
Discrete Applied Mathematics 323 (2022) 149–161

t
G
T

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Total tessellation cover: Bounds, hardness, and applications
Alexandre Abreu a,b, Luís Cunha c,∗, Celina Figueiredo a, Franklin Marquezino a,
Daniel Posner d, Renato Portugal e
a Universidade Federal do Rio de Janeiro, Brazil
b Fundação Getúlio Vargas, Brazil
c Universidade Federal Fluminense, Brazil
d Universidade Federal Rural do Rio de Janeiro, Brazil
e Laboratório Nacional de Computação Científica, Brazil

a r t i c l e i n f o

Article history:
Received 29 May 2020
Received in revised form 14 July 2021
Accepted 29 September 2021
Available online 28 October 2021

Keywords:
Graph tessellation
Graph coloring
Algorithms and complexity
Quantum walks

a b s t r a c t

The concept of graph tessellation cover was defined in the context of quantum walk
models, and is a current research area in graph theory. In this work, we propose a
generalization called total tessellation cover. A tessellation of a graph G is a partition
of its vertex set V (G) into vertex disjoint cliques. A tessellation cover of G is a set of
tessellations that covers its edge set E(G). A total tessellation cover of G consists of a
tessellation cover together with a compatible vertex coloring, such that the color of each
vertex is different from the tessellation labels of the edges incident to the vertex. The
total tessellation cover number Tt (G) is the size of a minimum total tessellation cover
of G. We present lower bounds Tt (G) ≥ ω(G) and Tt (G) ≥ s(G) + 1, where ω(G) is the
size of a maximum clique, and s(G) is the number of edges of a maximum induced star
subgraph. A graph G is called a good total tessellable if Tt (G) = ω(G) or Tt (G) = s(G)+1.
We study the complexity of the k-total tessellability problem, which aims to decide
whether a given graph G has Tt (G) ≤ k. We prove that k-total tessellability is in
P for good total tessellable graphs. We establish the NP-completeness of the k-total
tessellability when restricted to the following graph classes: bipartite graphs, line
graphs of triangle-free graphs, universal graphs, (2, 1)-chordal graphs and planar graphs.

© 2021 Elsevier B.V. All rights reserved.

1. Graph tessellations and quantum walks

A tessellation of a graph G = (V , E) is a partition of V into vertex disjoint cliques, where each clique of a tessellation
is called a tile. An edge belongs to a tile if its endpoints are in the tile. A k-tessellation cover of G is a set of k tessellations
hat covers E(G). A graph is k-tessellable if it admits a k-tessellation cover. The tessellation cover number T (G) of a graph
is the size of a minimum tessellation cover. The k-tessellability problem aims to decide whether a given graph G has
(G) ≤ k. Fig. 1 depicts the Hajós graph H and a 3-tessellation cover with tessellations T1, T2, and T3. The fact that the

clique graph of G is a K4 implies that T (H) = 3 [13].
Portugal et al. [15] introduced the concept of tessellations on graphs by showing a close relation between tessellations

and quantum walk models and by establishing a modern application of tessellation covers to quantum computing. These
results inspired us to addressed in [2,3] the computational complexity of the k-tessellability problem, and to describe
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Fig. 1. Hajós graph H with a 3-tessellation cover. We depict in the first example the trivial tiles of size 1, but in the sequel we omit them and
epict only nontrivial tiles of a tessellation.

Fig. 2. (a) A graph G with s(G) = 4. (b) A 4-tessellation cover of G given by T1 = {{a, b}, {f , j}}, T2 = {{c, f }}, T3 = {{b, c}, {e, d, f }, {i, j}},
T4 = {{a, j}, {c, d}, {f , g, h, i}}. In a tessellation cover, trivial tiles of size 1 are omitted. (c) A 5-total tessellation cover of G given by T1 =

{{a, b}, {e, d, f }, {c}, {i}}, T2 = {{b}, {f }}, T3 = {{b, c}, {f , j, i}, {a}, {e}, {g}}, T4 = {{a, j}, {i, f , g, h}, {d}}, T5 = {{c, d, f }, {j}, {h}}. In a total tessellation
cover, only nontrivial tiles are considered, and subsets of size 1 define a proper vertex coloring. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

polynomial-time algorithms and NP-completeness proofs for several graph classes. The concept of minimum tessellation
cover was independently proposed as equivalence dimension by Duchet [7], and the relation between these concepts is
described in [3].

The interest in quantum walks, which are mathematical models of the motion of a particle on a graph, has grown
considerably in the last decades. They are powerful tools in the development of quantum algorithms. When the dynamics
of a quantum walk is described using graph tessellations, each tile of a tessellation establishes a neighborhood around
which the walker can move under the action of the associated local evolution operator. Tessellation-based quantum walks
were used in the development of new quantum algorithms that outperform their classical counterparts [14,17], and they
can be implemented in quantum computers using less resources than other quantum walk models [4].

