quantitatively that the crucial step to avoid starvation and deadlock is to define e;j, the 

number if edges between any two nodes i and j. The following l e m a  shows that, to 

preserve the essential requirements of any useful scheduling strategy for neighborhood- 

constrained systems, it is necessary to define more precisely some features related to the 

topology of the multigraph representing that system. In the description of this l e m a ,  gcd 

is the greatest common divisor and fij is the sum of the greatest multiple of gcd(r;, r j )  

that doesn't exceed the number of shared resources oriented from n; to n,, and from nj to 

n;,  respectively in the initial orientation. 

Lemma A.2 [8] [35]Let nodes i and j be two neighbors in M. Ifno deadlock arises for 

any initial orientation of the shared resources between i and j, then max{r ; ,  r j )  5 e;j 5 

r; $ r j  - 1 and fij = r ;  + r j  - gcd(r;, r j ) .  m 

In next appendix we'll have the chance to see that this lernma is a crucial theoretic 

basis for constructing various biological building blocks, e.g., many biological phenome- 

na such as postinhibitory rebound (PIR) and 2:l fiequency-locking can be successfully 

simulated using this simple and flexible graph dynamics engine, which leads to reciproca1 

inhibitory oscillations with different frequencies. 

A.4 Summary 

The major characteristics of two formal methods are summarised here. Subsection A.4.1 

is designed in two ways: the theorem itself and its application potential on animal gait 

8 ~ h e  reversability 1.i of node i is the number of edges that shall be reversed by i towards each of its 
neighboring nodes indiscriminately, at the end of an operation. 

3 8 



pattern formation. Subsection A.4.2 is a brief recall of key points of SERISMER. 

A.4.1 Equivariant Hopf Bifurcation Theorem 

As we've seen, the equivariant Hopf theorem is a transformation of the standard Hopf 

bifurcation theorem in the presence of symmetry, that means, the standard Hopf theorem 

still serves as the basis of this transformation, where only some conditions and judge- 

ments are addedmodified for adapting the new situation of symmetry. Let's follow the 

modification in the next compressed statements. 

The two most important hypothesis for standard Hopf bifurcation theorem to occur 

is, the Jacobian matrix of an ODE at (O, O), i.e., (df )(o,o) should have apair ofpurely 

imaginary eigenvalues, and these eigenvalues should pass the imaginary axis with 

nonzero speed. 

e However, in the presence of syrnrnetry, standard Hopf bifurcation theorem cannot 

be used directly since the syrnrnetry may force the Jacobian matrix of this system 

to have multiple eigenvalues, or in some cases, even have a11 eigenvalues real. The 

latter case corresponds to steady-state bifurcation which doesn't lead to stable pe- 

riodic oscillations. For the first case, the symmetry will also potentially sirnplie the 

analysis by placing restrictions on the form of the mapping f .  Roughly speaking, 

we can always find a i'-invariant subspace of $In which is r-simple, this subspace 

cornmutes with the isotropy subgroup (or say, syrnmetry subgroup) which is a sub- 

group of symmetry group r ,  and the subspace on which the isotropic subgroup acts 

is thus called the fixed-point subspace. 

On this local fixed-point subspace, the Hopf bifurcation theorem can be used and a 

unique periodic solution can be obtained. 

In the sense of the gait pattern research, we have the following conclusion. 

Equivariant Hopf bifurcation theorem is a formal mathematical method which can 

generate almost a11 kinds of gait patterns with some kind of symmetry, observed or 

unobserved [43]. 



Through syrnrnetry-breaking Hopf bifurcation, gait transition can be naturally mo- 

delled and various isotropy subgroups may be obtained representing the primary 

and secondary, etc., gaits. 

A.4.2 SERISMER Strategies 

The main features of SER can be summarised as: 

o SER is a fully distributed anonymous algorithms, each of the nodes in the system 

only has knowledge of itself and its neighbors, just a single output message is sent 

from each node to a11 of its neighbors. 

The interna1 operation mechanisms guarantee that SER is a deadlock- and 

starvation-free ssheduling. 

The amount of concurrency of a definite period is defined as yo (w) = m / p .  

SER is signal-driven and tirning-independent, each node doesn't depend on any 

global clock in order to execute SER. 

SMER is a generalization version of SER where each node of the system can have a 

different operating frequency. 

Each node in the system has a particular reversibility r; associated with it, in order 

to operate this node must have at least ri edges directed to itself from each of its 

neighbors and r; edges are reversed by this node upon operation. 

The number of edges between any two neighboring nodes i and j is given by e;j = 

r; $ rj - gcd(r;, r j ) .  It garantees that neither two neighboring nodes can operate 

simultaneously nor can they both refuse to operate [35].  



Apêndice B 

Review on Neurolocomotion 

B.1 Introduction 

There are many levels in which one can model neural activity from detailed models of 

single ionic chame1 and synapse up to "black box" models used to understand psycho- 

logical phenomena. An "intermediate" approach to modeling is to use neural networks 

where each neuron is represented by a low-dimensional dynamical system. Most of the 

familiar works on neural nets treat their behavior using methods from statistical mecha- 

nics. In those models the connectivity between elements has no topological or spatial 

structure [3 11. Another topic on the generation, transition and control of neural rhyth- 

mic patterns, which is also developed from the biological point of view and involved in 

the correlation of central newous system (CNS), central pattern generators (CPGs) and 

muscle motor systems, has gradually gained more and more research interest. The main 

difference between Oscillato y Neural Networks and ordinary Neural Networks (NN) is 

that, the interactions between elements of oscillatory neural networks have some topolo- 

gical structure while NN, as mentioned, are not required to have. So, it determines that 

the research approaches for neural oscillatory networks will be somewhat different from 

that of NN's in the sense that, neural oscillatory networks are analyzed using more techni- 

ques of dynamical systems, e.g., dynamical pattern formation for the behavior of spatially 

and temporally organized neuronal structures. Many other techniques, for instance, bifur- 

cation methods, analytic solutions and perturbation methods are widely applied to these 

models. 

Since the biological rhythrnic oscillation is a key point in neural oscillatory networks, 

in this appendix the most famous biological oscillator models are presented and discus- 



sed in their formal sense, together with some numerical simulations in the following sec- 

tion. In Section B.3 some forrner, different research approaches on animal locomotion 

are discussed and commented. In Section B.4, a general gait pattern model based on 

spatio-temporal symmetry group theory is introduced and the relation between this gene- 

ral model and our realization-oriented model is implied. At last, the conclusion of this 

appendix is given in Section B. 5. 

Some Canonical Oscillation Models 

The biological CPGs, which are usually conceived and designed as a mechanism of cou- 

pled oscillatory systems despite that current neurophysiological techniques are still una- 

ble to isolate them from the intricate neural connections of complex animals, are wide- 

ly believed as the pattern source and movement engine for human beings and animals 

[50][78][60], just like an oscillator is the fundamental component for an electronic circuit 

to operate. In order to make further neurolocomotion research, it's indispensable to have 

some background knowledge on modern oscillation theory, which is an important bran- 

ch of dynamical system theory. In this section, severa1 important oscillation models are 

outlined in the chronological basis, with the numerical package XPPAUT developed by 

Ermentrout [32]. A11 the numerical simulations are conducted with fourth-order Runge- 

Kutta numerical integration method. From these models, we can also perceive that only 

Wilson-Cowan model emphasize on the interactions between neuronal populations which 

thus induce oscillations, the other neuronal oscillator models a11 consider oscillations as 

an endogenous property of a pacemaker neuron. 

B.2.1 Van der Pol's Oscillation Model 

In 1926, Van der Pol was involved in the study of oscillations in vacuum tube circuits, he 

thus proposed a differential equation to describe nonlinear "relaxation oscillators" phe- 

nomena as he observed, according to the Kirchhoff's voltage and current laws. This 

equation, which is called after his name, was intended rather to represent the qualitati- 

ve properties of a wide class of physical oscillators than to give the accurate solutions 

fit to curves obtained from such oscillators 1341. Van der Pol model is usually used as 



a general-purpose oscillator model which may show stable relaxation oscillations. This 

kind of oscillator may take various mathematical forrnats, the following is an unforced 

forrnat of Van der Pol's ordinary differential equations. 

where E controls the degree of "relaxation". 

It is convenient to study the characteristcs of Van der Pol oscillator through the phase 

portrait, the model's chatacteristics are shown in Figure B. 1 (a) (d) to Figure B.2(a) (d). 

In the cases of two different values of the parameter E: a small value of 0.2 and a large 

value of 6.0, the phase portraits show that there is a unique closed orbit called lirnit cycle 

which attracts a11 trajectories starting off the orbit. For É = 0.2 the limit cycle is a smooth 

orbit similar to a circle. For the large value of É = 6, the limit cycle is distorted, as shown 

in Figure B.2(a), in this case, the system performs just like a switch, i.e., it switches from 

one state suddenly to another state as one threshold is reached, hence oscillations with 

this feature are usually referred as relaxation oscillations. 

From the phase portrait of these two cases, we can already imagine the situation shown 

in Figure B.l(c) (c l )  and Figure B.2(c) (d), i.e., the sinusoidal-like oscillation can be 

transferred to relaxation ocsillation as the parameter É becomes large enough. Also from 

this example, we can see that the limit cycle of the Van der Pol oscillator is stable, in the 

sense that a11 trajectories in the vicinity of the limit cycle ultimately tend toward the limit 

cycle as t + oo [55] .  Besides the stable limit cycle, there exists one unstable equilibrium 

point for each case of this VDP oscillator, since the eigenvalues for small and large É case 

are 0.100000 f i0.994987 and 0.171573,5.828427, respectively. 



Figura B. 1 : (a) .  Phase portrait - the limit cycle, Figura B.2: ( a ) .  Phase portrait - the limit cycle, 
inner and outer trajectories with E = 0.2, the little inner and outer trajectories with E = 6, the little dot 
dot is an equilibriumpoint. is an equilibrium point. 

Figura B. 1 : ( b )  . Phase portrait - the flow of trajec- Figura B.2: (b) . Phase portrait - the flow of trajec- 
tories denote the system dynamics. tories denote the system dynamics. 
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into the environment. The two procedures, namely, the action potential and refractory 

period, may repeat as the excitory and inhibitory states of membranes switch again and 

again. 

In HH model, the four-dimensional (V, m, h ,  n ) ,  i.e., three conductances and one 

membrane potential, represent three ionic channels and another chame1 denoted by the 

membrane capacitor, respectively. Hodgkin and Huxley paid much more emphasis on the 

deduction of sodium, potassium and leakage conductances, whose analysis and calcula- 

tion constitute a crucial part of their original contribution. In order to explain the experi- 

mental data of conductance variation with theoretical formula more accurately, e.g., how 

to simulate the beginning rise delay of potassium conductance associated with depolari- 

zation. Three variables m, h ,  n were assumed to form an ODE group, as following. 

where 
- dn = an(l - n)  - ,&n, 
- " - am(l - m) - ,í?,rn) 
$1 
- ah(l - h )  - Phh) 

v+10  a, = 0.01(V + 10)/(explõ - 1)) 
,O, = 0.125ecp(&), 

V+25 a, = O.l(V + 25 + /(expl,  - I ) ,  
Pm = 4exp($),  

v 
ah = O.O7exp(,,), 

V+30 
Ph = l / (expT + 1).  

Here I is the total membrane current density, V is the displacement of the membrane 

potential from its resting value, CM is the membrane capacitance per unit area which is 

assumed constant, m, n, h are the assumed variables in order to achieve required nonli- 

nearity matched with the experiments. 

B.2.3 Fitzhugh-Nagumo Oscillation Model 

The above Van der Pol and Hodgkin-Huxley models were studied by Fitzhugh and Nagu- 

mo et al. in 1961 and 1962, respectively. Initially called by Fitzhugh as the Bonhoeffer- 

van der Pol (BVP) model in his original contribution, now this popular neural dynamics 



model is named after hirn. Just like Van der Pol's model which is a qualitative repre- 

sentation of a wide class of oscillators, the more general FN model, in the same spirit, 

represent qualitatively a wider class of nonlinear systems in the sense that it can show 

a stable state and threshold phenomena besides stable oscillations. On the other hand, 

analyses of Fitzhugh and Nagumo et al. on the HH equations have shown that the four 

variables account for two essential factors: excitability, representing all-or-none response 

to stimulation, and refractoriness, which is, loss and progressive recovery of excitabili- 

ty following each action potential. Thus they reproduced, qualitatively, the dynamics of 

the HH equations by two-variable systems representing the interaction of the two main 

factors. As Fitzhugh argued, if the HH model is projected from the four dimensions to a 

plane on some conditions, it has the same characteristics and physiological explanation 

as FN mode1[34][61][57]. 

By adding terms to the Van der Pol equations, Fitzhugh obtained the original FN 

equations as following: 

where 

Here a, b, c are constants, z is stimulus strength, a variable corresponding to applied 

membrane current I in the HH equations. If a = b = z = 0, then we can retrieve Van 

der Pol's equation from FN model. If we fix the constants as required and set different 

stimulus values, the different membrane potential phenomena, i .e., the stable state and 

stable limit cycle with threshold phenomena, can be achieved as in Figure B.4 and B.5. 

If we set the parameters as a = 0.7, b = 0.8, c = 3, and stimulus impulse z = -0.2 

as the initial conditions, we can get Figure B.4. Since the stimulus shock is positive or 

not large enough in negative value, it couldn't pass a hidden threshold-like value which 

can drive the system to oscillate stably, so this system now has a stable equilibrium point 

which attracts a11 trajectories to it. The eigenvalues of this system are -0.350448 f 

20.996484. If we change the stimulus impulse to z = -0.4 and keep the other parameters 

unchanged, then Figure B.5 is obtained. Now the equilibrium point is no longer stable 



but instead, we can get a stable limit cycle, which means there exists a stable oscillation. 

In this case the eigenvalues of this system are 0.132638 f ~0.916818, which also proves 

the unstability of the equilibrium point. As Fitzhugh argued, in the stable limit cycle 

condition, there exists a separatrix line in the phase portrait, where a11 trajectories near this 

line will diverge from it dramatically to the left or right, producing an apparent all-or-none 

response, and lead to two different physiological regions named active and refractory 

which entrains the threshold phenomena. The intemediate values in this separatrix line 

means the indetemined states. From the phase portrait of Figure B.5 we can observe the 

separatrix and threshold phenomena clearly. 



Figura B.4: ( a ) .  Time domain diagram for equili- 
brium point condition of FN model. Figura B.5 : ( a ) .  Time domain diagram for limit 

cycle condition of FN model. 

Figura B.4: (b) .  State space diagram for equili- 
brium point condition of FN model, where the circle 
denotes the equilibriumpoint. 

Figura B.4: (c). The portrait of flow of trajec- 
tories which approach asymptotically to the equili- 
brium point. 

Figura B.5: (b) .  State space diagram for limit cy- 
cle condition of FN model. 

Figura B.5: (c ) .  The portrait of flow of trajecto- 
ries which approach asymptotically to the limit cy- 
cle, with double density of portrait for clearity. 



B.2.4 Morris-Lecar Oscillation Model 

Twenty years later C. Morris and H. Lecar studied the voltage oscillations in the barnacle 

muscle fiber and they proposed a seminal model which has only two voltage-dependent 

and non-inactivating conductances corresponding an inward Ca2+ current and an outward 

I{+ current. They argued that this simple conductance system is mathematically sufficient 

to predict much of the barnacle fiber behavior and further more, it allows correlations with 

the biophysical properties of real neurons [60]. The Morris-Lecar oscillation model, from 

some viewpoint, can be treated as a Fitzhugh-NagumoIHodgkin-Huxley hybrid, many 

researches on neuronal dynamics have been conducted by means of adopting this mo- 

del, which is with both reasonable neurophysiological background and handy numerical 

solutions [66][69] [76]. The ML oscillator can be described by the following equations. 

where 
(.-v1 ) m , ( v )  = 0.5[1+ tanh-] 

v2 

w,(v) = 0.5[1 + tanh-] 

' r w ( v )  = 
1 

c o s h o  
2v4 

In Morris and Lecar's analysis, if any conductance of the two-conductance system 

is blocked, no oscillations will be observed, only the transient, simple RC-like response 

or bistability with the threshold phenomena, responding to different magnitude of the 

stimuli, can be seen. When both conductances are recruited simultaneously, then small 

stimuli produce small, essentially passive depolarizations, but once a threshold voltage is 

reached, oscillations appear [60]. Roughly speaking, there are two types of oscillations 

underlying the ML oscillation system, namely, beating and burst, the alternative between 



them depends on the choice of parameter E. If e << 1, the second equation (B.5) is 

much slower than the first one (B.4), and the oscillator will approach the relaxation limit, 

which entrains beating; otherwise, burst will appear. 

