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a b s t r a c t

Power of cycle graphs Ck
n have been extensively studied with respect to coloring

problems, being both the vertex and the edge-coloring problems already solved in the
class. The total coloring problem (of determining the minimum number of colors needed
to color the vertices and the edges of a graph in a manner that no two adjacent elements
are colored the same), however, is still open for power of cycle graphs. Actually, despite
partial results for specific values of n and k, not even the well-known Total Coloring
Conjecture is settled in the class. A remarkable conjecture by Campos and Mello of 2007
states that if Ck

n is neither a cycle nor a complete graph, then it has total chromatic
number χT = ∆+2 if n is odd and n < 3(k+1), and χT = ∆+1 otherwise. We provide
strong evidences for this conjecture: we settle a dichotomy for all power of cycle graphs
with respect to conformability (a well-known necessary condition for a graph to have
χT = ∆ + 1) and we develop a framework which may be used to prove that, for any
fixed k, the number of Ck

n graphs with χT ̸= ∆ + 1 is finite. Moreover, we prove this
finiteness for any even k and for k ∈ {3, 5, 7}. We also use our composition technique
to provide a proof of Campos and Mello’s conjecture for all Ck

n graphs with k ∈ {3, 4}.
© 2021 Elsevier B.V. All rights reserved.

1. A remarkable conjecture

The Total Chromatic Number χT (G) is the least number of colors needed to color the vertices and the edges of a graph
G in a way that no incident or adjacent elements (vertices and edges) receive the same color. Clearly, χT (G) ≥ ∆(G) + 1
or every graph G (here we use ∆(G) to denote the maximum degree of G; for further preliminary definitions and notation,
e refer the reader to Section 1.1). If a graph G can be totally colored using only ∆(G)+ 1 colors, then it is called Type 1;

f G cannot be colored with ∆(G) + 1 colors, but can be colored with ∆(G) + 2 colors, then G is called Type 2. The well-
nown Total Coloring Conjecture (TCC), proposed independently by Behzad [2] and Vizing [3], states that χT (G) ≤ ∆(G)+2
or every simple graph G. That is, it is an open question whether simple graphs can be fully classified into Type 1 and
ype 2 graphs. Even so, McDiarmid and Sánchez-Arroyo [4] proved that the total coloring problem of determining the total
hromatic number is NP-hard even when restricted to regular bipartite graphs.

✩ A preliminary version of this full paper was presented at the X Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS
’19) and published as an extended abstract in Zorzi et al. (2019) [1].
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A power of cycle graph, denoted Ck
n , is a graph defined by V (Ck

n ) = {v0, v1, . . . , vn−1}, wherein v0, v1, . . . , vn−1 is a
spanning cycle (referred to as the main spanning cycle of Ck

n ), and E(Ck
n ) = E1

∪· · ·∪Ek, wherein E i
= {vjvj+i | 0 ≤ j ≤ n−1}.

n this work, when we refer to a vertex vi ∈ V (Ck
n ) we mean vi mod n. Power of cycle graphs are a well studied class of

raphs with respect to several variations of coloring problems. The vertex-coloring problem can be solved in the class
ith a greedy algorithm [5] and the edge-coloring problem can be solved simply by looking at the parity of the order of
he input graph [6].

The total coloring problem remains open for the class of power of cycle graphs, despite much effort through the last
ecades [1,5,7–10]. By definition, power of cycle graphs Ck

n generalize the cycle graphs (when k = 1) and the complete
raphs (when k ≥ ⌊n/2⌋). Since the total coloring problem is fully solved for cycles and complete graphs, research on
otal coloring power of cycle graphs Ck

n addresses the cases wherein 2 ≤ k < ⌊n/2⌋, i.e. the graph is neither a cycle nor
omplete.
A complete graph is Type 2 if n is even, and Type 1 otherwise. A cycle is Type 1 if n ≡ 0 (mod 3), and Type 2 otherwise.

lso, the total chromatic number of complete graphs is fully classified with respect to the conformable condition (a regular
raph is conformable if it admits a (∆ + 1)-vertex-coloring such that every color class has the same parity as the order of
he graph): a complete graph is Type 1 if it is conformable, and Type 2 otherwise. However, the conformable condition
oes not characterize the Type 1 cycle graphs, since there are conformable cycle graphs which are Type 2 (for example
7).
Campos [5] showed that if a power of cycle graph Ck

n which is neither a cycle nor a complete graph with odd n is
conformable, then n ≥ 3(k + 1). Ergo, for 2 ≤ k < ⌊n/2⌋, if n is odd and n < 3(k + 1), then Ck

n cannot be Type 1. Campos
and Mello [7] then proposed a remarkable conjecture that those would be precisely the Type 2 power of cycle graphs
which are neither cycles nor complete graphs, being Type 1 all the other power of cycle graphs:

Conjecture 1 ([7]). A power of cycle graph G = Ck
n which is neither a cycle nor a complete graph is: Type 2 if n is odd and

n < 3(k + 1); Type 1 otherwise.

In the present work, we provide a strong evidence for Conjecture 1 by proving that a power of cycle graph G = Ck
n

which is neither a cycle nor a complete graph is conformable if n is even, or if n is odd and n ≥ 3(k + 1). Along with
Campos’s previous results, this implies the following dichotomy.

Theorem 1. A power of cycle graph G = Ck
n which is neither a cycle nor a complete graph is: non-conformable (therefore not

Type 1) if n is odd and n < 3(k + 1); conformable otherwise.

Not even the Total Coloring Conjecture is settled for power of cycle graphs. In a recent unpublished manuscript, a
proof for χT (Ck

n ) ≤ ∆(Ck
n ) + 3 has been announced for power of cycle graphs [10]. The following are results from the

literature on total coloring on power of cycle graphs Ck
n for specific values of n and k (in all the statements below we

assume n > 2k + 1, since otherwise we would be actually dealing with complete graphs):

• if n is odd and n < 3(k + 1), then Ck
n is not Type 1 [5];

• if k = 2, then Ck
n is: Type 2 if n = 7, and Type 1 otherwise [5];

• if n is even or n ≡ 0 (mod k + 1), then the TCC for such Ck
n graphs holds [7];

• if n ≡ 0 (mod 2k + 1), then Ck
n is Type 1;1

• if k = 3, then Ck
n is Type 2 if n ∈ {9, 11}, and Type 1 otherwise [8]2;

• if k = 4, then Ck
n is Type 2 if n ∈ {11, 13}, and Type 1 otherwise [8].2

Table 1 summarizes these results, the first column n = 2k + 1 represents the Type 1 complete graphs since n is odd.
Further results for specific values of n and k can also be found in two unpublished manuscripts [9,10].

