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Even Pairs in Bull-reducible Graphs

Celina M.H. de Figueiredo, Frédéric Maffray and
Claudia Regina Villela Maciel

Abstract. A bull is a graph with five vertices a, b, c, d, e and five edges ab, bc,
cd, be, ce. A graph G is bull-reducible if no vertex of G lies in two bulls. An
even pair is a pair of vertices such that every chordless path joining them has
even length. We prove that for every bull-reducible Berge graph G with at
least two vertices, either G or its complementary graph G has an even pair.

1. Introduction

A graph is perfect if for every induced subgraph H of G the chromatic number of
H is equal to its clique number. Perfect graphs were defined by Claude Berge [1].
The study of perfect graphs led to several interesting and difficult problems. The
first one is their characterization. Berge conjectured that a graph is perfect if and
only if it contains no odd hole and no odd antihole, where a hole is a chordless
cycle of length at least 4, and an antihole is the complementary graph of a hole.
It has become customary to call Berge graph any graph that contains no odd
hole and no antihole, and to call the above conjecture the “Strong Perfect Graph
Conjecture”. This conjecture was proved by Chudnovsky, Robertson, Seymour,
and Thomas [4] in 2002. A second problem is the existence of a polynomial-time
algorithm to color optimally the vertices of a perfect graph. This problem was
solved in 1984 by Grötschel, Lovász and Schrijver [10] with an algorithm based
on the ellipsoid method for linear programming. A third problem is the existence
of a polynomial-time algorithm to decide if a graph is Berge. This was solved by
Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [3] in 2002. There remains
a number of interesting open problems in the context of perfect graphs. Some of
them are related to the concept of even pair.

Even pairs: An even pair [18] in a graph G is a pair of vertices such that every
chordless path between them has even length. A graph G is called a quasi-parity

This research was partially supported by CNPq, CAPES (Brazil)/COFECUB (France), project
number 359/01.



180 C.M.H. de Figueiredo, F. Maffray and C.R.V. Maciel

graph [18] if for every induced subgraph H of G on at least two vertices, either H
has an even pair or H has an even pair. A graph G is called a strict quasi-parity
graph [18] if every induced subgraph of G on at least two vertices has an even pair.
Clearly, strict quasi-parity graphs are quasi-parity graphs. Meyniel [18] proved that
every quasi-parity graph is perfect. The concept of even pair turned out to be very
useful for proving that certain classes of Berge graphs are perfect and for designing
optimization algorithms on special classes of perfect graphs. See [8] for a survey
on this matter. Some questions of particular interest are the characterization of
quasi-parity graphs and of strict-quasi-parity graphs. Hougardy [14, 15] (see also
[8]) made two conjectures: (1) there is a family F of line-graphs of bipartite graphs
such that a graph is a strict quasi-parity graph if and only if it does not contain
an odd hole, an antihole, or a graph in F ; (2) there is a family F ′ of line-graphs
of bipartite graphs such that a graph is a quasi-parity graph if and only if it does
not contain an odd hole, an odd antihole, or a graph in F ′. These two conjectures
are still unsolved.

Bull-free graphs: A bull is a graph with five vertices r, y, x, z, s and five edges
ry, yx, yz, xz, zs; see Figure 1. We will frequently use the notation r − yxz − s for
such a graph. Chvátal and Sbihi [6] proved in 1987 that every bull-free Berge graph
is perfect. Subsequently Reed and Sbihi [20] gave a polynomial-time algorithm for
recognizing bull-free Berge graphs. De Figueiredo, Maffray and Porto [9] proved
that every bull-free Berge graph is a quasi-parity graph, and that every bull-free
Berge graph with no antihole is a strict quasi-parity graph. Hayward [11] proved
that every bull-free graph with no antihole if perfectly orderable (see [5, 13] for
this definition), as conjectured by Chvátal. These results also settled Hougardy’s
above two conjectures for bull-free graphs.
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Figure 1. The bull r − yxz − s.

Bull-reducible graphs: A graph G is called bull-reducible if every vertex of G
lies in at most one bull of G. Clearly, bull-free graphs are bull-reducible. Ev-
erett, de Figueiredo, Klein and Reed [7] proved that every bull-reducible Berge
graph is perfect. Although this result now follows directly from the Strong Perfect
Graph Theorem [4], the proof given in [7] is much simpler and leads moreover
to a polynomial-time recognition algorithm for bull-reducible Berge graphs whose
complexity is lower than that given for all Berge graphs in [3]. Here we will prove:

Theorem 1. Let G be a bull-reducible Berge graph with at least two vertices. Then
either G or G has an even pair.
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We note that this theorem settles Hougardy’s above two conjectures in the
case of bull-reducible graphs. The proof of this theorem is given in Section 3,
while Section 2 presents some technical lemmas. We tend to follow the standard
terminology of graph theory [2], but we will use the verb “sees” instead of “is
adjacent to” and “misses” instead of “is not adjacent to”.

2. Some technical lemmas

As in [20], call wheel a graph made of an even hole of length at least 6 plus a
vertex that sees all vertices of this hole. Say that a proper subset H of vertices of
a graph G is homogeneous if every vertex of V (G) \ H either sees all vertices of
H or misses all vertices of H and 2 ≤ |H | ≤ |V (G)| − 1. We recall two lemmas
from [7].

Lemma 2 ([7]). Let G be a bull-reducible odd hole-free graph, and let C be a shortest
even hole of length at least 6 in G, with its vertices colored alternately red and blue.
Let v be any vertex in V (G) \ V (C). Then v satisfies exactly one of the following
conditions:

• N(v) ∩ V (C) = ∅;
• N(v) ∩ V (C) = V (C), so C and v form a wheel;
• N(v) ∩ V (C) consists in either all red vertices and no blue vertex or all blue

vertices and no red vertex;
• N(v) ∩ V (C) consists in either one, or two consecutive or three consecutive

vertices of C;
• N(v) ∩ V (C) consists in two vertices at distance 2 along C;
• C has length 6 and N(v) ∩ V (C) consists in four vertices such that exactly

three of them are consecutive. !
Lemma 3 (Wheel Lemma [7]). Let G be a bull-reducible odd hole-free graph. If G
contains a wheel, then G contains a homogeneous set. !

