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Abstract. A connection tree of a graph G for a terminal set W is a
tree subgraph T of G such that leaves(T ) ⊆ W ⊆ V (T ). A non-terminal
vertex of a connection tree T is called linker if its degree in T is exactly 2,
and it is called router if its degree in T is at least 3. The Terminal
connection problem (TCP) asks whether G admits a connection tree
for W with at most ! linkers and at most r routers, while the Steiner
tree problem asks whether G admits a connection tree for W with at
most k non-terminal vertices. We prove that TCP is NP-complete even
when restricted to strongly chordal graphs and r ≥ 0 is fixed. This
result separates the complexity of TCP from the complexity of Steiner
tree, which is known to be polynomial-time solvable on strongly chordal
graphs. In contrast, when restricted to cographs, we prove that TCP
is polynomial-time solvable, agreeing with the complexity of Steiner
tree. Finally, we prove that TCP remains NP-complete on graphs of
maximum degree 3 even if either ! ≥ 0 or r ≥ 0 is fixed.

Keywords: Terminal vertices · Connection tree · Steiner tree ·
Strongly chordal graphs · Cographs · Bounded degree

1 Introduction

Steiner tree is one of the most fundamental network design problems, proved
to be NP-complete by Karp in his seminal paper [17]. Besides being related to
several real-world applications, Steiner tree is of great theoretical interest,
and it has been extensively studied from the perspective of graph theory [4,
8,13,25,29] and computational complexity [2,7,11,26]. Formally, the Steiner
tree problem has as input a connected graph G, a non-empty terminal set
W ⊆ V (G), and a non-negative integer k, and it asks whether there exists a
tree subgraph T of G such that W ⊆ V (T ) and |V (T ) \W | ≤ k. In this paper,
we analyse the computational complexity of a network design problem closely
related to Steiner tree, called Terminal connection.

Let G be a graph and W ⊆ V (G) be a non-empty set. A connection tree
T of G for W is a tree subgraph of G such that leaves(T ) ⊆ W ⊆ V (T ). In a
connection tree T for W , the vertices belonging W are called terminal, and the
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vertices belonging to V (T ) \ W are called non-terminal and are classified into
two types according to their respective degrees in T , namely: the non-terminal
vertices of degree exactly equal to 2 in T are called linkers and the non-terminal
vertices of degree at least 3 in T are called routers cf. [9]. We remark that the
vertex set of every connection tree can be partitioned into terminal vertices,
linkers and routers. For each connection tree T , we let L(T ) denote the linker set
of T and R(T ) denote the router set of T . Next, we present a formal definition
for the Terminal connection problem.

Input: A connected graph G, a non-empty terminal set W ⊆ V (G) and
two non-negative integers ! and r.

Question: Does there exist a connection tree T of G for W such that
|L(T )| ≤ ! and |R(T )| ≤ r?

Terminal Connection (TCP)

TCP was introduced by Dourado et al. [9], having as motivation applications
in information security and network routing, and it was proved to be polynomial-
time solvable when the parameters ! and r are both fixed [9]. Nevertheless, it was
proved to be NP-complete even if either ! ≥ 0 or r ≥ 0 is fixed [9]. In particular,
the problem was proved to be NP-complete even if ! ≥ 0 is fixed and the input
graph has constant maximum degree [10].

There is a straightforward Turing reduction from Steiner tree to TCP,
namely: (G,W, k) is a yes-instance of Steiner tree if and only if (G,W, !, r)
is a yes-instance of TCP for some pair !, r ∈ {0, . . . , k} such that ! + r = k.
An interesting aspect of this Turing reduction is the fact that it preserves the
structure of the input graph. Consequently, if TCP is polynomial-time solvable
on some graph class G, then so is Steiner tree. Analogously, if Steiner tree
is NP-complete on some graph class G, then TCP cannot be solved in polynomial-
time on G, unless P=NP. Nevertheless, possibly Steiner tree is polynomial-
time solvable on some graph class G whereas TCP remains NP-complete on G.

In this work, we confirm the existence of such a non-trivial graph class.
More specifically, we prove that TCP remains NP-complete on strongly chordal
graphs, while it is known that Steiner tree is polynomial-time solvable on
strongly chordal graphs [29]. On the other hand, we prove that TCP can be
solved in polynomial-time on cographs, agreeing with the computational com-
plexity of Steiner tree [4]. Finally, we prove that TCP remains NP-complete
on planar graphs of maximum degree 3 even if either ! ≥ 0 or r ≥ 0 is fixed.
It is worth mentioning that TCP can be trivially solved in polynomial-time
when restricted to graphs of maximum degree 2. Thus, our result establishes
an NP-complete versus polynomial-time dichotomy for the problem with respect
to the maximum degree of the input graph. Moreover, we note that, although
it is known that Steiner tree is NP-complete on planar graphs of maximum
degree 3 [19], our result cannot be seen as an immediate consequence of such
a fact. Indeed, possibly TCP is polynomial-time solvable on a graph class G if
either the parameter ! ≥ 0 or the parameter r ≥ 0 is fixed, while Steiner tree
remains NP-complete on G.
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Related Works. Motivated by applications in optical networks and bandwidth
consumption minimization, another variant of Steiner tree that has been
investigated is the one in which the number of branching nodes in the sought
tree T , i.e. vertices (which not necessarily are non-terminal) of degree at least 3 in
T , is bounded. In [14,27,28], the authors addressed the undirected and directed
cases of this variant, for which they devised approximation and parameterized
tractable algorithms, apart from obtaining some intractability results.