Conjecture 1, if true, would imply that TCC holds for power of cycle graphs, but it is a stronger statement. Besides
this implication, Conjecture 1 also states that the set of k-power of cycle graphs that are not Type 1 is finite. Since this
finiteness property may still be valid even if TCC fails, the following can be stated as a weaker version of Conjecture 1,
which does not imply TCC.

Conjecture 2. Every power of cycle graph G = Ck
n with n ≥ 3(k + 1) and k > 1 is Type 1.

We say that a decision problem Π is trivial if every no-instance of Π has size bounded by a constant. Notice that
although Conjecture 2 does not imply that TCC holds, it implies that both TCC as well as the total coloring problem on
k-power of cycle graphs would be trivial problems, i.e. to fully solve these problems in that class it would be sufficient to
analyze a finite set of graphs.

In this paper, corroborating with the conjecture that the set of k-power of cycle graphs that are not Type 1 is finite,
we show that the following hold.

1 This result is specially interesting because it is a corollary of the pullback algorithm by Figueiredo, Meidanis, and Mello [11] and of the Very
Greedy Neighborhood Coloring (VGNC) algorithm by Golumbic [12].
2 The results by Almeida et al. [8] were presented at I Latin American Workshop on Cliques in Graphs in 2014 and they are published in the

conference book of abstracts (with no detailed proofs).
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Table 1
The state of the art of the two problems (TCC and total coloring) in the graphs Ck

n . The rows of the table represent the
parameter k and the columns represent the parameter n as a function of k. The entry ∆+1 represents graphs that are
Type 1; ∆ + 2 represents graphs that are Type 2; TCC represents that the TCC has been proved but the classification
between Type 1 and Type 2 is unknown; NC represents the graphs that are not Type 1 because they are known not to
be conformable. Label NC was omitted in the entries that already have another label, but every entry with odd n and
2k + 1 < n < 3(k + 1) is also an NC entry; and O represents the graphs where both problems are unknown. The row
k = 2 is fully solved [5]. The rows k = 3 and k = 4 were announced in [8]. The column 2k + 1 consists of complete
graphs, since 2k+1 is odd, the graphs are Type 1 [13]. The column 2k+2 is fully solved [13]. The TCC is proved for the
columns 2k+ 3 to 2k+ 5 [13]. The TCC is proved for even n [7]. The TCC is proved for Ck

n , with n = r(2k+ 1)+ k and
r > 0 [5]. Note that this result also proves the TCC for some specific values of odd n. The graphs Ck

n with n = r(2k+1)
and r > 0 are Type 1 [5].

Theorem 2. Every graph Ck
n with even k ≥ 2 and n ≥ 4k2 + 2k is Type 1.

Theorem 3. Every graph Ck
n with k ∈ {3, 5, 7} and n ≥ 4k2 + 2k is Type 1.

Now, let Ck
n [N[v]] be the graph induced in G = Ck

n by the closed neighborhood of a vertex v ∈ V (G) where n ≥ 3k+ 1,
and let f (k) be the number of distinct total colorings of Ck

n [N[v]] using ∆ + 1 colors.
Inspired by the classical pumping lemma for regular languages, we developed a framework that may be used as a tool to

demonstrate that for any fixed k > 1, the set of k-power of cycle graphs that are not Type 1 is finite. Type 1-compatibility,
a term appearing in the statement of Theorem 4, shall be properly defined and discussed in Section 2.

Theorem 4. Let Lk be the class of Type 1 k-power of cycle graphs, then there exists a number t ≥ 1 such that every graph
G = Ck

n in Lk with n ≥ t can be decomposed into power of cycle graphs

Ck
n1 , C

k
n2 , . . . , C

k
nℓ

, where

• n = n1 + n2 + · · · + nℓ;
• ni ≤ f (k) for any i ∈ [ℓ];
• Ck

ni and Ck
ni+1+···+nℓ

are Type 1-compatible for each 1 ≤ i < ℓ.

In addition, Ck
c1·n1+c2·n2+···+cℓ·nℓ

is Type 1 for every c1, c2, . . . , cℓ ≥ 1.

Observe that Conjecture 1 is solved for k ∈ {3, 4} by the result announced by Almeida et al. [8]. However, since the
result has only been presented at a conference and published in the conference book of abstracts with no detailed proofs,
we provide a full independent proof in this paper.

Table 2 summarizes the impact of our results in the state of the art of total coloring on power of cycle graphs.
The paper is organized as follows. In the remaining of this section we establish some further preliminaries for technical

definitions and notation. In Section 2 we define operations and operators that are used in Section 3 to present a threshold
for an even-power of cycle graph to be Type 1. In Section 3 we present the proofs of Theorems 2 and 3. In Section 4 we
present a framework to decompose a power of cycle graph into a set of smaller power of cycle graphs, and a proof of
Theorem 4. In Section 5 we present the proof of Theorem 1. In Section 6 we provide a proof for the result announced
by Almeida et al. [8] concerning the third and the fourth powers of cycles. In Section 7 we present our conclusions and
possible further directions and applications of the developed tools.

1.1. Further preliminaries

All graphs considered in this work are simple. The degree of a vertex u in a graph G is denoted dG(u). The set of
neighbors of a vertex u is denoted NG(u), while NG[u] denotes the closed neighborhood of u (i.e. the set consisting of u
and all its neighbors). The maximum degree of G is denoted ∆(G). Whenever free of ambiguity, G can be omitted from
the notation.

A total coloring is a function C : E(G)∪V (G) → [t], where [t] = {0, . . . , t}, and adjacent elements must receive distinct
colors. A color of a vertex vi is denoted C(vi), similarly a color of an edge vivj is denoted C(vivj). The Total Chromatic Number
is the least number of colors needed in a total coloring of a graph G, which we denote by χT (G) following Campos and
Mello [7] although the alternative notation χ ′′(G) is also found in the literature.
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Table 2
The impact of our results in the state of the art of total coloring power of cycle graphs Ck

n . The highlighted cells
correspond to our contributions. The new entry C corresponds to the graphs which we proved to be conformable in
Theorem 1. The column n ≥ 4k2 + 2k is due to Theorems 2 and 3. The rows k = 3 or k = 4 remain highlighted, since
for them we show a full proof which is independent from the result announced by Almeida et al. [8]. The other ∆+ 1
entries which are highlighted (in the columns 4k+ 2, 4k+ 3, 4k+ 4) follow from our composition technique discussed
in Sections 2 and 3.