Now we give a few more lemmas that will be useful in the proof of the main result.

Lemma 4. Let G be a bull-reducible odd hole-free graph. Let P = u0-· · · -ur be a
chordless path of G of odd length r ≥ 5, and let c be a vertex of V (G) \ V (P ) that
sees u0 and ur. Then up to symmetry we have either:

1. N(c) ∩ V (P ) = V (P );
2. N(c)∩V (P ) = {u0, u1, ur} or {u0, u1, u3, ur}, and in this case there is a bull

ur − cu0u1 − u2;
3. r = 5 and N(c) ∩ V (P ) = {u0, u1, u2, u3, u5}, and in this case there is a bull

u0 − cu2u3 − u4.

Proof. Since G contains no odd hole, c has two consecutive neighbors along P .
If outcome 1 of the Lemma does not hold, then up to symmetry there exists an
integer i ∈ {0, . . . , r} such that c sees ui, ui+1 and misses ui+2. Clearly i ≤ r − 3.
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Suppose i is odd. So i ≤ r − 4. We find a first bull ur − cuiui+1 − ui+2.
Then i = 1, for otherwise we find a second bull u0 − cuiui+1 − ui+2 containing
c. Then c misses every uj with 5 ≤ j ≤ r − 1, for otherwise we find a second
bull uj − cu1u2 − u3 containing c. Then c sees u4 for otherwise {c, u2, u3, . . . , ur}
induces an odd hole. Then r < 7 for otherwise {c, u4, u5, . . . , ur} induces an odd
hole. So r = 5. But then we find a second bull u0 − cu5u4 − u3 containing c. Thus
i is even.

Suppose i = 0. Then we find a first bull ur − cu0u1 − u2; and then c misses
every cj with 4 ≤ j ≤ r − 1, for otherwise we find a second bull uj − cu0u1 − u2

containing c. So we obtain outcome 2.
Suppose i is even and i ≥ 2. Then we find a first bull u0 − cuiui+1 − ui+2.

Then i = r− 3, for otherwise we find a second bull ur − cuiui+1 − ui+2 containing
c. Then c sees ui−1, for otherwise we find a second bull ui−1 − uicui+1 − ui+2

containing c. If r = 5 we have outcome 3. So suppose r ≥ 7, so i ≥ 4. Then c sees
ui−2, for otherwise we find a second bull ui−2 − ui−1uic − ur containing c. But
then we find a second bull ui−2 − cuiui+1 − ui+2 containing c. This completes the
proof of the lemma. !

A P4 is a chordless path on four vertices. We call double broom the graph
made of a P4 (called the central P4 of the double broom), plus two non-adjacent
vertices a, b that see all vertices of the P4, plus a vertex a′ that sees only a and a
vertex b′ that sees only b. See Figure 2.
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Figure 2. A double broom and its complement

Lemma 5. Let G be a bull-reducible Berge graph. Let P be a chordless odd path
of G of length at least 5, and let a, b, a′, b′ be four vertices of G such that aa′ and
bb′ are edges, ab′ and ba′ are not edges, a, b see the two endpoints of P , and a′, b′

miss the two endpoints of P . Then G or G contains a double broom.

Proof. Note that a, b do not lie on P . On the other hand, a′, b′ may be interior
vertices of P . Put P = u0-u1-· · · -ur, with odd r ≥ 5. Note that each of ab and a′b′

may be an edge or not. More precisely, if ab is an edge then a′b′ is an edge, for
otherwise we find two intersecting bulls a′−au0b−b′ and a′−aurb−b′. Conversely, if
a′b′ is an edge then ab is an edge, for otherwise {a′, a, u0, b, b′} induces an odd hole.

We can apply Lemma 4 to P and each of a, b. If we have outcome 2 for one
of a, b, say for a, then (regardless of symmetry) there is a bull containing a, u0, ur;
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and then we do not have outcome 2 or 3 for b, for otherwise there would be a
second bull containing one of u0, ur. If we have outcome 3 for both a, b, then we
find two bulls containing u2, u3. Therefore we must have outcome 1 for at least
one of a, b, say for b, that is, b sees all vertices of P . It follows that a′ does not lie
on P . We claim that a′ misses every vertex of P . For suppose the contrary. Then,
up to symmetry, a′ sees ui and misses ui−1 with 1 ≤ i ≤ (r − 1)/2, and we find
a bull a′ − uiui−1b − ur. Then a′ sees ur−1, for otherwise we find a second bull
a′ −uiui−1b−ur−1 containing b. But then we find a second bull a′−ur−1urb−u0

containing b, a contradiction. So the claim holds.
If we have outcome 2 for a, then ur − au0u1 −u2 and a′− au0u1−u2 are two

intersecting bulls, a contradiction. If we have outcome 3 for a, then u0−au2u3−u4

and a′ − au2u3 − u4 are two intersecting bulls. So a sees all vertices of P , which
restores the symmetry between a and b, and thus b′ does not lie on P and misses ev-
ery vertex of P . Now, if both ab, a′b′ are non-edges, then {u0, u1, u2, u3, a, b, a′, b′}
induces a double broom in G, while if both are edges, the same subset induces a
double broom in G. This completes the proof of the lemma. !

Lemma 6. Let G be a bull-reducible C5-free graph that contains a double broom.
Then G has a homogeneous set that contains the central P4 of the double broom.

Proof. Pick any double broom of G, and label its vertices w1, w2, w3, w4, a, b, a′, b′

so that its edges are w1w2, w2w3, w3w4, aw1, aw2, aw3, aw4, bw1, bw2, bw3, bw4,
aa′, bb′. Vertices w1, w2, w3, w4 form the central P4 of the double broom and we
write W = {w1, w2, w3, w4}. We partition the vertices of V (G) \ W as follows:

• Let T be the set of vertices of V (G) \ W that see all of w1, w2, w3, w4.
• Let P be the set of vertices of V (G) \ W that see at least one but not all of

w1, w2, w3, w4.
• Let F be the set of vertices of V (G) \ W that see none of w1, w2, w3, w4.