B.2.5 Wilson-Cowan Oscillation Model 

Wilson and Cowan (1972) derived the system of equations for the time coarse-grained 

excitatory and inhibitory activities in a homogeneous one-dimensional neuron population. 

In their model, it is assumed that the neurons become activated if their post-synaptic 

potentials exceed thresholds and if they are also sensitive (or nonrefractory). In their 

original, small network model, there were two populations of neurons, excitatory and 

inhibitory. The following are differential equations defining the average dynamics of this 

model. 

where Fe and F; are the sigrnoidaljring rate functions defined by F as following. 

F = 
1 

1 + exp[-a(x - O)] 

Here, E(t) is the proportion of excitatory cells firing per unit time at the instant t 

and I ( t )  is the proportion of inhibitory cells firing per unit time at the instant t, w is 

the strength of each synapse, .r,, r;, r, and r; are the constant parameters, a and 8 are 

parameters controlling the shape of sigmoidal input-output function as a determining the 

value of the maximum slope while O giving the position of maximum slope, sl and sz are 

the externa1 inputs. 

The interesting aspect of this model lies in that, it is different from the rest models 

illustrated since it is derived from, and norrnally used for the neuron populations rather 

than single neuron. So, it deals with the interconnections among neurons instead of the 

membrane potential analysis. If a11 the parameters are chosen correctly, there will be a 

stable limit cycle phenomenon emerging as shown in Figure B.6 and B.7, where it's worth 

noticing that E (t) - t relation denotes the exciting proportion of excitatory subpopulation 

at each instant [78] [54] [3 11. 



Figura B.6: The E-T relationship - the exciting proportion of excitatory subpopulation at each instant. 

Figura B.7: The E-I phase portrait of a flow of trajectories shows a stable limit cycle phenomemon. In 
this simulation the parameters are chosen as: wll  = 8, wi2 = -6, = 10, = -1, T, = 1, Ti = 
3, SI = -2, sz = -6, a, = ai = 1, O1 = 63 = O, r, = ri = 0. 

B.3 State-of-the-art on Neurolocomotion 

Legged animals usually adopt various gait patterns in their terrestrial locomotion for va- 

rious reasons, e.g., avoiding dangers, adapting terrain, or just obeying the willingness of 

changing gaits. Although many biological experiments have shown that generation of 

animal's gait patterns is the result of interactions between CNS and feedback of exter- 

na1 stimulations, which induces popular adrnission of the existente of CPGs, the neural 

mechanisms underlying CPGs are still not well understood. One of the crucial questions 

undetermined is that, whether a unique CPG is sufficient for governing switching among 

various gait patterns or different CPGs are required to correspond to different gaits in the 

real-life biological systems[24]. Until nowadays many models have been suggested on 

CPGs mechanism of vertebrate and invertebrate anirnals, for instance, biped gait model 

[10] [71] [72], quadruped gait model [67] [21] [20] and hexapod gait model [I I] [22], 

most of them follows these two lines and based on the coupled, nonlinear oscillator me- 

thod for modeling. 



B.3.1 A Neuromodulatory Approach 

As a model for legged-locomotion control, Grillner proposed that each limb of an animal 

is governed by a separate CPG [44] [45], and that interlimb coordination is achieved th- 

rough the actions of interneurons which couple together these CPGs. With this scheme, 

gait transitions are produced by switching between different sets of coordinating inter- 

neurons, i.e., a locomotor CPG is reconfigured to produce different gaits. 

Grillner's strategy has been adopted, in spirit, by several CPGs modeling studies. 

For instance, Bay and Hemami [I01 used a CPG network of four coupled van der Pol 

oscillators to control the movements of a segrnented biped. Each limb of the biped was 

composed of two links, and each oscillator controlled the movement of a single link. 

Bipedal walkmg and hopping were simulated by using the oscillators' output to determine 

the angular positions of the respective links. Transitions between out-of-phase and in- 

phase gaits were generated by changing the nature of the interoscillator coupling, e.g., 

the polarities of the network interconnections were reversed to produce the walk-to-hop 

transition. 

This approach is, in principie, physiologically reasonable. For instance, the notion 

that supraspinal centers may cal1 on functionally distinct sets of coordinating interneu- 

rons to generate different gaits is plausible but not yet experimentally established. In 

addition, from a different but relevant perspective, it has been shown that rhythrnic neu- 

ronal networks can be modulated, e.g., reconfigured, through the actions of neuroamines 

and peptides, and thereby they are enabled to produce several different motor patterns 

i 641. 

B.3.2 A Synergetic Approach 

Synergetics deals with cooperativephenomena. In synergetics, the macroscopic behavior 

of a complex system is characterized by a small number of collective variables, which in 

turn govern the qualitative behavior of the system's components [24]. 

Schoner and colleagues used a synergetic approach in a study of quadrupedal locomo- 

tion [67]. They analyzed a network model that was made up of four coupled oscillators, 

each oscillator represented a limb of a model quadruped. The phase difference among 



limbs were used as collective variables to characterize the interlimb coordination patterns 

of this discrete dynamical system. Gait transitions were simplely modeled as phase tran- 

sition, which could also be interpreted as bifurcations in a dynamical system. 

This approach is significant in that it relates system parameter changes and stability is- 

sues to gait transitions. Its primary weakness, however, is that the physiological relevance 

of the relative-phase coupling terms is unclear. 

B.3.3 A Group-theoretic Approach 

According to the arguments of Collins [24], the traditional approach for modeling a 10- 

comotor CPGs has been to set up and analyze, either analytically or numerically, the 

parameter-dependent dynamics of a hypothesized neural circuit. Motivated by Schoner 

et al.3 works, Collins et al. deal with the CPGs dynamics from the perspective of group 

theory [2 11 [22]. They considered various networks of symmetrically cougled nonlinear 

oscillators and examined how the symmetry of the respective systems leads to a general 

class of phase-locked oscillation patterns, with this approach the transitions between dif- 

ferent patterns can be modeled as symmetry-breaking Hopf bifurcation. It is a common 

sense that, in the standard Hopf bifurcation, the dynamics of a nonlinear system changes 

as some parameter is varied, it means that an old limit cycle (corresponding to a perio- 

dic solution) may disappear and severa1 new limit cycles may appear, or saying, as the 

symmetries reach the least level, the chaotic phenomena may arise theoretically. 

The theory of symmetric Hopf bifurcation predicts that symmetric oscillator networks 

with invariant structure can sustain multiple patterns of rhythmic activity. It emphasize 

that one intact CPG architecture is sufficient for host a11 possible pattern changes, whi- 

ch is different from the aforementioned neuromodulatory approach. Also different from 

Schoner et al.'s typical synergetic approach, which only analysized the symmetries and 

phase-relationship of observed gait patterns, the group-theoretic approach is a method wi- 

th the capability of prediction, i.e., it will deduce a11 symmetry types and then relate them 

to possible gait patterns [2 11. 

This approach is significant in that it provides a nove1 mechanism for generating gait 

transitions in locomotor CPGs. Its primary disadvantage, however, is that its model- 

independent feahires can not provide information about the interna1 dynamics of indivi- 



dual oscillators. 

A General Gait Pattern Model 

In order to avoid the conjugate syrnmetry groups after bifurcations, a general network with 

4n cells was proposed by Golubitslq et al. [43] to denote the locomotion symmetries 

of 2n-legged animals, with the capability of generating the appropriate kinds of gaits, 

where n is the number of pairs of legs. This biologically inspired model is shown to be 

a potential prototype for almost a11 observed gaits in quadrupeds, hexapods and multi- 

legged animals such as the centipedes. In Figure C.1 (a) and (b), the network contains 

2 cycles of 2n cells, labelled with 1,3,5, .. . ,4n - 1 and 2,4,6, . . ., 4n respectively. Each 

circle corresponds to the identical cells, the unidirectional lines denote the identical, single 

couplings running from cell i to cell i + 2(mod4n) and the bidirectional lines denote the 

identical reciprocal couplings between cell 2i - 1 and 2i(mod4n). Only 2n cells of the 

top level are connected with the legs, the other 2n cells of the bottom level are assumed 

to be the auxillary or supporting part of the top level CPGs model, it is interesting to 

see that this architecture is analogous with the animal body if we imagine the top level 

cells as the animal legs and the whole bottom as the animal back. In the next appendix 

we will confirm, theoretically and experimentally with PDP algorithms, that Golubitsky 

et al.'s proposal, i.e., the strategy of 4n-cells for 2n-legged animal, is meaningful and 

implementable for gait research and robot control purpose. 

The traditional method for treating the above coupled system is that, suppose each 

cell can be expressed by its n-dimensional state variables X; (t ) = (x;( t ) , x;2 (t ) , . . . , xl(t)), 

where Xi(t) E Pn, then a large-scaled ODE group , e.g., $ = f (x, A), f : Pn x P + Pn, 

can be formulated according to the reciprocal couplings among the neighboring cells 

andlor their interna1 dynamics, depending whether the cells themselves are endogenous 

or not (for the possible oscillatory formula, see Section B.2 of this appendix). In this 

approach, although the possibly existed symmetries do influente the solutions of ODE by 

means of forcing the multiple eigenvalues to occur, we don't need to process the symme- 

tries explicitly by following the classical solution manners. However, since this approach 

is strongly model-dependent, in the sense that different ODE model must be constructed 



on different types of CPG structure, the number of state variables, and coupling types, 

etc., in some cases, some other approaches can be used as alternatives. 

From the standpoint of equivariant Hopf bifurcation theory, the most important aspect 

of the network is its spatio-temporal symrnetry group, in our case, it is 

The cyclic subgroup ZZn cycles corresponding pairs of cells around their respective 

loops, and the subgroup Z2 interchanges left and right cells in corresponding positions. 

More clearly, in group notation, Zzn is generated by 

and Z2 is generated by 

After permutation, the cell's characteristics and the coupling type should be preserved. 

Here we will only exploit the spatial symmetry explicitly since, if any periodic solution 

arising via Hopf bifurcation is transformed by an element of I', then the result is equiva- 

lent to a phase shift on that solution. As Golubitsky et al. argued, this general network 

is model-independent, in the sense that the symmetries of any legged animals çan be des- 

cribed by symmetry group r ,  or more precisely, the symmetry subgroup C C r ,  which is 

broken from r. For different animals with different legs, it's enough to modify the num- 

ber of cell pairs without changing the architecture of the network itself. Before we could 

go further, it's indispensable to know how the general gait model can undergo the bifur- 

cation (including equivalent Hopf bifurcation and, possibly the steady-state bifurcation) 

to generate various gaits, here Golubitsky et al's original contribution will be followed. 

Suppose as before that each cell has m-dimensional state space !Rm, then the total state 

space owned by Golubitsl#s coupled network is 

and symrnetry group acts on this space by permuting the 4n components (each a 

vector of dimension m). Until now we know that for a behavioral transmuting system with 



symmetry group bifurcates to let periodic behavior (with remained syrnmetry described 

by symmetry subgroup C C r) to occur, it is crucial for Jacobian matrix to have a pair 

of simple purely imaginary eigenvalues. In many cases, although not all, we can get 

multiple imaginary eigenvalues instead of the simple ones in the presence of action of 

symmetry group, thus a degenerated Hopf bifurcation is formed. According to the spirit 

of equivariant Hopf bifurcation theorem, the state space U on which symmetry group 

acts should be divided into the irreducible subspaces in one of the two forms shown in 

"Equivariant Hopf Bifurcation Theorem" of Subsection A.2.2, i.e., the divided subspace 

should be r-simple. Restricted in these subspaces, the standard Hopf bifurcation theorem 

can be utilized to obtain periodic solutions which are different from subspace to subspace, 

since "I'-simple" is somewhat equivalent to "simple eigenvaluem[42]. 

For the purpose of breaking space U into real irreducible subspaces, as a first step U 

is complexified to get a complex space 

where V is the sum of one-dimensional irreducible subspace over 3 ,  these subspaces 
2ai ni 

are where O 5 j 5 2n - 1 and k = 0,1. To define V,k, let [ = e% = e; be a 

primitive 2nth root of unity. Then Kk is spanned over S by 

so V,k can be written as 

obviously V,k is a full collection of one of the conesponding internal state variables 

of the 4n cells on S. 

Observe that for an internal state variable of a cell on 3 ,  i.e., vjk, the action of the 

syrnmetry group r is 

Ipsilateral symmetry w : Vjk H Jivjk 

k Bilateral syrnmetry K :  vjk ++ (-1) vjk 



so that the subspaces V,k are i'-invariant. 

For simple discussion, let's only consider one side rotation Z2,(w) since double si- 

des subject is the same situation. Suppose V, = { J j l l O  < j < 2n - I), we'll have the 

complex portrait in Figure B.8. Clearly there are two points where no imaginary eigenva- 

lues to occur, hence only steady-state bifurcation rather than Hopf bifurcation can happen 

when the eigenvalues pass imaginary axis with nonzero speed. The Hopf bifurcation will 

happen for the rest region with imaginary eigenvalues as they cross the imaginary axis 

with nonzero speed and various periodic oscillation modes will be achieved [42][43]. 

Figura B.8: Demonstration diagram of the eigenspace. (a) the Hopf bifurcation region and steady-state 
bifürcation region, (b) demonstration of the eigenvalues crossing imaginary axis with local dynarnics of 
Hopf bifurcation, i.e., periodic oscillation occurs and vanishes. 

So, we can get: 

V,lc = (1, (-l)k), when j = 0, 

4, = (-1, (-I)"'), when j = n. 

The conjugate eigenvalues, i.e., v j k  $ van-j,k, exist when 1 5 j 5 n - 1. 

From aforementioned induction, the corresponding decomposition of U into irreduci- 

bles is into the representations Ujk where 

As a summary, we can conclude that, for m = l(each cell has only one interna1 state 

variable) condition as induced above, the network equations can undergo steady-state 

'1t's worth noticing that, Hopf bifurcation means the phenomena of periodic oscillations arise or vanish 
after the bifurcation point, under some conditions [58]. We can also see from Figure B.8(b), the left half 
space will undergo the emergence of periodic oscillation while the right half of vanishing procedure, both 
are Hopf bifurcation. Following Golubitsky's convention of calling emergence of periodic oscillation as 
symmetry-breaking Hopf bifürcation, in the gait research, we can thus cal1 the vanishing of periodicity as 
symmetry-collecting Hopf bifurcation. 



bifurcations corresponding to the eigenvalue subspaces Uoo , Uno, Uoi , Uni ; and the Hopf 

bifurcation corresponding to eigenspaces for which j = 1, . . . , n - 1. For m > 2, we can 

have at least, 

Hence the condition of i'-simplicity is satisfied for vjk, ( j  = O ,  n) , that is, the network 

can undergo Hopf bifurcations corresponding to any of the subspaces UJk when m > 1. 

It is fortunate to know that the standard model equations for neurons have m 2 2 [25], so 

only Hopf bifurcation will be considered in any irreducible subspace later. And, with the 

stated induction and theoretic background in mind, it is always possible to simplify the 

complex bifurcation problem with symmetries into the pure group theory calculations in 

our gait pattern research [2 11. 