As already discussed, the Total Coloring Conjecture (TCC), proposed more than 50 years ago, states that χT (G) ≤ ∆(G)+2
or every simple graph G. It is important to note that there is no known implication relation between the validity of the
TCC in a class and the complexity of the total coloring problem. For example, for bipartite graphs, the TCC is solved, but
the total coloring problem is NP-hard [4]. On the other hand, for graphs with bounded tree-width, the total coloring
problem is polynomial, but the TCC is not yet settled [14]. Very recently, a proof for the TCC has been announced by T. S.
Murthy [15].

The TCC is the total coloring analogous of the Vizing Theorem that states that χ ′(G) ≤ ∆(G)+1 for every simple graph,
where χ ′(G) is the chromatic index of G, i.e., the least number of colors needed to color the edges of G. The TCC has been
settled for restricted graph families, such as the complete r-partite graphs [16], cubic graphs [17], split graphs [18], dually
chordal graphs [11], and graphs with large maximum degree [19]. However, the TCC remains open even when restricted
to chordal graphs, to regular graphs, or to power of cycle graphs.

There exists a strong parallel between edge coloring and total coloring. Similarly as ∆(G) is a natural lower bound
for χ ′(G), it is easy to see that χT (G) ≥ ∆(G) + 1. Remark that the TCC would imply the total coloring classification of
raphs into Type 1 and Type 2, in the same way that Vizing’s theorem implies the edge-coloring classification problem
nto Class 1 (graphs satisfying χ ′(G) = ∆(G)) and Class 2 (graphs satisfying χ ′(G) = ∆ + 1).

The total coloring problem was first proved to be NP-hard [20] by a reduction from edge coloring (also NP-hard). This
could suggest that total coloring would be a harder problem, nevertheless, we know classes where edge coloring is NP-
hard but total coloring is polynomial [21]. Effort has been done aiming at defining sufficient or necessary conditions for a
graph to be Class 1 or Type 1, hoping that these conditions can be easily verified. For edge-coloring, we have the subgraph-
overfull condition as sufficient for a graph to be Class 2 (therefore, the non-subgraph-overfull condition as necessary for
being Class 1) [22]. For total coloring, the conformable condition is a necessary condition for a graph to be Type 1. As
already introduced, restricted to regular graphs (as all the graphs dealt in this paper), a graph is conformable if it admits a
conformable vertex-coloring, that is, a vertex-coloring using ∆+1 colors such that every color class has the same parity as
the order of the graph [23]. The complexity of verifying the conformable condition is unknown, even for regular graphs.

2. Compatibility and bottom-up composition

In this section, we define two operations used as part of the process to construct a Type 1 total coloring of a graph Ck
n ,

rom two other Type 1 total colorings of graphs Ck
n1 and Ck

n2 , such that n1 + n2 = n.
A power of path graph, denoted by Pk

n , is a graph where V (Pk
n ) = {v0, v1, . . . , vn−1}, where v0, v1, . . . , vn−1 is a spanning

path, and E(Pk
n ) = E1

∪· · · ∪ Ek, where E i
= {vjv(j+i) | 0 ≤ j ≤ n− i− 1}. Note that, in power of path graphs Pk

n , the indices
of the vertices are not taken by using the modular operation.

Please refer to Fig. 1. We aim to decompose a power of cycle graph Ck
n into two power of path graphs Pk

n1 and Pk
n2 , with

n1 + n2 = n, and two sets of edges N−(wx)N+(wx−1) and N−(wy)N+(wy−1), with wx, wy ∈ V (Ck
n ), in such way that we

can use total colorings of the graphs Ck
n1 and Ck

n2 to totally color Pk
n1 and Pk

n2 , respectively, using the colors of the edges
of E(Ck

n1 ) \ E(Pk
n1 ) and E(Ck

n2 ) \ E(Pk
n2 ) to color the edges of N−(wx)N+(wx−1) and N−(wy)N+(wy−1) to obtain a valid total

color of Ck
n . The operation of transferring total colorings is called pullback and it was defined by Figueiredo, Meidanis,

and Mello [11]. The pullback from a graph G to another graph G′ is a function f : V (G) → V (G′), such that: (i) f is a
homomorphism, i.e., if pq ∈ E(G), then f (p)f (q) ∈ E(G′); (ii) f is injective when restricted to N[p], for p ∈ V (G). Pullback
functions are a powerful tool that allows us to transfer colorings from one graph to another.

We define more formally the operations and the operators of this procedure in Definitions 5 and 6.
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Fig. 1. The illustration of a decomposition process, note that the vertex wx ∈ Ck
n represents the vertex vi ∈ Ck

n1 and the vertex wy ∈ Ck
n represents

the vertex uj ∈ Ck
n2 . (a) A graph Ck

n , with n = 18 and k = 3. The red dashed edges represent the sets N−(wx)N+(wx−1) and N−(wy)N+(wy−1). (b) The
vertex vi represents the first vertex of the graph P3

8 , analogously the vertex uj is the first vertex of P3
10 . The edges of the sets N−(wx)N+(wx−1) and

N−(wy)N+(wy−1) were omitted to highlight the graphs P3
8 and P3

10 , but the sets can be seen in 1(a).

Fig. 2. (a) The vertices of the set N−(v3) are the vertices v0, v1, v2 . (b) The vertices of the set N+(v2) are the vertices v3, v4, v5 . (c) The edges of
the set N−(v3)N+(v2) are represented by the shaded gray edges.

A semi-cut of vertices of a graph Ck
n , is a set of k consecutive vertices in the main spanning cycle, considering the cyclic

order. We denote two special semi-cuts of vertices: N−(wx) = {wq | x− k ≤ q < x} and N+(wx−1) = {wq | x ≤ q < x+ k}.
semi-cut of edges of a graph Ck

n is a set N−(wx)N+(wx−1) which represents the edges that have one extreme in N−(wx)
nd the other extreme in N+(wx−1), more formally N−(wx)N+(wx−1) = {wqwl | x−k < q ≤ x, x < l ≤ x+k, and l−q ≤ k}.
ig. 2 shows a graph C3

10 and the sets N−(v3), N+(v2), and N−(v3)N+(v2). Each set is a shade highlighted in one table. The
ables show total colorings, in such way that the color of an edge vivj is represented by the cell i, j of the matrix. The
olor of the vertex vi is represented by the cell i, i.