In addition, Dourado et al. introduced in [10] the strict variant of TCP, so-
called S-TCP, which has the same input of TCP but further requires that the
sought connection tree T satisfies leaves(T ) = W ⊆ V (T ). It is worth mentioning
that, just as TCP can be seen as a generalization of Steiner tree, S-TCP can
be seen as a generalization of Full Steiner tree, which is a widely studied
variant of Steiner tree [15,18,20]. Similarly to TCP, it was proved that S-
TCP is polynomial-time solvable when the parameters ! ≥ 0 and r ≥ 0 are both
fixed [10], and that the problem is still NP-complete if ! ≥ 0 is fixed [10]. Never-
theless, except for the case r ∈ {0, 1}, which was shown to be polynomial-time
solvable [22], the complexity of S-TCP for fixed r ≥ 2 has remained open. Moti-
vated by this question, S-TCP was also investigated in [21,23]. In particular,
in [23], S-TCP was proved to be NP-complete (and W[2]-hard when parameter-
ized by r), even if ! ≥ 0 is constant and the input graph is restricted to split
graphs. An interesting fact of this proof is that it can be easily adapted to TCP.
Consequently, we obtain that TCP is also NP-complete (and W[2]-hard when
parameterized by r) on split graphs. Besides this result, it was analysed in [23]
the complexity of S-TCP when restricted to graphs of bounded maximum degree,
and it was also proved that S-TCP is polynomial-time solvable on cographs.

Graph Notation. For any missing definition or terminology, we refer to [3]. In
this work, all graphs are finite, simple and undirected. Let G be a graph. We let
V (G) and E(G) denote the vertex set and the edge set of G, respectively. For
every vertex u ∈ V (G), we let NG(u) andNG[u] = NG(u)∪{u} denote the (open)
neighbourhood and the closed neighbourhood of u in G, respectively; and we let
dG(u) = |NG(u)| denote the degree of u in G. Two distinct vertices u, v ∈ V (G)
are said to be true twins in G if NG[u] = NG[v]. A vertex u ∈ V (G) is called
a universal vertex of G if NG[u] = V (G). The length of a path P is defined as
the number of edges of P . The distance between two vertices u, v ∈ V (G) is the
length of a path of G between u and v of minimum length. For every non-empty
subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S.

Due to space restrictions, throughout this work, proofs of statements marked
with (") are omitted.

2 Strongly Chordal Graphs

In this section, we prove that, for each r ≥ 0, TCP remains NP-complete when
restricted to strongly chordal graphs.

A chord of a cycle C is an edge between any two non-consecutive vertices of
C. A graph G is called chordal if every cycle of G of length at least 4 has a chord.
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In other words, a graph G is chordal if every induced cycle of G has length 3. An
even cycle is a cycle of even length. A chord uv of an even cycle C is called an odd
chord if the distance between u and v in C is odd. A graph G is called strongly
chordal if it is chordal and every even cycle of G of length at least 6 has an odd
chord. A vertex u is called a simple vertex of a graph G if, for any two vertices
v, v′ ∈ NG(u), NG[v] ⊆ NG[v′] or NG[v′] ⊆ NG[v]. In other words, a vertex u of
a graph G is simple if the collection {NG[v] | v ∈ NG(u)} can be linearly ordered
by set inclusion. Farber [12] proved that a graph G is strongly chordal if and
only if there exists a linear order 〈u1, . . . , un〉 of the vertices of G, called simple
elimination ordering, such that ui is a simple vertex of G[{ui, . . . , un}] for each
i ∈ {1, . . . , n}, where n denotes the number of vertices of G.

In order to prove that TCP remains NP-complete on strongly chordal
graph, we present a polynomial-time reduction from the Hamiltonian path
problem on strongly chordal graphs, which was shown to be NP-complete by
Müller [24]. Actually, we prove in Proposition 1 that Hamiltonian path prob-
lem can be reduced in polynomial-time to st-Hamiltonian path on strongly
chordal graphs, and then we present in Theorem 1 (built on Construction 2)
a polynomial-time reduction from st-Hamiltonian path to TCP on strongly
chordal graphs.

The Hamiltonian path problem has as input a graph G and asks whether
G admits a Hamiltonian path, i.e. a path that contains all vertices of G; and the
st-Hamiltonian path problem is the variant of Hamiltonian path which has
as input a graph G and two distinct vertices s and t and asks whether G admits
a st-Hamiltonian path, i.e. a Hamiltonian path between s and t.

Lemma 1. The class of strongly chordal graphs is closed under the operation of
adding universal vertices.

Proof. Let G be a strongly chordal graph and let 〈u1, . . . , un〉 be a simple elim-
ination ordering of G. Also, let H be the graph obtained from G by adding a
universal vertex v. One can verify that 〈u1, . . . , un, v〉 is a simple elimination
ordering of H. Therefore, H is strongly chordal. ()

Proposition 1. st-Hamiltonian path remains NP-complete when restricted
to strongly chordal graphs in which s and t have degree 1 each.