B.5 Conclusion 

Through the state-of-the-art introduction of this agpendix, we can get a contour knowled- 

ge of the emergent research results and interests on rhythmic pattern neuronal networks, 

or saying, oscillatory neuronal networks, in which oscillations are the major features 

[12]. Based on this understanding, it is impossible to study the biological pattern forma- 

tion system without understanding the biological oscillator models. Generally speakiizg, 

from the viewpoint of characteristics of solutions, a11 the four oscillator models (including 

Wilson-Cowan neuro-population model) are the qualitative descriptions of neuronal mo- 

dels which more focus on the model's physiological explanation except Hodgkin-Huxley 

model, which is a numerical solution, or more exactly, the quantitative proximation me- 

thod, in the sense that it emphasizes on the simulated accuracy of stimulated response 

curves of voltage-dependent chame1 conductances. From the viewpoint of generalities, 

van der Pol's oscillator model is a more multi-adaptive one since its foundation is a ge- 

neral oscillation circuit, whereas the other four are a11 based on the specific neurophy- 

siological model. In some more details, FN oscillator model is constructed, purely from 

the viewpoint of HH and VDP models instead of some concrete physical model. In or- 

der to strenghen the physiological significance of FN model, it can be considered as the 



reduction form of HH model [33]. A Fitzhugh-NagumoIHodgkin-Huxley hybrid was for- 

mulated and studied by Morris and Lecar, and they insisted that the relaxation kinetics 

is first order for simplicity consideration, besides they also argued that precise kinetics 

is not essential for the description of a11 excitation effects [60]. So we can also treat ML 

model as the reduction of HH equation in the sense that, HH model provides an exhausted 

numerical approximation of the experimental results of potassium and sodium conductan- 

ce while ML model achieve the conductances from the chame1 open levels. It is worth 

noticing that these oscillator models may share some common features and in some con- 

ditions they may be comrnutable, e.g., a system of mutually coupled van der Pol equations 

can be derived from the Wilson-Cowan model which is for the dynamics of a number of 

excitatory and inhibitory neural subsets [54]. 

It is reasonable to assume that an intact locomotion system consists of three compo- 

nents, i.e., the central nervous system, centralpattern generator and motor system, where 

the motor system may be constituted by the aforementioned oscillator models. As to the 

CPGs, which plays as a crucial component, although its physiological and anatornical ex- 

planation is quite plausible, many approaches have been proposed for its functionalities, 

especially from the macroscopic viewpoint without exploring detailed dynamical featu- 

res. Among various methods introduced, this research will continue on the assumption 

of that, a unique CPG architecture can host the integral types of organic rhythrns, e.g., 

there is only one CPG architecture corresponding to locomotion, respiration, heartbea- 

ting, etc., respectively. With this assumption, this research incorporate a general model 

introduced by Golubitsky et al. [43] and engages in developing a novel, analogous gait 

prediction and realization method based on the hybrid of parallel and distributed theory 

@e., SERISMER), dynamical system and group theory, also it put some emphasis on the 

digital circuit simulation and implementation of the real life system. 



Apêndice C 

Constructing a Rhythmic Pattern 
Generator for Hexapodal Animals 

C.1 Introduction 

Many research approaches towards modelling mechanisms of coupled neural oscillations 

are mainly based on the dynamical system theory[lO] 1671 [85]. Thus most works must 

be initiated by a specific mathematical dynamic model on the real life systems, i.e., these 

model-dependent analyses are only efficient for a specific system, and meanwhile they 

usually leave a gap between research and realization. An alternative method, which is 

model-independent by employing graph dynamics owned by a11 graph topologies, has 

been proposed to model the collective behavior of purely inhibitory neural networks [82]. 

As we'll describe, Scheduling by Edge Reversal and its generalization, Scheduling by 

Multiple Edge Reversal algorithms can be applied to predict or reproduce the interesting 

behaviours of many biological oscillatory neuronal networks, especially central pattern 

generators (CPGs), just assuming some form ofpostinhibitory rebound (PIR)[77] at the 

neuron's model level. 

It'll be shown how different biological building blocks under SER or SMER can be 

used to model biological motor systems much more simply and effectively. In order to 

illustrate the new approach, cockroach's three rhythmic gait patterns are chosen as case 

study in this thesis. Nevertheless, it is suggested that the technique can be extended to 

reproduce most invertebrate and vertebrate rhythmic movements provided that they can be 

described topologically. The whole types of building blocks can be hopefully synthesized 

into custom hardware (ASICs) with the help of FPGA technologies. So, a general-purpose 



robot can be easily constructed with this control core if a suitable hardware platform with 

some degrees of freedom is supplied. 

This appendix is organized, mainly, in four sections. Section (7.2 is a typical collection 

of the hexapodal animal's gait patterns and some analysis on their SERISMER building 

block construction. Section C.3 includes some crucial comments on custom hardware 

design and simulation. A vivid, computer-based hexapodal gait experiment is offered in 

Section (7.4, with three typical gaits, i.e., fast, medium and slow speed model realized. At 

last, a prelirninary theoretic research on gait generation and transition, based on the non- 

linear dynamics of neural oscillator theory, is described and some tentative conclusions 

are given. 

C.2 Hexapodal Gaits and Corresponding Building Blo- 
cks 

C.2.1 The Architecture of Hexapodal Gaits 

Out-of-Phase (Walking and running) and in-phase (hopping) are the major characteristics 

of observed gaits in bipedsl, while in quadrupeds, more gait types were observed and 

enumerated by Alexander [2], as walk, trot, pace, canter, transverse gallop, rotary gal- 

lop, bound and pronk. Unlike bipeds and quadrupeds, the locomotion of hexapods can 

have more complicated combinations of leg movements, however, despite the variety, so- 

me general symmetry ndes should still be obeyed and remained as the basic criteria for 

gait prediction and construction, for instance, it is a generally accepted agreement that 

multi-legged (normally more than six legs) locomotion often shows the traveling wave 

phenomena sweeping along the chain of oscillators [2 11 [43]. As descriptively developed 

by Wilson, two assumptions on predicting the model of insect gaits are [79]: 

o Waves of fonvard leg movement run from posterior to anterior, no leg moves 

forward until the one behind is placed in a supporting position. 

o Contralateral legs of the same segment are half a period out of phase with one 

another. 

'As we discuss the gait types, we just concern about the more "natural" ones and ignore those which 
can be achieved through training, e.g., we treat the human hopping with only one leg as a typical example 
of gait gained through training. 



If the detailed phase correlations among the six legs of an insect are ignored, the lo- 

comotion of an hexapodal insect, saying a cockroach, can be classified roughly as fast, 

medium and slow speed type, respectively. However, if those detailed informations are in- 

cluded, then some enumerating types can be found in Golubitsky et al.'s manuscript [43], 

it's easy to demonstrate that SEWSMER scheme serves well for both cases, just recal- 

ling that this general methodology is model- and topology-independent. Here we confirm 

to follow the aforementioned research line of a unique CPG mechanism for hosting an 

integral spectrum of organic rhythrns, and design an architecture for locomotion purpose. 

Golubitsky et al. proposed that in order for a syrnrnetric network of identical cells 

to reproduce the phase relationships found in gaits of a 2n-legged animal, the number of 

cells should be (at least) 4n [43], with each leg corresponding to two cells for behavior 

modelling. This conclusion is found matched with our inhibitorily coupled neurons' re- 

presentation for each leg, organized under SEWSMER scheme. Followed Golubitsky's 

schematic modification, we can continue to get the architecture-isomorphic substitution 

of their CPG networks and utilize this model throughout our macroscopic/microscopic 

research. 

left riqht 
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back 

f ront 

n left ' 1 right : 

back 

Figura C. 1 : The isomorphic transition of a general multi-legged locomotive, driving motor architecture, 
where diagrams (a) to (b) are reproduced from works of Golubitsky et al., i.e., they folded up the (a) network 
to eliminate long-range connections and created a structure with repeated modules. The diagrams (b) to (c) 
are obtained based on the sarne structural idea which extends the left and rightparts to get another equivalent 
network. 



It may be a misunderstanding that the coupled limbs in the insects will reciprocally 

interact directly because of the straight mechanical viewpoint as shown above. Howe- 

ver, some further investigation will give evidences[9] that they don't interact, or at least 

not as much as people may think, they are a11 controlled by CPGs only, not themselves 

interactively. For instante, if they depend on each other so much, it's hard to explain 

the movements of a leg with the other amputated. So it appears clear that through the 

functionalities of CPGs, the flexor and extensor neurons will construct a relatively inde- 

pendent oscillatory system representing the possible behavior of one leg and the interlimb 

phase relationship will exist automatically. So next general architecture can be achieved 

naturally. 

The locomotion architecture may generally consist of three parts, i.e., the oscillation 

system as driving motor, CPGs as pattern source and CNS as comrnand source. This ar- 

chitecture can thus be constructed by the model with reciprocally inhibitory relationship 

between the so-called flexor and extensor motor neurons in each leg, which is signified by 

coupled gross lines in Figure C.2. The CPGs, as the core of this mechanical architecture, 

convert different willingness signals from CNS to the bioelectronical-based rhythrnic sig- 

nals for driving the flexor and extensor respectively. These motor neurons are essentially 

relaxation oscillators, i.e., a pair of flexor and extensor forms a bistable system in which 

each neuron switches from one state to another when one of its two interna1 thresholds is 

reached and back when another threshold is reached again. 

In order to facilitate the circuit implementation of such a complicated biological mo- 

del, we project down only the oscillator system and utilize SERISMER distributed control 

sheme as a partia1 substitution of the mechanism of CPGs, i.e., only the preprogramrning 

ability for rhythrnic generation is simulated while CPGs functionalities of connecting 

CNS and oscillator systems are not able to be substituted by SERISMER scheme. Never- 

theless, through some suitably predefined, static steady states, an approximate Hopfield 

net seems to be organized with some characteristics like self-organization [69]. Since it is 

argued that animal's walking speed is largely determined by the relative firing time betwe- 

en flexor and extensor [63], so the different speed can be achieved by simply adjusting 

the rate of space occupancy of each relaxation oscillator, or namely, choosing different 

types of building blocks for different speed patterns. It is worth observing that this he- 



Figura C.2: An general architecture for legged locomotion. Interconnections between CPG and each 
neuron representing CPG command output and feedback from controlled neuron are denoted by double 
arrow lines; the dashed arrow lines between ipsilateral neurons imply waves of fonvard leg movement 
running from posterior to anterior, no leg moves fonvard until the one behind is placed in a supporting 
position; flexor and extensor are denoted by dotted and undotted circles respectively. 

xapodal model can be suitably extended to simulate the movement of any legged animals 

effectively. 

C.2.2 Constructing Building Blocks for Desired Patterns 

Of long-standing interest are questions about rhythm generation in networks of nonos- 

cillatory neurons, where the driving force is not provided by endogenous pacemaking 

cells. A simple mechanism for this is based on reciproca1 inhibition between neurons, 

if they exhibit the property of postinhibitory rebound (PIR) [77]. Instead of focusing on 

low-leve1 neuronal features, e.g., membrane potential functions, the next step is to choose 

and analyse a representative case study and build a corresponding SER- or SMER-driven 

artificial CPGs network. The three common gait patterns of cockroach, i.e., slow walk, 

medium speed walk and fast walk are investigated. Figure C.3 shows the CPG's mutual 

inhibition structure and corresponding gait phase relationship between six legs. The un- 

derstanding of the changes in topology and interna1 parameters between different gaits is 

inspired by the contribution of P.A. Getting [38], who argued that modulation of building 

blocks can greatly alter network operation, even generate a totally new network. This mo- 

dulation is normally induced by command signals from CNS or the intrinsic characteristic 

of building block itself. 

In the case of cockroach's fast walk pattern, SER could be directly applied to initiate 



Figura C.3 : Mutual inhibition structures and phase relations between six legs, each leg represented by 
one electrically compact nodes, filled circle and its size denote inhibition and its strength (a) Slow walk (b) 
Mediurn speed walk (c) Fast walk. 

oscillation and coordinate the movement of the six legs (see Figure A.6 for reference). 

For the more complicated rhythmic leg movements of slow and medium speed, in which 

the fire of neighbor nodes is not exactly out of phase and some phase overlapping exist, 

first one has to construct the corresponding building block under SMER, then organize the 

artificial CPG network with different building block corifigurations. A graphic expression 

of two typical cockroach gait patterns is forrnulated in Figure C.5. 

From the phase relationship presented in Figure C.3(a) and (b), one can choose a 

suitable configuration from the corresponding firing circulation patterns introduced in 

Figure C.4, for each of the six nodes in the relative speed model, in order to construct 

the six-leg rhythrnic movement shown in Figure C.5 le f t  and right respectively. Then, 

self-organized circulation patterns in cockroach's gait on slow and medium speed can be 

generated by building blocks under SMER. 

Figura C.4: One possible scheme of firing circulation patterns of building blocks, black for fking and 
white for idle. Left four possible configurations for medium speed gait pattern and; right six possible 
configurations for slow gait pattem. 

It is important to understand the concept of a building block, since it is the building 



block which should obey SMER, rather than the constructed model of gait patterns. A 

mutually inhibitory relation between neighboring flexor neurons is assumed so that buil- 

ding blocks are solely reponsible for gait pattern generation and transition. By anatomical 

view, cockroach's leg movement is driven by flexor and extensor motor neurons, the fle- 

xor will lift a leg from the ground while extensor does the opposite. This can be mapped 

into our building block perfectly, taking neuron i and j in a building block as flexor and 

extensor respectively (see Figure C.4). Now, a rough insight is apparent, i.e., there is an 

interesting timing relationship between flexor and extensor during different speed models. 

As cockroach's walking speed increase, the firing time for extensor (corresponding stan- 

ce) will decrease dramatically, while firing time for flexor (corresponding swing) keep 

basically constant, what matches exactly with biological experiments [63]. This insight 

confirms that cockroach's speed is determined largely by extensor firing, i.e., the time 

duration of a leg on ground. 

Figura C.5: The coordinated rhythmic patterns among six legs. Left medium speed, O - exciting, 214 - 
inhibited; right slow speed, O - exciting, 316 - inhibited. 

It's a common sense that animal's locomotion behavior is a continuous procedure. 

Our gait analysis method only samples some typical points from these continuous, high- 

dimensional waveforms (the number of dimensions is equal to the number of animal legs), 

which are the snapshots with at least one leg supporting ground substantially and, ignoring 

a11 other snapshots which may contribute little for the model retrieval. As we've argued, 

the building block is constructed by flexor and extensor neurons, so it's clear that there 

are two sampling points in one leg's locomotive period representing the firing of flexor 

and extensor respectively. This method is especially useful for facilitating the digital cir- 



cuit implementation, as we'll show below. Since a kind of high-pass-filter characteristic 

is a cornrnon property more or less observed in every real neuron [9][59], and this pro- 

perty may be naturally simulated by the hysteretic phenomena of mechanical oscillation, 

so we believe that these sampled points can lead to smooth, continuous waveforms for 

behavioral simulation. 

Next, four snapshots of a graphic experiment with cockroach's medium speed gait is 

offered. The rhythmic order exhibited is: (L1 R3) R2 (L3 R I )  L2 . . . . 

extensor flexor flexor extensor 

e 

R3 o @' 

Figura C.6: The cockroach's medium speed gait pattern reconstructed with building block from Figure 
C.4, the six flexor neurons' firing threshold is 3, six extensor neurons' is 1. 

C.3 Model Implementation 

C.3.1 Model Optimization 

There are various solutions available for the reduction of generalized SMER algorithm to 

it's deductive SER algorithm, which is more concrete and can be simulated easily by the 

multiphase circuit synthesis method proposed by Franqa et al. [3 61. 

One of the solutions, namely, node multiplicity method, is introduced briefly, accor- 

ding to the original contribution of Barbosa et al.[8]. A circuit simulation is offered with 

the high-level, HDL-based design methodology using Xilinx Foundation Series software 

[81], the concurrent nature of VHDL makes it tailor made for our distributed project, the 

experiment results are compared with the real life biological phenomena at last. 

Node Multiplicity Method 

This solution is based on the construction of a heavy-load instance of SER algorithm from 

the instance of SMER algorithm. 



Let G = (N, E) be the graph under SMER, and G' = (N', E') as its target graph 

under SER, denoted by L the least cornmon multiple of r l ,  ..., r ,  (i.e., r; in section 2.2) 

and define qi = L/r i  for a11 n; E N. The following are the steps to obtain G'. 

For each n; E N, let N' contain q; nodes, denoted by n: , . . . , nqi. Let Q ;  = 

{ n t ,  ..., ny"}. 

For each (n;, n j )  E E ,  let E' contain the q;+qj edges needed for the nodes in Q;UQ 

to be arranged in a cycle. Assuming that qj 2 q;, these edges will be deployed in 

such a way that, beginning at either ny or n? , a traversal of the cycle in decreasing 

order alternates either Lqj/q;] or [qj/qil nodes in Q j  with one node in Q;,  until 

q;/gcd(q;, q j )  nodes from Q; have been traversed. The choice between Lqj/q; J and 

[q,/qi] must be such that rqj/qil is picked exactly (q j  mod q;)/gcd(q;, q j )  times, 

while Lqj/qi] is picked in the remaining (q; - qj mod qi)/gcd(qi, q j )  times. At this 

point, the cycle's first segment is completed. The process continues likewise until 

the ycd(q;, q j )  segments needed to use up a11 q; +qj nodes have been built. Segments 

are linked to one another by taking them in the order they were built and connecting 

the last node added to a segment to the first node added to the next segment. At the 

end, the cycle returns to the first node added (either ny or ny") from the last one 

added (either n;l or n: respectively). 