Clearly the four sets W , T , P , F are pairwise disjoint and their union is V (G).
Note that a, b ∈ T and a′, b′ ∈ F . We define some subsets of T as follows:

A = {t ∈ T | ta′ ∈ E, tb′ /∈ E};
B = {t ∈ T | ta′ /∈ E, tb′ ∈ E};
C = {t ∈ T | ta′ ∈ E, tb′ ∈ E}.

Note that A, B, C are pairwise disjoint and that a ∈ A, b ∈ B.

Claim 6.1. There is no edge between A and B.

Proof. For suppose there is an edge uv with u ∈ A, v ∈ B. Then a′ − uwiv − b′ is
a bull, for every i = 1, . . . , 4, so a′ belongs to four bulls, a contradiction. !

Claim 6.2. If p ∈ P , then:
1. There exist adjacent vertices wg, wh ∈ W such that p sees wg and misses wh;
2. There exist nonadjacent vertices wr, ws ∈ W such that p sees wr and

misses ws.
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Proof. This follows directly from the definition of P and the fact that W induces
a connected subgraph in G and in G. !

Claim 6.3. Every vertex of P sees all of A ∪ B ∪ C and none of a′, b′.

Proof. Consider any p ∈ P and u ∈ A. We first prove that p sees u. Suppose on
the contrary that p misses u.

Case 1: There is a subpath w-w′-w′′ of W such that p sees both w, w′ and
misses w′′. If p misses a′, then p − w′w′′u − a′ is a bull, while if p sees a′, then
a′−pww′−w′′ is a bull. In either case, p must miss b′ for otherwise b′−pww′−w′′

is a second bull containing p, a contradiction. Then p sees b or else p−w′w′′b− b′

is a second bull containing p. But then u−w′pb− b′ is a second bull containing p.
So p sees u.

Case 2: p sees exactly one of w1, w2 and misses w4. Then {p, w1, w2, u, w4}
induces a bull. This implies pb ∈ E, for otherwise {p, w1, w2, b, w4} induces a second
bull containing p, a contradiction. Then p sees a′, for otherwise {p, w1, w2, u, a′}
induces a second bull containing p. But then {a′, p, wg, b, w4}, where g ∈ {1, 2} is
such that p sees wg, induces a second bull containing p, a contradiction. So p sees
u. The case where p sees exactly one of w3, w4 and misses w1 is symmetric.

It is easy to see that if we are not in one of the above two cases, and up
to symmetry, then p sees w1, w4 and misses w2, w3; but then {p, w1, w2, w3, w4}
induces a C5, a contradiction. Thus we have proved that p sees u, and so p sees
every vertex of A ∪ B.

Now we prove that p misses both a′ and b′. By Claim 6.2 there are two
nonadjacent vertices wr, ws ∈ W such that p sees wr and misses ws. Suppose that
p sees a′. Then a′ − pwrb − ws is a bull. Now if p sees b′, then b′ − pwra− ws is a
second bull containing p; while if p misses b′, then a′ − pwrb − b′ is a second bull
containing p, in either case a contradiction. So p misses a′ and by symmetry it
misses b′.

Finally, we prove that p sees every vertex c ∈ C. Recall that c sees both a′, b′.
By Claim 6.2, there are two adjacent vertices wg, wh ∈ W such that p sees wg

and misses wh. Then p sees c for otherwise we find two bulls p − wgwhc − a′ and
p − wgwhc − b′ that contain p, a contradiction. Thus Claim 6.3 holds. !

Now we define subsets X, Z of F and a subset Y of T \ (A∪B∪C) as follows:
• x ∈ X if x ∈ F and there exists in G a path p-x1-· · · -xi, with p ∈ P , i ≥ 1,

x1, x2, . . . , xi ∈ F and x = xi. Any such path will be called a forcing sequence
for x.

• y ∈ Y if y ∈ T \ (A ∪ B ∪ C) and there exists in G a path x-y1-· · · -yj, with
x ∈ P ∪X , j ≥ 1, y1, y2, . . . , yj ∈ T \ (A∪B ∪C), and y = yj. Note that if x
is not in P there exists a forcing sequence p-x1-· · · -xi for x = xi. In this case
the sequence p-x1-· · · -xi-y1-· · · -yj will be called a forcing sequence for y. In
case x ∈ P the sequence x-y1-· · · -yj will be called a forcing sequence for y.
In either case a forcing sequence for y can be denoted by x0-· · · -xi-y1-· · · -yj

with i ≥ 0 and j ≥ 1.
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• z ∈ Z if z ∈ F \X and there exists in G a path y-z1-. . . -zk, with y ∈ Y , k ≥ 1,
z1, z2, . . . , zk ∈ F \ X , and z = zk. Note that there exists a forcing sequence
x0-x1-· · · -xi-y1-· · · -yj for y = yj , with i ≥ 0 and j ≥ 1. The sequence x0-x1-
· · · -xi-y1-· · · -yj-z1-· · · -zk will be called a forcing sequence for z.
Naturally we can consider for each v ∈ X∪Y ∪Z a shortest forcing sequence.

Such sequences have notable properties which we express in the following claims.

Claim 6.4.

1. If x ∈ X and p-x1-· · · -xi is a shortest forcing sequence for x = xi then it is
a chordless path of G.

2. If y ∈ Y and x0-x1-· · · -xi-y1-· · · -yj is a shortest forcing sequence for y = yj,
with the above notation, then x0-x1-· · · -xi is a chordless path of G, xi-y1-
· · · -yj is a chordless path of G, and, if i ≥ 1, each of x0, x1, . . . , xi−1 sees
each of y1, . . . , yj.

3. If z ∈ Z and p-x1-· · · -xi-y1-· · · -yj-z1-· · · -zk is a shortest forcing sequence for
z = zk, with the above notation, then p-x1-· · · -xi is a chordless path of G, xi-
y1-· · · -yj is a chordless path of G, yj-z1-· · · -zk is a chordless path of G, each
of p, x1, . . . , xi−1 sees each of y1, . . . , yj, and each of p, x1, . . . , xi, y1, . . . , yj−1

misses each of z1, . . . , zk.