Proof. Let G be a strongly chordal graph and let G′ be the graph obtained from
G by adding two universal vertices v and v′, adding two new vertices s and t,
and by adding the edges sv and v′t. Based on Lemma 1, it is not hard to check
that G′ is strongly chordal. Furthermore, by construction, s and t have degree 1
in G′ each. Finally, we note that 〈u1, . . . , un〉 is a Hamiltonian path of G if and
only if 〈s, v, u1, . . . , un, v′, t〉 is a st-Hamiltonian path of G′. ()

Construction 1. (GadgetHr and Terminal SetWr). Let r be a positive integer.
We define the gadget Hr as the graph such that

V (Hr) = {ρ1, . . . , ρr} ∪ {x1
1, x

2
1} ∪ {xi | i ∈ {2, . . . , r}} and

E(Hr) = {ρiρi+1 | i ∈ {1, . . . , r − 1}} ∪ {x1
1ρ1, x

2
1ρ1} ∪ {xiρi | i ∈ {2, . . . , r}}.
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Moreover, we let Wr = {x1
1, x

2
1} ∪ {x2, . . . , xr} be the terminal set of Hr.

Construction 2. (Reduction from st-Hamiltonian path to TCP). Let G be
a graph and s, t ∈ V (G) be two distinct vertices of G. Based on Proposition 1,
assume without loss of generality that dG(s) = dG(t) = 1. Additionally, assume
that V (G) = {u1, . . . , un}, for some positive integer n, where u1 = s and un = t.
Let r be a non-negative integer. We let G′ be the graph obtained from G, s, t
and r as follows:

– Add all vertices and all edges of G to G′;
– Add new vertices s′ and t′ and add the edges s′s and tt′;
– For each vertex ui ∈ V (G) \ {s, t}, add a true twin u′

i of ui, in such a way
that NG′ [u′

i] = NG′ [ui];
– For each vertex ui ∈ V (G) \ {s, t}, add a new vertex wi and add the edges
uiwi and u′

iwi, where u′
i denotes the true twin of ui added in the last step;

– If r ≥ 1, create the gadget Hr and the terminal set Wr described in Con-
struction 1, and add the edge ρrs′; if r = 0, define Wr = ∅.

Then, we let g(G, s, t, r) = (G′,W, !, r) be the instance of TCP such that W =
{s′, t′} ∪ {w2, . . . , wn−1} ∪ Wr and ! = 2n − 2.

Lemma 2. Let G be a graph and s, t ∈ V (G) be two distinct vertices of G.
Assume that s and t have degree 1 in G each. For each r ≥ 0, G admits a
st-Hamiltonian path if and only if the instance g(G, s, t, r) described in Con-
struction 2 is a yes-instance of TCP.

Proof. Assume that g(G, s, t, r) = (G′,W, !, r). Moreover, for simplicity, consider
Wr = V (Hr) = E(Hr) = ∅ if r = 0. First, suppose that there exists in G a st-
Hamiltonian path P = 〈s, uj2 , . . . , ujn−1 , t〉. Then, let T be the graph with vertex
set V (T ) = V (Hr) ∪ V (P ) ∪ {s′, t′} ∪ {wj2 , u

′
j2 , . . . , wjn−1 , u

′
jn−1

} and edge set

E(T ) = E(Hr) ∪ {ρrs′} ∪ {s′s} ∪ {suj2}
∪ {uj2wj2 , wj2u

′
j2 , . . . , ujn−1wjn−1 , wjn−1u

′
jn−1

} ∪ {u′
jn−1

t} ∪ {tt′},

where u′
ji denotes the true twin of uji added in the construction of G′. Note that

T is a connection tree of G′ for W with L(T ) = {s, uj2 , u
′
j2 , . . . , ujn−1 , u

′
jn−1

, t}
and R(T ) = {ρ1, . . . , ρr}. Therefore, g(G, s, t, r) is a yes-instance of TCP.

Conversely, suppose that g(G, s, t, r) is a yes-instance of TCP. Let T be a
connection tree of G′ for W such that |L(T )| ≤ 2n − 2 and |R(T )| ≤ r. We note
that ρ1 is the only neighbour of the terminal vertices x1

1, x
2
1 ∈ Wr and, for each

i ∈ {2, . . . , r}, ρi is the only neighbour of the terminal vertex xi ∈ Wr. As a
result, T must contain all the vertices ρ1, . . . , ρr. More specifically, such vertices
must be routers of T . Consequently, T ′ = T − Hr cannot contain any router,
and all non-terminal vertices of T ′ must be linkers. Moreover, by construction, s′

and t′ have degree 1 in T ′. This implies that the vertices s, w2, . . . , wn−1, t have
degree exactly 2 in T ′ each, otherwise T would not be connected or W ,⊆ V (T ).
Hence, T ′ consists in a path P ′ between s′ and t′ of the form

P ′ = 〈s′, s, uj2 , wj2 , u
′
j2 , . . . , ujn−1 , wjn−1 , u

′
jn−1

, t, t′〉,
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where u′
ji denotes the true twin of uji added in the construction of G′. Therefore,

G admits a st-Hamiltonian path. Indeed, 〈s, uj2 , . . . , ujn−1 , t〉 is a st-Hamiltonian
path of G. ()

Lemma 3. The class of strongly chordal graphs is closed under the operation of
adding true twins.