Graph-theoretical studies have related tessellation covers to the challenging edge and vertex coloring problems. Abreu
et al. [2] proved that χ ′(G) and χ (K (G)) are upper bounds for T (G). They also proved the hardness of k-tessellability
for planar graphs, (2, 1)-chordal graphs, (1, 2)-graphs, and showed that 2-tessellability is solved in linear time. Since
T (G) = χ ′(G) if G is a triangle-free graph, we have that k-tessellability is hard for triangle-free graphs [10]. Moreover,
Posner et al. [16] showed that k-tessellalbility is NP-complete for line graphs of triangle-free graphs. Abreu et al. [3]
proved that s(G) is a lower bound for T (G), where s(G) is the number of edges in a maximum induced star of G. They
proved the hardness of k-tessellability for universal graphs and the hardness of good tessellable recognition, which
aims to decide whether G has T (G) = s(G). Fig. 2(a) depicts a graph G where a maximum induced star subgraph has four
edges, i.e., s(G) = 4, and Fig. 2(b) depicts a 4-tessellation cover of G. cover of G. Note that we omit trivial tiles and depict
only nontrivial tiles of a tessellation. Since T (G) ≥ s(G) = 4, we have T (G) = 4.

The present paper proposes the concept of total tessellation cover, which consists of a tessellation cover together with
a compatible vertex coloring defined over the same label set, i.e., the color of each vertex is different from the labels of the
edges incident to the vertex. We remark that the color of each vertex must be different from the label of each nontrivial
tile containing the vertex. Please refer to Fig. 2(c), where a 5-total tessellation cover of G is depicted. The formal definition
is presented in Section 2. We discuss practical applications of total tessellation covers, such as a new quantum walk model
in which the walker hops to both vertices and edges and a variation of the frequency assignment problem.

The paper is organized as follows. We end Section 1 with basic definitions and notation. Section 2 presents detailed
definitions about the total tessellation cover and its practical and theoretical applications to quantum walks, frequency
assignments, and coloring problems. Section 3 presents a detailed study about bounds on the total tessellation cover
number parameter. Section 4 shows efficient algorithms to obtain the target parameter for good total tessellable graphs,
and hardness proofs when restricted to the following well-known graph classes: universal graphs, line graphs, chordal
graphs and planar graphs. Section 5 proposes open questions.

Basic definitions
Let G = (V , E) be a simple graph. The set N(v) = {u | uv ∈ E(G)} is the neighborhood of the vertex v in V and the

degree of v is d(v) = |N(v)|. The maximum size of the neighborhood of a vertex of the graph G is denoted by ∆(G) (or
simply ∆). A subgraph H of G has V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced subgraph H of G has V (H) ⊆ V (G) and
E(H) = {uv | uv ∈ E(G), u ∈ V (H) and v ∈ V (H)}.
150
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We say that a subset of vertices of V is an independent set (resp. clique) if there is no edge between any pair of its
vertices (resp. there are edges between all pairs of its vertices). The size of a maximum independent set (resp. maximum
clique) of G is denoted by α(G) (resp. ω(G)). We say that a subset of edges of E is a matching if there is no pair of edges
that share a common endpoint. The size of a maximum matching of a graph G is denoted by µ(G).

The union G = G1∪G2 of two graphs G1 and G2 has V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2). The join G = G1∨G2
of two graphs G1 and G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1) and v ∈ V (G2)}. The line
graph L(G) of a graph G has a vertex for each edge of G and there is an edge between two vertices of L(G) if the respective
dges of G share a common endpoint. The clique graph K (G) of a graph G has a vertex for each maximal clique of G and
here is an edge between two vertices of K (G) if the respective maximal cliques of G share a common vertex. A universal
raph is a graph G that has a vertex v with N(v) = V (G) \ v. A planar graph is a graph G that can be drawn on the plane
n such a way that the edges of G intersect only at their endpoints. A graph G is a chordal graph if it has no induced cycle
f size four or more. A graph G is (k, ℓ) if its vertex set can be partitioned into k independent sets and ℓ cliques.
A k-coloring (resp. k-edge coloring) is a partition of the vertices of the graph into k independent sets (resp. k matchings).
k-total coloring of a graph G is a coloring of vertices and edges with k colors such that no two adjacent vertices have

he same color, nor two adjacent edges, and nor an edge and its endpoints. A graph G is k-colorable (resp. k-edge colorable
and k-total colorable) if it admits a k-coloring (resp. k-edge coloring and k-total coloring). We denote by χ (G), χ ′(G), and
χt (G) the minimum k such that G is k-colorable, k-edge colorable, k-total colorable, respectively.

2. Total tessellations and applications

We now precisely define the total tessellation cover of a graph, which takes into account not only the tessellation
labels, but also the vertex labels. This provides a quantum walk scenario in which the walker hops to both vertices and
edges.

Definition 1. Let G = (V , E) be a graph and Σ a non-empty label set. A total tessellation cover comprises a proper vertex
oloring and a tessellation cover of G both with labels in Σ such that, for any vertex v ∈ V , there is no edge e ∈ E incident
to v so that e belongs to a tile in a tessellation with label equal to the color of v.

Note that an alternative way to define a tessellation is by describing the edges that belong to the tessellation. A k-
tessellation cover of G = (V , E) is a function h that assigns to each edge of E a nonempty subset in the power set of Σ ,
P(Σ), where Σ = {1, . . . , k}, such that the set of edges having the same label corresponds to a tessellation, i.e., induces
a partition of V into cliques. A k-total tessellation cover of a graph G simultaneously assigns labels in Σ to V as a proper
vertex coloring f and labels in P(Σ) \ ∅ to E as a tessellation cover with function h, such that each uv ∈ E satisfies
f (u) ̸∈ h(uv) and f (v) ̸∈ h(uv).

Definition 2. The total tessellation cover number Tt (G) of a graph G is the minimum size of the set of labels Σ for which
G has a total tessellation cover.