Proof. The claim follows routinely from the definition of X, Y, Z and from the
definition of a shortest forcing sequence. Details are omitted. !
Claim 6.5. If y ∈ Y , a shortest forcing sequence for y contains at most two vertices
of X.

Proof. For suppose on the contrary that there exists a shortest forcing sequence
S = p-x1-· · · -xi-y1-· · · -yj with j ≥ 1 and i ≥ 3. Then S satisfies the properties
stated in Claim 6.4, part 2. Then for each h = 1, . . . , 4 we find a bull wh −
y1xi−2xi−1 − xi that contains y1, so y1 lies in four bulls, a contradiction. !
Claim 6.6. If z ∈ Z, a shortest forcing sequence for z contains no vertex of X.

Proof. For suppose on the contrary that S = p-x1-· · · -xi-y1-· · · -yj-z1-· · · -zk is
a shortest forcing sequence for z = zk with i ≥ 1. Recall that S satisfies the
properties stated in Claim 6.4, part 3. By Claim 6.2, there are nonadjacent vertices
wr, ws ∈ W such that p sees wr and misses ws. By the preceding claim we have
i ≤ 2. Suppose i = 1. Then ws−y1wrp−x1 is a bull. If j = 1, then z1−y1wrp−x1 is
a second bull containing p; if j = 2, then z1−y2x1p−y1 is a second bull containing
p; if j ≥ 3, then z1 − yjyj−2p − yj−1 is a second bull containing p; in either case
we have a contradiction. So i = 2. Then ws − y1px1 − x2 is a bull. If j = 1, then
z1 − y1px1 − x2 is a second bull containing p; if j = 2, then z1 − y2x2x1 − y1 is
a second bull containing x1; if j ≥ 3, then z1 − yjyj−2p − yj−1 is a second bull
containing p; in either case we have a contradiction. Thus the claim holds. !
Claim 6.7. If z ∈ Z, a shortest forcing sequence for z contains at most two vertices
of Y .
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Proof. For let S = p-y1-· · · -yj-z1-· · · -zk be a shortest forcing sequence for z = zk.
The sequence S satisfies the properties stated in Claim 6.4, part 3, and it contains
no vertex of X by Claim 6.6. Suppose that j ≥ 3. Then z1 − yjyj−2wh − yj−1 is
a bull that contains z1 for each h = 1, . . . , 4, a contradiction. So j ≤ 2, and the
claim holds. !

Let H be the set of vertices that form the connected component of G\(T \Y )
that contains W .

Claim 6.8. H = W ∪ P ∪ X ∪ Y ∪ Z.

Proof. Put H ′ = W ∪P ∪X∪Y ∪Z. First we prove that H ′ ⊆ H . Clearly, W ⊆ H .
We also have P ∪X ∪ Y ⊂ H since every vertex of P ∪X ∪ Y is linked to W by a
path in G \ (T \ Y ). Consequently Z ⊂ H , since every vertex of Z is linked to Y
by a path in G \ (T \ Y ). So we have H ′ ⊆ H .

Conversely, let h ∈ H . Recall that V (G) is partitioned into the four sets W ,
P , T , F . If h ∈ W ∪P then h ∈ H ′. If h ∈ T , then, by the definition of H , we have
h ∈ Y . If h ∈ F , then, by the definition of H , there exists a path in G \ (T \ Y )
from h to W . Along this path, let v be the first vertex, starting from h, that is not
in F . Then v must be in P ∪ W ∪ Y . If v ∈ P ∪ W , then h ∈ X . If v ∈ Y , then
h ∈ Z. So we have H ⊆ H ′, and the claim holds. !
Claim 6.9. Every vertex of H sees all of T \ (A ∪ B ∪ C ∪ Y ).

Proof. Consider any t ∈ T \ (A∪B∪C ∪Y ). So t sees all of W by the definition of
T . In addition, t sees all of P ∪X ∪Y , for otherwise t would be in Y . Now suppose
that t misses a vertex z of Z. There exists a shortest forcing sequence S for z, and
by Claims 6.6 and 6.7 we have S = p-y1-· · · -yj-z1-· · · -zk with z = zk and with
j ∈ {1, 2}. We may also choose z such that k is as small as possible, so t sees all
vertices of S \zk. Let wg, wh be two adjacent vertices of W such that p sees wg and
misses wh. Suppose j = 1. Then we find a first bull p−wgwhy1−z1. If k = 1, then
p− twhy1−z1 is a second bull containing p; if k = 2, then p− ty1z1−z2 is a second
bull containing p; if k ≥ 3, then p − tzk−2zk−1 − zk is a second bull containing
p; in either case there is a contradiction. So j = 2. Then we find a first bull
y1−wgpy2−z1. If k = 1, then y1−tpy2−z1 is a second bull containing y1; if k = 2,
then y1−ty2z1−z2 is a second bull containing y1; If k ≥ 3, then y1−tzk−2zk−1−zk

is a second bull containing y1; in either case there is a contradiction. Thus the claim
holds. !
Claim 6.10. Every vertex of X sees all of A ∪ B ∪ C and none of a′, b′.

Proof. Consider any x ∈ X . By the definition of X , there exists a shortest forcing
sequence S = p-x1-· · · -xi for x = xi, with i ≥ 1, p ∈ P , and x1, . . . , xi−1 ∈ X .
Then S satisfies the properties stated in Claim 6.4, part 1, i.e., S is a chordless
path. Let wr, ws be nonadjacent vertices of W such that p sees wr and misses ws.
We argue by induction on i.

Assume i = 1. Let u ∈ A ∪ C, and suppose that x misses u. We find a
first bull ws − uwrp − x. Then x sees b, for otherwise ws − bwrp − x is a second
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bull containing x. Then x misses a′, for otherwise a′ − xpb − ws is a second bull
containing x. But then a′ − uwrp − x is a second bull containing x. Hence x sees
every vertex of A ∪C. Analogously, x sees every vertex of B. Suppose that x sees
a′. So we find a first bull a′ − xpb − ws. Then x misses b′, for otherwise we find
a second bull b′ − xpa − ws containing x. But then b′ − bpx − a′ is a second bull
containing x. Hence x misses a′, and analogously, x misses b′.