Proof. LetG be a strongly chordal graph and let 〈u1, . . . , un〉 be a simple elimina-
tion ordering of G. Also, let v be a vertex of G and H be the graph obtained from
G by adding a true twin v′ of v. Suppose that v = ui, for some i ∈ {1, . . . , n}. One
can readily verify that 〈u1, . . . , ui, v′, . . . , un〉 is a simple elimination ordering of
H. Therefore, H is strongly chordal. ()

Lemma 4. Let G be a strongly chordal graph with two true twin vertices v
and v′. The graph G′ obtained from G by adding a new vertex w and adding the
edges vw and v′w is strongly chordal.

Proof. Let 〈u1, . . . , un〉 be a simple elimination ordering of G. Since by construc-
tion NG′(w) = {v, v′} and NG[v] = NG[v′], it is immediate that 〈w, u1, . . . , un〉
is a simple elimination ordering of G′. Therefore, G′ is strongly chordal. ()

Theorem 1 ("). For each r ≥ 0, TCP remains NP-complete when restricted to
strongly chordal graphs.

3 Cographs

In this section, we prove that TCP is linear-time solvable when restricted to
cographs. A cograph, also called complement reducible graph, is a graph that does
not contain a path of length 3 as an induced subgraph. Alternatively, cographs
are characterized by the following recursive definition, given by Corneil et al. [5]:

– A graph on a single vertex is a cograph;
– If G1, . . . , Gk are cographs, then so is their disjoint union G1 ∪ · · · ∪ Gk, i.e.

the graph with vertex set V (G1 ∪ · · · ∪ Gk) = V (G1) - · · · - V (Gk) and edge
set E(G1 ∪ · · · ∪ Gk) = E(G1) - · · · - E(Gk);

– If G is a cograph, then so is its complement G.

We note that, if G is a cograph on more than one vertex, then there exist k ≥ 2
cographs G1, . . . , Gk such that G is their join G1 ∧ · · · ∧Gk, i.e. the graph with
vertex set V (G1 ∧ · · ·∧Gk) = V (G1 ∪ · · ·∪Gk) and edge set E(G1 ∧ · · ·∧Gk) =
E(G1 ∪ · · · ∪ Gk) - {uv | u ∈ V (Gi), v ∈ V (Gj), i, j ∈ {1, . . . , k}, i ,= j}.

An interesting property of cographs is the fact that every cograph G can
be uniquely represented (up to isomorphism) by a rooted tree TG, called cotree,
such that the leaves of TG correspond to the vertices of G, and each internal
node u of TG corresponds to either the disjoint union or the join of the cographs
induced by the leaves of the subtrees of TG rooted at each child of u [5]. Another
important property is that, given a graph G, recognising G as a cograph, as well
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as obtaining its respective cotree (if any), can be performed in time linear in the
number of vertices and the number of edges of G [6].

Let I = (G,W, !, r) be an instance of TCP, where G is a cograph. Since TCP
can be easily solved in linear-time if |W | < 3 or G[W ] is connected, we assume
throughout this section that |W | ≥ 3 and G[W ] is not connected. Moreover, we
assume that G is connected. Therefore, G must be the join of k ≥ 2 cographs
G1, . . . , Gk.

Lemma 5 ("). Let G be a cograph that is the join of k ≥ 2 cographs G1, . . . , Gk,
and let W ⊆ V (G) be a terminal set such that |W | ≥ 3 and G[W ] is not con-
nected. Then, there exists a unique i ∈ {1, . . . , k} such that V (Gi) ∩ W ,= ∅.
Moreover, G admits a connection tree for W that contains exactly one router
and no linker.

Considering the input graph G as the join of k ≥ 2 cographs G1, . . . , Gk, it
follows from Lemma 5 that TCP can be trivially solved if r ≥ 1, or V (Gi)∩W ,= ∅
and V (Gj)∩W ,= ∅ for some i, j ∈ {1, . . . , k}, with i ,= j. Thus, we dedicate the
remainder of this section to resolve the case in which r = 0 and there exists a
unique i ∈ {1, . . . , k} such that V (Gi) ∩ W ,= ∅.

Lemma 6. Let G be a cograph and W ⊆ V (G) be a non-empty terminal set. If
T is a connection tree of G for W such that R(T ) = ∅ and |L(T )| is minimum,
then NT (u) ⊆ W for each u ∈ L(T ).

Proof. Let T be a connection tree of G for W such that R(T ) = ∅ and |L(T )| is
minimum. For the sake of contradiction, suppose thatNT (u) ,⊆ W for some linker
u ∈ L(T ). Since R(T ) = ∅ and leaves(T ) ⊆ W , u belongs to a path P of T between
two terminal vertices w,w′ ∈ W , such that (V (P ) \ {w,w′}) ∩ W = ∅. Thus,
it follows from the assumption NT (u) ,⊆ W that |V (P )| ≥ 4. Since cographs
do not contain paths of length 3 as induced subgraphs, there exists a path P ′

of G between w and w′ such that |V (P ′)| ≤ 3 and V (P ′) ⊆ V (P ). Then, let
T ′ be the graph with vertex set V (T ′) = (V (T ) \ V (P )) ∪ V (P ′) and edge set
E(T ′) = (E(T ) \ V (P )) ∪ E(P ′). One can easily verify that T ′ is a connection
tree of G for W such that R(T ) = ∅ and L(T ′) ! L(T ), which contradicts the
minimality of |L(T )|. ()

For each graph G, we let cc(G) denote the set of connected components of G,
and we let o(G) = |cc(G)| denote the number of connected components of G.