The k-total tessellability problem aims to decide whether a given graph G has Tt (G) ≤ k. Fig. 2(c) and the lower
raph of Fig. 3 depict examples of total tessellation covers of size 5 and 4, respectively. Note that both vertices and edges
ave label assignments, and an edge that is covered by more than one tessellation receives more than one label. A vertex
abel must be different from the labels of the vertices of its neighborhood and from the labels of its incident edges. An
dge label must be different from the labels of its endpoint vertices and from the labels of the other tiles that contain
hese endpoint vertices.

.1. Application to quantum walks

The total tessellation cover can be used to define a new form of quantum walk, which allows the walker to hop to
ertices and edges alike. The new description simplifies the underlying graph structure of the quantum walk compared
o the standard description and explores extra available resources in terms of where to hop. This has an interesting
onsequence on the dispersion of the wave function. It is known from the postulates of quantum mechanics that the
alker can be in more that one place simultaneously. Besides, the time-evolution operations explore this feature, but
hey must also fulfill the postulates. It is a nontrivial task to describe recipes that generate allowed evolution operations.
he notion of total tessellation helps in this task and provides a new form of dispersion, which is depicted in Fig. 3, where
he walker’s position is shown by a mark. The upper row shows the walker’s position’s dispersion as time goes to the
ight in discrete time-steps when we use the standard quantum walk model. The lower row shows the new dispersion
hen the walker is driven by the total tessellation-based quantum walk.
Here we show how to simulate the new dynamics in terms of the standard quantum walk model to highlight the

conomy of resources that the concept of total tessellation cover enables. In fact, we show that the dynamics based on a
otal tessellation cover of G is described in terms of the standard dynamics based on the original tessellation cover of the

otal graph Tot(G).
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Fig. 3. Upper row: A 3-tessellation cover of the Hajós graph given by T1 = {{a, b, c}}, T2 = {{c, e, f }}, T3 = {{b, d, e}}, with colors blue, yellow, and
green, respectively, and the associated dispersion of the walker’s position when the successive time-evolution operations based on the tessellations T3 ,
T1 and T2 take place. Lower row: A 4-total tessellation cover of the same graph given by T1 = {{a, b, c}, {e}}, T2 = {{a}, {d}, {f }}, T3 = {{b, d, e}, {c}},
T4 = {{c, e, f }, {b}} and the corresponding dispersion based on the tessellations T3 , T1 and T4 . The unoccupied edges ac and cf are reached by a
further application of tessellation T3 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. A 4-total tessellation cover of G given by T1 = {{a, b, c}, {e}}, T2 = {{a}, {d}, {f }}, T3 = {{b, e, d}, {c}}, T4 = {{c, e, f }, {b}} and the associated
-tessellation cover of A.

The total graph Tot(G) of G has V (Tot(G)) = V (G) ∪ E(G) and E(Tot(G)) = E(G) ∪ {(u, uw)| u ∈ V (G), uw ∈ E(G)}
{(uv, vw)| uv ∈ E(G) and vw ∈ E(G)}.
Let A = Tot(G), A[E(G)] = Y and A[V (G)] = X . Subgraph Y is isomorphic to the line graph L(G) of G, and X is isomorphic

o the original G. We define the clique Kv = {v} ∪ {vw | vw ∈ E(G)} of A.
Consider a total tessellation cover of a graph G. Define an associated tessellation cover of A as follows. Assign the labels

f the edges of G to the respective edges of X and assign the color of each vertex v of G to the edges of A[Kv]. We simulate
he total quantum walk on G with tessellations on A by considering the vertices of G as the corresponding vertices of X
n A, and the edges of G as the corresponding vertices of Y in A. Fig. 4 depicts a total tessellation cover of a graph G and
he associated tessellation cover of A = Tot(G).

Consider the walker located on a vertex a of G. If we apply the evolution operation associated with the color of a, the
alker hops to the edges incident to a (the edges ab and ac). If we apply the evolution operation associated with the

abel of an edge incident to a, the walker hops to the vertices in the tile of the tessellation of the same label that contains
(the vertices b and c). The same happens by considering the walker located on a vertex a in X . In a tessellation, each

ile establishes a neighborhood around which the walker can move under the action of the associated local evolution
perator. If we apply the evolution operation associated with the labels of the edges of A[Ka], the walker hops to the
ertices ab and ac of Y , and if we apply the evolution operation associated with the label of an edge of X incident to a,
he walker hops to the vertices b and c of X . Consider the walker located on an edge ab of G. If we apply the operator
ssociated with the color of a (or b), the walker hops to a (or b) and to the edges incident to it. The same happens by

considering the walker located on a vertex ab in Y . If we apply the operator associated with the labels of the edges of
A[Ka] (or A[Kb]), the walker hops to vertices of Ka (or Kb). Otherwise, the walker stays put in both G and A.

2.2. Application to frequency assignment problems

Frequency assignment problems [1] constitute another practical application of total tessellations unrelated to quantum
theory. Assume we have a group of people that requires private and shared types of communications. Each person has
subgroups of contacts with whom the person is required to communicate. Moreover, each person in a subgroup may
communicate with either one person in the subgroup using a private frequency or all people in the subgroup using a
shared frequency.
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Fig. 5. Three total tessellation covers and their associated frequency assignments. (a) a group of six people named a to f ; (b) the associated
ommunication graph G that fulfills their demands; (c) a 4-total tessellation cover given by T1 = {{a}, {e} {b, c, f }}, T2 = {{a, f }, {c}}, T3 =

{c, e, f }, {d}, {b}}, and T4 = {{a, b}, {f }, {c, d, e}}; (d) a 5-total tessellation cover given by T1 = {{a}, {e}}, T2 = {{b, c, e, f }}, T3 = {{b}, {d}},
T4 = {{c, e, d}, {f }}, T5 = {{a, b, f }, {c}} and; (e) a 5-total tessellation cover given by T1 = {{e}, {a, f }, {b, c}}. T2 = {{c}, {a, b}, {e, f }}, T3 =

{{a}, {d}, {b, f }, {c, e}}, T4 = {{f }, {b, e}, {c, d}}, and T5 = {{b}, {c, f }, {e, d}}.