efinition 5. We say that a k-power of path decomposition of a power of cycle graph Ck
n is a decomposition into two

ower of path graphs Pk
n1 and Pk

n2 , and two sets of edges N−(wx)N+(wx−1) and N−(wy)N+(wy−1), with the distance between
x, wy ∈ Ck

n in the main spanning cycle greater than 2k. Vertex wx represents the vertex vi ∈ Pk
n1 which is the first vertex

f the induced path of Pk
n1 , and vertex wy represents the vertex uj ∈ Pk

n2 which is the first vertex of the induced path of
k
n2 . Note that every power of cycle graph Ck

n with n ≥ 4k + 2 has a k-power of path decomposition. Fig. 1 illustrates a
-power of path decomposition of C3

18.

efinition 6. We say that two graphs Ck
n1 and Ck

n2 are Type 1-compatible if each graph has a Type 1 total coloring C1,
espectively C2, and a pivot vertex vi, respectively uj, such that the following holds: (a) N−(vi) is compatible with N+(uj−1),
eaning C1(vi−r ) ̸= C2(uj+s), for every r ∈ {1, . . . , k} and every s ∈ {0, . . . , k− r}; (b) N+(vi−1) is compatible with N−(uj),
eaning C1(vi+s) ̸= C2(uj−r ), for every r ∈ {1, . . . , k} and every s ∈ {0, . . . , k − r}; (c) N−(vi)N+(vi−1) is compatible with
−(uj)N+(uj−1), meaning C1(vi−rvi+s) = C2(uj−ruj+s), for every r ∈ {1, . . . , k} and every s ∈ {0, . . . , k − r}. By definition,
very Type 1 graph is Type 1-compatible with itself.
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3. A threshold for power of cycle graphs to be Type 1

In order to present the proofs of Theorems 2 and 3, which give a threshold for power of cycle graphs to be Type 1, for
ven-power of cycle graphs and for small order odd-power of cycle graphs, respectively, we need to prove Theorems 7
nd 8, together with Lemma 9.

heorem 7. If two graphs Ck
n1 and Ck

n2 are Type 1-compatible, then the graph Ck
n , with n = n1 + n2, is Type 1-compatible

ith Ck
n1 and Ck

n2 .

roof. Since Ck
n1 and Ck

n2 are Type 1-compatible, there are two Type 1 total colorings C1 and C2 and vertices vi ∈ V (Ck
n1 )

nd uj ∈ V (Ck
n2 ) that fulfill the restrictions of Definition 6.

The graph Pk
n1 is formed from the graph Ck

n1 by removing the edges of N−(vi)N+(vi−1). And the graph Pk
n2 from the

raph Ck
n2 by removing the edges of N−(uj)N+(uj−1).

Since the graph Ck
n has a k-power of path decomposition, we can use a pullback from the total coloring of the graphs

k
n1 and Ck

n2 to the power of path graphs Pk
n1 and Pk

n2 . Then we only need to color the edges of the sets N−(wx)N+(wx−1)
nd N−(wy)N+(wy−1), again by the same pullback technique to the colors of N−(vi)N+(vi−1) and N−(uj)N+(uj−1). □

Theorem 8 describes a recoloring procedure from a famous Latin square L to a valid total coloring represented by a
atrix M of order 2k + 2, in such a way that L and M represent Type 1-compatible total colorings of the graphs Ck

2k+1
nd Ck

2k+2, respectively. The procedure can be divided in three steps: First, from the conformable condition, we know that
e have to change the colors of some vertices in such a way that every color colors an even number of vertices. For this,
e have to swap some colors using the fact that the matrix M has cells that do not represent valid edges in the graph
k
2k+2. The second step is to complete the cells in M that represent the one vertex and its adjacent edges that are in Ck

2k+2
ut not in Ck

2k+1. The third step is to make the two total colorings compatible with each other. Combining Theorem 8 with
heorem 7 we show that every power of cycle graph Ck

n , with even k, is Type 1 except for at most 2k2 − k graphs.

heorem 8. The graphs Ck
2k+1 and Ck

2k+2, with even k, are Type 1-compatible.

roof. Let M be a matrix to represent the Type 1-total coloring of the graph Ck
2k+2. The order of M is 2k + 2 and it shall

ave the same properties of the Latin square L, which is used to total coloring complete graphs [13]. The diagonal cells
f M shall represent the colors of the vertices and the off-diagonal cells shall represent the colors of the edges. Start by
etting each cell L[i, j] = M[i, j] = (i + j) mod 2k + 1, with 0 ≤ i, j ≤ 2k. Fig. 3(a) represents the matrix L, being the
orresponding graph Ck

2k+1 = K2k+1 with k = 4 illustrated in Fig. 4, and Fig. 3(b) represents the matrix M . Note that L
efines a Type 1-total coloring of the graph Ck

2k+1. Note also that the cells M[x, k + 1 + x], with x ∈ {0, . . . , k} represent
dges that do not exist in the graph Ck

2k+2, due to the distance between the vertices, so our procedure uses these colors
o construct the coloring of Ck

2k+2.
We make a recoloring procedure on the matrix M , this procedure can be made in three steps. Figs. 3(c), 3(d) 3(e)

llustrate the procedure (ref. Steps 1, 2, and 3, respectively), being the graph Ck
2k+2 displayed in Figs. 5 and 6, with the

otal colorings of Figs. 3(d) and 3(e), respectively. In all the steps, we consider only changes in one of the triangular parts
f matrix M , including the main diagonal, assuming that all changes performed also reflect in the other part.

tep 1. Swapping

1. For s ∈ {1, . . . , k/2}, we swap, for all r ∈ {0, . . . , k/2}, the color of the cell M[k+ s− r, k+ s+ r] with the color of the
cell M[k+s−r−1, k+s+r]. Note that, when r = k/2, the cells M[k+s−k/2−1, k+s+k/2] = M[k/2+s−1, 3k/2+s]
represent the edges that do not exist in the graph Ck

2k+2. So, the only conflicts of colors in M created are in cells
M[k/2 + s − 1, 3k/2 + s] and M[k/2 + s − 1, (3k/2 + s + 1) mod (2k + 1)], which have both the same color.

2. For s = k/2+ 1 we swap, for all r ∈ {0, . . . , k/2− 1}, the color of the cell M[k+ s− r, k+ s+ r] with the color of the
cell M[k+ s− r − 1, k+ s+ r]. Note that the cell M[k+ s− (k/2− 1)− 1, k+ s+ (k/2− 1)] = M[k+ 1, 2k] receives
the original color of the cell M[k + 2, 2k] = k + 1 = M[0, k + 1], which is a cell that represents an edge that does not
exist in Ck

2k+2. So, by also assigning to M[0, k + 1] the original color of M[k + 1, 2k] = k, we create no further conflict
of colors in M.

