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Graph sandwich problem
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Graph sandwich problem for property ⇧

instance: Vertex set V, forced edge set E
1

, forbidden edge set E
3

question: Is there a graph G = (V,E) such that E
1

✓ E and E \ E
3

= ;
that satisfies property ⇧ ?

M. Golumbic, H. Kaplan, R. Shamir, J Algorithms 1995



Generalized recognition problem

Sandwich problem generalizes graph recognition problem
with respect to a property ⇧

A recognition problem has one graph as input

A sandwich problem has two graphs as input

In a sandwich problem, we look for a third graph such that
its edge set lies between the edge sets of two given graphs
it satisfies a property ⇧



Sandwich problem is a coloring problem

Triangulating a colored graph (TCG)
instance: Graph G = (V,E), proper vertex coloring c : V ! Z.
question: Does there exist a supergraph GT = (V,ET ) of G that is chordal
and also properly colored by c?

TCG is NP-complete even when each color class has exactly two vertices

NP-completeness of graph sandwich problem for chordal

graphs follows from NP-completeness of TCG:
coloring c defines forbidden edge set E

3

(pairs of vertices with same color),
E defines forced edge set E

1

TCG is polynomially equivalent to the Perfect Phylogeny problem



Graph classes
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Graph classes defined by forbidden induced subgraphs

S. Dantas et al. / Discrete Applied Mathematics 159 (2011) 1717–1725 1719

Fig. 1. Graph classes defined by forbidden induced subgraphs (excepting �-perfect graphs, for which such characterization is not known). In the diagram,
note that odd-signable graphs are precisely (3PC(·, ·), 3PC(1, 1), evenwheel)-free graphs, even-signable graphs are precisely (3PC(1, ·), oddwheel)-free
graphs and chordal graphs are precisely graphs that are both perfect and �-perfect. Labels O, N and P refer to the complexity of the recognition problem
(open, NP-complete andpolynomial, respectively). Following the notation of [15], dashed, bold and light classes refer to the complexity of the corresponding
sandwich problem (open, NP-complete and polynomial, respectively). The four highlighted classes in the diagram correspond to classes classified in this
paper.

Fig. 2. Path configurations 3PC(·, ·), 3PC(4, 4), 3PC(4, ·) and a wheel. Dashed lines represent paths of length at least 1.

If {x1, x2, x3} and {y1, y2, y3} induce triangles, then we say that P1 [ P2 [ P3 induces a 3PC(x1x2x3, y1y2y3). If {x1, x2, x3}
induces a triangle and y1 = y2 = y3, we say that P1 [ P2 [ P3 induces a 3PC(x1x2x3, y1). We say that a graph G contains a
3PC(·, ·) if it contains a 3PC(x, y) for some x, y 2 V (G). Similarlywe say that a graphG contains a 3PC(1, 1) (resp. 3PC(1, ·))
if it contains a 3PC(x1x2x3, y1y2y3) (resp. 3PC(x1x2x3, y)) for some x1, x2, x3, y1, y2, y3 2 V (G) (resp. x1, x2, x3, y 2 V (G)).
Graphs 3PC(·, ·), 3PC(1, 1) and 3PC(1, ·) are also known as thetas, prisms and pyramids, respectively. Testing for thetas
and testing for pyramids can both be done in polynomial time [5] whereas testing for prisms is NP-complete [17].

A wheel, denoted by (H, x), is a graph induced by a hole H and a vertex x 62 V (H) having at least three neighbors in H ,
say x1, . . . , xn. If x is adjacent to two consecutive vertices in H , say xi, xi+1, we say that xixi+1 is a short sector of the wheel.
A wheel is odd if it has an odd number of short sectors. Wheel (H, x) is even if x has an even number of neighbors in H .
Detecting an odd wheel is NP-complete [18] whereas detecting an even wheel is open.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(1, 1)’s cannot be contained in even-hole-free graphs, while odd
wheels and 3PC(1, ·)’s cannot be contained in odd-hole-free graphs. In fact, a graph is odd-signable if and only if it does
not contain an even wheel, a 3PC(·, ·) or a 3PC(1, 1) and a graph is even-signable if and only if it does not contain an odd
wheel or a 3PC(1, ·) [7,9,22].