Table 1
Computational complexity of the problems associated to the parameters χ ′(G), χt (G), T (G), and Tt (G). The only unknown class example is the open
problem, in order to fully achieve the P vs NP-complete dichotomy. The [2|V (G)|,Gc

] graphs are discussed in Section 4 (Construction 1).
χ ′(G) T (G) χ ′(G) χt (G) χ ′(G) Tt (G)

[2|V (G)|,Gc
] P NPc G ∪ K∆(G)+1

∆ even
P NPc [2|V (G)|,Gc

] P NPc

Line graph
of Bipartite

NPc P G ∪ K∆(G)+1
∆ odd

NPc P Line graph
of Bipartite
ω(G)≥6

NPc P

T (G) χt (G) T (G) Tt (G) χt (G) Tt (G)

Bipartite P NPc Bipartite P NPc G ∪ K∆(G)+1
∆ odd

P NPc

[2|V (G)|,Gc
] NPc P G ∪ K3∆(G) NPc P Unknown

(Open)
NPc P

This model has some restrictions. First, to avoid interference we do not allow two people that need to communicate
(i.e., there is an edge between them in the graph) to use the same private frequency. Second, we do not allow a private
frequency to be equal to a shared frequency, or the person cannot identify whether the received message is personal or
shared. Third, we do not allow a person to have the same shared frequency in two different subgroups, or the person
cannot select for which subgroup to send the specific shared information.

Fig. 5(a) depicts a group of six people named a to f . In Fig. 5(b) we have the associated communication graph G that
ulfills their demands. In Fig. 5(c) we describe a 4-total tessellation cover of G, which in this case represents that the group
of people {b, c, f } shares the same blue frequency, and they can communicate among themselves. Moreover, anyone in
this group can send a private information to person f using the red frequency. Note that we may assign these frequencies
in different ways. In Fig. 5(d) it is needed a 5-total tessellation cover for G by choosing each maximal clique as a tile.
In Fig. 5(e) we describe a 5-total tessellation cover for G which corresponds to a 5-total coloring of G. The frequency
ssignments of Fig. 5(d) and Fig. 5(e) are 5-total tessellation covers, hence, they both require five different frequencies,
hereas the 4-total tessellation cover of Fig. 5(c) requires less different frequencies. Therefore, the total tessellation cover
roblem provides a minimum spectrum of required frequencies for this situation.

.3. Application to the complexity of graph coloring problems

A theoretical motivation is the study of the behavior of the computational complexity of different graph theory
roblems. In Section 4, we establish efficient solutions and hardness results of the total tessellation cover problem for
ifferent graph classes. Such results allow us to compare the computational complexity of k-total tessellability with

the other known related problems: k-colorability, k-edge colorability, and k-total colorability. For instance, these
four problems are in P when restricted to complete graphs, star graphs and trees, whereas for triangle-free graphs, the
four problems are NP-complete. Table 1 summarizes the obtained results about the target parameter Tt (G), by giving
examples of graph classes for which the computational complexity of these four problems disagree.

3. Bounds on Tt (G)

An important issue when we address a new parameter in graph theory is to establish bounds on graph invariants or
other parameters. For instance, we have the well-known Brooks’ Theorem, which states that χ (G) ≤ ∆(G) when G is not
153
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an odd cycle nor a complete graph; the Vizing’s Theorem, which states that χ ′(G) ≤ ∆+ 1; and the Behzad’s Conjecture,
hich states that χT (G) ≤ ∆(G) + 2.
Observe that a total coloring defines a particular total tessellation cover, where each color of the total coloring

orresponds to a label of the total tessellation cover so that no two same-colored vertices are adjacent, nor two
ame-colored edges are adjacent, and nor same-colored edge and vertex are incident to each other. Thus,

Tt (G) ≤ χt (G). (1)

For triangle-free graphs, a tile on a tessellation contains at most one edge. Therefore, for this graph class, any total
essellation cover with Tt (G) tessellations induces a total coloring with Tt (G) = χt (G) colors. Hence, considering that
(∆+1)-total colorability is NP-complete for bipartite graphs [12], (∆+1)-total tessellability is also hard even when
estricted to bipartite graphs.

The labels of the vertices (resp. the edges) of a total tessellation cover also induce a coloring (resp. a tessellation cover)
f the graph. Furthermore, we obtain a total tessellation cover of a graph by using the same χ (G) labels of a coloring to
ts vertices and another T (G) different labels of a tessellation cover to its edges. Thus,

max{χ (G), T (G)} ≤ Tt (G) ≤ χ (G) + T (G). (2)

The key idea of Lemma 3.1 followed by its extension is to reduce the upper bound of Eq. (2) by using vertex colors as
abels for the tessellations. We claim that for each three colors in {1, . . . , χ (G)} we can reduce the tessellation labels in
χ (G) + 1, . . . , χ (G) + T (G)}, and therefore the upper bound of Eq. (2), by one unit.