3. For the case where s ∈ {k/2 + 2, . . . , k} (subject to k > 2), we swap, for all r ∈ {0, . . . , k/2 − 1}, the color of the cell
M[k+ s− r, k+ s+ r] with the color of the cell M[k+ s− r − 1, k+ s+ r]. Note that, in this case, we have to perform
the arithmetic operations modulo 2k+ 1. Note also that the cell M[k+ s− (k/2− 1)− 1, k+ s+ (k/2− 1)] = M[k/2+

s, (k+k/2+s−1) mod (2k + 1)] receives the original color of the cell M[k/2+s, (k+k/2+s) mod (2k + 1)] = 2s−1,
which represents an edge that does not exist in the graph Ck

2k+2. So, the only conflicts of colors in M created are in cells

M[k/2 + s, (k + k/2 + s − 1) mod (2k + 1)] and M[k/2 + s, (k + k/2 + s) mod (2k + 1)].
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Fig. 3. The red cells represent the edges that do not exist in the graph Ck
2k+2; the green cells represent the cells of the set N−(u4)N+(u3); the light

blue cells represent the set N−(u4); the dark blue cells represent the set N+(u3). (3(a)) The Latin square L represents a Type 1-total coloring of
the graph Ck

2k+1 (see Fig. 4). (3(b)) The matrix M at the start of the procedure. The highlighted non-red cells represent the pairs of colors to be
swapped by the procedure, being each pair identified by a distinct shade. (3(c)) The matrix M after swapping colors (Step 1). (3(d)) The matrix M
after completing (Step 2) the cells that are in M but not in L (see Fig. 5). (3(e)) The matrix M after the step Making compatible (Step 3), representing a
Type 1-total coloring of the graph Ck

2k+2 (see Fig. 6), which is compatible with the coloring of the graph Ck
2k+1 with respect to the pivots v4 ∈ V (Ck

2k+1)
and u4 ∈ V (Ck

2k+2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The graph Ck
2k+1 = K2k+1 total colored as in Fig. 3(a).
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Fig. 5. The graph Ck
2k+2 total colored as in Fig. 3(d).

Fig. 6. The graph Ck
2k+2 total colored as in Fig. 3(e).

Step 2. Completing
To color the column 2k+1 of M (and, by symmetry, the row 2k+1), we use the following procedure: for i ∈ {0, . . . , k−1},

we set M[i, 2k+1] = L[i, k+1+ i], representing the colors of the edges which do not exist in the graph, M[k+1+ i, 2k+1] =

L[i, k + i] if i < k/2, and M[k + 1 + i, 2k + 1] = L[i + 1, k + 1 + i] if i ≥ k/2, with M[k + i + 1, 2k + 1] representing the
colors of the edges which do not exist in the graph. And we set the cell M[2k+ 1, 2k+ 1] = 2k, the only color possible for the
new vertex. This step is illustrated in Fig. 3(d).

In order to show that the matrix M is a valid total coloring for Ck
2k+2 we have to show that:

• The diagonal cells represent a proper vertex coloring: Since we use as base the colors of L, in which all the diagonal
cells are distinct, we only change the colors of the cells M[k + i + 1, k + i + 1] to the color L[k + i, k + i + 1] =

(2k + 2i + 1) mod 2k + 1 = 2i, with i ∈ {0, . . . , k − 1} and add the color 2k to the cell M[2k + 1, 2k + 1]. As the
color 2i is used as a diagonal color in the cell M[i, i] and in the cell M[k + i + 1, k + i + 1], this can be used as a proper
vertex coloring of the graph Ck

2k+2, since the only repetitions of colors happen in vertices which have distance k + 1, and
therefore are not adjacent.
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• Every row and column of M, excluding the cells which represent an edge that does not exist in Ck
2k+2, is a permutation

of 2k + 1 elements: Since we use L as base and by construction of the recoloring procedure we only stop the recoloring
when the conflict was in one of the cells that represents the edges that do not exist in the graph Ck

2k+2, then M is a valid
total coloring of Ck

2k+2.

Step 3. Making compatible

For each i ∈ {0, . . . , k/2− 2} (subject to k > 2), let αi be the color of M[i, i] and let βi be the color of M[i, i+ 1]. Swap
αi with βi throughout M . Note that this further swapping does not change any property of the matrix M .

Now M and L represent the Type 1 total colorings of Ck
2k+2 and Ck

2k+1, respectively, in such a way that the first vertex
in the main spanning cycle is represented by the first row (or column) in the respective matrix, the second vertex is
represented by the second row in the matrix and so on.

In order to show that Ck
2k+2 and Ck

2k+1 are compatible, we have to fulfill the conditions of Definition 6. So let us call
Ck
2k+1 by Ck

n1 and Ck
2k+2 by Ck

n2 , the vertex vi ∈ Ck
n1 , with i = k, and uj ∈ Ck

n2 also with j = k.
To prove (a) of Definition 6: Note that N−(vi) has the vertices vp with p ∈ {0, . . . , k − 1} and C1(vp) = 2p. Now note

that N+(uj−1) has the vertices uq with q ∈ {k, . . . , 2k − 1} and: C2(uq) = 2k if q = k; C2(uq) = 2(q − k − 1) + 1 if
< q < 3k/2; C2(uq) = 2(q − k − 1) if q ≥ 3k/2. So, the distance between the vertices which have the same color is
+ 1. Ergo, N−(vi) and N+(uj−1) are clearly compatible.
To prove (b) of Definition 6: Note that N+(vi−1) has the vertices vp with p ∈ {k, . . . , 2k−1} and C1(vp) = 2(p−k−1)+1

f p > k, and C1(vp) = 2k if p = k. Note that N−(uj) has the vertices uq with q ∈ {0, . . . , k − 1} and C2(uq) = 2q + 1 if
≤ k/2 − 2, and C2(uq) = 2q otherwise. Again, the distance between the vertices which have the same color is k + 1,

mplying the compatibility between N+(vi−1) and N−(uj).
To prove (c) of Definition 6: Observe that we use the same Latin square L to generate the total colorings and the only

arts of the recoloring procedure that changes the color of a cell which represents an edge in N−(uj)N+(uj−1) are the
wapping step and the Making compatible step, the latter applied exactly to the colors in N−(uj)N+(uj−1) that are affected
y the Swapping step. Therefore, the sets N−(vi)N+(vi−1) and N−(uj)N+(uj−1) are compatible. Fig. 3(e) shows the matrix
representing a valid total coloring that is compatible with the coloring represented by the Latin square L. □

Lemma 9 explicitly solves the equation that guarantees the claimed threshold.

emma 9. Let a and z be non-negative integers. If z ≥ a2 − a, then there exist x, y ∈ Z≥0 such that z = xa + y(a + 1).