Corollary 1 ("). Let G be a cograph, W ⊆ V (G) be a non-empty terminal set,
and let T be a connection tree of G for W such that R(T ) = ∅. If |L(T )| is
minimum, then |L(T )| = o(G[W ]) − 1.

Corollary 1 establishes that, whenever a cograph G admits a connection tree
for a non-empty terminal set W ⊆ V (G) that does not contain routers, G admits
a connection tree T for W such that R(T ) = ∅ and L(T ) = o(G[W ]) − 1. More
importantly, it establishes that o(G[W ])− 1 is the minimum possible number of
linkers that such a tree T can have. Therefore, if I = (G,W, !, r) is an instance
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of TCP such that G is a cograph and r = 0, then ! must be at least o(G[W ])−1,
otherwise I is certainly a no-instance of the problem.

A connection forest of a graph G for a non-empty terminal set W is a sub-
graph F of G such that F is a forest and

⋃
T∈cc(F ) leaves(T ) ⊆ W ⊆ V (F ). A

connection forest F is said to be routerless if
⋃

T∈cc(F ) R(T ) = ∅. For each graph
G and each non-empty terminal W ⊆ V (G), we let

η[G,W ] = min {o(F ) | F is a routerless connection forest of G for W}.

As a degenerate case, we define η[G, ∅] = 0. We note that η[G,W ] = 1 if and
only if G admits a connection tree of G for W such that R(T ) = ∅. In particular,
for |W | ≥ 3, η[G,W ] = 1 if and only if G[W ] is connected.

Lemma 7 ("). Let G be a cograph and W ⊆ V (G) be a terminal set. If G is
the disjoint union of k ≥ 2 cographs G1, . . . , Gk, then

η[G,W ] =
∑

i∈{1,...,k}

η[Gi, V (Gi) ∩ W ].

Lemma 8 ("). Let G be a cograph and W ⊆ V (G) be a terminal set. If G is
the join of k ≥ 2 cographs G1, . . . , Gk and there exists a unique i ∈ {1, . . . , k}
such that V (Gi) ∩ W ,= ∅, then

η[G,W ] = max {1, η[Gi,W ] − n+ ni},

where n = |V (G)| and ni = |V (Gi)|.
Theorem 2. TCP is linear-time solvable on cographs.

Proof. Let I = (G,W, !, r) be an instance of TCP, where G is a cograph. Assume
without loss of generality that |W | ≥ 3, G is connected but G[W ] is not con-
nected. Moreover, based on Lemma 5 and on Corollary 1, assume that r = 0
and ! ≥ o(G[W ]), respectively. Then, let TG be the cotree associated with G.
Compute η[G,W ] in a bottom-up manner, according to the post-order traversal
of TG, following the rules described below:

η[G,W ] =









case 1. |V (G)| = 1 :
0 if V (G) ∩ W = ∅,
1 otherwise;

[
case 2. G = G1 ∪ · · · ∪ Gk, for some k ≥ 2 :∑

i∈{1,...,k} η[Gi, V (Gi) ∩ W ];





case 3. G = G1 ∧ · · · ∧ Gk, for some k ≥ 2 :
0 if ∀ i ∈ {1, . . . , k}, V (Gi) ∩ W = ∅,
1 if ∃ i, j ∈ {1, . . . , k}, i *= j, V (Gi) ∩ W *= ∅ and V (Gj) ∩ W *= ∅,
max {1, η[Gi,W ] − n+ ni} if ∃! i ∈ {1, . . . , k}, V (Gi) ∩ W *= ∅,

where n = |V (G)| and ni = |V (Gi)|.

Return that I is a yes-instance of TCP if and only if η[G,W ] = 1. It is not
hard to check that η[G,W ] can be computed in time linear in the number of
vertices and the number of edges of G. The correctness of the rules described
above follows from Lemmas 7 and 8. ()
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4 Bounded Maximum Degree

In this section, we analyse the complexity of TCP when restricted to graphs of
bounded maximum degree. More specifically, we prove that TCP remains NP-
complete on graphs of maximum degree 3 even if either the parameter ! ≥ 0 or
the parameter r ≥ 0 is fixed. In particular, for fixed r ≥ 0, we show that TCP
is NP-complete on graphs of maximum degree 3 that are planar.

It is worth mentioning that, if the input graph G is connected and has maxi-
mum degree at most 2, then G is either a path or a cycle, and consequently TCP
can be trivially solved in polynomial-time, regardless of ! or r. Thus, we obtain
that our results establish an NP-complete versus polynomial-time dichotomy for
TCP with respect to the maximum degree of the input graph.