Another class introduced in the context of graphs not containing holes of a prescribed parity is the class of �-perfect
graphs. A graph is �-perfect [19] if for each induced subgraph H of G, �(H) = �(H), where �(G) = max{�(G0) + 1 : G0

is an induced subgraph of G}. It is easy to see that �-perfect graphs belong to the class of even-hole-free graphs, and that
this containment is proper. It has recently been shown in [16] that (even-hole, diamond)-free graphs are �-perfect, where
a diamond is a cycle of length 4 that has exactly one chord, or equivalently the graph K4 \ e. The recognition of �-perfect
graphs is open. Graphs that are both perfect and �-perfect are precisely the well known chordal graphs [19].

In the present paper, we prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k
is NP-complete. We prove that the sandwich problem corresponding to excluding Kr \ e for fixed r is polynomial. We prove
that the sandwich problem corresponding to 3PC(·, ·)-free graphs is NP-complete. These complexity results are related to
the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.



Path configurations and a wheel
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graphs and chordal graphs are precisely graphs that are both perfect and �-perfect. Labels O, N and P refer to the complexity of the recognition problem
(open, NP-complete andpolynomial, respectively). Following the notation of [15], dashed, bold and light classes refer to the complexity of the corresponding
sandwich problem (open, NP-complete and polynomial, respectively). The four highlighted classes in the diagram correspond to classes classified in this
paper.
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A wheel, denoted by (H, x), is a graph induced by a hole H and a vertex x 62 V (H) having at least three neighbors in H ,
say x1, . . . , xn. If x is adjacent to two consecutive vertices in H , say xi, xi+1, we say that xixi+1 is a short sector of the wheel.
A wheel is odd if it has an odd number of short sectors. Wheel (H, x) is even if x has an even number of neighbors in H .
Detecting an odd wheel is NP-complete [18] whereas detecting an even wheel is open.

It is easy to see that even wheels, 3PC(·, ·)’s and 3PC(1, 1)’s cannot be contained in even-hole-free graphs, while odd
wheels and 3PC(1, ·)’s cannot be contained in odd-hole-free graphs. In fact, a graph is odd-signable if and only if it does
not contain an even wheel, a 3PC(·, ·) or a 3PC(1, 1) and a graph is even-signable if and only if it does not contain an odd
wheel or a 3PC(1, ·) [7,9,22].

Another class introduced in the context of graphs not containing holes of a prescribed parity is the class of �-perfect
graphs. A graph is �-perfect [19] if for each induced subgraph H of G, �(H) = �(H), where �(G) = max{�(G0) + 1 : G0

is an induced subgraph of G}. It is easy to see that �-perfect graphs belong to the class of even-hole-free graphs, and that
this containment is proper. It has recently been shown in [16] that (even-hole, diamond)-free graphs are �-perfect, where
a diamond is a cycle of length 4 that has exactly one chord, or equivalently the graph K4 \ e. The recognition of �-perfect
graphs is open. Graphs that are both perfect and �-perfect are precisely the well known chordal graphs [19].

In the present paper, we prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k
is NP-complete. We prove that the sandwich problem corresponding to excluding Kr \ e for fixed r is polynomial. We prove
that the sandwich problem corresponding to 3PC(·, ·)-free graphs is NP-complete. These complexity results are related to
the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.



Complementary properties

G satisfies complementary property ⇧c i↵ Gc satisfies ⇧

⇧c sandwich problem has the same complexity of ⇧ sandwich problem

(G
1

,G
2

) is a YES instance for the ⇧c sandwich problem
i↵

(Gc
2

,Gc
1

) is a YES instance for the ⇧ sandwich problem



Ancestral, hereditary, monotone

⇧ is ancestral if
for all G = (V,E) that satisfy ⇧ and E ✓ E 0,
G 0 = (V,E 0) also satisfies ⇧

⇧ is hereditary if
for all G = (V,E) that satisfy ⇧ and E 0 ✓ E,
G 0 = (V,E 0) also satisfies ⇧

⇧ is monotone if
⇧ is ancestral or hereditary

If ⇧ is ancestral, then ⇧c is hereditary, and vice versa

For monotone properties,
the sandwich problem reduces to the recognition problem for G

1

or G
2



Almost monotone properties

A more general notion of monotonicity. Reduce solving the sandwich
problem to solving a polynomial number of recognition problems.