For instance, if χ (G) = 3, the replacement is made by relabeling as tessellation 1 all edges of tessellation χ (G) + T (G)
ith endpoint vertices with colors different from 1, as tessellation 2 all edges of tessellation χ (G) + T (G) with endpoint
ertices with colors different from 2, and as tessellation 3 all edges of tessellation χ (G)+T (G) with endpoint vertices with
olors different from 3. Note that each edge of tessellation χ (G)+T (G) appears in at least one of these three tessellations,
ince an edge has two endpoints.
Now we establish a relation between the chromatic number χ (G) of a graph and its total tessellation cover number

t (G). Such relation is important for several hardness proofs in Section 4.

emma 3.1. If χ (G) ≥ 3T (G), then Tt (G) = χ (G).

roof. Let f be a proper vertex coloring and C = {T1, T2, . . . , TT (G)} be a T (G)-tessellation cover for G. We define C′ a
essellation cover for G with 3T (G) labels such that C′ is compatible with f as follows. Each tessellation T ′

i , 1 ≤ i ≤ 3T (G),
f C′ is associated with a color i. Since χ (G) ≥ 3T (G), there are enough colors. The edges of tessellations T ′

3j−2, T
′

3j−1, and
′

3j are given by the edges of the tessellation Tj, 1 ≤ j ≤ T (G), such that T ′

3j−2 (resp. T ′

3j−1, T
′

3j) consists of the edges of
j that do not have an endpoint with color 3j − 2 (resp. 3j − 1, 3j). Note that the tiles of tessellation T ′

3j−2 of C′ (resp.
′

3j−1 and T ′

3j) are obtained by removing edges incident to vertices with color 3j− 2 (resp. 3j− 1 and 3j) from the tiles of
essellation Tj of C. Since an edge has two endpoints, any edge in a tessellation Tj of the tessellation cover C appears in
t least one tessellation T ′

3j−2, T
′

3j−1 or T ′

3j of C
′ i.e., C′ is a tessellation cover of G. □

Lemma 3.1 can be extended to any graph with χ (G) < 3T (G) to reduce the upper bound Tt (G) ≤ χ (G)+T (G) of Eq. (2).
ndeed, for each three colors in {1, . . . , χ (G)}, we may reduce by one unit the upper bound χ (G)+T (G) of Tt (G). Therefore,
uch upper bound is given by Tt (G) ≤ χ (G) + T (G) − ⌊

χ (G)
3 ⌋ = T (G) + ⌈

2χ (G)
3 ⌉. Hence, using an argument similar to the

ne used in the proof of Lemma 3.1, we can rewrite the upper bound of Eq. (2) as follows

Tt (G) ≤ max {χ (G), T (G) + ⌈2χ (G)/3⌉} . (3)

We now describe some special situations regarding Eqs. (2), (3), and Lemma 3.1. If χ (G) ≥ 3T (G), then Tt (G) = χ (G).
therwise, χ (G) ≤ 3T (G) and T (G) ≤ Tt (G) ≤ 3T (G). Fig. 6 depicts an example of a graph G with χ (G) < 3T (G) and
t (G) > χ (G). Particularly, when χ (G) = 3, we have T (G) ≤ Tt (G) ≤ T (G) + 2.
Note that Tt (G) = χ (G) + T (G) requires χ (G) < 2 (i.e., G must be a bipartite graph). On the other hand, if G is a

ipartite graph, then Tt (G) = χT (G) because G is triangle-free, and Tt (G) is either Tt (G) = χ (G) + T (G) = ∆(G) + 2 or
Tt (G) = χ (G) + T (G) − 1 = ∆(G) + 1.

We know that T (G) ≤ ∆(G) and, by Brooks’ Theorem, we know that χ (G) ≤ ∆(G) (except odd cycles or complete
raphs). Using these two pieces of information in the upper bound of Eq. (3), we obtain Tt (G) ≤

5∆(G)+3
3 . Particularly,

hen ∆(G) = 3, we have T (G) ≤ Tt (G) ≤ 6.
In Section 4 we present the definition of Good tessellable graph, for which the following Lemma 3.2 is important.

emma 3.2. Tt (G)≥max
v∈V (G)

{χ (Gc
[N(v)])}+1≥max

v∈V (G)
{ω(Gc

[N(v)])}+1= s(G)+1.

roof. Consider a total tessellation cover of a graph G, a vertex v of G, and Gc
[N(v)], which is the complement graph of the

raph induced by the neighborhood of v. In any tessellation, the endpoints of the edges that are incident to v and belong
o the tessellation induce a clique, hence the vertices of this clique are an independent set in Gc

[N(v)]. Therefore, the
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c

Fig. 6. A graph G with χ (G) < 3T (G) and Tt (G) > χ (G). (a) a 4-coloring giving by color classes c1 = {v1, u2, w4}, c2 = {u1, v2, w3},
3 = {w2, v3, u4}, and c4 = {w1, u3, v4}; (b) a 2-tessellation cover with tessellations T1 = {{v1, v2, v3, v4}, {w1, w2, w3, w4}}

and T2 = {{v1, u1, w1}, {v2, u2, w2}, {v3, u3, w3}, {v4, u4, w4}}; and (c) a 5-total tessellation cover with tessellations T1 =