Another interesting fact about our results is that they separate the complex-
ity of TCP from the complexity of its strict variant, so-called S-TCP. Indeed,
while we prove that, for each fixed ! ≥ 0, TCP is NP-complete on graphs of max-
imum degree 3, S-TCP was proved to be polynomial-time solvable on graphs of
maximum degree 3 if ! ≥ 0 is fixed [23].

4.1 Fixed Number of Linkers

First, we consider the case in which the parameter ! ≥ 0 is fixed. To prove the
NP-completeness of this particular case, we present a polynomial-time reduction
from an NP-complete (cf. [24]) variant of 3-SAT called 3-SAT(3). The 3-SAT(3)
problem has as input a set X of boolean variables and a set C of clauses over X
that satisfies the following conditions: each clause in C has two or three distinct
literals and each variable in X appears exactly twice positive and once negative
in the clauses belonging to C; and it asks whether there exists a truth assignment
α : X → {false, true} for the variables in X such that every clause in C has at
least one true literal under α.

Construction 3. (Reduction from 3-SAT(3) to TCP on Graphs of Maximum
Degree 3). Let I = (X, C) be an instance of 3-SAT(3), with variable set X =
{x1, x2, . . . , xp} and clause set C = {C1, C2, . . . , Cq}, and let ! be a non-negative
integer. We let G be the graph obtained from I and ! as follows:

– Create the vertices u1, u2, . . . , u! and, for each i ∈ {1, 2, . . . , ! − 1}, add the
edges uiui+1; moreover, create the vertices wI and vI and add the edges wIu1

and u!vI , originating the path PI = 〈wI , u1, . . . , u!, vI〉;
– For each variable xi ∈ X, create the gadget Gi such that

V (Gi) = {w1
i , w

2
i , t

1
i , t

2
i , fi} and E(Gi) = {w1

i t
1
i , t

1
i t

2
i , t

2
iw

2
i , w

2
i fi, fiw

1
i };

– Create a complete binary tree TI , rooted at vI , whose leaves are the vertices
w1

1, . . . , w
1
p;

– For each clause Cj ∈ C, create the vertices v1j , v2j and v3j , and add the edges
v1j v

2
j , v2j v3j and v3j v

1
j ;
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– For each clause Cj ∈ C, add the edge tai v
b
j if the b-th literal belonging to Cj

corresponds to the a-th occurrence in I of the positive literal xi, for xi ∈ X,
a ∈ {1, 2} and b ∈ {1, . . . , |Ci|}; on the other hand, add the edge fivbj if the
b-th literal belonging to Cj corresponds to the (only) occurrence in I of the
negative literal xi, for xi ∈ X and b ∈ {1, . . . , |Cj |}.

We let g(I, !) = (G,W, !, r) be the instance of TCP such that W = {wI} ∪
V (TI) ∪ {w1

i , w
2
i | xi ∈ X} ∪ {v1j , v2j , v3j | Cj ∈ C} and r = 2p.

Lemma 9. Let I = (X, C) be an instance of 3-SAT(3). For each ! ≥ 0, I
is a yes-instance of 3-SAT(3) if and only if the instance g(I, !) described in
Construction 3 is a yes instance of TCP.

Proof. Assume that X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. Addition-
ally, assume that g(I, !) = (G,W, !, r).

First, suppose that there exists a truth assignment α : X → {false, true} for
the variables in X such that every clause belonging to C has at least one true
literal under α. Then, let S be the vertex set defined as follows

S = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi | xi ∈ X,α(xi) = false}
∪{wi

1, w
2
i | xi ∈ X} ∪ {v1j , v2j , v3j | Cj ∈ C} ∪ V (PI) ∪ V (TI),

and let G[S] be the subgraph of G induced by S. We note that G[S] is connected
but may contain cycles. Thus, let T be a spanning tree subgraph of G[S] that
contains all edges of G[S] except for possibly not containing some edges between
the vertices v1j , v2j and v3j , for Cj ∈ C. In other words, T is a spanning tree
subgraph of G[S] such that E(T ) ⊇ E(G[S]) \ {vaj vbj | a, b ∈ {1, 2, 3}, Cj ∈ C}.
It is not hard to check that T is a connection tree of G for W with linker set
L(T ) = {u1, . . . , u!} and router set R(T ) = {t1i , t2i | xi ∈ X,α(xi) = true} ∪ {fi |
xi ∈ X,α(xi) = false}. Therefore, g(I, !) is a yes-instance of TCP.

Conversely, suppose that g(I, !) is a yes-instance of TCP, and let T be a
connection tree of G for W such |L(T )| ≤ ! and |R(T )| ≤ 2p. We note that
the path PI must be in T , since every path of G between the terminal vertex
wI and any other terminal vertex w ∈ W \ {wI} contains all the vertices of
PI . Consequently, the graph T ′ = T − PI cannot contain any liker, and all non-
terminal vertices of T ′ must be routers. This, along with the fact that ∆(G) = 3,
implies that NT (v) = NG(v) for each v ∈ V (T ′) \ W . Hence, if t1i ∈ V (T ) or
t2i ∈ V (T ), then w1

i , t
2
i ∈ NT (t1i ) and w2

i , t
1
i ∈ NT (t2i ). Analogously, if fi ∈ V (T ),

then w1
i , w

2
i ∈ NT (fi). Thus, since T is acyclic, we have that, for each xi ∈ X,

either t1i , t
2
i ∈ V (T ) and fi ,∈ V (T ), or t1i , t

2
i ,∈ V (T ) and fi ∈ V (T ). Then, we

define a truth assignment α : X → {false, true} for the variables in X as follows:
for each xi ∈ X, α(xi) = false if and only if fi ∈ V (T ). We note that, for each
Cj ∈ C, every path of G between the terminal vertices v1j , v