Now assume i ≥ 2. So vertices xi−1 and xi−2 are defined, with xi−1 ∈ X and
xi−2 ∈ P ∪ X . Let u ∈ A ∪ C, and suppose that xi misses u. By the induction
hypothesis u sees xi−1 and xi−2, and we obtain a first bull xi − xi−1xi−2u − ws.
Then xi sees b, for otherwise xi − xi−1xi−2b − ws is a second bull containing xi.
Then xi misses a′, for otherwise a′ − xixi−1b − ws is a second bull containing xi.
But then xi − xi−1xi−2u − a′ is a second bull containing xi. Hence, xi sees every
u ∈ A∪C. Analogously, xi sees every vertex of B. Suppose that xi sees a′. By the
induction hypothesis, xi−1 sees b. Hence a′ − xixi−1b − wr and a′ − xixi−1b − ws

are two intersecting bulls, a contradiction. Hence, xi misses a′, and analogously,
xi misses b′. Thus the claim holds. !
Claim 6.11. Every vertex of Y sees all of A ∪ B ∪ C and none of a′, b′.

Proof. Consider any y ∈ Y . By the definition of Y , there exists a shortest forcing
sequence S = x0-· · · -xi-y1-y2-· · · -yj for y = yj , with j ≥ 1, and by Claim 6.5 we
have i ≤ 2. Since Y ⊆ T \ (A∪B ∪C), y misses a′ and b′. Consider any u ∈ A∪C.
Pick a vertex w as follows: If i = 0 then xi ∈ P and xi sees a vertex w ∈ W . If
i > 0 then we take w = xi−1. By Claims 6.3 and 6.10, xi and w see both u, b and
miss both a′, b′. Also w sees all of y1, . . . , yj by the definition of Y . We prove by
induction on j that y sees u. Suppose the contrary.

Assume j = 1. So we find a first bull a′ − uxiw − y. If u sees b′, we find a
second bull b′ − uxiw − y, a contradiction. So u misses b′, so u ∈ A, so u misses
b by Claim 6.1. Then y sees b, for otherwise we find a second bull b′ − bxiw − y
containing y. But then we find a second bull b′ − byw − u containing y. Hence, y
sees every u ∈ A ∪ C. Analogously, y sees every vertex of B.

Assume j ≥ 2. By the induction hypothesis, yj−1 sees u and b. Then we find
a first bull a′ − uyj−1w − y. If u sees b′, we find a second bull b′ − uyj−1w − y, a
contradiction. So u misses b′, so u ∈ A, so u misses b by Claim 6.1. Then y sees b,
for otherwise we find a second bull b′−byj−1w−y containing y. But then we find a
second bull b′− byw−u containing y. Hence, y sees every u ∈ A∪C. Analogously,
y sees every vertex of B. Thus the claim holds. !
Claim 6.12. Every vertex of Z sees all of A ∪ B ∪ C and none of a′, b′.

Proof. Consider any z ∈ Z. By Claims 6.6 and 6.7, there exists a shortest forcing
sequence S = p-y1-· · · -yj-z1-· · · -zk for z = zk with 1 ≤ j ≤ 2; and S satisfies the
properties given in Claim 6.4, part 3. Consider any u ∈ A ∪ B ∪ C. So u sees all
of W and, by the preceding claims, u sees all of p, y1, . . . , yj. As usual there exist
adjacent vertices wg, wh ∈ W such that p sees wg and misses wh. We prove that z
sees u and misses a′, b′ by induction on k.
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Assume k = 1. If j = 1, we find a bull z − y1whwg − p. Then z sees u
for otherwise we find a second bull z − y1whu − p containing z. So z sees all of
A ∪ B ∪ C. Then z misses a′, for otherwise we find a second bull a′ − zy1b − p
containing z. Likewise z misses b′. If j = 2, we find a bull z − y2pwg − y1. Then z
sees u, for otherwise we find a second bull z − y2pu− y1 containing z. So z sees all
of A ∪B ∪C. Then z misses a′, for otherwise we find a second bull a′ − zy2b− y1

containing z. Likewise z misses b′. So the claim holds when k = 1.
Assume k ≥ 2. By the induction hypothesis, u sees all of z1, . . . , zk−1. If

j = 1, we find a bull p − wgwhy1 − z1. Then z sees u, for otherwise we find a
second bull p − uz′zk−1 − z containing z, where z′ = zk−2 if k ≥ 3 and z′ = y1 if
k = 2. If j = 2, we find a bull z1 − y2pwg − y1. Then z sees u, for otherwise we
find a second bull z − zk−1z′u − y1 containing y1, where z′ = zk−2 if k ≥ 3 and
z′ = y2 if k = 2. So z sees all of A∪B ∪C. In either case (j = 1 or 2), z misses a′,
for otherwise we find a second bull a′ − zzk−1b− p containing p. Likewise z misses
b′. Thus the claim holds. !
Claim 6.13. H is a homogeneous set.

Proof. Since H is a component of G \ (T \ Y ), it suffices to prove the property
that every vertex v ∈ H sees every vertex t ∈ T \ Y . Claim 6.9 establishes this
property when t ∈ T \ (A∪B ∪C ∪Y ). Suppose t ∈ A∪B ∪C. Then when v ∈ W
the property follows from the definition of A, B, C; and when v ∈ P, X, Y, Z the
property follows respectively from Claims 6.3, 6.10, 6.11 and 6.12. Thus the claim
holds. !

This completes the proof of Lemma 6. !

3. Even pairs

Recall that a graph is weakly triangulated if G and G contain no hole of length at
least 5. In the case of weakly triangulated the desired result is already known as
it was proved by Hayward, Hoàng and Maffray [12] in a stronger form. Say that
two non-adjacent vertices form a 2-pair if every chordless path joining them has
length 2.

Theorem 7 ([12]). Let G be a weakly triangulated graph that is not a clique. Then
G has a 2-pair.

Now we are ready to prove our main result, which we state again:

Theorem 8. Let G be a bull-reducible Berge graph with at least two vertices. Then
either G or G has an even pair.