{{v1, u1, w1}, {v2, u2, w2}, {v3, u3, w3}, {v4}}, T2 = {{v3, v4}, {w1, w2, w4}, {u1}, {v2}, {w3}}, T3 = {{v1, v2, v4}, {w3, w4}, {u2}, {v3}, {u4}, {w1}},
T4 = {{v1}, {w2}, {u3}, {v4, u4, w4}}, and T5 = {{v1, v2, v3}, {w1, w2, w3}, {w4}}. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

tessellations with edges incident to a vertex v induce a vertex coloring of Gc
[N(v)], and the number of these tessellations

is at least χ (Gc
[N(v)]). Moreover, these tessellations have labels that are different from the color of vertex v. Therefore,

Tt (G) ≥ χ (Gc
[N(v)]) + 1. Note that s(G[N[v]]) = α(G[N(v)]) = ω(Gc

[N(v)]) and s(G) = max
v∈V (G)

s(G[N[v]]). □

Graphs with Tt (G) = T (G) = k have no induced subgraph K1,k because Tt (G) ≥ s(G) + 1 ≥ k + 1. Moreover, there is
no tile of size k in any tessellation of a total tessellation cover. If Tt (G) = T (G) = 3, then G is K1,3-free and there is no
clique of size three in any tessellation. Therefore, the total tessellation cover of G induces a total coloring of G, and the
only graphs for which Tt (G) = T (G) = 3 are the odd cycles with n vertices such that n ≡ 0 mod 3. For bipartite graphs,
T (G) = ∆(G) and Tt (G) > T (G). For triangle-free graphs, Tt (G) = T (G) if χ ′(G) = χt (G) = ∆ + 1. It follows that deciding
whether Tt (G) = T (G) = ∆(G) + 1 is NP-complete from the proof that (∆ + 1)-total colorability is NP-complete for
triangle-free snarks [18], which are graphs with χ ′(G) = ∆+ 1.

4. Good and hard total tessellable graphs

Since the concept of good tessellable graphs introduced in [3] has provided keen insights into the hardness of finding
minimum-sized tessellation covers, we define the concept of good total tessellable graphs in order to further explore
hardness results related to total tessellation covers. In the quantum computation context, we are interested in graph
classes which use as few color labels as possible so that the number of time-evolution operations for total tessellation-
based quantum walks is as low as possible. Therefore, we need Tt (G) to be close to the lower bounds obtained in
Section 3.

Definition 3. A graph G is good total tessellable of Type I if Tt (G) = ω(G), and of Type II if Tt (G) = s(G)+1 and Tt (G) ̸= ω(G).

Now we show that k-total tessellability is in P if we know beforehand that the graph is good total tessellable Type I
or Type II. The Lovász number ϑ(G) is a real number such that ω(Gc) ≤ ϑ(G) ≤ χ (Gc) [9]. We denote ψ(G) the integer
nearest to ϑ(G). The value of ψ(G) can be determined in polynomial time [9].

For Type I graphs, Tt (G) = ω(G). Since Eq. (2) implies that ω(G) ≤ χ (G) ≤ Tt (G), we have ω(G) = χ (G) = Tt (G) = ψ(Gc).
For Type II graphs, Tt (G) = s(G) + 1. For any vertex v ∈ V (G), ω(Gc

[N(v)]) ≤ ψ(G[N(v)]) ≤ χ (Gc
[N(v)]), and by

Lemma 3.2, Tt (G) ≥ ψ(G[N(v)]) + 1. Since Tt (G) = s(G) + 1, by Lemma 3.2 there is a vertex u ∈ V (G) such that
Tt (G) = ω(Gc

[N(u)])+1. In this case, ω(Gc
[N(u)])+1 = χ (Gc

[N(u)])+1, and we determine ω(Gc
[N(u)]) using ψ(Gc

[N(u)]).
Therefore, Tt (G)=max

v∈V (G)
{ψ(G[N(v)])}+1.

The same method used to determine Tt (G) for Type II graphs can be applied for good tessellable graphs in order to
determine T (G), where T (G) = max

v∈V (G)
{ψ(G[N(v)])}.

As presented in Section 3, (∆+1)-total tessellability isNP-complete for bipartite graphs, which have s(G)+1 = ∆+1
and ω(G) = 2. Now, we show that k-total tessellability is NP-complete for the following cases: line graph of triangle-
free graphs with k = ω(G) ≥ 9 and s(G) + 1 = 3; universal graphs with k very far apart from both s(G) + 1 and ω(G);
(2, 1)-chordal graphs with k = s(G) + 1 = ω(G) + 3; and planar graphs with k = 4 = ω(G) = s(G) + 1.

4.1. Line graph of triangle-free graphs

Machado et al. [11] proved that k-edge colorability is NP-complete for 3-colorable k-regular triangle-free graphs if
k ≥ 3.

The key idea of the proof of Theorem 4.1 is to verify that Tt (L(G)) = χ ′(G), for k-regular triangle-free graphs with k ≥ 9.