2
j , v

3
j and any other

terminal vertex w ∈ W \ {v1j , v2j , v3j } must contain one of the vertices t1i , t
2
i , fi

for some xi ∈ X. Moreover, by supposition, V (T ) ⊇ W ⊇ {v1j , v2j , v3j | Cj ∈ C}.
Consequently, every clause in C has at least one true literal under α. Therefore,
I is a yes-instance of 3-SAT(3). ()
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Theorem 3 ("). For each ! ≥ 0, TCP remains NP-complete when restricted to
graphs of maximum degree 3.

4.2 Fixed Number of Routers

Now, we consider the case in which the parameter r ≥ 0 is fixed. To prove the
NP-completeness of this particular case, we present a polynomial-time reduction
from Hamiltonian cycle on graphs of maximum degree 3, which was shown
to be NP-complete by Itai et al. [16]. Hamiltonian cycle has as input a graph
G and asks whether G contains a Hamiltonian cycle, i.e. a cycle that contains all
vertices of G. More precisely, our reduction is actually from the st-Hamiltonian
path problem on planar graphs of maximum degree 3, and it is slightly similar
to the one described in Construction 2 so as to prove that TCP is NP-complete
on strongly chordal graphs. Thus, based on the fact that Hamiltonian cycle
is NP-complete on graphs of maximum degree 3, we first prove in the next
propositions that st-Hamiltonian path remains NP-complete if the input graph
G has maximum degree 3 and s and t have degree 1 in G.

Proposition 2. Hamiltonian cycle remains NP-complete when restricted to
planar graphs of maximum degree 3 that have at least two adjacent vertices of
degree 2 each.

Proof. Itai et al. [16] proved thatHamiltonian cycle is NP-complete on planar
graphs of maximum degree 3. Based on their proof (see Lemma 2.1 [16]), we can
suppose without loss of generality that the input graph G has at least one vertex
of degree 2. Thus, let u ∈ V (G) be such a vertex, and let e = uv be an edge that
has u and v as endpoints, for some v ∈ V (G) \ {u}. Then, we define H as the
graph obtained from G by subdividing e, i.e. by removing e, adding a new vertex
ue and adding the edges uue and uev. We note that H is a graph of maximum
degree 3 that has at least two adjacent vertices, namely u and ue, of degree 2
each. Furthermore, it is immediate that G has a Hamiltonian cycle if and only
if H has a Hamiltonian cycle.

Proposition 3. st-Hamiltonian path remains NP-complete when restricted
to planar graphs of maximum degree 3 in which s and t have degree 1 each.

Proof. Let G be a planar graph of maximum degree 3. Based on Proposition 2,
assume without loss of generality that G contains two vertices u, v ∈ V (G) such
that uv ∈ E(G) and dG(u) = dG(v) = 2. Then, let H be the graph obtained
from G by adding two new vertices s and t, and by adding the edges su and vt.
We note that H is a graph of maximum degree 3 and that s and t have degree 1
in H each. Furthermore, it is straightforward that G has a Hamiltonian cycle if
and only if H has a st-Hamiltonian path. ()

Construction 4. (Reduction from st-Hamiltonian path to TCP on Planar
Graphs of Maximum Degree 3). Let G be a graph of maximum degree 3 and
s, t ∈ V (G) be distinct vertices of G. Based on Proposition 3, assume without
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loss of generality that dG(s) = dG(t) = 1. Moreover, assume that every vertex of
G different from s and t has degree at least 2, otherwise G would certainly not
admit a st-Hamiltonian path. Also, assume that V (G) = {u1, . . . , un}, for some
positive integer n, where s = u1 and t = un. Let r be a non-negative integer. For
each ui ∈ V (G) \ {s, t}, let αi : NG(ui) → |NG(ui)| be the bijection such that,
for each two distinct vertices uj1 , uj2 ∈ NG(ui), we have that αi(uj1) < αi(uj2)
if and only if j1 < j2. We let G′ be the graph obtained from G, s, t and r as
follows:

– Add all vertices of G to G′;
– For each vertex ui ∈ V (G) of degree 2 in G, add new vertices v1i , v

2
i , u

1
i , u

2
i

and add the edges uiv1i , uiv2i , v1i u1
i and v2i u

2
i (see Fig. 1b);

– For each vertex ui ∈ V (G) of degree 3 in G, add new vertices v1i , v2i , u1
i , u

2
i , u

3
i

and add the edges uiv1i , uiv2i , v1i u2
i , v2i u2

i , v1i u1
i and v2i u

3
i ; (see Fig. 1a)

(a) dG(ui) = 2 (b) dG(ui) = 3

Fig. 1. (a) Case in which dG(ui) = 2: vertices v1i , v
2
i , u

1
i , u

2
i . (b) Case in which dG(ui) =

3: vertices v1i , v
2
i , u

1
i , u

2
i , u

3
i .