Having built G', we next construct an orientation, cal1 it wó, of the edges in E'. For 

every (n;, n j )  E E such that qj > q;, the edges constituting the simple cycle described 

above are oriented by wó in such a way that, in the saibgraph induced in G' by Q; U Q j ,  

the first node added to the cycle is the only sink and the last node added is the only source 

[81. 

The above description is a general method for obtaining the heavy-load SER version 

of biological building blocks from the original SMER version, in the sense that each 

oscillator in a building block may have pre-specified reversability greater than 1, which 

is helpful for constructing more complicated gait patterns. However, in our current case 

of three gait types with the flexor's reversability being always set to 1, the optimization 

procedure can be greatly simplified. 



Model Reduction Method 

As an example, the optimization of the medium speed pattern of an hexapodal animal 

under node multiplicity method is offered. This kind of optimization is in fact a transfer 

from SMER solution to SER solution for model realization, it is purely for the purpose 

of implemental facility in the sense that the node and edge circuitries are ready for VLSI 

implementation (see the following Subsection). 

The firing circulation patterns of building blocks for medium speed of an hexapodal 

animal is like Figure 4.5(a), an optimized firing circulation of building blocks can be 

obtained based on the following calculation. 

Compared with Figure C.6, the next figure is an alternative medium speed gait pattern 

reconstructed by the ogtirnized building blocks. Since the key point in gait analysis is 

phase relationship among a11 legs, as we can see, this relationship can exist automatically 

if the initial configuration of the optimized building block for each leg is chosen correctly. 

In Figure (2.7, each flexor requires to access a11 incident edges, i.e., both the set of edges 

within building blocks represented by plain arrowlines and the set of virtual edges betwe- 

en neighboring flexors represented by line-dotted arrowlines, in order to fire. Fortunately 

we don't need to consider the virtual edges in the case of suitable choice and codguration 

of building blocks, the gait model circulates well and any rhythrnic patterns can thus be 

generated for digital circuit design and FPGA implementation smoothly. 

C.3.2 Model Implementation with Custom Hardware 

Based on the aforementioned analysis of the realization methodology of animal gait ge- 

neration and transition CPGs mechanism, the simulation and synthesization of legged 

locomotion is conducted utilizing Xilinx Foundation Series v1.4 software [8 11. In both 

schematic and HDL design flows, reconfigurable building blocks may be constructed, un- 

der the principies of SERISMER scheme, to perform the gait transition (see Figure C.8), 



Figura C.7: The cockroach's medium speed gait pattern reconstmcted with optirnized building blocks, 
three nodes within the dashed circle represent an extensor while the other one represents its coupled flexor. 
This figure corresponds to configuration (a)  in Figure C.6. 

i.e., it can be configured, at any time, from one definite speed pattem to another according 

to the externa1 signal coming from CNS, hence the reconfigurable building block alone 

can also represent the combination of oscillation system and CPGs. 

The principal potency of SERISMER scheme stays in the fact that it may deal with the 

asynchronous problems as efficiently as the synchronous ones, for the signal-driven na- 

ture of the building block, which is an operational engine constructed under SEWSMER, 

makes the whole system time-independent, or namely, no global clock is needed. Unfor- 

tunately, since asynchronous circuits are not well served by current FPGA architectures 

[48], in the sense that various hazards may be unavoidably introduced as the asynchro- 

nous circuit is realized, which may lead to the wrong logic and the whole circuit system 

may oscillate at last. For simple consideration and without loss of the efficiency of gait 

simulation, we'll adopt the synchronous circuit in our design. 

Figura C.8: An undirected graph representation of the reconfigurable building block, here it may lead to 
three types of configured building blocks corresponding to three different speeds. The directions of edges 
of a resulting building block should also be configured according to which leg this building block belongs 
to. 



Circuit Design 

It may be more clear to introduce the relative circuit corresponding to the former abstract 

graph digrams. The graph shown in Figure 4.8 was implemented principally by two sim- 

ple circuit blocks, namely, the node controller and edge controller, each node and edge 

corresponds to one of these controllers respectively. 

The Node Controller - In this model a node starts operation according to an AND 

gate that samples a11 the tokens incident to a node. The tokens represented by 

arrowheads in Figure C.9 are now supposed the true logic levels entering AND gate, 

which sets the node's FF when that node becomes a sink. If a totally asynchronous 

environment is assumed, after operating for r,, time units, the processing logic must 

produce a corresponding end-of-operation signal that is used to reset the node's 

FF through an OR gate. The situation is the same for an alternative synchronous 

environment. In both environments an externa1 delay circuit may be needed for 

each node controller, here the difference is whether this delay circuit is governed 

by a global clock or not. Operation also depends on a StopIRun signal. During 

initialization, while tokens are being fed with their proper values, Stop is used. Run 

is active from then on. 

End of 
local oweration 

Tokens from 
neighboring nodes 

Figura C.9: Schematic for the Node Controller 

The Edge Controller - A toggle flip-flop with preset is used as a token generator. 

The preset input is used for initialization, while the output values represent the 

tokens themselves. Outputs are routed according to the desired token acyclic pat- 

tem, in our gait circuit it's important to configure this edge controller for a desired 

walking speed and various gait patterns can be achieved depending on this con- 

figuration. Whenever a node ceases its operation, it generates an end of operation 



signal, which is sent to a11 the edge controllers incident to the node, where it toggles 

the edge flip-flops. 

End of neighbors' 
operations 

Figura C. 10: Schematic for the Edge Controller 

{->cm 

HDL Design and Simulation 

A complete procedure of hgh-leve1 design has been conducted in this testing period, wi- 

th three reconfigurable gait patterns loaded in one Xilinx XC4010XL FPGA chip. The 

adopted method to implement the gait generation and transition utilizes a pre-defined VH- 

DL listing format to describe the circuit behavior. Below is a template of the behavioral 

VHDL code required for this operation. There are totally six inner-loop process represen- 

ting the six legs respectively with each process in the similar structure. In each process the 

signal assignment statements are pipelined together in sequential mode while a11 the six 

processes will execute concurrently. At last the concurrent signal assignrnent statements 

are followed for combinatorial outputs of the flexor and extensor motor neurons. 

At the last of the intact program the combinatorial ouputs are assigned to the flexors 

and extensors based on the principles of SEWSMER scheme, i.e., each motor neuron will 

fire if and only if it has a11 its edges directed to itself. The following table describes the 

condition of consumed resources in one XC4010XL chip for synthesizing three afore- 

mentioned locomotive patterns. Besides, there are still one global buffer, BUFGLS and 

STARTUP used respectively. 

It is intuitive that phase relationship among six legs in this simulation is the same with 

the biological-based analysis in Figure C.3. The sole difference is that, there may exist 

some phase overlap among six legs in the real neuronal motor system because of the me- 

chanical hysteresis while our SEWSMER-based waveforms are the results of relaxation 

oscillations, which can thus be treated exactly as the CPGs driving outputs. Considering 

/Q 

Preset 

& 
Inverted 
edge token 



entity fwrc t i o n a l - w i t  i5 

port ( p o r t  d s c l a r a t i o n s  ); 
cnd func t i o n a i - w i t ;  

archihcture bshauior  ~f  fwrc t iona l -wr i t  i5 

t yps  and s i g n a l  d sc l a r a t i ons ;  
begin 

process 1 
begin 

if dur ing  i n i t i n l i z a t i o n  tlren 
p a t t s m  i n i t i a l i z a t i o n ;  

d s i f  clock p u l s s  a r r i u i n g  then 
case s t a t s - o f - l s g  is 

d e n  s l o w - i n i t i a l i z a t i o n  => 
( cur rsn t - s low-á ta t s  ); 

d e n  m e d i m - i n i t i a l i z a  t i o n  => 
( cu r r sn t -msd im-s t a t s  ) : 

d e n  f a s  t - i n i t i a l i z a t i o n  => 
{ c u r r s n t - f a s t - s t a t s  ); 

d e n  s low-s ta t s  => 

if çiow-çtats-cont inus t h n  
s t a t s -o f  -1sg c= nsxt -ç law-ç ta t s j  

elsif çlow-sta te-changsd thcn 
decide changsd pa ttsm; 

end if; 
*en m s d i m - s t a t s  => 

if msdium-sbts-cont inue t hm 
s t a t s -o f  -1sg nsx t -msdim-s ta t s ;  

elsif me d i m - s t a  t e - c h a n p  d h e n  
dsc ids  changsd pa ttsm; 

end if; 
d c n  f a s t - s t a t s  => 

if f a s t - s t a t s - con t inus  then 
s t a t s -o f  -1sg <= n e x t - f a s t - s t a t s ;  

elsif f a s t - s t a t s - c h n g ~ d  then 
decide changsd pa ttsm; 

cnd if; 
end case; 

and if; 
end procssç  1; 

end b shauio r; 

Figura C .  1 1 : VHDL template for a single process corresponding to one leg movement. 



Figura C. 12: Simulated waveforms of hexapodal animal's different gaits. The system is started as signal 
set is high, either slow os medium speed is chosen as signal se1 is high os low respectively. 

the operation of the mechanical platform, one period of low leve1 output to a11 motor neu- 

sons (including flexor and extensor) is designed to allow system depolarization during 

gait transition. 

I 

FF I Latch I 4-in LUT / 3-in LUT I Flop I Latch 1 

Tabela C. 1 : The condition of usage of sesources for embedding three gait patterns in X4010. 

An simple experiment of hexapodal gaits is conducted based on the IBM PC compatible 

computer, with a robot lut named STIQUITO as the controlled platform. Stiquito is a six 

legged, insect shaped robot, it uses the contraction property of shape memory alloy actua- 

tor wire, Nitinol, for driving the legs. The controller (hese is the PC and driving circuitry) 

has the facility to drive the legs fonvard, sychronize the leg movements and control the 

direction of turning, etc.. The value of this simple simulation lies in that, almost a11 gait 

patterns, from the rough classification or classification with detailed phase relationship, 

can be programed and made visually under a quite reasonable functionality/price rate. 

No. of CLBs 
238 out of 400 

No. of bondedlOBs 
17 outof 63 



C.4.1 The Mechanic Part of Mobile Stick Insect 

We made the mechanic part of mobile stick insect, i.e., the Stiquito, adopting the assembly 

components from Mills J.W. et al. of Indiana University [26]. The unique characteristic 

of this platform lies in that, no traditional motor actuator is used, and as a substitution, 

Nitinol, the shape memory alloy wire is employed to mirnick the real life movement sys- 

tem of animals, which is obviously a more natural way. As shown in Figure C. 13 the six 

resilient music lines connecting with Nitinol wires represent six legs and they a11 inter- 

connected by some aluminium tubes without soldering needed. As we've already argued 

and known, the coupled flexor and extensor are generally indispensable for legged loco- 

motion. However, only Nitinol is used in this simple experiment and can be treated as the 

extensor, with flexor absent, at the first glance. In fact, although it may be better to add 

the flexors, it is also acceptable to take music line's instinctive resilience as the virtual 

coupled flexors for rough simulation. 

Figura C. 13 : A schematic diagram of Stiquito- the mechanic part. 

This diagram is pretty self-explained in the sense that how this robot can be controlled 

by our PC and peripheral circuits. Normally, the main controls needed to get different 

gaits are as follows. 

e Some way of activating the legs in different order so that some different gaits can 

be retrieved. 

e Some way of controlling the displacement of the leg. This facility is used to turn 

the robot in different directions. For instance, less displacement for left legs and 

more displacement for right legs may make the robot to turn left 1651. 



e Some advanced way of adding more equipments to the robot platform for it to get 

more ability in adapting the complex terrains and therefore to adjust its gait patterns 

adaptively, in this case, some sensoring and feedback instruments, e.g., the camera 

and foot sensors, may be needed. 

As a simple and preliminary study, the controller designed here will only be required 

to determine the sequence and phase periods of signals being sent to the individual leg 

actuator to produce simple walking, i.e., in this experiment only the first control is ef- 

fectively realized, and the second control won't be difficult provided that a suitable robot 

platform can be found. 

C.4.2 The Controller Part of Mobile Stick Insect 

This part consists of two components - PC controlling and Darlinton circuit driving. We 

use C language to generate six controlling signals outputting from the parallel port. Since 

the legs are controlled by the Nitinol wires, the more the number of cycles for which 

the leg is activated, the more the time for which current is passed through the Nitinol 

wire and the more the leg swings backward. Thus the determination of frequency of 

the driving signal and its rate of space occupancy are very important for controlling the 

locomotive rhythrn, and because of this timing limitation, some modification is needed 

if any transplant may be realized. Only six data output pins are employed for six legs 

respectively in this simple experiment. Disposal is the measure of how many cycles a leg 

should be activated, it may be used to control the movement direction of Stiquito. For 

instance, if the less number of active cycle disposed to left legs than which is disposed to 

right ones, then right legs move more than left legs and so the Stiquito turns torwards left. 

The current output of the parallel port pins is not sufficient to drive the legs effectively. 

So the Darlington high current driver circuit is indispensable, the Nitinol wire and music 

wire are serially connected between the power supply and collector of the second leve1 

transistor, as shown in Figure C. 14. 

It is just this simple, computer-based experiment by which we are motivated and be- 

gan the work of synthesize three gait patterns into a single chip of FPGA, whose basic 

methodology has been illustrated in the previous section. The use of SEFUSMER as the 



Signal input 

Figura C. 14: Control circuit for one leg - the Darlington high current driver circuit. The first level 
transistor controls the second level transistor which is a switcher, output current is about 550rnA as this 
switcher closes and zero as it opens. 

basic dynamics of the locomotive circuits turned out to be a quite general and timing- 

independent strategy. Theoretically, with this methodology we can find reconstructive 

solutions to almost a11 the legged animal's gait pattern collection, which was provided by 

Collins et a1. [2 1 ] [22] [20] using the symmetry-breaking Hopf bifurcation theory. 

C.5 A Proposed Mathematical Dynamical Model 

In addition to the macroscopic approach which will be introduced as the emphasis in 

this thesis, a formal method treating the pattern formation and gait transition2 may be an 

alternative solution, such as the example given here. Arnong the typical mathematical 

oscillator models introduced in appendix B, Wilson-Cowan model is probably the best 

candidate as a proposed mathematical explanation of the complex biological behavior, 

especially on explanation of SERJSMER mechanism underlying locomotion, because of 

its macroscopic standpoint on describing the dynamics of average activities of two neural 

populations [78]. Let's recall this model encountered before, which is normally represen- 

ted by two coupled, excitatory and inhibitory neurons showing the population behavior 

with large scale, interna1 connections and individual potentials inside this population. 

This model is based on mean field theory and allows a drastic reduction in the number 

of variables in large scale models of neural activities. With reference of the statement of 

Pearson's contribution [63], and the simulated results that the duration of active potential 

of inhibitory neuron population passing the threshold is less than that of excitatory neuron 

population, we could assign the inhibitory neuron population as representative of flexor 

2As we know, the gait transition in spatio-temporal structure can correspond to symmetry-breaking or 
symmetry-collecting Hopf bifurcation, and each corresponding bifurcation diagrams can be computed. 



population while excitatory neuron population as representative of extensor population, 

now it's clear that the WC oscillator model just corresponds to one of our biological buil- 

ding blocks. According to our biological hypothesis of adopting the SERISMER scheme 

to simulate locomotive CPGs mechanism, which is initially introduced in the first chapter, 

the PIR characteristic should be assumed and it stipulates a purely inhibitory network. In 

this case we'll employ the modified Wilson-Cowan model (Equation C. 1) of two oscilla- 

tors with connections between inhibitory populations 1121, as shown in Figure C. 15(a). 

P and Q are the inputs of excitatory and inhibitory neurons, respectively, and a is the 

control parameter. The rest variables are with the same significances as in Section B.2.5. 