Theorem 4.1. k-total tessellability is NP-complete for line graphs L(G) of 3-colorable k-regular triangle-free graphs G for
any k ≥ 9.
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Fig. 7. [10, C c
5 ] is the graph obtained from Construction 1.

roof. The edges incident to any vertex v of graph G correspond to a clique of L(G), whose size is the degree of v. If two
ertices of G are non-adjacent, then the corresponding cliques in L(G) share no vertices. Hence, we cover the edges of the
liques of L(G) incident to the vertices of each of the three color classes of the 3-coloring of G with a tessellation related
o the color class because these cliques share no vertices. Therefore, since T (L(G)) = 3 and χ (L(G)) ≥ 9 ≥ 3T (L(G)), by
emma 3.1, Tt (L(G)) = χ (L(G)) = χ ′(G). Note that in this case k = ω(L(G)) and s(L(G)) + 1 = 3. □

.2. Universal graphs

Abreu et al. [3] established the NP-completeness of k-tessellability for universal graphs by relating this problem to q-
ndependent set. We present a similar argument to establish the NP-completeness of k-total tessellability for universal
raphs. Let G be an instance of q-colorability. In Construction 1, we construct from a graph G, the graph [2|V (G)|,Gc

] as
ollows.

onstruction 1. Let [2|V (G)|,Gc
] be the graph obtained from a graph G in the following way:

• Obtain Gc , the complementary graph of G;
• Obtain a graph H by adding a vertex u in Gc such that H = Gc

∨ {u};
• Add 2|V (G)| pendant vertices to H adjacent to u.

Fig. 7 depicts an example of Construction 1, when G = C5.

heorem 4.2. k-total tessellability is NP-complete for universal graphs.

roof. Let [2|V (G)|,Gc ] be a graph of Construction 1. The total tessellation cover number of the constructed graph
2|V (G)|,Gc ] is given by 2|V (G)| + χ (G) + 1. It is obtained using: labels 1, . . . , χ (G) to cover the edges incident to u
hat belong to the subgraph induced by V (Gc

∪ {u}); labels χ (G) + 1, . . . , χ (G) + 2|V (G)| to cover the edges incident to
he pendant vertices; and labels χ (G) + 1, . . . , χ (G) + |V (G)| are enough to cover the edges of Gc . Assign to u the color
|V (G)|+χ (G)+1, to the pendant vertices color 1, and to the remaining vertices colors χ (G)+|V (G)|+1, . . . , χ (G)+2|V (G)|.
he minimality follows from Lemma 3.2. Therefore, Tt ([2|V (G)|,Gc

]) = 2|V (G)|+χ (G)+1, and G is q-colorable if and only
f [2|V (G)|,Gc ] is k-total tessellable, with k = 2|V (G)| + χ (G) + 1. □

Note that s(C5∨{u}) = 2, Tt (C5∨{u}) = 4, and any minimum total tessellation cover of C5∨{u} has at least three labels
ssigned to the edges incident to u and a fourth label assigned to u. Thus, Tt ([2|V (G)|,Gc

∪ C5]) = Tt ([2|V (G)|,Gc
]) + 3;

s([2|V (G)|,Gc
∪ C5]) = s([2|V (G)|,Gc

]) + 2; and ω([2|V (G)|,Gc
∪ C5]) = ω([2|V (G)|,Gc

]). Therefore, each addition of a
C5 increases the gap between the total tessellation cover number and both the sizes of a maximum induced star and a
maximum clique.

As long as the number of the C5’s is polynomially bounded by the size of G, k-total tessellability is NP-complete
even if k is far apart from s(G) and ω(G).

4.3. (2, 1)-Chordal graphs

Recall that a graph G is (2, 1) if its vertex set can be partitioned into two independent sets and one clique. Hence, a
graph G is a (2, 1)-chordal graph if it is a (2, 1)-graph and at the same time G is chordal. Since 3-edge colorability is
NP-complete for 3-regular graphs [11], 3-vertex colorability is also NP-complete for 4-regular line graphs. Let G be a
-regular line graph. We construct a (2, 1)-chordal graph H from G as follows.
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Fig. 8. Top: G is the 4-regular line graph of the leftmost one. Bottom: the (2, 1)-chordal graph H is obtained from G by Construction 2.

Construction 2. Let graph H be obtained from a 4-regular line graph G so that:

• V (H) contains a clique {e0, . . . , e|E(G)|−1} where each ei, 0 ≤ i ≤ |E(G)| − 1, is associated with a distinct edge of G.
• V (H) contains an independent set {e′

0, . . . , e
′

|E(G)|−1} such that each e′

i is adjacent to all ej with j ̸= i and j ̸= i + 1
mod |E(G)|.

• V (H) contains an independent set {v0, . . . , v|V (G)|−1}, where each vi, 0 ≤ i ≤ |V (G)| − 1, is associated with a distinct
vertex of G.

• Each ej ∈ {e0, . . . , e|E(G)|−1} is adjacent to vertices vr , vs ∈ {v0, . . . , v|V (G)|−1} such that ej = vrvs.
• V (H) contains an independent set P comprising (|V (G)| + |E(G)|)(|E(G)| + 1) pendant vertices such that each vertex of

{v0, . . . , v|V (G)|−1} ∪ {e′

0, . . . , e
′

|E(G)|−1} is adjacent to |E(G)| + 1 pendant vertices.

Fig. 8 depicts an example of Construction 2.

Theorem 4.3. k-total tessellability is NP-complete for chordal graphs.