roof. The proof is by induction on z. If z = a2 − a and a = 0, we have also z = 0, then we can take y = 0 and any value
or x. If z = a2 − a and a > 0, then z = xa + 0(a + 1), with x = a − 1. Now, suppose that for any z1 ≥ a2 − a, we have
1 = x1a + y1(a + 1). For z2 = z1 + 1: if x1 > 0, then z2 = (x1 − 1)a + (y1 + 1)(a + 1). If x1 = 0, then: z1 = 0a + y1(a + 1)
nd as z1 > a2 − a, y1 ≥ a− 1. So we can write z1 = (a+ 1)(a− 1)+ (y1 − (a− 1))(a+ 1) = a2 − 1+ (y1 − (a− 1))(a+ 1)
nd then z2 = x2a + y2(a + 1), with x2 = a and y2 = y1 − (a − 1). □

Note that the threshold given in Lemma 9 is tight, as this is a classic linear diophantine equation, it is known that if
= a2 − a − 1, then z = xa + y(a + 1) has no valid integer solutions.
At this point, we are ready to present the proof of Theorem 2.

roof of Theorem 2. Following Lemma 9, n = x(2k+1)+ y(2k+2), and by Theorems 7 and 8, we only need to compose
times the graph Ck

2k+1 and y times Ck
2k+2. □

roposition 1. For a fixed even k, with 2k + 1 ≤ n ≤ 4k2 + 2k, at most 2k2 − k graphs Ck
n are not Type 1.

roof. The proof is by induction in s, which denotes the number of graphs that will compose the target graph. For s = 2:
e have the graphs Ck

4k+2, C
k
4k+3, and Ck

4k+4, which have Type 1 colorings by doing compositions of the graphs Ck
2k+1 and

k
2k+1, C

k
2k+1 and Ck

2k+2, and Ck
2k+2 and Ck

2k+2, respectively. Note that 2k − 2 — the graphs Ck
n with 2k + 3 ≤ n ≤ 4k + 1

were not totally colored. For 3 ≤ s < 2k: We have the graphs Ck
(2s)k+s+l, with l ∈ {0, . . . , s}, obtained by collating the

raphs Ck
2k+1 and Ck

2k+2 in the graphs obtained in the step s− 1; Note that 2k− s graphs were not totally colored. And for
ny Ck

n , with n ≥ 4k2 + 2k, all the graphs are Type 1.
Note that for each 2 ≤ s ≤ 2k, only 2k − s graphs were not totally colored. Hence, in total, less than 2k2 − k graphs

ere not colored. □

The following result shows that for small values of odd k, the technique presented in Theorem 8 is also valid. Thus,
heorem 3 holds.

heorem 10. The graphs Ck
2k+1 and Ck

2k+2 are Type 1-compatible for k = 3, k = 5 and k = 7.

roof. We show Type 1-compatible total colorings for the graphs in Figs. 7–10, wherein the matrices represent the
ype 1-compatible total coloring of the graphs Ck

2k+1 and Ck
2k+2, for k ∈ {3, 5, 7}. □
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Fig. 7. (a) The total coloring of C3
7 . (b) The total coloring of C3

8 . Observe that the two colorings are compatible with respect to the pivots v3 ∈ V (C3
7 )

and u3 ∈ V (C3
8 ).

Fig. 8. (a) The total coloring of C5
11 . (b) The total coloring of C5

12 . Observe that the two colorings are compatible with respect to the pivots v5 ∈ V (C5
11)

and u5 ∈ V (C5
12).

Fig. 9. The total coloring of C7
15 .

4. Top-down decomposition and the pumping lemma

In Section 3, we verify that every graph Ck
n with even k ≥ 2 and n ≥ 4k2 + 2k is Type 1. Next, we present a general

framework that allows us to identify for a given integer k ≥ 0 whether there is a threshold t such that every graph Ck
n

with n ≥ t is Type 1.
Our framework is based on reducing such a problem in finding an integer t such that for any n ≥ t there are integers

n1, n2, . . . , nℓ such that

• ni ≤ f (k) for any i ∈ [ℓ] (f is a function that depends only on k),
• Ck

ni an Ck
ni+1+···+nℓ

are Type 1-compatible for each 1 ≤ i < ℓ.
• and c1 · n1 + c2 · n2 + · · · + cℓ · nℓ = n for some positive integers c1, c2, . . . , cℓ.

This result shows that we only need to consider a finite number of power of cycle graphs for a given fixed k.
Let Ck

n [N[v]] be the graph induced in G = Ck
n by the closed neighborhood of a vertex v ∈ V (G) where n ≥ 3k + 1, and

let f (k) be the number of distinct total colorings of Ck
n [N[v]] using ∆ + 1 colors. Theorem 11 shows that every power of

cycle with large order — in the sense that n > f (k) — can be decomposed into smaller compatible graphs.
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Fig. 10. The total coloring of C7
16 . Observe that this coloring is compatible with the coloring of Fig. 9 with respect to the pivots v7 ∈ V (C7

15) and
u7 ∈ V (C7

16).

Theorem 11. If n > f (k), then Ck
n can be decomposed into two power of cycle graphs Ck

n1 and Ck
n2 , such that n = n1 + n2 and

Ck
n1 , C

k
n2 are compatible.

Proof. Suppose that G = Ck
n is r-total colorable and n > f (k).

Since n > f (k) then, by the pigeonhole principle, there are at least one pair of vertices wx, wy ∈ V (Ck
n ) such

that Ck
n [N[wx]] and Ck

n [N[wy]] have the same total coloring (preserving the cyclic order of the elements). Thus, we can
decompose Ck

n into two power of cycle graphs Ck
n1 and Ck

n2 , with n1 + n2 = n, using the reverse operation applied in
heorem 7, with wx representing the vertex vi and wy representing the vertex uj. □

N. Trotignon and K. Vušković [24] defined that a decomposition is said to be extremal if at least one of the blocks is
asic, i.e., it cannot be decomposed into smaller blocks. If we apply the same reasoning of Theorem 11 recursively, we
an generate an extremal total coloring tree decomposition, such that: the root of the tree is the original power of cycle
raph Ck

n , two sibling nodes are compatible graphs, the collage of these two nodes generate the father node, and every
eaf node of the tree is a basic block - Ck

ni graph with ni ≤ f (k). Note that the size of each node is smaller than the size
f the original graph Ck

n and that the number of nodes of the decomposition tree is a linear function of n. In addition, the
ize of each leaf node is smaller than f (k).
This observation implies some consequences from an algorithmic point of view.
First, note that given a graph G = Ck

n to determine whether G is Type 1 it is sufficient to guess the leaves of an extremal
otal coloring tree decomposition of G, as well as the appropriate coloring of each leaf (for the collage). Since each leaf
as size at most f (k), the number of different sizes of leaves, as well as the number of the possible total colorings of each
eaf, are bounded by a function of k.

