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Abstract. Graph pebbling is a game played on graphs with pebbles on
their vertices. A pebbling move removes two pebbles from one vertex
and places one pebble on an adjacent vertex. The pebbling number π(G)
is the smallest t so that from any initial configuration of t pebbles it is
possible, after a sequence of pebbling moves, to place a pebble on any
given target vertex. We consider the pebbling number of Kneser graphs,
and give positive evidence for the conjecture that every Kneser graph
has pebbling number equal to its number of vertices.

Keywords: graph pebbling · Kneser graphs · odd graphs · weight
function method

1 Introduction

Graph pebbling is a network model for studying whether or not a given supply
of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling
move across an edge of a graph takes two pebbles from one endpoint and places
one pebble at the other endpoint; the other pebble is lost in transit as a toll. The
pebbling number of a graph is the smallest t such that every supply of t pebbles
can satisfy every demand of one pebble by a vertex. The number of vertices is a
sharp lower bound, and graphs where the pebbling number equals the number
of vertices is a topic of much interest [7,9].

Pebbling numbers of many graphs are known: cliques, trees, cycles, cubes,
diameter 2 graphs, graphs of connectivity exponential in its diameter, and oth-
ers [11]. The pebbling number has also been determined for subclasses of chordal
graphs: split graphs [2], semi-2-trees [3], and powers of paths [4], among others.
Other well-known families of graphs (e.g. flower snarks [1]) have been investi-
gated; here we continue the study on Kneser graphs. In order to state our main
results in Sect. 2, we first introduce graph theoretic definitions, followed by graph
pebbling terminology, and then present some context for these results.
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1.1 General Definitions

In this paper, G = (V,E) is always a simple connected graph. The numbers of
vertices and edges of G as well as its diameter, are denoted by n(G), e(G), and
D(G), respectively, or simply n, e, and D, when it is clear from the context. For
a vertex w and positive integer d, denote by Nd(w) the set of all vertices that
are at distance exactly d from w, with Nd[w] = ∪d

i=0Ni(w) being the set of all
vertices that are at distance at most d from w.

Given two positive integers m and t, the Kneser graph K(m, t) is the graph
whose vertices represent the t-subsets of {1, . . . ,m}, with two vertices being
adjacent if, and only if, they correspond to disjoint subsets. Thus, K(m, t) has(m
t

)
vertices and is regular, with degree deg(K(m, t)) =

(m−t
t

)
. When m = 2t,

each vertex is adjacent to just one other vertex and the Kneser graph K(2t, t)
is a perfect matching. Therefore we assume that m ≥ 2t + 1 so that K(m, t)
is connected. For m ≥ 1, K(m, 1) is the complete graph on m vertices, so we
assume that t > 2. The special case K(2t + 1, t) is known as the odd graph Ot;
in particular, O2 = K(5, 2) is the Petersen graph. The odd graphs constitute
the sparsest case of connected Kneser graphs. A graph G is k-connected if it
contains at least k+1 vertices but does not contain a set of k− 1 vertices whose
removal disconnects the graph, and the connectivity κ(G) is the largest k such
that G is k-connected.

Since Kneser graphs are regular and edge-transitive, their vertex connectivity
equals their degree

(m−t
t

)
≥ t+1 ≥ 3 (see [13]). The diameter of K(m, t) is given

in [15] to be $ t−1
m−2t%+1. Notice that this value equals t for m = 2t+1 and equals

2 for m ≥ 3t − 1.

1.2 Graph Pebbling Definitions

A configuration C on a graph G is a function C : V (G) → N. The value C(v)
represents the number of pebbles at vertex v. The size |C| of a configuration C
is the total number of pebbles on G. A pebbling move consists of removing two
pebbles from a vertex and placing one pebble on an adjacent vertex. For a target
vertex r, a configuration C is r-solvable if one can place a pebble on r after a
sequence of pebbling moves, and is r-unsolvable otherwise. Also, C is solvable if
it is r-solvable for all r. The pebbling number π(G, r) is the minimum number t
such that every configuration of size t is r-solvable. The pebbling number of G
equals π(G) = maxr π(G, r).

The basic lower and upper bounds for every graph are as follows.