Figura C. 15 : The coupled neuron structures, (a) An architecture explained by equation C. 1; (b) An ar- 
chitecture shows the head and tail organization of insect's locomotive structure, which could be represented 
by a 3-dimensional Wilson-Cowan oscillator model, the arrows are externa1 input; (c) An architecture of 
organization of the rest part of insect's locomotive structure, which could be represented by a 4-dimensional 
Wilson-Cowan oscillator model. 

It is our understanding that many legged animals with some degree of complexity, 

i.e., with more than four legs (not including four legged ones because of their simplici- 

ty), could be organized by two components shown in the above figure, upon which the 

high dimensional Wilson-Cowan model could be built and nonlinear, dynamical system 

theory etc. can be applied to investigate the bifurcation and pattern formation process. It 

is also worth noticing that a single Wilson-Cowan model which contains only one inhi- 

bitory neuron population and one excitatory neuron population should be modelled as a 



relaxation oscillator, a formal version of aforementioned building blocks. Some traditio- 

na1 techniques from dynarnical system theory, e.g., the Poincaré map, need to be used to 

investigate numerically the system behavior without solve the ODE groups. 

C.6 Discussions 

Based on the above introduction of background, state-of-the-art description and some 

works which are just under development, it is now quite clear that the research of neu- 

ronal oscillator underlying CPGs could be divided into two aspects, one is the heavily 

investigated, forrnally theoretical approach; the other lies in the application field, which is 

by far less inquired. We have successfully constructed some applicable instances through 

the parallel and distributed schemes, and we'll show fúrther by enumeration that, there do 

exist some regulations to describe the symmetries among the various insect's gait patterns 

with these schemes. Moreover, the locomotive system itself is a very good example of 

dynamical system, some numerical analysis can of course be conducted for retrieving and 

predicting more details of this system. 



Apêndice D 

ANN Implementation of SMER 

On recognition of the aforementioned mathematical description and state-of-the-art re- 

search on rhythmic and locomotive activities of vivid creatures, especially the successful 

(though roughly) application of parallel and distributed algorithm, e.g., SER and SMER, 

on modelling CPGs mechanisms, we find that it is not only worthy but also necessary and 

applicable to set up a neural networks framework governed by SEHSMER for develop- 

ping its great potential on rhythmic pattern computations. Based on this consideration, 

a series of HopJield-like neural networks are created as the media loading SEWSMER 

concepts. 

Introduction 

SER has the potential to provide the greatest concurrency among scheduling schemes on 

resource-sharing system, whch require neighbors in this system to operate alternately [6]. 

The mutual exclusion characteristic between any two neighboring nodes coupled under 

SMER makes this scheduling scheme suitably tailored for simulating post-inhibitory re- 

bound (PIR), a widely employed neuronal mechanism underlying locomotion and other 

rhythmic activities. Besides, the dynarnical behaviors of SMER scheme depends hea- 

vily on the initial allocation of shared resources, different configurations may lead to 

different cycling behaviors and even deadlock or starvation. This feature leaves us a re- 

search space on how to rnirnic CPGs with SMER to simulate numerous rhythmic patterns 

while avoiding possible wrong design. Despite undeterminated details of CPGs, many 

works have been proposed focusing on the coordination of creature system's components 

and their phase relationship on dealing with rhythmic patterns. Following this paradigm, 



we've shown the potency of SMER by mimicking various hexapodal gaits in Appendix 

C. However, this kind of strategy is somewhat intuitive, and due to the discrete nature of 

SMER. It is obviously more efficient in digital simulations instead of analogous applica- 

tion. 

On the other hand, the analogous behaviors are ubiquitous in the real world. They are 

continuous rather than discrete in time domain, better described by analogous circuitry 

rather than digital one. Although as a research technique, we can grasp some snapshots 

from a continuous procedure and treat them with discrete methodologies, it is undoub- 

tedly a better style to adopt an analogous or continuously evolving system directly, for 

modeling the real counterpart. In this appendix, a series of nove1 ANN structures, namely 

Oscillatory Building Blocks (OBBs), are proposed. These OBB nets are similar to Hop- 

jield networks and governed by SMER algorithm, they can be classified into two major 

categories, i.e., simple OBB and composite OBB, depending on the network complexity. 

One of the primary disadvantages of SEWSMER is the need to preprogram the system 

by a centralized entity [6]. However, as we adopt this scheduling scheme as a virtual 

CPG to retrieve animal's gaits, preprograrnming is a natural process in the sense that, any 

animals' CPGs can be treated as a self-adaptive learning system inherited from its mater- 

nal body, some unchanged, simple rhythrnic patterns such as respiration and mascuration 

are embedded in CPG as it is created, some others such as locomotions may need some 

training, a procedure similar to preprograrnming. In these cases, some theoretically poten- 

tia1 disadvantages of SEWSMER may be eliminated by a functional organ's manipulation 

while the theory is employed in application field. 

We'll argue that any networks, no matter how complicated their topology may be, 

could always be composed by simple andlor composite, analogous OBBs, among which 

the design of simple OBBs is crucial, for it is the foundation of making composite OBBs 

and the whole net. A simple OBB only contains two coupled, mutually exclusive nodes. If 

we choose different interna1 parameters for the simple OBB system, we can get different 

duty factors and phase relationships between the two nodes. Even more complicated 

phase relations could be obtained by combining simple OBBs together, in some order. 

Theoretically we can retrieve any rhythms with our design. 

The organization of this appendix is as following. First the famous Hopfield neural 



networks is introduced in Section 0.2,  to inspire the idea on OBBs model construction. 

A design framework of simple and composite OBBs is proposed by the strict manner, 

including their architectures, properties and organization methods, etc., in Section 0.3. 

Section 0 . 4  introduces some topology problems and the adaptivity of the mechanism of 

SMER-like asymmetric Hopfield model, where we confirm that no matter what topology 

a network may have (e.g., trees, rings, mixture), its activities are tractable with OBB 

networks. A brief discussion is followed as the end in Section 0.5. 

Hopfield neural network model 

In 1982 J.J.Hopfield published a most influential paper on the prominent emergent pro- 

perties of one kind of neural model which rekindled great interest of scientists in neural 

network analysis. Different from McCulloch-Pitts (MCP) neural model in which neurons 

are intrinsically boolean comparators with limited inputs, Hopfield studied the biological 

structure of the large-xale interconnected neural systems and proposed his model with 

the emphasis on the neural system's whole behavior and properties. In his model a single 

neuron is simplified to be represented by a simple electronic device containing resistor, 

capacitor and a nonlinear component stipulating the input-output relationship. The dyna- 

mics of an interacting system of N coupled neurons in Hopfield model can be described 

by a set of coupled nonlinear differential equations governed by Kirchhoff 's current law. 

where i = 1, . . . , N. This equation expresses the net input current charging the input 

capacitance C; of neuron i to potential as the sum of three sources: (i) postsynaptic cur- 

rents induced in neuron i by presynaptic activity in neuron j ,  (ii) leakage current due to 

the limit input resistance Ri of neuron i, and (iii) input currents I; from other neurons ex- 

terna1 to the circuit. The model retains two important aspects for computation: dynamics 

and nonlinearity [5 11 [53]. 

Hopfield classified his models into two categories, namely symmetric and asyrnrnetric 

models. Between any two coupled neurons i and j in a Hopfield net, if the synaptic weight 

from neuron i to neuron j is equal to synaptic weight from neuron j to neuron i, then this 

is a symrnetric Hopfield neural network, or Hopfield neural network by default since it's 



so widely used; otherwise it's called asymmetric Hopfield neural network. The most 

prominent property of symmetric model is its autoassociation, i.e., the network energy 

keeps diminishing and finally reaches the local minima as the system states evolve. Un- 

like symrnetric model, there are less research works on asymmetric models because they 

correspond to complicated oscillatory behaviors and the mathematical tools to manipulate 

and understand them at a computational level are limited. However, asymmetric Hopfield 

model may exhibit oscillation and chaos. In some neuron systems like CPGs, coordinated 

oscillation is the desired computation of the circuit, so proper combinations of asymrne- 

tric synapses can enforce chosen phase relationships between different oscillators [53]. In 

recognition of Hopfield model's properties, we proposed a nove1 methodology to embed 

the SMER algorithm into asymmetric Hopfield neural networks, we'll show this metho- 

dology is successful in simulating a11 CPGs patterns induced by Golubitsky's symmetric 

Hopf bifurcation theory. 

Dynamic Features of OBBs 

The SMER algorithm can be implemented schematically using a network like asymmetric 

Hopfield model with some modifications on the peripherical feedback control circuitry 

according to the interconnecting topology of given interactive system. Similarly to the 

dynamics of Cellular Neural Networks [16] [17], the coupled input and output voltages 

of each cell in these networks are normalized to digital low or high level while the inter- 

na1 potential is continuous within the normalized interval [O, 11. The SMER based OBBs 

can be classified into two types by complexity, namely simple and composite. The sim- 

ple OBBs only consist of two interconnected cells with pre-specified reversabilities. The 

composite ones may contain the arbitrary number of simple OBBs with any topology, the 

purpose of introducing composite OBBs is to facilitate a high density network construc- 

tion in which a definite combination of some simple OBBs are employed frequently. The 

prototypes of both types of OBBs should follow L e m a  A.2 for initial shared resources 

arrangement and configuration to avoid possible abnormal operation, e.g., deadlock or 

starvation during oscillation. 

Definition D.1 The simple oscillating building block (OBB) is defned to be an asymme- 



tric HopJield network composed by two coupled nonlinear neurons where each neuron 

has one output to its coupled countpart and three inputsfrom its former interna1 state, the 

output of its countpart and a negative feedback from the output of itselfrespectively. i 

D.3.1 Dynamics of Simple OBB Networks 

Now consider a sub-multigraph of M ( N ,  E), cal1 it Mij, only induced by a pair of neigh- 

bors n; and nj, with ri and r j  as their reservabilities, respectively, and eij as the shared 

resources between them, where the number and configuration of e;j shared resources 

should obey Lernrna A.2 strictly. In this paper we always adopt e;j = r; + rj - gcd(ri, rj) 

for description concordance. A basic asymmetric Hopfield network named simple OBB 

will be worked out based on these parameters in this subsection. 

System Architecture 

In this nonlinearly coupled system, we decide that postsynaptic potential (PSP) of each 

cell depends on three factors, i.e., its forrner PSP state, the impact of coupled neighboring 

cells and the negative feedback of this cell itself, without considering the externa1 impulse. 

Each cell's nonlinear characteristic between PSP input and cell output is a specifically 

sigmoid function (see Figure D.1), or namely the heaviside type. 

The system architecture may be treated as two coupled MCP neurons. Each cell has 

an input from its coupled counterpart and an input from the output of itself. A cell's 

PSP is the sum of its former PSP state, the weighted output of its coupled neighboring 

cell and the negative weighted feedback output of this cell itself. After nonlinearization, 

the input PSP will become biological output membrane voltage, to stimulate the other 

cells (see Figure D.2). Each cell's output has a RC circuit, which is somewhat like a 

simple low-pass filter. This circuit can also simulate the membrane electro-activities of 

real neurons. However, their parameters should be chosen in such a way that, taking 

neuron i as the example, R; > > RiOut *, and C; in a suitable value, otherwise the output 

waveform would be less than the normalized standard leve1 (here assumed I), possibly 

lead to the whole system halt; meanwhile charging features exist obviously instead of the 

pure pulses. 

' ~ e r e  RiOut is the output resistance of cell i. 



Figura D. 1: The sigmoidal function and its specific heaviside type. (a) sigmoid function tanh(ax)  = 
e a x - e - a x  
e a x + e - a x  3 (b) its heaviside type with a + m. 

GND GND 

Figura D.2: A schematic representation of the simple OBBs architecture. 



Calculation and Arrangement of System Parameters 

The choices of system parameters, such as the cell thresholds and synapse weights, and the 

scheduling criteria of chosen system parameters are crucial to model a two-node SMER- 

based OBB as a pair of artificial neurons i and j .  In our model, let r = maz(r;, ri) and 

r' = h(r), where h is a function of getting highest integer leve1 and multiplying it with 

10, e.g., h(r) = 10, if O < r < 10 and h(r) = 10nfl, if 10n<r < 10nfl, (notice that n 

is a natural number). Hence we can further design cell i and j's threshold d;, O j  and their 

synapse weights w;j, wj; as the following. 

mas  (r;, rj) 
w;j = 

r' 

min(ri, rj) 
wj; = 

r' 

We schedule the system parameters by comparing two nodes' reversabilities, if r; > 

rj, then we have two equivalent parameter arrangement schemes. 

Scheme I 4; > Bj and w;j > wj; 

Scheme I1 O j  > 4; and w;j > wj; 

These scheduling schemes ensure that the behaviour of SMER-based Hopfield 

netwoks match its original SMER explanation naturally, i.e., node with smaller rever- 

sability (correponding to smaller threshold in Hopfield net) will oscillate with a higher 

frequency than its companion does. The difference equation of this system can be for- 

mulated as following, each cell's self-feedback strength is w;; = -w;j, wjj = -wji 

respectively and firing rate function is the heaviside type. It's worth noticing that k is the 

local clock pulse of each cell, a global clock is not necessary. 



where, 
v;(k)  = max(0,  sgn(M;(k) - O ; ) )  
v j ( k )  = max(0,  sgn(Mj(k)  - O j ) )  

(D.6) 

We consider the designed circuit as a conservative dynamical system in the ideal case, 

i.e., the total energy is constant, no loss or complement is allowed, the sum of two cell's 

PSP at any time is normalized to 1. It's not difficult to see that this system has the ability 

of self-organized oscillation with firing rate of each cell arbitrarily adjustable. We'll prove 

later that there doesn't exist starvation or deadlock in this system no matter what initial 

state it may have. However, like most dynamical systems, our model also has a limit in 

the dynamical range, i.e., there exist some singular points as each cell's PSP equals to its 

threshold, in this way the system may evolve into another different oscillation behavior 

or even halt. Within dynamical range, some attracting properties show that this design is 

a suitable one for implementation of SMER algorithm. 

System Properties 

By transferring discrete SMER algorithm into its analogous, asymmetric Hopfield net 

host, we find that this self-organized oscillating network has some properties, which cons- 

titute the fundamentals for further complicated rhythmic network design. The criteria for 

choice of system parameters in the aforementioned way are important and consistent with 

those for the initial choice of SMER circulation, in order to avoid the possible system 

deadlock and unfairness. 

Theorem D.l The coupled, two-node OBB system govemed by SMER is a stawation- 

and deadlock-free oscillation system. 

Proof: Let's assume this circuit is a conservative system without damping and noise, and 

we also ignore the delay of synapse. Since the energy of this two-node, ideal system is 

invariant, we set the normalized system potential is 1 and the normalized potential of cell i 

is a E [O, 11, so the potential of cell j should be b = 1 - a E [ O ,  11. From equation (5.5) we 

get Mi ( k  + 1) + Mj  ( k  + 1) = M; ( k )  $ M j  ( k )  , it also means the system energy is invariant. 

Hence, if a > O; then b = 1 - a < 1 - Oi = O j .  Similarly, if a < Oi we can get b > d j .  



So it's impossible for two coupled cells to fire simultaneously. It's intuitive to understand 

the circuit mechanism that, if any cell fires, its PSP will keep decreasing by the value of 

coupling strength with regard to its neighbor per local pulse, until its PSP passes down 

through its threshold and the cell becomes idle. Meanwhile, the PSP of idle cell keeps 

increasing by the same value per local pulse until it becomes firing. This process will 

keep repeating and it guarantees the starvation- and deadlock-free oscillating mechanism 

of this circuit for two-node SMER system, the PSP of each cell is continuously changeable 

within [-I, 21. 

This kmd of circuit has another prominent property which is essential for designing a 

CPG system, i.e., the oscillation system's convergence or periodicity consideration. The 

theorem can be described as that, no matter what the initial PSP value will be, a defi- 

nite circuit with the coupled cells' reversabilities designated will converge to a definite 

oscillating period. However, since the converge procedure depends strongly on the cells' 

reversabilities and initial conditions, which is randomized and impossible to be determi- 

nated, the proof of this theorem needs some more description. First, let's imagine there is 

one line with length of 1 ( I  is real), and arrange a part of line 1 with the length of 11, 1 > 11, 

at the left side of 1 (see Figure D.3). Now we make a repeating operation on this line: 

everytime cut the left ll part of line 1 and put it to the right side, meanwhile shift the rest 

of line 1 to the left until the original left point is met, every point on line 1 follows FIFO 

rule. In this situation, after some operations can a11 points on line 1 match their original 

ones before operation, so that a cycle is obtained? Let's transfer this physical problem into 

mathematical form, with the sequence description, hence we have a prelirninary lernrna. 