Proof. We prove Theorem 8 by induction on the number of vertices of the graph
G. First, suppose that G and G contain no hole of length at least 5. Then G is
weakly triangulated. In that case the result follows from Theorem 7. So suppose
that G is not weakly triangulated. Suppose that G has a homogeneous set. By
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the induction hypothesis, the subgraph H induced by this set has two vertices a, b
that form an even pair in H or in H . Since every vertex of G \H either sees both
a, b or misses both a, b, it follows that a, b also form an even pair in G or in G.

Now suppose that G has no homogeneous set and that one of G, G contains
a hole of length at least 5. By Lemma 3, G and G contain no wheel. By Lemma 6,
G and G contain no double broom. Let l be the number of vertices of a shortest
hole of length at least 5 in G or G. By symmetry, we may assume that G contains
a hole of length l. Note that l ≥ 6 and l is even since G is Berge. So V (G)
contains l pairwise disjoint and non-empty subsets V1, . . . , Vl such that, for each
i = 1, . . . , l (with subscript arithmetic modulo l), every vertex of Vi sees every
vertex of Vi−1 ∪ Vi+1 and misses every vertex of Vi+2 ∪ Vi+3 ∪ · · · ∪ Vi−3 ∪ Vi−2.
We write V ∗ = V1 ∪ V2 ∪ · · ·∪Vl. We can choose these sets so that V ∗ is maximal.
Given these subsets, we define some further subsets:

• Let A1 be the set of vertices of V (G) \ V ∗ that see all of V2 ∪ V4 ∪ · · · ∪ Vl

and miss all of V1 ∪ V3 ∪ · · · ∪ Vl−1;
• Let A2 be the set of vertices of V (G) \ V ∗ that see all of V1 ∪ V3 ∪ · · · ∪ Vl−1

and miss all of V2 ∪ V4 ∪ · · · ∪ Vl;
• For each i = 1, . . . , l, let Xi be the set of vertices of V (G) \ (V ∗ ∪ A1 ∪ A2)

that see all of Vi−1 ∪ Vi+1 and miss all of Vi−2 ∪ Vi+2;
• Let Z = V (G) \ (V ∗ ∪ A1 ∪ A2 ∪ X1 ∪ · · · ∪ Xl).

Clearly, the sets V1, . . . , Vl, A1, A2, X1, . . . , Xl, Z are pairwise disjoint and their
union is V (G). Let us now establish some useful properties of these sets. In the
following claims, for each i = 1, . . . , l, we let vi be an arbitrary vertex of Vi.

Claim 8.1. For i = 1, . . . , l, if Xi *= ∅ then l = 6 and every vertex of Xi has a
neighbor in Vi+3. Moreover, if a vertex of Xi sees all of Vi+3 then it has a neighbor
in Vi.

Proof. For simpler notation put i = 3. Let x be any vertex of X3. So x sees all of
V2 ∪V4 and misses all of V1 ∪ V5. Then x must have a neighbor in V6 ∪ · · ·∪Vl, for
otherwise we could add x to V3, which would contradict the maximality of V ∗. Let
h be the smallest index such that x has a neighbor y in Vh with 6 ≤ h ≤ l. If h ≥ 7,
the set {x, v4, . . . , vh−1, y} induces a hole of length h − 2, with 5 ≤ h − 2 ≤ l − 2,
which contradicts G being Berge (if h is odd) or the definition of l (if h is even).
So h = 6. Suppose l ≥ 8. Then we can apply Lemma 2 to the hole induced by
{v1, v2, v3, v4, v5, y, . . . , vl} and to x, which implies that x sees every vj with even
j *= 6 and misses every vj with odd j. Then applying Lemma 2 to the hole induced
by {v1, . . . , vl} implies that x also sees every v6 ∈ V6. But then we have x ∈ A1,
which contradicts the definition of X3. Thus the first part of the claim holds.

To prove the second part, let x be a vertex of X3 that sees all of V6. Thus
l = 6. So x sees all of V2 ∪ V4 ∪ V6 and misses all of V1 ∪ V5. By Lemma 2, if x has
no neighbor in V3 then x must be in A1, which contradicts the definition of X3.
So x has a neighbor in V3. Thus the claim holds. !
Claim 8.2. For i = 1, . . . , l, there is no P4 in Vi ∪ Xi.
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Proof. For if there is a P4 in Vi ∪ Xi, then its four vertices together with vi−1,
vi−2, vi+1, vi+2 induce a double broom, a contradiction. !

Claim 8.3. For i = 1, . . . , l, if i is odd there is no edge between Vi ∪ Xi and A1;
and if i is even there is no edge between Vi ∪ Xi and A2.

Proof. Up to symmetry and for simpler notation we may take i = 3 and suppose
that there exists an edge da with d ∈ V3 ∪ X3 and a ∈ A1. The definition of
A1 implies d ∈ X3 and so, by Claim 8.1, we have l = 6 and d has a neighbor
u6 ∈ V6. If d has a neighbor u3 ∈ V3 then we find two bulls u3 − dau6 − v5 and
u3 − dau6 − v1 containing d, a contradiction. So d has no neighbor in V3, and so,
by Claim 8.1, d has a non-neighbor w6 ∈ V6. Then we find two bulls v3−v4da−w6

and v3 − v2da − w6 containing d, a contradiction. Thus the claim holds. !

Claim 8.4. For i = 1, . . . , l, there is no edge between Vi ∪ Xi and Vi+2 ∪ Xi+2.

Proof. Put i = 3, and suppose that there is an edge xy with x ∈ V3 ∪ X3 and
y ∈ V5 ∪ X5. Since x has a neighbor in V5 ∪ X5 we have x /∈ V3, so x ∈ X3; and
then, by Claim 8.1, we have l = 6 and x has a neighbor u6 ∈ V6. Likewise, y is
in X5 and has a neighbor u2 ∈ V2. If x has a non-neighbor w6 ∈ V6 and y has
a non-neighbor w2 ∈ V2 then {x, y, w6, v1, w2} induces a C5, a contradiction. So
we may assume, up to symmetry, that x sees all of V6. Then, by Claim 8.1, x has
a neighbor w3 ∈ V3. So we find a first bull w3 − xyu6 − v1. If y has a neighbor
w5 ∈ V5, then we find a second bull w5 − yxu2 − v1 containing x, a contradiction.
So y has no neighbor in V5, and, by Claim 8.1, y has a non-neighbor w2 ∈ V2.
But then we find a second bull v1 − w2w3x − y, a contradiction. Thus the claim
holds. !