Fact 1 ([5,10]). For every graph G we have max{n(G), 2D(G)} ≤ π(G) ≤
(n(G) − D(G))(2D(G) − 1) + 1.

A graph is called Class 0 if π(G) = n(G). For example, complete graphs,
hypercubes, and the Petersen graph are known to be Class 0 [10].

1.3 Context

The upper bound in Fact 1 is due to the pigeonhole principle. The simplest
pigeonhole argument yields an upper bound of (n(G) − 1)(2D(G) − 1) + 1: a
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configuration of this size guarantees that either the target vertex r has a pebble
on it or some other vertex has at least 2D(G) pebbles on it, which can then move a
pebble to r without assistance from pebbles on other vertices. The improvement
of Chan and Godbole [5] combines the vertices on a maximum length induced
path from r into one “pigeon hole”, recognizing that 2D(G) pebbles on that path
is enough to move one of them to r. Generalizing further, one can take any
spanning tree T of G and realize that the same pigeonhole argument yields the
upper bound |L(T )|(2D(G) − 1) + 1, where L(T ) is the set of leaves of T . Then
Chung [6] found that the paths from the leaves to r, which typically overlap,
could instead be shortened in a special way so as to partition the edges of T ,
thereby decreasing the exponent of 2 for most of the leaves. (The proof of her
result needed double induction, however, rather than the pigeonhole principle.)
In short, she defined the maximum path partition of T and used it to derive the
exact formula for π(T, r). We will not need to use this formula here, but we will
record the resulting upper bound.

Fact 2. If T is a spanning tree of G and r is a vertex of G, then π(G, r) ≤
π(T, r).

Moreover, Fact 2 holds if T is any spanning subgraph of G. However, it is
mostly used when T is a tree because we have Chung’s formula for trees. In
Sect. 3.1 we describe a powerful generalization from [12] that uses many (not
necessarily spanning) trees instead of just one, and utilizes linear optimization
as well.

2 Results

Here we briefly present known results on the pebbling numbers of Kneser graphs,
followed by our new theorems, which we will prove in Sect. 4 after describing the
tools used for them in Section 3.

2.1 Historical Contributions

It was proved in [14] that every diameter two graph G has pebbling number at
most n(G) + 1, and in [7] the authors characterize which diameter two graphs
are Class 0. As a corollary they derive the following result.

Theorem 3 ([7]). If D(G) = 2 and κ(G) ≥ 3, then G is Class 0.

As those authors pointed out, since almost every graph is 3-connected with
diameter 2, it follows that almost all graphs are Class 0. Additionally, since
K(m, t) is 3-connected with diameter two for every m ≥ 3t − 1 and t ≥ 2, one
obtains the following corollary.

Corollary 4. If t ≥ 2 and m ≥ 3t − 1, then K(m, t) is Class 0.

A much better asymptotic result was obtained in [9].
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Theorem 5 ([9]). For any constant c there is a t0 such that, for all t ≥ t0 and
s ≥ c(t/ lg t)1/2 and m = 2t+ s, we have that K(m, t) is Class 0.

Based on this evidence, the following was raised as a question in [7], which
has since been conjectured in numerous talks on the subject by Hurlbert.

Conjecture 6. If m ≥ 2t+ 1, then K(m, t) is Class 0.

2.2 Our Contributions

From Corollary 4 we see that the smallest three open cases for Kneser graphs are
K(7, 3), K(9, 4), and K(10, 4). In every case, the lower bound of K(m, t) ≥

(m
t

)

comes from Fact 1. Conjecture 4 posits that these graphs have pebbling numbers
equal to their number of vertices, namely

(7
3

)
= 35,

(9
4

)
= 126, and

(10
4

)
= 210,

respectively. Our main results in this paper address the upper bounds for these
cases.

Fact 1 delivers upper bounds of 224, 1830, and 1449, respectively. By using
breadth-first-search spanning trees, Fact 2, and Chung’s tree formula, it is not
difficult to derive the improved upper bounds of 54, 225, and 247, respectively.
However, our Theorems 7, 8, and 9, below, are significantly stronger. Besides the
infinite family K(m, 2) and the Kneser graphs satisfying Theorem5, Theorem9
gives further positive evidence to Conjecture 6.

Theorem 7. For K(7, 3) we have 35 ≤ π(K(7, 3)) ≤ 36.