Lemrna D.1 The limit of sequence { a N )  is zero if {aN)  is monotonically decreasing 
a N  1 

sequence and satisfying aN+1 = a ~ - 1  - L ~ J  a ~ ,  with the initial conditions of ao = 1 
aN 

andal = 11. 

Proof: Since { a N )  is a monotonically decreasing sequence, i.e., O 5 a ~ + l  < a ~ ,  we 

have 

lim a~ = b > O 
n+m 



If b > 0, there always exists a sufficiently big integer N such that: a N  - a ~ + l  < b. 

However, from 

we have : 

so the result is a N  - aN+l  2 b, which is contrary to a~ - aN+l < b. So we can only have 

b = 0. 

Figura D.3: An example for understanding Lemma D.1. 

As a prerequisíte lernrna, it provides a simple while practical rule which will surely 

lead to a periodical oscillation. For a two-node, discrete S m R  case, its periodical oscilla- 

tion is apparent and has been proven [8] [35]. However, an asyrnmetric Hopfield neural net 



with embedded SMER mechanism is a continuous behavior system, at least in its interna1 

state, moreover, the initial PSP of each net cell is randomly chosen within a normalized 

scope [-I, 21, should this net has a periodical oscillation like its SMER prototype? The 

following theorem guarantees the net's behavior. 

Theorem D.2 The asymmetric HopJield neural network governed by SMER always has 

an oscillating cycle, no matter what initial potentials rnay be. 

Proof: Without loss of generality, we suppose in the coupled two nodes system, r; > rj, 

and initially node j is firing, i.e., Mj(0) > dj, Mi(0) < 8;. No matter what initial PSP 

node j may have, after a convergence procedure, node i and j will arrive at a pulse when 

they are at their final firing stage: Mj (O) E (8 j, d j  + wj;), M; (0) E (8; - wj;, 8;). After 

that, node i will fire and, since w;j > wj;, 3 = a, node i fires for only one pulse and 
W j i  

becomes idle again, from now on node j will fire from an interval from which it will 

always begin its firing. A four-step interval cycle is shown below. 

IV Some convergence procedure is followed, and system state return to state I. 

Apparently it is the case of prerequisite Lemma, so every point within the interval of 

length wj; will match its original position after certain pulses and the theorem is i m e -  

diately proved. 

Numerical Experiment 

A computer simulated example of this simple OBBs type net is conducted on the pre- 

defined cell reversabilities r; = 3 and rj = 2 with the arbitrarily chosen initial PSP. 

The numerical integration is conducted by the 5th-order Runge-Kutta method and the 

bioelectronical activities in the membrane channels are simulated by adopting membra- 

ne conductances and capacitors for each cell (see Figure D.2). According to the above 



analytic steps, we can obtain the following results, here both threshold and weight are 

calculated except the initial PSP, which is randomly chosen. 

Nodei: 0; = 0.75, w;j = 0.3, Mi(0) = 0.02 

Node j: 0: = 0.25, wji = 0.2, Mj(0) = 0.98 

Potential 
0.98 
0.78 
0.58 

Tabela D.l: State and internal potential circulation of two-node system, step 3 - 7 is a cycle. 

The system will experience a convergence process at beginning, upon chosen initial 

PSP, then it reaches a cycle of periodical oscillation (see Figure D.4). Table D.l shows 

two-node system's evolving states and corresponding internal PSP of each cell. 

D.3.2 Dynamics of Composite OBB Networks 

Node j 
State I 

S tep 

The composite OBBs net is a generalized version of the aforementioned simple OBBs 

networks. It may have more nodes and therefore, more complicatedly organized topo- 

logies. The definition of Macroneuron should be given first before the definition of a 

composite OBB can be provided. 

Node i 
State I Potential 

Definition D.2 A macroneuron is dejined to be a node i which satisfies Vi E N where N 

is the set of nodes in multigraph M(N, E).  

Definition D.3 The clone, which may have individually distinct reversability and repre- 

sent coupling characteristics of its host macroneuron with one of neighboring macro- 

neurons, is the unique type of component of its maternal cell - the macroneuron whose 

number of clones is equal to the nunzber of its coupled macroneurons. 



Time 

Time 

Figura D.4: Oscillating waveforms of two-node SMER system. (a) node i waveform, (b) node j wave- 
form. 

Definition D.4 The composite oscillating building block (OBB) is dejined to be a combi- 

ned network of a set of sirnple OBBs in the way thnt each neuron of a simple OBB is a 

unique clone of a unique macroneuron. 

Figure D.5 provides an example of two manners of describing network topology, one 

follows the custom of França's contribution [35] while another use the macroneuron ex- 

pression for network implementation. Now consider an intact multigraph M ( N ,  E), con- 

sisting of a set of, say m, nodes (or macroneurons) N  = < nl , nz, . . .n, > and a set of 

edges E =< ..., x;j, ... >, where i # j ,  i, j E [I, m], x;j = 1 denotes macroneurons n; 

and n j  connected, x;j = O for 7zi and n j  disconnected. Since we only consider the com- 

bination of any two macroneurons, lij is equivalent with lji, so we just ignore one in the 

edge set to make the network an undirected one. Each clone of a macroneuron n; has its 

own reversability r!, where k is the sequence number of a clone within the macroneuron 

n; and k E [I ,  m]. There are e;j shared resources on the corresponding edge lij between 

any two interconnected macroneuron n; and nj, with their number and configuration obey 

Lemma A.2 too. 



Figura D.5: Two equivalent ways to illustrate the SMER algorithm, ri = r,,, = r, = 1, rj = 2, rk = 3. 
left. original SMER description, right. an alternative description facilitates network implementation. 

The Architecture and Computation 

The composite OBBs networks, with the mathematical description similar to that of the 

simple OBBs networks, is equivalent to a system consisting of a number of subsystems 

which are actually the simple OBBs networks, i.e., an edge with shared resources in the 

number of e;j and two clones of two respective macroneurons connected by this edge. The 

number of edges in the composite net significates the number of subsystems, obviously 

the subsystem is just the simple OBB and its construction rules are the sarne as before. 

The main structural feature of the composite net is that, by dissecting the composite sys- 

tem into various simple ones, each macroneuron of the composite net is splitted into its 

cosresponding clones (the set of clones share the same local clock as their maternal cell). 

According to the definition of clones, each clone is a component of both the correspon- 

ding simple OBB net and macroneuron, the number of clones of a macroneuron depends 

on the number of edges with which the macroneuron in the composite net is connecting. 

According to the principles of SMER, a macroneuron of a composite net will fire if and 

only if a11 its clones fire, thus the outputs of its clones are multiplied logically to denote 

its state in the composite net, and this state value is combined with the state value of its 

coupled cell to determinate the next state of their coupled, simple OBB net. A schematic 

diagram of the dissected composite OBBs networks is shown in Figure D.6, which is a 

modified version of Hopfield net in the sense that additional feedbacks from the logical 

sum combination of two outputs of coupled nodes in the composite net are provided to 

control the transition of the shared resources on each corresponding edge, i.e., only as a 

cell is firing, the shared resources on a11 edges pertaining to this cell will fully or partially 



transit to another cell coupled by the corresponding edge. 

The calculation of the amount of shared resources transitted between two coupled 

nodes depends on the choice of treatments. In the theoretical SMER algorithm, a firing 

cell n; should have no less than r; discrete, shared resources pertained to it from each of its 

neighboring nodes, where r; is a digit, so n; will release exactly r; shared resources to a11 

its neighbors at the end of its local clock during its firing period. However, in our neural 

network implementation version of SMER algorithm, the amount of shared resources on 

an edge is always taken as 1, which is regarded analogically as the sum of the PSP values 

of two nodes n;, n j  interconnected by this edge, or equivalently, the total energy of the 

conservative subsystem of the composite OBBs net. When a cell, say n;, is at the end 

of its local clock during its firing period, it'll release the shared resources owned in its 

weight-equivalent amount, w;j which is the function of system parameters r; and ri ,  to its 

neighbor nj, thus the amount of shared resources pertained to n; is now a fraction within 

the scope of [O, 11. 

As the generalized version, the composite OBBs nets can represent much more com- 

plicated oscillating neuronal nets than the simple ones, they can also reproduce much 

more rhythmic patterns than the simple ones. Since it's impossible to assign a unified 

threshold to a cell which may have more than one connecting direction, the usual way to 

analyse this kind of nets is, as we've mentioned, to dissect them into the subsystems of 

simple nets, where formulae ( D . l )  - (D.6) for determining the weights, thresholds and 

dynamical behaviors of nodes in simple OBBs nets are still valid for subsystems of com- 

posite nets. However, some significant modifications should be made to organize these 

subsystems into composite OBBs nets according to the general output formula of a cell 

n; . 

or in a more compact form: 

~ ( h )  = nn j= 1 ~ j ( h )  (D.8) 

where the superscript sequence 1,2, . . . , n means the clone number of a macroneuron 



n; of the composite net. The specificity of the composite OBB network lies in that a 

macroneuron has n clones if it has n coupling macroneurons, each clone of a macroneuron 

is directly in charge of the coupling with another clone of another macroneuron to form 

a simple OBB. The firing activity of a macroneuron can be absolutely influenced by its 

coupled macroneuron's connecting clone, which is a different phenomenon from those 

usually treated in many neural models where a cell's neighbors play the accumulative 

effects on the cell and sometimes if the effect of only one neighbor is neglected, the cell's 

dynamics may keep unchanged. This new characteristic, namely all-or-none, embodies 

that a network upon OBB is a typical asynchronous distributed system which is message- 

driven, the state of any anonymous macroneuron is determined by a set of atornic clones. 

It's worth noticing that, an alternative Node Multiplicity Method (NMM) was proposed by 

Barbosa et al. [8] to transfer the SMER cases into SER ones, which provides an optimal 

method for understanding and application of SMER schemes. In the studies of our OBBs 

net, the simple one consisting of two neurons with different reversabilities may also be 

transferred into the specific, composite OBBs net of SER cases by employing NMM, i.e., 

this SER-driven net only consists of a closed loop with every clone of a macroneuron 

having the same reversability whose value is 1. 

Numerical Experiment 

A computer simulated example of this composite OBBs type net is conducted with a four- 

node SMER-like asyrnrnetric Hopfield net, on the pre-defined cell reversabilities ri = 4, 

r j  = 3, r k  = 2 and r, = 1 with the arbitrarily chosen initial PSP. The net topology is 

described by its node set < ni, n j ,  n k  , n, > and edge set < l i j  , Oik , I,, 1 jrc , O j p ,  l lep  >. 

The crucial point to achieve the desired rhythmic patterns from this composite network is 

to choose the initial PSP values properly for every subsystems. The proper initial PSP of 

each clone should be determined by considering the firing sequence of each macroneuron 

in the discrete SMER case, otherwise, random choice of initial PSP may lead to system 

halt, for example, no clone cells should be idle if its macroneuron is firing initially. In this 

'~e ing  absolutely influenced means that a macroneuron, saying ni, shouldn't fire even if a11 its clones 
except only one are firing, this unique idle clone connects macroneuron ni's coupled macroneuron nj which 
is also not necessarily firing although at least one of macroneuron nj 's clone connecting macroneuron ni is 



experimental case, each macroneuron has two clones for it has two neighbors. The output 

voltage of a macroneuron is the multiplication of outputs of its two clones. Each clone of 

the macroneuron couples with another clone of coupled macroneuron, which composing a 

simple OBB. The simple OBB's behavior is controlled by the feedback of its two coupled 

macroneurons' firing activity 3, i.e., two clones' PSP potentials in the simple OBB will be 

re-arranged only if one of their coupled macroneurons fires. 

Nodei to j: 0: = 0.667, w, = 0.400, M;(O) = 0.700 

Nodep to i: 0; = 0.000, w, = 0.100, M~(o )  = -0.050 

D.4 Network Topologies 

Generally speaking, the oscillating mechanism of asymrnetric Hopfield model under 

SMER can be employed in a network with any topology to generate oscillation. Howe- 

ver, some distinct characteristics may exist arnong different nets. In this section, the nove1 

mechanism is adopted in two different network topologies, we may compare the possible 

difference. Suppose an undirected, finite graph M(N, E), any node within M has at least 

one edge connecting it with another node, and a11 nodes can be reached if starting from 

this node. If there is no route existing from any node to itself, then this network is called 

tree net, otherwise, nontree net. For both hnds of nets, each node may have more than one 

neighbor, hence it should be splitted into corresponding clones, a pair of coupled clones 
- - - - 

3~imple  OBB's behaviors don't depend on the activity of their directly coupled clones. 
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Figura D.6: Network schematic structure (left), and MCP expression of AND, OR and Switch Neurons 
(right). 
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Figura D.7: Oscillating waveforms of four-node SMER system. (a) node i waveform, (b) node j wave- 
forrn, (c) node k waveform, (d) node p waveform. 



and their edge compose a simple OBB. The following is the pseudo-code operation of a 

macroneuron in an asymrnetric Hopfield network under SMER. 

Tabela D.2: Pseudo-code operation of a macroneuron 

/*Program: Macroneuron~ringfunction*/ 
CONST: 
r [i : 1.. .m] :integer; 
threshold[i, j : l...m], weight[i, j : l...m]:real; 

VAR: 
membrane[i, j : l...m]:real; 
firing [i] : boolean; 

Initial state: 
membrane[i, j] := random; 
firing[i] := f alse; 

Action at i local pulse: 
i f ( 3 j ~ ( l ,  m)I(j! == i )  A (weight[i, j]! == O) A (membrane[i, j] <threshold[i, j])) 

begin 
firing[i] := f alse; 
await not(membrane[i, j] < threshold[i, j]); 
continue; 

end 
else 

begin 
firing[i] := true; 
if(Vj E ( l ,m)l( j !  == i) A (weight[i, j]! == 0)) 

begin 
membrane[i, j] : =membrane[i, j] -weight[i, j] ; 
membrane[j, i] : =membrane[j, i] +weight[i, j] ; 
continue; 

end 
end 

D.4.1 Tree Net 

A tree net normally has a root and many successors, one node can connect with many 

successors while only one parent node in a tree, at terminals each node has only one 

connection with its parent (see Figure D.8). By adopting the oscillation mechanism of 



asymmetric Hopfield model under SMER, it is obvious to see that, no matter how to 

arrange the initial PSP for each clone around every simple OBB, the tree net won't stop 

oscillation, the same property as employing the mechanism of SMER directly on this net. 

Figura D.8: Tree network and its conversion. (a) a tree, (b) a tree's clone conversion. 

Proposition D.l The tree net govemed by rnechanisrn of asynzrnetric Hopfield model un- 

der SMER won't halt. 

Proof: We mark the terminal node level as the first level, the neighboring node of the 

terminal nodes as the second level, and so on, the root node could be k level ( L  2 2). 

Suppose a system halt would occur, when a11 first level nodes will also stop activities. 

Since the first level nodes have only one neighbor each, so the second level nodes have a11 

their shared resources, which are shared with the third level nodes, less than their active 

threshold respectively. This assertion will keep true for every level until the root node, so 

the root should be firing, which conflicts with the assumption, the proposition is proved 

immediately. 

D.4.2 Nontree Net 

In a nontree graph M ( N ,  E), there exist at least one route cycle. A node in this route 

means that, if starting from this node, there is a route returning back to itself. This kind 

of graph is always active, i.e., at least one node is firing at each clock pulse, under our 

mechanism except a cyclic route exsits. 

Proposition D.2 The nontree net won't halt except a cyclic route occurs. 



Proof: If a cyclic route occurs in a nontree graph, then no node on this cyclic route will 

fire. In this case any firing node coupled to one node on cyclic route will release its 

potential and keep idle forever, and so on until this procedure expands to a11 net, hence 

a11 net halts. If no cyclic route occurs in the nontree graph, let's suppose the net will halt. 

In this case the node on the route cycle with enough potential from both neighbors won't 

fire, which means at least one coupled neighbor out of the route cycle is keeping their 

shared potential but idle forever, and so on. Finally it leads to two possibilities, one is that 

a closed route cycle is followed to return back to this idle node, a case conflicts with the 

condition. Another is that, at last a terminal node which has sole connection is reached, 

and the terminal node will fire, a case proved in Proposition D. 1. Hence the proposition 

is proved. 