Claim 8.5. For i = 1, . . . , l, let x be a vertex that has a neighbor and a non-neighbor
in Vi ∪ Xi. If x has a neighbor in Vi−1, then it misses all of Vi+2. Likewise, if it
has a neighbor in Vi+1, then it misses all of Vi−2.

Proof. Put i = 3 and let a, b respectively be a neighbor and a non-neighbor of x
in V3 ∪X3. Recall that a, b see all of V2 ∪V4 and miss all of V1 ∪V5. Suppose up to
symmetry that x has neighbors u2 ∈ V2 and u5 ∈ V5. Then x sees every v4 ∈ V4,
for otherwise {x, u2, b, v4, u5} induces an odd hole. Then Lemma 2, applied to x
and the hole induced by {v1, u2, v3, v4, u5, v6, . . . , vl} for every v3 ∈ V3, v6 ∈ V6,
v1 ∈ V1, and the fact that G contains no wheel, implies that l = 6 and that x sees
every vertex of V6 ∪ V4 and none of V1 ∪ V3. So x ∈ A1 ∪ X5; and since x has a
neighbor, we have x ∈ X5; but then the edge xa contradicts Claim 8.4. Thus the
claim holds. !

Claim 8.6. For i = 1, . . . , l, there is no chordless odd path of G of length at least
5 whose two endpoints are in Vi ∪ Xi.

Proof. For suppose that there is such a path P . Then its two endpoints see both
vi−1, vi+1 and miss both vi−2, vi+2, and so we can apply Lemma 5 in G to P and
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vertices vi−1, vi+1, vi−2, vi+2, which implies that G or G contains a double broom,
a contradiction. !
Claim 8.7. For i = 1, . . . , l, there is no chordless odd path in G of length at least
5 whose two endpoints are in Vi ∪ Xi.

Proof. For suppose that there is such a path Q in G. Then, in G, its two endpoints
see both vi−2, vi+2 and miss both vi−1, vi+1, and so we can apply Lemma 5 in G to
Q and vertices vi−1, vi+1, vi−2, vi+2, which implies that G or G contains a double
broom, a contradiction. ! !

Claim 8.8. For i = 1, . . . , l, suppose that there exists a chordless path x-a-b-y in
G with a, b ∈ Vi ∪ Xi. Then one of x, y is in Vi ∪ Xi.

Proof. Put i = 3, and suppose that x sees v2, v4. By Claim 8.5, x misses all of
V1∪V5. If x has a non-neighbor w2 ∈ V2, we find two intersecting bulls v1−w2ba−x
and w2−axv4−v5. So x sees all of V2; likewise x sees all of V4. So x ∈ V3∪X3∪A2;
actually, since x sees a and by Claim 8.3, we have x ∈ V3 ∪X3. So the claim holds
in this case. It holds similarly if y sees v2, v4.

Suppose now that x does not see both v2, v4, and the same for y. At least one
of x, y must see at least one of v2, v4, for otherwise we find two intersecting bulls
x− av2b− y and x− av4b− y. So assume x sees v2 and misses v4. By Claim 8.5, x
misses v5, and so we find a bull x−abv4−v5. Then y sees v4, for otherwise we find
a second bull x− av4b− y containing a. Then y misses v1 by Claim 8.5 and v2 by
the preceding paragraph. But then we find a second bull y − bav2 − v1 containing
a. Thus the claim holds. !
Claim 8.9. For i = 1, . . . , l, suppose that there exists a chordless path a-u-v-b in G
with a, b ∈ Vi ∪ Xi. Then one of u, v is in Vi ∪ Xi.

Proof. Put i = 3. So a, b see all of V2 ∪ V4 and miss all of V1 ∪ V5.
First consider the case where one u, v, say u, has a neighbor in each of V2, V4.

Let u2 ∈ V2, u4 ∈ V4 be neighbors of u. By Claim 8.5, u misses all of V1 ∪ V5.
Suppose that u has a non-neighbor w2 ∈ V2. Then we find a first bull w2 − auu4−
v5. Vertex v sees w2, for otherwise {w2, a, u, v, b} induces an odd hole. Then, by
Claim 8.5, v misses all of V5. Vertex v sees v1, for otherwise we find a second bull
v1 − u2au − v containing a. Then, by Claim 8.5, v misses all of V4. But then we
find a second bull v5 − u4au − v containing a. So u sees all of V2, and similarly u
sees all of V4. So u is in V3 ∪ X3 ∪ A1; and the definition of V3, X3 and Claim 8.3
imply u ∈ V3 ∪ X3. So in this case the claim holds.

In the remaining case, we may assume that u misses all of V4, and so v sees
all of V4 (for otherwise {w4, a, u, v, b} induces an odd hole for any w4 ∈ V4 \N(v)),
and so v misses all of V2, and so u sees all of V2. By Claim 8.5, u misses all of
V5, and v misses all of V1. If u misses any w1 ∈ V1, we find two intersecting bulls
w1 − v2ua− v4 and w1 − v2au− v, a contradiction. So u sees all of V1. Likewise, v
sees all of V5. By Lemma 2 applied to u and to the hole induced by {v1, . . . , vl},
and since u sees v1, v2 and misses v4, v5, we have N(u) ∩ {v6, . . . , vl} ⊆ {vl}.
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Likewise we have N(v) ∩ {v6, . . . , vl} ⊆ {v6}. Suppose l ≥ 8. If u misses vl and
v misses v6 then {v1, u, v, v5, v6, . . . , vl} induces a hole of odd length l − 1. If u
sees vl and v sees v6 then {u, v, v6, . . . , vl} induces a hole of odd length l − 3.
If u sees vl and v misses v6, then {u, v, v5, v6, . . . , vl} induces an even hole of
length l − 2, a contradiction to the definition of l. A similar contradiction occurs
if u misses vl and v sees v6. So we must have l = 6. Then every v6 sees one of
u, v, for otherwise {v1, u, v, v5, v6} induces an odd hole. Up to symmetry let us
assume that v has a neighbor u6 ∈ V6. Then v misses every v3 ∈ V3, for otherwise
{v, v3, v2, v1, u6} induces an odd hole. Suppose that v also has a non-neighbor
w6 ∈ V6. Then, u sees w6, for otherwise {w6, v1, u, v, v5} induces an odd hole; and
u misses every v3 ∈ V3, for otherwise {u, v3, v4, v5, w6} induces an odd hole; but
then {v2, u, v, v4, v3} induces an odd hole, a contradiction. Thus v sees all of V6.
Now the fact that v sees all of V4∪V5∪V6 and misses all of V1∪V3 implies that v is
in V5 ∪X5; but then the edge vb contradicts Claim 8.4. Thus the claim holds. !
Claim 8.10. If for some i = 1, . . . , l, the set Vi ∪Xi is not a clique then it contains
an even pair of G or an even pair of G.