Theorem 8. For K(9, 4) we have 126 ≤ π(K(9, 4)) ≤ 141.

Theorem 9. For K(10, 4) we have π(K(10, 4)) = 210; i.e., K(10, 4) is Class 0.

Additionally, the most obvious infinite family of open cases for Kneser graphs
are the odd graphs K(2t+1, t) for t ≥ 3. We note that the number of vertices of
G = K(2t+1, t) is n =

(2t+1
t

)
, which Stirling’s formula implies is asymptotic to

4t+1/
√

πt, so that t is roughly (in fact greater than) (lg n)/2. Observe also that
for odd graphs, we have D(G) = t. Thus Fact 1 yields an upper bound on π(G)
on the order of n1.5. Here we improve this exponent significantly.

Theorem 10. For any t ≥ 3, let n = n(K(2t + 1, t)) and α = log4((5e)2/3) ≈
1.25. Then we have n ≤ π(K(2t+ 1, t)) ≤ .045nα(lg n)α/2 < .045n1.26(lg n)0.63.

We will also prove in Theorem19 below that a well-known lower bound tech-
nique (Lemma13) will not produce a lower bound for odd graphs that is higher
than that of Fact 1.

3 Techniques

3.1 Upper Bound

Here we describe a linear optimization technique invented in [12] to derive upper
bounds on the pebbling numbers of graphs.
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Let T be a subtree of a graph G rooted at the vertex r, with at least two
vertices. For a vertex v ∈ V (T ), a parent of v, denoted by v+, is the unique
neighbor of v in T whose distance to r is one less than that of v. Moreover v
is called a child of v+). We say that T is an r-strategy if we assign to it a non-
negative weight function w having the properties that w(r) = 0 and w (v+) ≥
2w(v) for every vertex v ∈ V (T ) that is not a neighbor of r. In addition, w(v) = 0
for vertices not in T .

Now set T to be the configuration defined by T (r) = 0, T (v) = 1 for all
v ∈ V (T ) − {r}, and T (v) = 0 for all v ∈ V (G) − V (T ). Then the weight of
any configuration C, including T , is defined to be w(C) =

∑
v∈V w(v)C(v). The

following Lemma11 provides an upper bound on π(G).

Lemma 11 (Weight Function Lemma, [12]). Let T be an r-strategy of G
with associated weight function w. Suppose that C is an r-unsolvable configura-
tion of pebbles on V (G). Then w(C) ≤ w(T ).

The main use of Lemma 11 is as follows. Given a collection of r-strategies, the
Weight Function Lemma delivers a corresponding set of linear equations. From
these, one can use linear optimization to maximize the size of a configuration,
subject to those constraints. If α is the result of that optimization, then the size
of every r-unsolvable configuration is at most +α, and so π(G, r) ≤ +α, + 1.

A special instance of Lemma11 yields the following result.

Lemma 12 (Uniform Covering Lemma, [12]). Let T be a set of strategies
for a root r of a graph G. If there is some q such that, for each vertex v -= r, we
have

∑
T∈T T (v) = q, then π(G, r) = n(G).

3.2 Lower Bound

Now we turn to a technique introduced in [8] to derive lower bounds for the
pebbling numbers of graphs.

Lemma 13 (Small Neighborhood Lemma [8]). Let G be a graph and u, v ∈
V (G). If Na[u]∩Nb[v] = ∅ and |Na[u] ∪ Nb[v]| < 2a+b+1, then G is not Class 0.

The idea behind Lemma 13 is that one considers the configuration that places
2a+b+1 − 1 pebbles on u, 1 pebble on each vertex of V (G) − (Na[u] ∪ Nb[v]),
and no pebbles elsewhere. It is not difficult to argue that this configuration is
v-unsolvable and, under the hypotheses of Lemma 13, has size at least n(G).
Thus, what the idea behind the Small Neighborhood Lemma delivers is slightly
stronger: if Na[u] ∩ Nb[v] = ∅ then π(G, u) ≥ n(G) + 2a+b+1 − |Na[u] ∪ Nb[v]|.