Discussions 

A methodology on how to combine SMER discrete algorithm with analogous ANN me- 

chanism to generate stable dynamical behaviors is proposed. Some fundamental proper- 

ties of this nove1 architecture, namely the asymmetric Hopfield net under SMER, are also 

proved. Different from previous works on implementations of Hopfield neural networks 

in parallel computers [35], which were mainly based on symmetric Hopfield net and hen- 

ce employing its descending-energy-gradient property, the new implementation of asym- 

metric Hopfield nets have the necessary capabilities to represent every aspect of SMER 

dynamics without any additional constraints. This mechanism can reflect an ideal oscilla- 

ting system under ideal environments, i.e., the system global energy is kept unchangeable. 

The most interesting aspect of this approach is that it provides a reliable and complete 

conversion for SMER algorithm from discrete to analogous domain, and it is applicable 

for any topology system under SMER updating dynamics. Since the organization of any 

node's output is determined by the outputs of its clones, no limit is imposed on a node for 

its externa1 connections. The system maintains the auto-organization feature as its state 

evolves, which greatly facilitate to organize the large-scale networks and evaluate the 

net activities, provided that the network is applicable under SMER mechanism. Notice 

however, that under this SMER-based ANN solution, some topics on its dynamical scope 



deserve further research. For instance, the state of a simple OBB will be undetermined if 

two nodes' PSPs are equal to their thresholds respectively. It seems that the initial PSP 

of each node shouldn't have the last efficient bit in common, otherwise a halt will be 

inevitable after the system evolves to PSP-equal-threshold state. 

Biological oscillation is one of the potential applications in which the asymrnetric 

Hopfield model under SMER can be employed. We have tried to apply SMER directly on 

modelling animal CPGs, a way shown efficiently due to both algorithm and object need 

some topological descriptions. An even more graceful simulation can be conducted with 

this methodology embedding SMER. 



Apêndice E 

Legged Locomotion Controlled by 
Artificial CPGs 

The exciting thing about a modular oscillatory building block is that, just like what its na- 

me describes, it does not only specifies a class of neural circuits, but presents the building 

blocks from which many different types of rhythmic patterns can be formed. Furthermore, 

dynamic reconfigurability adds another attractive aspect to the capabilities of constructed 

CPGs. Indeed, one can organize a network with numerous simple or composite OBBs 

which is big enough to mimick a11 rhythmic patterns a living creature may have, just 

adjusting the coupled weights andlor thresholds between each simple OBBs. Now that 

the possible methodology for building artificial CPGs is clear, the consequent task is to 

explore the possible CPGs architecture of different legged animals. 

E.l Introduction 

Some enumerative studies on the general model proposed by Golubitslq and his collea- 

gues 1431 are presented giving insight into the fact that a11 gait patterns generated by this 

model is reasonable and applicable with OBB networks. After that, some other gaits, 

e.g., the turning gait, are also explored even though they are not discussed in Golubitsb's 

group model. 

The definition of locomotion is the action of moving from place to place. Our interest 

lies in sustainable locomotion, in which some rhythmic oscillations should involve, not 

those instantaneous action such as a dog jumping once and immediately stopping at the 

same point. It is fundamental for an animal's sustainable locomotion to be featured with 

the following characteristics: 



1. Moving in straight line and by incremental distance. 

2. Having the capability of turning around if necessary. 

3. Having the capability of planning path and avoiding risk, 

In this appendix we'll introduce that the CPGs model made from our neural network 

mechanism possesses the first two properties. As to the third one, it is not difficult for our 

model if some decision-making strategies are added, however, it is not within the thesis 

scope. 

A full classification scheme on locomotion is given by Figure E.1. The first leve1 

of locomotion is divided into air, land and water, classified by the type of propulsion 

media that is used. Air locomotion pushes air to achieve movement while land and water 

locomotion push earth and water in some specific organized manners respectively. The 

legged locomotion to which we concentrate is an important part of a11 types of locomotion 

in the natural world. The near neighbor of legged locomotion is body locomotion, adopted 

by, e.g., the snake and lamprey. Some investigators argued that body locomotion can 

be simulated with the same method as used in analysis of centipedal types [62]. Some 

other industrially well-known locomotion such as wheeled or tracked types are also not 

discussed here because of their man-made nature. 

Legged 0 

Locomotion 
I 

Figura E. 1 : The creature's locomotion organization graph existing in the natural world. 
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To achieve stable in general, a land animal has to repeatedly do four things in any 

order : 
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1. Remove ground contact points from the rear of the body, 

2. Place ground contact points in front of the body, 

3. Shift weight forward, 

4. Maintain equilibrium throughout a11 motions. 

Thus a stable gait defines a cyclical pattern that achieves these steps. 

Definition E.l A gait can be dejined to be a series of periodic rhythmic patterns genera- 

ted by CPGs to drive muscular system for achieving locomotion. 

E.1.1 Gait Generated by Symmetry 

Group theory, as a to01 of modern mathematics, takes the charge of representing a physi- 

cal problem in a formal while simpler way. Golubitsky et al. proposed that, if a dynamic 

system possesses some kind of symmetry describle by a finite abelian group, generically 

the nonreal eigenvalues of the linearization of the system of ordinary differential equa- 

tions (ODE) of the physical object are simple. Then, periodic solutions modelling system 

behavior can be produced by simple Hopf bifurcation from equilibria. After bifurcation, 

various branches will correspond to various cyclical patterns which can be expressed with 

symrnetric groups. This methodology provides a substantial theoretic basis for explaining 

the pattern formation, and hence the gait morphology. 

E.1.2 Gait Implemented with OBB Nets 

As one can perceive so far, the leg movement of an animal is a coordinated procedure 

instead of isolated behavior, which is conducted by CPGs. However, by what method 

may a CPG adopt to adjust this kind of coordination? Since the animal locomotion can 

be treated as the movement of an abstract, rigid body on which the legs attach, and the 

body has weight, every snapshot of gait cycle is also a snapshot of weight re-scheduling. 

Although the biologists have to decide the irnmediate order of weight re-scheduling and 

related leg movement, i.e., whether weight re-scheduling leads to leg movement or the 

contrary, the consequence is unique that the body weight is keeping re-scheduling among 



a11 legs during the locomotive cycle. So we can surely view weight re-scheduling as the 

method which a CPG employs to coordinate legs. In this sense, the asymrnetric Hopfield 

nets under SMER will be an optimal to01 in gait research. 

Gait Represented by Group 

Recall those statements in Section B.4. Golubitsky et al.'s gait model suggests that in the 

trivial state, the state space of the coupled network of a 2n-legged animal can be divided 

into 2(n + 1) irreducible real subspaces, UnZo, Umi where O 5 m < n, located on the left 

side of complex plane which correspond to 2(n + 1) primary gaits respectively. 

Another way of explaining gaits from bifurcation with symmetry is to construct a 

lattice of subgroup from general symmetry group. Suppose X(t)  is the solution of ODE 

system dX/dt = f (X, A) which possesses symmetry r ,  this elegant method involves 

three steps [43] [14]: 

1. Classifying a11 subgroup J C r consisting of symmetries that preserve the trajecto- 

ry X(t) ,  i.e., y E J if y{X(t)) = {X(t)). 

2. For each J classify a11 subgroups L which are the purely spatial symmetry group of 

X(t) ,  i.e., y E L if yX(t)  = X(t),  such that J / L  is cyclical. 

3. Spatio-temporal subgroups of I' x S1 can be identified with pairs of subgroups 

L C J ,  each J / L  pair specifies a class of associated gait pattern. 

Theoretically, a dynamic system with symmetry can undergo symmetry-breaking bi- 

furcation to get more other rhythmic patterns (here the gaits), until finally the sytem will 

possess no symmetry in structure, a state described by the unit element 1 in group. Then 

no gait is achieved at that time, according to the gait definition. 

Theorem E.1 Every gait pattem generated by Golubitsky 's syrnrnetry-breaking Hopfbi- 

furcation has its solution scherne of SMER. 

Proof: Now that a gait is defined to be a cycle of a motion pattern, it has a correspon- 

ding purely spatial symmetry group, H E L C J ,  to describe its topology structure and 

operation specifications. Clearly this structure is nontree type. As it's implied in nontree 



theorem, any nontree type architecture can be solved with SMER. The theorem immedia- 

tely follows. 

Since there are so many gait patterns, recognized or unrecognized, in the natural 

world, we choose to treat four typical kinds of animals (biped, quadruped, hexapod and 

centiped) for a detailed SMER solution scheme. 

Studio of Gait Rhythms 

Recall that Golubitsky's general gait model with symmetry Zzn(w) x Z 2 ( ~ )  l ,  where 

w is a generator of cycle and tc a generator of contralateral permutation, 2n is the leg 

number and n is leg pair. This model has been proven to be able to generate almost a11 

gait patterns with some kind of symmetry for legged animals. We confirm further, from 

the macroscopic and distributed points of view, that the Z 2 n ( ~ )  x Z2 (K)  general model 

is optimal on the generation of gait patterns. Also we show the remarkable potential of 

asymmetric SMER Hopfield neural networks on rhythmic pattern formation. By building 

artificial CPG from this general gait pattern model, some basic criteria on macroneuron 

interconnection should be followed. 

1. Any two macroneurons in a CPG network should be coupled directly if their acti- 

vities are exactly out of phase. 

2. The ipsilateral macroneurons should be connected to form a cyclic undirected ring. 

3. If the phase difference between one macroneuron and anyone of its contralateral 

macroneurons (in the same surface) is less than that between this macroneuron and 

its ipsilateral neighbors then two contralateral macroneurons have additional con- 

nection. 

4. Based on the above connection different arrangement of initial membrane potential 

may lead to different patterns or system halt. 

We'll concerntrate on the primary gaits in this studio. The corresponding relation 

between flexor neurons and animal legs are arranged as following, with flexor 1 to rear 

' ~ h i s  expression itself denotes a statically standing animal 
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left, 2 to rear right, 3 to second rear left, 4 to second rear right, ..., 2n  - 1 to front left and 

2n  to front right. The rest neurons, from 2n  + 1 to 4n ,  are used to form a general model 

for symmetry consideration and facilitating wave propagation [43]. In some cases, e g ,  a 

model where the cyclic rings may exist such as walk of quadruped, it is not very accurate 

to specify the 2n + 1 to 4 n  neurons as extensors like Buono and Golubitsky argued [14], 

due to the phase relation in a cyclic ring. 

In order to show how to implement a11 possible gait patterns employing OBB me- 

thodology, we adopt aforementioned general model by modifying it into a completely 

connected network. We remain the general model shape (shown in Figure 4.lb) and let 

each neuron connect with a11 the other ones. Obviously one can find biological support 

for this connection in that the coupling strength becomes weaker with the increment of 

distance between sections. 

E.3.1 Bipedal Locomotion 

Bipedal locomotion is relatively simple compared with multi-legged locomotion, in the 

sense that two legs are either in-phase or half a period out-of-phase. Different from the 

popular methods employed on bipedal gait research which are mainly based on the kine- 

matic and mechanic point-of-view 1721 [28], we can greatly simplify bipedal gait research 

by adopting the newly method introduced in Appendix D and put the emphasis on the 

retrieval of biological rhythms. 

The CPG network for bipedal locomotion consists of a set of four macroneurons 

< 1,2,3 ,4  >, we relate 1,2  to the left and right flexors of two legs, and 3,4  to their 

corresponding extensors, respectively. The network architecture arrangement for in-phase 

locomotion to occur is that, each flexor connects with both extensors and vice-versa wi- 

thout connections between bilateral flexors and extensors. There are totally four connec- 

tions in in-phase network architecture, the system parameters are designed to let the flexor 

or extensor pair fires at first and a firing circulation will be followed. For out-of-phase 10- 

comotion to occur, the four macroneurons are linked like a ring, i.e., a flexor links with its 

extensor and bilateral flexor, and an extensor links with its flexor and bilateral extensor. 

The system parameters are designed for out-of-phase locomotion so that one flexor and 

its non-coupled, diagonal extensor fire first, then the other pair fire to form a circulation. 



Although Golubitsky et al. asserted that only two neurons are needed in case of bipedal 

locomotion due to its simplicity, 4 macroneurons are adopted in our architecture for the 

clarity purpose of network architecture as well as model consistency. 

E.3.2 Quadrupedal Locomotion 

There are six primary gait patterns bifurcated from the general symmetry model "stand": 

pronk, pace, bound, trot, jump, walk. Each one breaks the general syrnrnetry of 

Z4(u) x Z 2 ( ~ )  while remains some kind of symmetry. Among the totally eight ma- 

croneurons (1, . . . ,8} in this system we always take its subgroup (1, . . . ,4} as the set of 

flexors corresponding to rear left, rear right, front left, front right respectively, and the 

upper layer macroneurons represent flexors and the lower layer ones for extensors. There 

are totally sixteen coupling connections in a11 six gait pattern structures. The primary 

gaits are a11 SER case. 

Pronk (Z4 (w) x Z2 ( K ) )  

Pronk is a gait pattern during which four legs lift and contact the ground together, so one 

can imag ine  that it has the same symmetry group with original stand, i.e., the symmetry 

is not broken. There are some difficulties in explaining this gait by Golubitsky's theory, 

they argued that by varying only coupling strengths between cells the network of gene- 

ral model can produce a11 gaits, except pronk, by Hopf bifurcation [14]. However, it's 

very easy to retrieve pronk behavior using OBB network by only adjusting the coupling 

strengths (see Figure E.2). 

Time 

Time 

Figura E.2: The pronk gait, (a) coupled architecture, (b) numerical results of each leg, b l ,  b2 correspond 
to macroneurons 1,5 respectively, the other coupled pair has the same result. Reversability of each macro- 
neuron is set to 1, macroneuron thresholds and initial membrane potentials in the upper layer are 1 and 0.66 
while in the lower layer are O and 0.34 respectively, each coupling connection has the same strength 0.1. 



This net is indeed equivalent to the simple OBB only, however we employ its original 

graph derived from the complete graph, the weights of not connected macroneurons are 

O. In this case each flexor has four clones connecting with four extensors whch are 

exactly out of phase. The criterion for initial membrane potential arrangement is to let the 

macroneurons in the same layer have the same potentials. 

Trot is a gait pattern that one pair of diagonal legs are in phase and the two pairs of 

diagonal legs are half a period out of phase. According to the interconnection regulations 

we can get the coupled architecture as shown in Figure E.3 (a). Each flexor has four clones 

with two connecting extensors and two for other flexors respectively; each extensor also 

has four clones with two connecting flexors and two for other extensors respectively. The 

arrangement of initial membrane potential is to let macroneuron pair 1, 4 and 6, 7 fire 

simultaneously, and with a half period of phase difference macroneuron pairs 2, 3 and 5, 

8 fire simultaneously. 

h-n nnnnn rin nn-hn n i  

Figura E.3: The trot gait, (a) coupled architecture, (b) numerical results of each leg, b l ,  b2, b3, b4 corres- 
pond to macroneurons 1,2,3,4, and b5, b6, b7, b8 to 5,6,7,8 respectively. 

A11 the macroneuron reversabilities are 1, The arrangement of system parameter ma- 

trices of dij, Mij (O) and Wij are as following. In Wij matrix, the diagonal values are 

negative feedbacks of each clones themself; in 8 matrix, a value of O may have diffe- 

rent meanings, if the diagonal syrnmetry position of O is 1, then this O means there is 



a connection between these two macroneurons while corresponding clone's threshold is 

0, otherwise O means there is no connection between these two macroneurons. Any pa- 

rameter with subscript ij means that this parameter belongs to macroneuron i whch is 

connecting with macroneuron j. 