Denote by leaf pattern as a total colored Ck
ni using colors from {1, . . . , ∆ + 1}, where ni ≤ f (k). Recall that the number

f distinct leaf patterns is bounded by a function of k.
Now, let S be a guessed set of leaf patterns to be used in an extremal total coloring tree decomposition of G. Let PS be

he pattern graph where each vertex represents a pattern in S and each edge represents that the corresponding patterns
re compatible. Clearly, if S is the set of leaf patterns to be used in an extremal total coloring tree decomposition of
then PS is a connected graph. Assuming that PS is connected, to check whether from S it is possible to obtain a Type 1

otal coloring of G, we can interpret each pattern as a coin, reducing the problem to a decision version of the popular
hange-Making Problem, i.e, we are given a set of |S| non-negative integers representing a coin system, and we are
sked whether there is a set of coins that sum up to a given value x, where each type of coin can be used an unlimited
umber of times. Since each guessed pattern must be used at least once, we can set x as n − (n1 + n2 + · · · + nℓ). The
hange-Making Problem is a popular homework exercise in dynamic programming, where the textbook solution runs
n O(ℓ · x) time.

Therefore, the problem of determining whether a given G = Ck
n is Type 1 total colorable is (Turing) reducible to solve

(k) instances of Change-Making Problem, where g(k) is a function that depends only on k.
It is easy to see that the kth power of cycle graphs is a class of graphs with treewidth O(k), and that the property of

eing Type 1 can be expressed in MSOL2 by a formula of polynomial-size with respect to ∆. Since ∆ ≤ 2k on k-power of
ycles, by Courcelle’s theorem, this implies that using monadic-second order model checking, one can determine whether
power of cycle graph is Type 1 in FPT-time when k (the power of the cycle) is the parameter. However, by analyzing every
ossible subset S of leaf patterns, checking the connectivity of PS , and then performing an algorithm for Change-Making
roblem, we design a simpler FPT algorithm for Total Coloring on power of cycle graphs parameterized by k.
More interestingly, from Theorem 11 we also obtain a pumping lemma for Type 1 power of cycle graphs, similar to

he classical pumping lemma for regular languages.
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Lemma 12 (Pumping Lemma for Type 1 Power of Cycle Graphs). Let Lk be the class of Type 1 k-power of cycle graphs, then
here exists a number t ≥ 1 such that every graph G = Ck

n in Lk with n ≥ t can be decomposed into two Type 1 compatible
power of cycle graphs

Ck
n1 and Ck

n2 ,

with n = n1 + n2, n1 ≤ t, such that Ck
c1·n1+n2 is Type 1 for every integer c1 ≥ 1.

Proof. Follows directly from Theorem 11, and the fact that Ck
n1 is Type 1 compatible with itself. □

Again, by applying the same reasoning of Lemma 12 recursively, we have that Theorem 4 holds.
Notice that Theorem 4 can be seem as a strong evidence for the conjecture that the set of Type 2 k-power of cycle

graphs is finite, as well as for the Total Coloring Conjecture, since from every ∆+ 1 total coloring of a Ck
n we can define a

infinite family of Type 1 k-power of cycle graphs. More precisely, for a fixed k > 1, one can show that the set of k-power
f cycle graphs that are not Type 1 is finite, by finding sets of power of cycles as described in Theorem 4 such that for
very integer n greater than a threshold t , Ck

n can be generated from one of these sets (i.e., n = c1 ·n1+c2 ·n2+· · ·+cℓ ·nℓ).
Note that Theorem 2 and Theorem 3 illustrate applications of this approach using only two k-power of cycle graphs.

5. A dichotomy for the conformability of power of cycle graphs

In this section we present the proof for the dichotomy announced in Theorem 1, which constitutes a strong evidence
for Conjecture 1.

Proof of Theorem 1. It suffices to show that, if n is even, or if n is odd and n ≥ 3(k + 1), then a power of cycle graph
Ck
n which is neither a cycle nor a complete graph is conformable, since otherwise it has already been shown that G is not
onformable by Campos [5], as discussed in Section 1.
Since we are excluding complete graphs and cycles by hypothesis (i.e. we are assuming n > 2k + 1 and k ≥ 2), we

split the proof into the following cases:

ase 1. n is even and n ≥ 2(2k + 1);
ase 2. n is odd and n ≥ 3(2k + 1);
ase 3. n is even and 2k + 1 < n < 2(2k + 1);
ase 4. n is odd and 3(k + 1) ≤ n < 3(2k + 1).

Proof for Case 1 and Case 2. First observe that if n is divisible than 2k + 1, then we can write n = r(2k + 1) for some
positive integer r satisfying n ≡ r (mod 2). In this case, it is easy to construct a conformable coloring for G = Ck

n : just
assign to each vertex vi of Ck

n the color i mod (2k + 1). Since ∆(Ck
n ) = 2k, this is a (∆(Ck

n ) + 1)-vertex-coloring of G in
hich each color is assigned to exactly r vertices; therefore, this is a conformable coloring as claimed.
Now let n ≥ 3 and k be positive integers with either n even and n ≥ 4k + 2, or n odd and n ≥ 6k + 3. If n is not

multiple of 2k + 1, then take q = ⌊n/(2k + 1)⌋ and

n1 =

{
q(2k + 1) , if q ≡ n (mod 2);
(q − 1)(2k + 1) , if q ̸≡ n (mod 2).

Clearly, n1 can be written as n1 = r(2k + 1), being r a positive integer satisfying n ≡ r (mod 2) (which also implies
n ≡ n1 (mod 2)). By defining C(ui) = i mod (2k + 1) for 0 ≤ i < n1 we get a conformable coloring for H = Ck

n1 on
vertices u0, . . . , un1−1.