With this in mind, when attempting to prove that a graph is not Class
0, one always checks if the Small Neighborhood Lemma applies. We show in
Theorem19 below that this lemma cannot apply to odd graphs. Thus, if one
attempts to prove that some odd graph is not Class 0, a different method would
be required.
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4 Proofs

We begin with an important result that describes the distance structure of
Kneser graphs. This result and its consequent corollary will be used in both
the upper and lower bound arguments that follow.

Lemma 14 ([15]). Let A and B be two different vertices of K(m, t), where t ≥
2 and m ≥ 2t+1. If |A∩B| = s, then dist(A,B) = min{2$ t−s

m−2t%, 2$
s

m−2t%+1}.
In particular, D(K(m, t)) = $ t−1

m−2t% + 1.

For odd graphs, this yields the following characterization of vertices at a fixed
distance from any given vertex, a corollary that is easily proved by induction.

Corollary 15. Let A ∈ V (K(2t+1, t)). For each 0 ≤ d ≤ t we have B ∈ Nd(A)
if and only if |B ∩ A| = t − d/2 for even d and |B ∩ A| = +d/2, for odd d.
Consequently |Nd(A)| =

( t
$d/2%

)( t+1
&d/2'

)
for all d.

4.1 Upper Bounds

Because Kneser graphs are vertex-transitive, we know that for every vertex r we
have π(K(m, t)) = π(K(m, t), r). Thus we may set r = {1, . . . , t} in each case.

Proof of Theorem 7

Proof. Let G = K(7, 3). We describe a particular r-strategy T (see Fig. 1, with
weights in red). From this, we set T to be the set of all r-strategies determined
by the set of automorphisms of G that fix r. The result of summing together all
the corresponding inequalities given by Lemma11 is that every pair of vertices
having the same distance from r will have the same coefficient.

Thus, note that T is a set of 3!4! = 144 r-strategies, one for each permutation
of {1, . . . , 7} that fixes r. As D(G) = 3, and considering the structure of G from
Corollary 15, we see that |N1(r)| = 4, |N2(r)| = 12, and |N3(r)| = 18. For
each d define cd to be the average of the coefficients in Nd(r): c1 = 16/4 = 4,
c2 = [3(8) + 6(2)]/12 = 3, and c3 = [9(4) + 9(2)]/18 = 3. We now consider the
sum of all these inequalities and then re-scale by dividing the result by 144. The
result is that if v ∈ Nd(r) then the coefficient of C(v) in the re-scaled inequality
equals cd. Thus we derive

3|C| =
∑

v (=r

3C(v)

≤
∑

v∈N1(r)

4C(v) +
∑

v∈N2(r)

3C(v) +
∑

v∈N3(r)

3C(v)

≤
∑

v∈N1(r)

4 +
∑

v∈N2(r)

3 +
∑

v∈N3(r)

3 (by Lemma 11)

= 3(n(K(7, 3) − 1) + |N1(r)|
= 3(35) + 1.

Hence |C| ≤ 35 and so π(K(7, 3)) ≤ 36. 01
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Fig. 1. The Kneser graph K(7, 3), with red edges showing the strategy T defined in
the proof of Theorem7, and yellow and green vertices illustrating N1[123]∪N1[345] in
the proof of Theorem19. It is easy to see that N2[123] ∪ N0[345] is a much larger set,
containing 18 vertices instead of 10. Note that vertices 356, 256, and 156 have been
drawn twice (near the top and the bottom) for ease in drawing their edges and that
N3(123) has been drawn in the rightmost two columns for similar reasons.
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Proof of Theorem 8

Proof. Let G = K(9, 4). We describe a particular r-strategy T (see Fig. 2), using
the tree T defined as follows: choose a vertex v ∈ N1(r) and set T0 = {r} and
T1 = {v}; for each d ∈ {2, 3, 4} set Td = {u ∈ Nd(r)∩N1(w) | w ∈ Td−1}; then set
T5 = {u ∈ (N5(r)−T4)∩N1(w) | w ∈ T4}. Note that |T1| = 1, |T2| =

(4
3

)(1
1

)
= 4,

|T3| =
(4
1

)(4
3

)
= 16, |T4| =

(4
2

)(4
1

)
= 24, and |T5| =

(4
2

)(4
2

)
= 36. Indeed, these

calculations are derived from observing that the distance from a vertex u ∈ Td

to r is d, while its distance to v is d− 1, and using Lemma14 for both instances.
Now define T by giving weight 160/2d to each vertex in Td.