⇧ is k-edge monotone when, for all sandwich instances (G
1

,G
2

), if there
exists a sandwich graph G that satisfies ⇧, then there exists a sandwich
graph G 0 that satisfies ⇧ and |E(G 0) \ E(G

1

)| 6 k or |E(G
2

) \ E(G 0)| 6 k

Let C be a set of graphs.

G is C-free if no induced subgraph of G is isomorphic to a graph in C

C is almost edge monotone if there exists a k such that the property of
not being C-free is k-edge monotone



The set of odd holes is almost edge monotone

Let (G
1

,G
2

) be a sandwich instance such that there is a sandwich graph
for (G

1

,G
2

) that contains an odd hole

Let G be the sandwich graph for (G
1

,G
2

) with |E(G
2

) \ E(G)| minimum
subject to G containing an odd hole, and let C be an odd hole in G

All edges in E(G
2

) \ E(G) have both endpoints in C

The addition of e 2 E(G
2

) \ E(G) splits C into two smaller induced cycles,
one is odd but not an odd hole, it is a triangle and defines vertex v(e)

If there are two edges e
1

, e
2

such that vertices v(e
1

), v(e
2

) are not
adjacent, then |C| = 5, and |E(G

2

) \ E(G)| 6 5
Else, vertices v(e) define a clique in C, and |E(G

2

) \ E(G)| 6 2



Berge, perfect

G is Berge if
G contains no odd hole and no odd antihole as induced subgraph

G is perfect if
for each H induced subgraph of G,
the clique number of H equals the chromatic number of H

The strong perfect graph theorem says that G is Berge i↵ G is perfect

Berge graphs can be recognized in polynomial time
but

the recognition of graphs containing an odd hole is an open challenge



Berge trigraphs

A trigraph is defined as a sandwich pair (G
1

,G
2

)

A trigraph (G
1

,G
2

) satisfies property ⇧ if
there is no sandwich graph G for (G

1

,G
2

) which does not satisfy ⇧

Trigraphs are complementary to sandwich graphs

Berge graphs can be recognized in polynomial time
but

the recognition of Berge trigraphs was previously open

Theorem 1 yields that recognizing Berge trigraphs is polynomial;
equivalently, the imperfect graph sandwich problem is polynomial.



Recognizing Berge trigraphs is polynomial

(G
1

,G
2

) is a Berge trigraph i↵ (G
1

,G
2

) is a No instance for the imperfect
graph sandwich problem.
The property of containing an odd hole is almost monotone, and the
property of containing an odd antihole is almost monotone as well.

Let (G
1

,G
2

) be a trigraph. Suppose that (G
1

,G
2

) is not Berge. Then
there is a sandwich graph for (G

1

,G
2

) which contains an odd hole or an
odd antihole, and so there is a sandwich graph G which di↵ers little from
G

1

or G
2

, and which is not Berge. We can check by using the Berge
recognition algorithm.

If we find a sandwich graph that is not Berge, then (G
1

,G
2

) is not a
Berge trigraph. If all of the graphs we checked are Berge, then no
sandwich graph for (G

1

,G
2

) contains an odd hole or an odd antihole, and
(G

1

,G
2

) is a trigraph.



Four additional monotone properties

Theorem 2
The sandwich problems for the following properties can be solved in
polynomial time:

I containing a pyramid as an induced subgraph

I containing a theta as an induced subgraph

I containing a theta or a prism as an induced subgraph

I containing an even hole



Is the not C-free easier than the C-free sandwich problem?

In the not C-free sandwich problem, we are asking if there exists a
sandwich graph in which there exists an induced subgraph isomorphic to a
graph of set C

In the C-free sandwich problem, we are testing if there exists a sandwich
graph G such that for every induced subgraph H of G, H is not in set C

If the recognition problem for C-free graphs is hard,
then the not C-free sandwich problem is hard

Is there a set C such that recognition of C-free graphs is polynomial,
but the not C-free sandwich problem is hard?

Is there a set C such that the C-free sandwich problem is polynomial,
but the not C-free sandwich problem is hard?
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