Proof. Put i = 3. For any two vertices a, b ∈ V3 ∪ X3, put Nin(a, b) = N(a) ∩
N(b) ∩ (V3 ∪ X3). Choose a pair {a, b} of non-adjacent vertices of V3 ∪ X3 that
maximizes the size of Nin(a, b) (such a pair exists since V3 ∪X3 is not a clique). If
the claim does not hold, {a, b} is not an even pair of G, so there exists a chordless
odd path of G with endpoints a, b. By Claim 8.6 this path has length 3, so we can
write it as a-u-v-b. By Claim 8.9, we may assume up to symmetry that u ∈ V3∪X3.
Consider any d ∈ Nin(a, b). Then d sees u, for otherwise u-a-d-b is a P4 in V3∪X3,
which contradicts Claim 8.2. So we have Nin(a, b) ⊆ Nin(u, b), and the choice
of {a, b} implies Nin(a, b) = Nin(u, b). We claim that {a, u} is an even pair of
G. For suppose that there exists a chordless odd path Q in G with endpoints
a, u. By Claim 8.7, Q has length 3. So we can write Q = a-x-y-u in G, which
means that in G we have a chordless path y-a-u-x. By Claim 8.8, one of x, y is
in V3 ∪ X3. By symmetry we may assume that x ∈ V3 ∪ X3. Then x misses b, for
otherwise we have x ∈ Nin(u, b) \ Nin(a, b). Then x sees every d ∈ Nin(a, b), for
otherwise x-u-d-b is a P4 in V3 ∪ X3, which contradicts Claim 8.2. But then we
have Nin(a, x) ⊇ Nin(a, b) ∪ {u}, which contradicts the choice of {a, b}. Thus the
claim holds. !
Claim 8.11. If for some i = 1, . . . , l, the set Vi ∪Xi induces a clique of size at least
2 then any two vertices of Vi ∪ Xi form an even pair of G.

Proof. For suppose that there is a chordless odd path Q in G with endpoints a, b
in Vi ∪ Xi. By Claim 8.7, Q has length 3, so we can write Q = a-x-y-b in G, and
so we have a chordless path y-a-b-x in G. By Claim 8.8, one of x, y is in Vi ∪ Xi;
but this contradicts the fact that Vi ∪ Xi is a clique. Thus the claim holds. !
Claim 8.12. Suppose that for every i = 1, . . . , l, the set Vi ∪ Xi has size 1. Then
{vi, vi+2} is an even pair of G for every i.
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Proof. For suppose on the contrary and up to symmetry that {v1, v3} is not an
even pair; so there is a chordless odd path P = x0-x1-· · · -xr with v1 = x0, v3 = xr

and r ≥ 3. Since V (P ) ∪ {v2} cannot induce an odd hole (when r = 3), and by
Lemma 4 (when r ≥ 5), and up to symmetry, we may assume that v2 sees x1.
If x1 sees vl, then x1 misses vl−1 by Lemma 2, and we have x1 ∈ V1 ∪ X1, a
contradiction. So x1 misses vl, and we find a bull vl − v1x1v2 − v3. Then v2 misses
xr−1, for otherwise by symmetry we find a second bull v4−v3xr−1v2−v1. If r = 3,
then vl sees x2, for otherwise we find a second bull vl − v1v2x1 − x2 containing v2;
but then {vl, v1, v2, v3, x2} induces an odd hole. So r ≥ 5. Since v2 misses xr−1,
we have outcome 2 or 3 of Lemma 4, and in either case Lemma 4 states that there
is a second bull containing v2, a contradiction. Thus the claim holds. !

Claims 8.10, 8.11 and 8.12 complete the proof of the theorem. !

4. Comments

For any integer k ≥ 0, let Bk be the class of graphs in which every vertex belongs
to at most k bulls. So B0 is the class of bull-free graphs, and B1 is the class of
bull-reducible graphs. One can consider the following statements:

Statement Ak: For every Berge graph G in Bk with at least two vertices,
either G or G has an even pair.
Statement A′

k: For every Berge graph G in Bk that contains no antihole,
either G is a clique or G has an even pair.
Statement A′′

k : For every Berge graph G in Bk that contains no antihole,
G is perfectly orderable.

Statements A0 and A′
0 are theorems proved in [9]. Statement A′′

0 is a theorem
proved in [11]. Statement A1 is the main result in this article. Statements A′

1 and
A′

2 are theorems, as they can be obtained easily as corollaries of the main result
in [17]. On the other hand, consider the graph H12 with 12 vertices v1, . . . , v12

such that v1-v2-· · · -v8-v1 is a hole, vertex v9 is adjacent to v1, v2, v11, vertex v10

is adjacent to v3, v4, v12, vertex v11 is adjacent to v5, v6, v9, and vertex v12 is
adjacent to v7, v8, v10. Then it is easy to see that H12 is a Berge graph (it is
actually the line-graph of a bipartite graph), it contains no antihole, it is in B5,
and H12 and its complement have no even pair. So H12 is a counterexample to
statements Ak, A′

k for any k ≥ 5. Moreover, the graph “E” in [13, p. 142, Fig. 7.1]
is a counterexample to A′′

3 . We do not have a proof or a counterexample for any
of the remaining statements A2, A3, A4, A′

3, A
′
4 and A′′

1 , A′′
2 .
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