From this, we set T to be the set of all r-strategies determined by the set
of automorphisms of K(9, 4) that fix r. The result of summing together all the
corresponding inequalities given by Lemma11 is that every pair of vertices having
the same distance from r will have the same coefficient.

Thus, note that T is a set of 4!5! = 2880 r-strategies, one for each permutation
of {1, . . . , 9} that fixes r. As D(G) = 4, and considering the structure of G from
Corollary 15, we see that |N1(r)| = 5, |N2(r)| = 20, |N3(r)| = 40, and |N4(r)| =
60 (see Table 1). For each d define cd to be the average of the coefficients in
Nd(r): c1 = 80/5 = 16, c2 = [4(40)]/20 = 8, c3 = [16(20)]/40 = 8, and c4 =
[24(10) + 36(5)]/60 = 7. We now consider the sum of all these inequalities and
then re-scale by dividing the result by 2880. The result is that if v ∈ Nd(r) then
the coefficient of C(v) in the re-scaled inequality equals cd. Thus we derive

7|C| =
∑

v (=r

7C(v)

≤
∑

v∈N1(r)

16C(v) +
∑

v∈N2(r)

8C(v) +
∑

v∈N3(r)

8C(v) +
∑

v∈N4(r)

7C(v)

≤
∑

v∈N1(r)

16 +
∑

v∈N2(r)

8 +
∑

v∈N3(r)

8 +
∑

v∈N3(r)

7 (by Lemma 11)

= (5)(16) + (20)(8) + (40)(8) + (60)(7)
= 980.

Hence |C| ≤ 140 and so π(K(9, 4)) ≤ 141. 01

Proof of Theorem 9

Proof. Let G = K(10, 4). We describe a particular r-strategy T (see Fig. 3),
using the tree T defined as follows: choose vertex v = {5, 6, 7, 8} ∈ N1(r) and
define the set Z = {9, 0}. We assign the label (x, y, z) to a vertex u if u shares
x, y, and z elements with r, v, and Z, respectively; V (x, y, z) will denote the set
of vertices with such a label. We add edges in T from v to all its neighbors in
N2(r); i.e. to V (3, 0, 1)∪ V (2, 0, 2). Because V (2, 2, 0) ⊂ N2(r)∩N1(u) for some
u ∈ V (2, 0, 2), we extend T with edges from V (2, 0, 2) to V (2, 2, 0). Finally, we
add edges in T from V (3, 0, 1) to V (1, 2, 1)∪V (1, 3, 0). Note that |V (3, 0, 1)| = 8,
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Fig. 2. A schematic diagram of the strategy T in K(9, 4) defined in the proof of The-
orem8, with weights in red. As in Fig. 1, the vertices in both of the rightmost two
columns have maximum distance (4) from r (1234); the two columns differ, however,
in their distances (3 and 4, respectively) from 5678.
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Table 1. Number and structure of K(9, 4) vertices per distance to the root {1, 2, 3, 4},
according to Corollary 15. Columns 3 and 4 show the numbers of elements chosen from
the sets {1, 2, 3, 4} and {5, 6, 7, 8, 9}, respectively, for vertices at each distance; e.g.,
A ∈ N2({1, 2, 3, 4}) if and only if |A ∩ {1, 2, 3, 4}| = 3 and |A ∩ {5, 6, 7, 8, 9}| = 1.

Distance i |Ni({1, 2, 3, 4})| {1, 2, 3, 4} {5, 6, 7, 8, 9}
0

(
4
4

)
.
(
5
0

)
= 1 4 0

1
(
4
0

)
.
(
5
4

)
= 5 0 4

2
(
4
3

)
.
(
5
1

)
= 20 3 1

3
(
4
1

)
.
(
5
3

)
= 40 1 3

4
(
4
2

)
.
(
5
2

)
= 60 2 2

|V (2, 0, 2)| = 6, |V (2, 2, 0)| = 36, |V (1, 2, 1)| = 48, and |V (1, 3, 0)| = 16, while
|N1(r)| = 15, |N2(r)| = 114, and |N3(r)| = 80.