0 . .  = 
23 

/ -0.1 0.1 

There are some limits on initial membrane potential configuration scope of a gait. If 

the clone of a macroneuron is firing initially, then it should have initial value as: 

If it is idle initially, then it is assigned with the following initial value: 

In other words, the initial membrane value of a clone should have a scope of 2wij with 

the center point of its threshold. This configuration garantees that system oscillation will 

start from the very beginning without possible deadlock occuring due to unsuitable choice 



of initial potentials. If the initial potential value of a clone is not set withn the specified 

scope, two possibilities may occur: a self-organizing procedure if excursion is not very 

large or deadlock if excursion is large. In the initial configuration of t h s  trot gait there 

exists a self-organizing procedure. As we already know, a normal trot gait should be in an 

order as (23) (58) + (14) (67), however, according to the simulated wave in Figure E.3 (b) 

there is an initial self-organizing procedure as 3 + 4 + 3 + (14)7 + (23)8 + (14)7 + 
(23)(58) + (14) (67). Although a self-organizing procedure is not harmful and it is even 

a charming point of neural networks, we'd like to employ a regulated general method 

which adopts the initial potential scope in pace, bound and jump gait pattern simulations 

to avoid possible deadlock and facilitate network organization. 

Walk (Zz ( K W  2, 

Walk is a gait pattern that the contralateral legs move with half a period phase diffe- 

rence while ipsilateral legs move with a quarter period phase difference. According to 

the interconnection regulations we can get the coupled architecture as shown in Figure 

E.4(a). Each flexor has four clones with two connecting extensors and two for flexors; 

each extensor also has four clones with two connecting flexors and two for extensors. The 

arrangement of initial membrane potential is to let the pairs of flexors and extensors fire 

in the turn of (18) (36) (72) (54) with a quarter period phase difference. 
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Figura E.4: The walk gait, (a) coupled architecture, (b) numerical results of each leg, 61, b2, b3, b4 cor- 
respond to macroneurons 1 ,2 ,3 ,4  and b5, b6, b7, b8 to 5,6,7,8 respectively. 



A11 the cell reversabilities are 1. By matrix calculation, we can get the following para- 

meters corresponding to the results, in this case the gait pattern will repeat this sequence: 

(4,5) + (1,8) + (3,6) + (2,7), here macroneuron sets < 1,2,3,4 > and < 5,6 ,7 ,8  > 

Pace is a gait pattern that the ipsilateral legs are in phase while contralateral legs are half a 

period out of phase. According to the interconnection regulations we can get the coupled 

architecture as shown in Figure E.5(a). Each flexor has four clones with two connecting 

extensors and two for contralateral flexors; each extensor also has four clones with two 

connecting flexors and two for contralateral extensors. The arrangement of initial mem- 

brane potential is to let, for example, the ipsilateral flexors 1 , 3  and contralateral extensors 

6, 8 fire simultaneously first, and then the others. 

Since a11 the macroneuron reversabilities are 1. By matrix calculation, we can get the 

following parameters corresponding to the results, the syrnmetry existing in O matrix is 

are flexor and extensor collections respectively. 

( 0 0 0 0 0 0 0 0  

0 . .  = 
23 

1 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  
0 1 1 0 0 0 0 0  
1 0 1 0 0 0 0 0  
0 1 0 1 1 0 0 0  
1 0 1 0 1 0 0 0  

\ 0 1 0 1 0 1 1 0  





Jump is a gait pattern that the contralateral legs move in phase while ipsilateral legs move 

with a quarter period phase difference. According to the interconnection regulations we 

can get the coupled architecture as shown in Figure E.6(a). Each flexor has four clones 

with three connecting extensors and only one for ipsilateral fiexor; each extensor also has 

four clones with three connecting flexors and one for ipsilateral extensors. The arrange- 

ment of initial membrane potential is to let the pairs of flexors and extensors fire in the 

turn of (12) (34) (78) (56) with a quarter period phase difference. 
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Figura E.6: The jump gait, (a) coupled architecture, (b) numerical results of each leg, b l ,  b2, b3, b4 
correspond to macroneurons 1,2,3,4 and b5, b6, b7, b8 to 5,6,7,8 respectively. 

A11 the macroneuron reversabilities are 1. By matrix calculation, we can get the fol- 

lowing parameters corresponding to the results, 

~ 0 0 0 0 0 0 0 0  

e . .  = 
2 1  

0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
1 0 1 1 0 0 0 0  
0 1 1 1 0 0 0 0  
1 1 1 0 1 0 0 0  

\ 1 1 0 1 0 1 0 0  



Bound (D2 ( K ,  w2))  

Bound is a gait pattern that the contralateral legs move in phase while ipsilateral legs move 

with a half period phase difference. According to the interconnection regulations we can 

get the coupled architecture as shown in Figure E.7(a). Each flexor has four clones with 

two connecting extensors and two for flexors; each extensor also has four clones with two 

connecting flexors and two for extensors. The arrangement of initial membrane potential 

is to let the pairs of flexors and extensors fke in the turn of (12)(34)(78)(56) with half 

period phase difference. 
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Figura E.7: The bound gait, (a) coupled architecture, (b) numerical results of each leg, b l ,  b2, b3, b4 
correspond to macroneuron 1 ,2 ,3 ,4  and b5, b6, b7, b8 to 5 ,6 ,7 ,8  respectively. 



A11 the macroneuron reversabilities are 1. By matrix calculation, we can get the fol- 

lowing parameters corresponding to the results, 

E.3.3 Hexapodal Locomotion 

From the original "stand" posture of stick hexapodal insects (see Figure E.8) which ke- 

eps a11 structural symmetry with a11 macroneurons in the 12-cell network permutable, 

8 symmetry-breaking branches are bifurcated corresponding to 8 primary gait patterns 

as shown in Table E.1. Each pattern has a symmetry group which is a subgroup of 

Z6 ( w )  x Z2 ( K )  . Among the total twelve macroneurons (1, . . . ,121 in this system we always 

take its subgroup (1, . . . ,6} as the set of flexors corresponding to rear left (RL), rear right 

(RR), rniddle left (ML), middle right (MR), front left (FL) and front right (FR) respec- 

tively, and the upper layer macroneurons represent flexors and the lower layer ones for 

extensors. The complexity of numerical simulation of multi-legged animals increases ari- 

thrnetically as the number of legs increases, e.g., the calculation of hexapodal locomotion 

needs three 12 * 12 matrices in our analysis. In order to avoid enumerative operations 



only one hexapodal gait - rolling tripod is treated and a description of a11 primary gaits 

are given in Table E.1. A11 hexapodal gaits may be simulated under SER algorithm, like 

quadrupedal cases. 

Figura E.8: Cockroach, an hexapodal insect. 

Tabela E. 1 : Hexapodal primary gaits and description. 

Gait pattern I Syrnrnetry subgroup I Pattern description - 

Pronk 
Pace 

The rolling tripod is a gait pattern that ipsilateral legs are one-third period out of phase 

while contralateral legs are half period out of phase. An algorithm to arrange order of 

coupled clones of connected macroneurons is required to acquire the symmetric threshold 

matrix similar to quadruped cases, which may hold additional stability characteristics on 

gait patterns. A coupled structure with 32 connections is achieved according to the ciiteria 

for macroneuron interconnection (see Figure E.9a). 

The flexors of different legs of hexapodal rolling tripod gait fire in the order of RL,  

F  R ,  ML ,  R R ,  FL ,  M R ,  corresponding extensors fire in the order of FL,  RR,  M R ,  

F R ,  RL,  ML .  A snapshot phase of each macroneuron in the principal flexor layer is: 

R L  - O, M  L  - i, F L  - i, R R  - i, M  R  - g, F  R  - i. Based on given locomotive topo- 

Lurch 
Tripod 

Inchworm 
Metachronal 
Caterpillar 

Rolling tripod 

- - 

Z 6 ( w )  X &.(K)  

2 6  bJ) . , 
D 3  (4 w 2 )  
ZG ( K W )  

2 2  (4 
2 2  ( K W ~ )  

D2 (li, w 3 )  

2 2  (a3) 

- 

ipsilateral legs 
in phase 
in phase 

A 

half cycle out 
half cycle out 

one-sixth cycle out 
one-sixth cycle out 
one-third cycle out 
one-third cycle out 

contralateral legs 
in phase 

half cycle out 
in phase 

half cycle out 
in phase 

half cycle out 
in phase 

half cycle out 



Tabela E.2: Pseudo-code of thresholddetermination. 

/*Program: Threshold-determination*/ 
CONST: 
G(N,  E )  ; 

VAR: 
threshold[i, j : 1.. .4n] :real; 

Action: 
for (i := 1; i 5 4n; i $ +) 

forG := 1;j  5 4 n ; j + + )  
if<((i , j )  E E )  A (i < $1 

begin 
threshold[i, j] := 1.0; 
threshold[j, i] := 0.0; 

end 
else 

begin 
threshold[i, j] : = 0.0; 
threshold[j, i] := 0.0; 

end 



logy, the threshold, weight and initial potential matrices can be created as in quadrupeds 

for numerical simulation with the model developped in Appendix D. A flavor of discrete, 

parallel computation can be tasted by writing down matrices of threshold and initial mem- 

brane potential (weight matrix can be determinated according to threshold matrix with a11 

elements being O or 0.1) respectively. 

E.3.4 Multi-legged Animals 

The behavior of multi-legged insect , most typically a centipede with 20 legs on each side, 

may show many significant features of large-scaled, asynchronous parallel computation. 

As one has viewed, a multi-legged insect proceeds as if there is a wave propagating along 

its body sides. The ipsilateral legs in one section, or saying wave period (the spatial pe- 

riod between synchronously moving legs, measured along the length of animal), have a 

coordinated phase relation ranging from [O, 27r), with different legs in corresponding posi- 

tion of different waves having the same phase. From the viewpoint of symmetry-breakmg 
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Figura E.9: The hexapodal rolling tripod gait, (a) coupled architecture, (b) numerical results of 
each leg, b l ,  b2, b3, b4, b5, b6 correspond to macroneurons 1,2,3,4,5,6 and b7, b8, b9, b10, b l l ,  612 to 
7,8,9,10,11,12respectively. 

Hopf bifurcation, a centipede should have much more gait patterns than quadrupedal or 

hexapodal insects due to the significant increment of elements in its symrnetry group 

ZZn(u) x Z 2 ( ~ ) .  However, the visible gaits are lirnited to those related with wave-like 

sections, normally, various centipede gaits can be classified by two insights: (a). The 

wave number along an insect body is either an integer or half-an-odd integer (the divided 

number is an odd integer with denominator of 2). (b). The neighboring contralateral legs 

are exactly half a period out of phase [43]. If wave number is an integer, the possible choi- 

ces should always divide the single side number of legs, for instance, in the centipede with 

totally 40 legs, the possible integer wave number along each side are divisor of 20, i.e., 

1,2,4,5,10 (except 20 itself since a single leg cannot compose a period). The wave num- 

bers of a11 visible gaits are either integer or half-an-odd integer type, e.g., a gait observed 

in 40-legged centipede having only 3 legs striking ground is half-an-odd integer type with 

1.5 wave periods on each body side. Figure E.10 le  f t  presents a centipede insect which 

has 4 waves along its body side. Since it is in a turning posture, the frequency of its right 

legs is doubled from that of left side legs, so left side waves are more discernable than 

right side. Figure E.10 middle  and right represent the phase and coupled relationship of 

left and right body side of a 2n-legged insect which has b waves along each body side. 

The dot macroneurons in the middle and right graphs are the hidden part of its body. We 



mark the left body side legs of insect in odd order and right body side legs in even order, 

both from back to front. We further take leg 1 on the left side as the reference point with a 

snapshot of phase 0, i.e., at that time flexor of leg 1 is firing so that this leg is completely 

out of ground. 

c 

Figura E. 10: The centipede's wave-like gaits. Left. A 40-legged centipede is proceeding with a gait of 4 
waves propogating on each side; middle. a 2n-legged insect's possible left body side wave packages with 
a and b representing the leg number in a single wave and the wave number along body side, respectively; 
right. a 2n-legged insect's right body side wave packages. 

Since a 40-legged insect will have its three parameter matrices of threshold, weight 

and initial potential in the size of 80 x 80, we may represent the behavior of multi-legged 

insects in a pseudo-code operation instead of the huge numerical description. Note that 

there is no interna1 directions within the wave periods of right part of Figure E. 10 becau- 

se of the indetermination of phase O position in each wave which depends on the wave 

number and period of different gait and insect type, or in other words, the concrete cir- 

culating direction can only be decided by implementing a specific insect's gait. Also it 

is interesting to see that no interconnections between macroneurons are given in the fi- 

gure because of the same reason. It is now imaginable that in a pseudo-code operation, 

the configuration of initial connecting topology of a specific insect's gait will remain a 

nontrivial first step. Table E.3 is a pseudo-flow of centipede locomotion. The locomotive 

topology should be determined in initial state according to the insect's wave numbers and 



Tabela E.3: Pseudo-code operation of a centipede locomotion. 

/*Program: Centipede-gait*/ 
CONST: 
N := < 1...4n >; 
a := legs-in-wave : integer; 
b := n la ,  phase[i : 1...4n] : real; 

VAR: 
threshold[i, j : 1.. .4n], weight[i, j : 1.. .4n], membrane[i, j : 1.. .4n]:real; 
firing[i]: boolean; 

Initial state: /*determing topological structure*/ 
E := 0; 
for ( x  := O; x s b  - 1; x + +) 

begin 
if ( x  == 0) continue; 
else 

E := E+(2ax - 1,2n + 2ax - 1) + (2ax, 2n + 2ax) ; 
E := E+(2ax + 1,2n + 2ax + 1)  + (2ax + 2,2n + 2ax + 2) ;  
for (i := 2ax + 1; iL2a(x $ 1 )  - 1; i+ = 2) 

begin 
$(i  == 1) continue; 
else 

begin 
E :=E+( i , i  - 2) + (2n + i , 2n  + i - 2);  
E : = E + ( i +  1 , i -  1)  + ( 2 n + i + 1 , 2 n + i -  1);  
E :=E +(i,i + 1) + (2n + i ,2n  + i + 1);  
for ( j  := 2ax + 2; j<2a(x $ 1 ) ;  j+ = 2) 

begin 
diff  := ((phase[j]  - phase[i] 1 1 ;  
$((diff< T) A (dif f  != 0)) 

E := E +(i,  j ) ;  
else continue; 

end 
end 

end 
end 
Call Threshold-determination; 
Call Weight-determination; 
Call Membrane-determination; 

Action: 
Call Macroneuronfiringfunction; 



macroneuron interconnection criteria introduced at the beginning of this section. 

E.4 Turning Gaits 

The retrieval method of straight line gaits of legged animals is indeed a special case of 

asymmetric Hopfield neural networks under SMER, where the networks have equal cou- 

pled weights between any two interconnected macroneurons, and the scheduling scheme 

is SER instead of SMER. In animal's turning gait the case is a little more general in the 

sense that the contralateral macroneurons may oscillate with different frequencies, hence 

they may have different reversabilities. Normally if an animal turns to the left, its left side 

legs will strike ground with a lower frequency than its right side ones for moving its body 

load inclined from the straight line along its body length, meanwhile its legs on a body 

side of the direction to which it turns hold more load and the contralateral legs determine 

the degree of turning angle. 

We may take quadrupedal walking gait as the case study (see Figure E.4 a). If a 

quadrupedal insect turns mildly to the left while walking, its left body side legs will move 

with, saying, half the frequency of its right body side legs do; if it turns more wildly with 

large angle in a same time interval of last case, then its left body side legs should move 

with, saying one-third the frequency of its right body side legs. The choices of these 

behaviors are completely determined by the advanced CNS which is out of our focus, 

however, these behaviors show that there are some regularities which may be simulated 

by artificial CPGs mechanisms. 

Turning gait is easily achieved by adjusting the reversabilities of macroneurons of 

quadruped insect's walking gait model, and hence we get a different weight matrix as 

following, it is a mild turning with 2 : 1 frequency-lockbetween contralateral leg sets. The 

other two matrices are the same as they are in normal walk gait. By matrices calculation 

and simulation turning gait waves of each macroneuron are retrieved as shown in Figure 

E.ll. 



Figura E.11: The quadrupedal turning gait, (al), (a2), (a3), (a4) correspond to LR, LF, RR, RF legs 
respectively. 

E.5 Discussion 

The symmetriclasymmetric Hopfield-like neural networks under SMER have the potential 

to simulate many gait patterns, normal or specific, due to its capabilities of calculation on 

large-scaled networks in real time. Because of the digital and discrete nature of t h s  new 

methodology, it might be not so optimal to recover the whole procedure of those behaviors 

characterized with strong analogous dynarnics, however, it does reproduce at least the 

consecutive snapshot scenes and thus retrieve the dynamic behavior in the macroscopic 

point-of-view. 
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