– For each vertex ui ∈ V (G) and each vertex uj ∈ NG(ui), add the edges ua
i u

b
j ,

where a = αi(uj) and b = αj(ui);
– If r ≥ 1, create the gadget Hr and the terminal set Wr described in Con-

struction 1, and add the edge ρrs; if r = 0, define Wr = ∅.

We let g(G, s, t, r) = (G′,W, !, r) be the instance of TCP such that W = V (G)∪
Wr and ! = 4n − 4.

Lemma 10. Let G be a graph of maximum degree 3 and s, t ∈ V (G) be two
distinct vertices of G. Assume that s and t have degree 1 in G each. For each
r ≥ 0, G admits a st-Hamiltonian path if and only if the instance g(G, s, t, r)
described in Construction 4 is a yes-instance of TCP.

Proof. Assume that V (G) = {u1, . . . , un}, for some positive integer n, where
s = u1 and t = un. Additionally, assume that g(G, s, t, r) = (G′,W, !, r) and, for
simplicity, consider Wr = V (Hr) = E(Hr) = ∅ if r = 0.

Suppose that there is in G a Hamiltonian path P = 〈uj1 , uj2 , . . . , ujn−1 , ujn〉
such that s = uj1 and t = ujn . Then, let S be the vertex set defined as follows:

S = V (Hr) ∪V (G) ∪ {v1i , v2i | i ∈ {2, . . . , n − 1}} ∪ {uαj2 (s)
j2

, u
αjn−1 (t)

jn−1
}

∪{ua
ji , u

b
ji+1

| a = αji(uji+1), b = αji+1(uji), i ∈ {2, . . . , n − 2}},
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and let G′[S] be the subgraph of G′ induced by S. We note that G′[S] is con-
nected but may contain cycles. More precisely, every cycle of G′[S] is of the form
〈ui, v1i , u

2
i , v

2
i , ui〉, and it exists if and only if dG(ui) = 3 and either S ⊇ {u1

i , u
2
i }

or S ⊇ {u2
i , u

3
i }, for ui ∈ V (G) \ {s, t}. Thus, we let T be the graph obtained

from G′[S] by removing, for each vertex ui ∈ V (G) \ {s, t} with dG(ui) = 3, the
edge v1i u

2
i if S ⊇ {u1

i , u
2
i }, or the edge v2i u

2
i if S ⊇ {u2

i , u
3
i }. One can verify that

T is a connection tree of G′ for W such that L(T ) = S \ (V (Hr) ∪ V (G)) and
R(T ) = {ρ1, . . . , ρr}. Therefore, g(G, s, t, r) is a yes-instance of TCP.

Conversely, suppose that g(G, s, t, r) is a yes-instance of TCP, and let T be
a connection tree of G for W such that |L(T )| ≤ 4n− 4 and |R(T )| ≤ r. We note
that R(T ) = {ρ1, . . . , ρr}. Consequently, T ′ = T −Hr cannot contain any router,
and all non-terminal vertices of T ′ must be linkers. Moreover, by construction,
s and t have degree 1 in T ′. This implies that the vertices u2, . . . , un−1 have
degree exactly 2 in T ′ each, otherwise T would not be connected or W ,⊆ V (T ).
Hence, T ′ consists in a path P ′ between s and t of the form

P ′ = 〈s, ua2
j2
, vc2j2 , uj2 , v

c′
2

j2
, ub2

j2
, . . . , uan−1

jn−1
, vcn−1

jn−1
, ujn−1 , v

c′
n−1

jn−1
, ubn−1

jn−1
, t〉,

where ai = αji(uji+1), bi = αji+1(uji), and ci, c′
i ∈ {1, 2}, with ci ,= c′

i for each
i ∈ {2, . . . , n − 2}. Therefore, G admits a st-Hamiltonian path. Indeed, one can
verify that 〈s, uj2 , . . . , ujn−1 , t〉 is a st-Hamiltonian path of G. ()

Theorem 4 ("). For each r ≥ 0, TCP remains NP-complete when restricted to
planar graphs of maximum degree 3.

5 Concluding Remarks

We conclude this work by posing some open questions. As mentioned in the
introduction, if Steiner tree is NP-complete on a graph class G, then, unless
P = NP, TCP cannot be solved in polynomial-time on G. Nevertheless, possibly
TCP is polynomial-time solvable on a graph class G if either ! ≥ 0 or r ≥ 0 is
fixed, while Steiner tree remains NP-complete on G. Motivated by this, we ask
for the existence of such graph classes. Another interesting question concerns the
complexity of TCP when the number of terminal vertices is fixed. Even though it
is well-known that Steiner tree can be solved in polynomial-time if the number
of terminal vertices is fixed [11], the complexity of TCP in this particular case has
not been settled yet. Finally, we remark that, beyond cographs, Steiner tree
is also polynomial-time solvable on the superclass of permutation graphs [4] and
on the superclass of graphs of constant cliquewidth [1]. However, it is unknown
whether TCP admits polynomial-time algorithms when restricted to such graph
classes.
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pp. 39–47. SBM, Buenos Aires (2014)

10. Dourado, M.C., Oliveira, R.A., Protti, F., Souza, U.S.: Conexão de terminais com
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