Now we define T by giving weight 60 to v, weight 30 to each vertex of
V (3, 0, 1)∪V (2, 0, 2), weight 5 to each vertex of V (1, 2, 1)∪V (1, 3, 0), and weight
1 to each vertex of V (2, 2, 0). From this, we set T to be the set of all r-strategies
determined by the set of 4!6! automorphisms of K(10, 4) that fix r. The result
of summing together all the corresponding inequalities given by Lemma11 is
that every pair of vertices having the same distance from r will have the same
coefficient.

For each d define cd to be the average of the coefficients in Nd(r): c1 =
[60(1)]/15 = 4, c2 = [30(8)+30(6)+1(36)]/114 = 4, and c3 = [5(48)+5(16)]/80 =
4. We now consider the sum of all these inequalities and then re-scale by dividing
the result by 4!6!. The result is that if v ∈ Nd(r) then the coefficient of C(v) in the
re-scaled inequality equals cd. By Lemma12 we have that π(G, r) = n(G) = 210;
i.e. K(10, 4) is Class 0. 01

Proof of Theorem 10

Proof. Let G = K(2t + 1, t). Theorems 7 and 8 already have better bounds, so
we will assume that t ≥ 5. As in the proof of Theorem8, we set r = {1, . . . , t},
choose some v ∈ N1(r), and define the tree T by T0 = {r}, T1 = {v}, and for
each d ∈ {2, . . . , t} set Td = {u ∈ Nd(r) ∩ N1(w) | w ∈ Td−1}, with Tt+1 = {u ∈
(Nt(r)−Tt)∩N1(w) | w ∈ Tt}. We note that |Nd(r)| =

( t
$d/2%

)( t+1
&d/2'

)
for 1 ≤ d ≤ t

and that |Td| =
( t
$d/2%

)( t
&d/2'−1

)
for 1 ≤ d ≤ t − 1, with |Tt| =

( t
$t/2%

)( t
&t/2'−1

)

and |Tt+1| =
( t
$t/2%

)( t
&t/2'

)
when t is even and |Tt| =

( t
$t/2%

)( t
&t/2'

)
and |Tt+1| =( t

$t/2%
)( t

&t/2'−1

)
when t is odd. Now define T by giving weight wd = (t+1)2t+1−d

to each vertex in Td for all d > 0.
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Fig. 3. A schematic diagram of the strategy T in K(10, 4) defined in the proof of
Theorem9, with weights in red. Each vertex of the tree represents a set of vertices of
the form (x, y, z), where x, y, and z are the numbers of digits chosen from {1, 2, 3, 4},
{5, 6, 7, 8}, and {9, 0}, respectively.

From this, we set T to be the set of all r-strategies determined by the set
of t!(t + 1)! automorphisms of G that fix r. The result of summing together all
the corresponding inequalities given by Lemma11 is that every pair of vertices
having the same distance from r will have the same coefficient. For each d define
cd to be the average of the coefficients in Nd(r):

cd =






|Td|wd/|Nd(r)| = $d/2%2t+1−d for d < t and
(
|Tt|wt + |Tt+1|wt+1

)
/|Nt(r)| =

{
3t/2 + 1 for even t and
3$t/2% for odd t.

We now consider the sum of all these inequalities and then re-scale by dividing
the result by t!(t+1)!. The result is that if v ∈ Nd(r) then the coefficient of C(v)
in the re-scaled inequality equals cd. Because ct is the smallest coefficient when
t ≥ 6 (it is c4 when t = 5 but we can add some edges from T5 into N4(r) − T4,
as in the proof of Theorem7, with sufficiently chosen weights to remedy this
without effecting the calculations below), and using Lemma 11, we derive

ct|C| =
∑

v (=r

ctC(v) ≤
t∑

d=1

∑

v∈Nd(r)

cdC(v)

≤
t∑

d=1

∑

v∈Nd(r)

cd =
t∑

d=1

|Nd(r)|cd. (1)
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By computing the ratios rd = |Nd(r)|cd/|Nd−1(r)|cd−1 we find that rd = (t −
a+1)/2a for d ∈ {2a, 2a+1}, showing that the sequence |N1(r)|c1, . . . , |Nt(r)|ct
is unimodal with its maximum occurring when d = j := 2$(t+ 1)/3% − 1. Hence
from Inequality 1 we obtain the upper bound

|C| < t|Nj(r)|cj/ct, (2)

which yields that

π(G) ≤ t|Nj(r)|cj/ct = t

(
t

+j/2,

)(
t+ 1
$j/2%

)
$j/2%2t+1−j

/
(3t/2). (3)