Since n−n1 is even, we shall demonstrate how to add n−n1 vertices to H , two of them at a time, coloring each pair of
vertices added in order to obtain a power of cycle graph G = Ck

n conformably colored. For each i ∈ {0, . . . , (n−n1)/2−1},
the ith pair of vertices added shall be colored i. Because n− n1 < 4k+ 2, at most 2k pairs of vertices shall be added. Since
we start with a conformable coloring of H wherein the distance between every pair of vertices colored the same is 2k+1,
we can add, for each i ∈ {0, . . . , (n− n1)/2− 1}, a vertex between ui+k and ui+k+1 and a vertex between un1−2 and un1−1.
ote that this way we get no color conflicts, since we can still guarantee that the distance between every pair of vertices
olored the same is at least k + 1, so they will not be adjacent.

roof for Case 3. If n is even and 2k + 1 < n < 4k + 2, then the only graphs which remain to be colored are the graphs
Ck
2k+2, C

k
2k+4, . . . , C

k
2k+2k. But constructing a conformable (2k + 1)-vertex-coloring for any G = Ck

n among these graphs is
asy: for each among n/2 colors selected, assign this color to two vertices of G in antipodal position in the cycle; assign
he remaining colors to no vertex. Now we have a (2k + 1)-vertex-coloring for G in which each color class has size 0 or
, conforming to the parity of n.

Proof for Case 4. Now assume that n is odd and 3(k + 1) ≤ n < 3(2k + 1). We shall construct a proper (2k + 1)-vertex-
k
coloring of Cn in which, among the 2k+ 1 colors available, x > 0 of them shall color exactly 3 vertices each, and y > 0 of
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them shall color exactly 1 vertex each, implying the conformability of the coloring constructed. First we verify that such
positive integers x and y exist. Since x+y = 2k+1 and 3x+y = n, we have x = (n− (2k+1))/2 and y = (3(2k+1)−n)/2,
which can be verified to be positive integers since n is odd and 3(k + 1) ≤ n < 3(2k + 1). Moreover,

x +

⌊ y
3

⌋
≥ x +

y − 2
3

=
1
6

(
3n − 3(2k + 1) + 3(2k + 1) − n − 4

)
=

n − 2
3

≥
3(k + 1) − 2

3
= (k + 1) −

2
3

,

hich, since x+⌊y/3⌋ is an integer, implies x+⌊y/3⌋ ≥ k+1 (remark that this can hold with equality; for instance, take
= 9 and k = 2, yielding x = 2 and y = 3). Ergo, our coloring can be defined by:

C(vi) = i for 0 ≤ i < x and for x ≤ i < x +

⌊ y
3

⌋
;

C(vi) = i −
(
x +

⌊ y
3

⌋)
for x +

⌊ y
3

⌋
≤ i < 2x +

⌊ y
3

⌋
;

C(vi) = i − x for 2x +

⌊ y
3

⌋
≤ i < 2x + 2

⌊ y
3

⌋
;

C(vi) = i − 2
(
x +

⌊ y
3

⌋)
for 2x + 2

⌊ y
3

⌋
≤ i < 3x + 2

⌊ y
3

⌋
;

C(vi) = i − 2x for 3x + 2
⌊ y
3

⌋
≤ i < 3x + y.

bserve that, in this coloring, each color in X = {0, . . . , x − 1} is used exactly 3 times, and each color in the sets

Y1 =

{
x, . . . , x +

⌊ y
3

⌋
− 1

}
,

Y2 =

{
x +

⌊ y
3

⌋
, . . . , x + 2

⌊ y
3

⌋
− 1

}
, and

Y3 =

{
x + 2

⌊ y
3

⌋
, . . . , x + y − 1

}
is used exactly once. Observe further that, following the order v0, . . . , vn−1 of the vertices along the main spanning cycle,
we verify the order X, Y1, X, Y2, X, Y3 for the sets in which the colors assigned to the vertices lie. Hence, every two vertices
colored the same are at distance at least x + ⌊y/3⌋ ≥ k + 1 and thus they are not adjacent. □

. Total coloring the third and the fourth powers of cycles

As discussed in Section 1, Conjecture 1 has already been settled for graphs Ck
n with k = 3 or k = 4, implying that the

otal coloring problem is fully solved for these graphs. This result has been announced by Almeida et al. [8], presented at
conference and published in the book of abstracts with no detailed proofs. In this section we provide an independent
roof for the result, using our composition techniques discussed in Sections 2 and 3.

heorem 13. A power of cycle graph Ck
n with k ∈ {3, 4} which is not a complete graph is: Type 2 if n is odd and n < 3(k+1);

Type 1 otherwise.

Proof. Since the graphs C3
9 , C

3
11, C

4
11, and C4

13 are well-known [5] to be Type 2, it remains only to prove that if n is even,
r if n is odd and n ≥ 3(k + 1), then Ck

n is Type 1 (assuming n > 2k + 1 since we are excluding complete graphs by
ypothesis).
By taking the set of seeds {C3

7 , C3
8 , C3

10, C
3
12}, whose Type 1 total colorings are presented in Table 3, we can compose

very C3
n with n ≥ 14. Similarly, by taking the set of seeds {C4

9 , C4
10, C

4
12, C

4
14, C

4
16}, whose total colorings are presented in

able 4, we can compose every C4
n with n ≥ 18.

The only graphs which remain to be Type 1 total colored are C3
13, C

4
15, and C4

17. For C
3
13 and C4

15, a Type 1 total coloring
as presented by Campos [5]. Hence, we conclude the proof presenting a Type 1 total coloring for C4

17 in Table 5. □

. Conclusion

We have proved that if n is bigger than a given threshold then every graph Ck
n with even k is Type 1. Our result is

ctually stronger, as we give a linear time optimal algorithm to total color such graphs. The result asymptotically settles
or even k the conjecture proposed by Campos and Mello [7], reducing to a finite number the graphs that are still unknown
o satisfy the conjecture.
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Table 3
Initial seeds for the total coloring of C3

n with n ≥ 14.

Table 4
Initial seeds for the total coloring of C4

n with n ≥ 18.

In addition to our main results for even k, for odd k we also have computational results for specific values of k, namely
k = 5 and k = 7. These results point to a path to follow towards a more general technique which can also be applied for
odd k.

All techniques presented in this work can be expanded: we can extend the set of graphs colored by the technique
presented in Section 3 by simply increasing the size of the seed set used to generate the total colorings. As Definition 6
does not present any restriction on the number of colors, the same idea can be used to prove the TCC as well, by giving
(∆(G)+2)-compatible total colorings. The framework presented in Section 4 can be extended to totally color other classes
of graphs, mostly the classes of graphs that have similar structural decomposition, for example circulant graphs. Another
graph class in which our results may have an impact is the class of power of paths graphs, since a power of path is a
spanning subgraph of a power of cycle.

The total coloring tree decomposition proposed in this paper for power of cycles is closed related to the notion of tree
decomposition, as well as treewidth, defined by Robertson and Seymour [25]. Therefore, another interesting direction
would be to extend our technique in order to improve the state of art of the total coloring problem for classes of graphs
with bounded treewidth.
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a

A

4
2

R

Table 5
A Type 1 total coloring for C4

17 .
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