Because the bound in Inequality 2 is so generous, we can dispense with floors
and ceilings and addition/subtraction by one, approximating j/2 by t/3 and
considering it to be an integer, thereby replacing the right side of Inequality 3
by the following. We use the notation xh = x(x− 1) · · · (x− h+1), observe that
xh ≤ (x − h/2)h, and make use of the lower bound x! ≥ (x/e)x

√
2ex, which

works for all x, rather than using Stirling’s asymptotic formula.

t

(
t

t/3

)2 (t/3)22t/3

(3t/2)
=

(
tt/3

(t/3)!

)2
(2t)22t/3

9
≤

(
5t
6

)2t/3 (
3e
t

)2t/3 (2t)22t/3

9(2et/3)

=
(5e)2t/3

3e
< 5.7t/8 < n

(
πα/2

23+2α

)
tα/2 < .045nα(lg n)α/2,

where α = log4((5e)2/3). This completes the proof. 01

4.2 Lower Bound Attempt

The following two claims will be useful in proving Theorem19.

Claim 16. The following inequalities hold for all k ≥ 1.

1.
(4k+1

k

)
/
(4k−3
k−1

)
> 4.

2.
(4k+2

k

)(4k+4
k+2

)
/
(4k−2
k−1

)( 4k
k+1

)
> 16.

3.
(4k+1

k

)(4k+2
k

)
/
(4k−3
k−1

)(4k−2
k−1

)
> 16.

4.
(4k+3

k

)(4k+4
k+1

)
/
(4k−1
k−1

)(4k
k

)
> 16.

Proof. We only display the proof for the first inequality, as the others use iden-
tical techniques. Indeed, we calculate

(4k+1
k

)
(4k−3
k−1

) =
(4k + 1) · · · (4k − k + 2)(k − 1)!

(4k − 3) · · · (4k − k − 1)k!

=
(4k + 1) · · · (4k − 2)

(4k − k + 1) · · · (4k − k − 1)k

=
(
4k + 1

k

)(
4k

3k + 1

)(
4k − 1
3k

)(
4k − 2
3k − 1

)
>

4k
k

= 4

since k ≥ 1. 01
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The next corollary follows from Claim16 by induction.

Corollary 17. The following inequalities hold for all k ≥ 1.

1.
(4k+1

k

)
> 4k.

2.
(4k+2

k

)(4k+4
k+2

)
> 16k.

3.
(4k+1

k

)(4k+2
k

)
> 16k.

4.
(4k+3

k

)(4k+4
k+1

)
> 16k.

For any vertex r in K(2t+ 1, t) and any 0 ≤ d ≤ t define gd(t) = |Nd(r)|.

Claim 18. The following inequalities hold for every 0 ≤ d ≤ t.

1. gd(2d+ 2) + gd+1(2d+ 2) ≥ 22d+2.
2. 2gd(2d+ 1) ≥ 22d+1.

Proof. Recall the formulas from Corollary 15: gd(t) =
( t
d/2

)(t+1
d/2

)
for even d and

gd(t) =
( t
$d/2%

)( t+1
&d/2'

)
for odd d. We will only display the proof for the first

inequality, as the second uses identical techniques.
When d = 2s − 1 is odd we have by Corollary 17 that

g2s−1(4s) + g2s(4s) =
(

4s
s − 1

)(
4s+ 1

s

)
+

(
4s
s

)(
4s+ 1

s

)

=
(
4s+ 1

s

)2

> 42s = 22d+2.

The case when d = 2s is even is proven similarly. 01

Theorem 19. The hypotheses of Lemma 13 are not satisfied for any odd graph.

Proof. Recall from above that D(K(2t+ 1, t)) = t and define fd(t) = |Nd[A]| =∑d
i=0 gd(t), where A is any vertex. Then we must show that fa(t)+fb(t) ≥ 2a+b+1

for every a ≥ b and t ≥ a+ b+ 1.
We first reduce to the “balanced” case, in which a ≤ b+ 1; that is, we prove

that fa(t)+fb(t) ≥ fx(t)+fy(t), where x = $a+b
2 % and y = +a+b

2 ,. It is sufficient
to show that fa(t)+fb(t) ≥ fa−1(t)+fb+1(t) whenever a > b+1. This inequality
is equivalent to

ga(t) = fa(t) − fa−1(t) ≥ fb+1(t) − fb(t) = gb+1,

which is trivial since Corollary 15 states that gd(t) =
( t
$d/2%

)( t+1
&d/2'

)
and binomial

coefficients increase up to +t/2,.
Second, we reduce to the case in which t = a+ b+ 1; that is, we prove that

fx(t) + fy(t) ≥ fx(a+ b+1)+ fy(a+ b+1). This inequality follows simply from
the property that

(t
d

)
is an increasing function in t when d is fixed.

Third, we note the obvious relation that fx(a + b + 1) + fy(a + b + 1) ≥
gx(a + b + 1) + gy(a + b + 1), since each gd(t) is merely the final term of the
summation fd(t).

Thus it suffices to show that
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1. gy(2y + 2) + gy+1(2y + 2) ≥ 22y+2 and
2. 2gy(2y + 1) ≥ 22y+1,

which follows from Claim 18. The above arguments yield

fa(t) + fb(t) ≥ fx(t) + fy(t)
≥ fx(a+ b+ 1) + fy(a+ b+ 1)
≥ fx(x+ y + 1) + fy(x+ y + 1)

≥ gx(x+ y + 1) + gy(x+ y + 1) ≥ 2a+b+1.

The final inequality follows from the identity x + y = a + b and the two cases
that x = y or x = y + 1. 01

5 Concluding Remarks

As discussed above, all diameter two Kneser graphs are Class 0, and we verified
in Theorem9 that the diameter three Kneser graphK(10, 4) is also Class 0, while
the diameter three Kneser graph K(7, 3) remains undecided. By Lemma14 we
see that D(K(m, t)) ≤ 3 for all m ≥ (5t − 1)/2. The following theorem shows
that graphs with high enough connectivity are Class 0 (the value 22D(G)+3 is
not thought to be best possible, but cannot be smaller than 2D(G)/D(G)). It is
this theorem that was used to prove Theorem5.

Theorem 20 ([9]). If G is 22D(G)+3-connected, then G is Class 0.

Accordingly, Theorem20 implies that diameter three Kneser graphs with
connectivity at least 29 are Class 0, which occurs when

(m−t
t

)
≥ 512 because

connectivity equals degree for Kneser graphs. This begs the following subproblem
of Conjecture 6.

Problem 21. For all t ≥ 5 and m ≥ (5t− 1)/2, if
(m−t

t

)
≤ 511 then is K(m, t)

Class 0? In particular, can the Weight Function Lemma be used to prove so?

For example, if t = 5, then the interval of interest in Problem 21 is 12 ≤ m ≤ 16.
We also see from our work both the power and the limitations of the usage of

the Weight Function Lemma. For example, it did not produce a very close bound
for K(9, 4), which has diameter 4, but did produce the actual pebbling number
for K(10, 4), which has diameter 3. Indeed the power of strategies weakens as the
diameter grows. Curiously, though, it did not yield a Class 0 result for K(7, 3),
which also has diameter 3. (Conceivably, it did give the right answer, but we do
not believe this.) The trees we used in the proof for this case were very simple
and structured and were all isomorphic. In trying to improve the result, we had
a computer generate hundreds of thousands of tree strategies and fed them into
linear programming software and even used integer programming. No results
were better than the bound we presented in Theorem 7.

For fixed t the Kneser graphs K(m, t) with the largest diameter (t) have
m = 2t+ 1; the odd graphs. We see that weight functions produce a fairly large
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upper bound in this case, with the multiplicative factor of n.26(lg n).63 attached,
where n = n(K(2t + 1, t)). Nonetheless, this is the best known bound. Along
these lines we offer the following additional subproblem of Conjecture 6.

Problem 22. Find a constant c such that π(K(2t + 1, t)) ≤ cn, where n =
n(K(2t+ 1, t).
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