Proof. We claim that Tt (H) = |E(G)| + 3 if and only if χ (G) = 3. Consider a 3-coloring c of G. Obtain a k-total
tessellation cover of H with k = |E(G)| + 3 as follows. Assign colors in {1, . . . , |E(G)|} to the vertices of the clique
{e0, . . . , e|E(G)|−1}. Assign to vertex e′

i , for 1 ≤ i ≤ |E(G)|, the same color of the vertex ei. For 0 ≤ i ≤ |E(G)| − 1,
the tile with vertices {e′

i} ∪ {ej | j ̸= i and j ̸= i + 1 mod |E(G)|} is in the tessellation with label i + 2 mod |E(G)|.
Note that if two vertices vi and vk of G are not adjacent, then the cliques {vi} ∪ {ej | vi is endpoint of ej in G} and
{vk} ∪ {ej | vk is endpoint of ejin G} are disjoint. Thus, the tile with vertices {vi} ∪ {ej | vi is endpoint of ej in G} is in
the tessellation with label c(vi) + |E(G)|. Finally, greedily assign colors and labels to the remaining vertices and edges
of H . Consider a total tessellation cover of H with k = |E(G)| + 3 labels. Note that we require |E(G)| tessellations to
cover the edges between the vertices {e0, . . . , e|E(G)|−1} ∪ {e′

0, . . . , e
′

|E(G)|−1} in any total tessellation cover of H . Moreover,
a tile in each of those |E(G)| tessellations contains |E(G)| − 2 vertices of the clique {e0, . . . , e|E(G)|−1}. Since each tile
{vi} ∪ {ej | vi is endpoint of ej in G}, for 0 ≤ i ≤ |V (G)| − 1, contains four vertices of the clique {e0, . . . , e|E(G)|−1}, there are
only three tessellation labels used by the tiles {vi}∪ {ej | vi is endpoint of ej in G}, for 0 ≤ i ≤ |V (G)|−1. Moreover, if two
vertices vi and vk are adjacent in G, then the tiles {vi}∪{ej | vi is endpoint of ej in G} and {vk}∪{ej | vk is endpoint of ej in G}

share a vertex ej = vivk in H and they are tiles belonging to different tessellations. Hence, we obtain a 3-coloring c of G
as follows. Assign the label of the tile {vi} ∪ {ej | vi is endpoint of ej in G} to the color of vi in c.

Therefore, G has a 3-coloring if and only if H has a total tessellation cover with |E(G)|+3 labels. Note that k= s(H)+1=

ω(H)+3=|E(G)|+3. □
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Fig. 9. Equal Gadget (left graph): A 4-total tessellation cover given by T1 = {{a, b, c}, {d, e, f }, {k, l, j}, {g}}, T2 = {{c, g, k}, {l}, {a}, {d}},
T3 = {{c, d, g}, {j, l}, {b}, {e}, {h}, {k}}, T4 = {{l, g, h}, {d, k}, {f }, {c}, {i}, {j}}. In any 4-total tessellation cover, the edges of the two exter-
nal triangles belong to tiles in a same tessellation (blue, T1). NotEqual Gadget (right graph): A 4-total tessellation cover given by T1 =

{{a, b, c}, {g, h, i}, {l, k, j}, {p, q, r}, {d}, {m}}, T2 = {{c, d, l}, {i,m, q}, {a}, {e}, {g}, {r}, {j}}, T3 = {{d, e, f }, {i, j,m}, {l, g}, {r, o}, {h}, {k}, {n}, {q}}, T4 =

{{c, d, g}, {m, n, r}, {j, q}, {b}, {f }, {l}, {i}, {o}, {p}}. The edges of the two external triangles always belong to tiles in different tessellations (blue and
green, T1 and T3 , resp). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Graph G of Lemma 4.1 and a 4-total tessellation cover given by T1 = {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}, {d1}}, T2 =

{{a1, c1, d1}, {a2}, {b1}, {c3}, {d3}}, T3 = {{a1, b1, d1}, {a3}, {b2}, {c1}, {d2}}, T4 = {{d1, d2, d3}, {b1, c1}, {a1}, {b3}, {c2}}. In any 4-total tessellation cover
of G, the edges of three triangles have the same color (blue, T1) and the edges of the fourth triangle have a different color (orange, T4). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.4. Planar graphs

We show in this subsection that the 4-total tessellability problem for planar graphs is NP-complete in stark contrast
to the fact that the computational complexity of the total coloring problem for planar graphs is still open. We also show
that deciding whether a graph has both Tt (H) = s(H) + 1 and Tt (H) = ω(H) is NP-complete even for planar graphs.

To prove the main theorem (Theorem 4.4), we need four graph gadgets, which are described sequentially. We start
with the two gadgets of Fig. 9 (called Equal Gadget and NotEqual Gadget), which are constructed using the graph G of
Lemma 4.1.

Lemma 4.1. Any 4-total tessellation cover of the graph G of Fig. 10 has the following property: The edges of three triangles
belong to tiles in a same tessellation and the edges of the remaining triangle belong to a tile in a different tessellation.

Proof. The proof follows after analyzing all possibilities of total tessellation covers with four labels. □

In any 4-total tessellation cover of the Equal Gadget, the edges of the two external triangles always belong to tiles in
a same tessellation (blue in the left graph of Fig. 9) because the two internal triangles (red and blue) share a common
vertex (yellow) and Lemma 4.1 demands that exactly three triangles are in a same tessellation. In any 4-total tessellation
cover of the NotEqual Gadget, the edges of the two external triangles always belong to tiles in different tessellations (blue
and green in the right graph of Fig. 9) because the two external triangles of the internal Equal Gadget are tiles in a same
tessellation (blue in Fig. 9).

Now we introduce the 2d-Duplicator Gadget, which is a circular pattern of 2d Equal Gadgets with the addition of 2d
extra Equal Gadgets, as depicted in Fig. 11 for the case d = 2. In the 4-total tessellation cover described in Fig. 11, we
consider the colors blue, yellow, green, and orange as color classes 1, 2, 3, and 4, resp. The edges of the external triangles of
the extra Equal Gadgets have color class 1 (blue), and the degree-2 vertices of the external triangles have the color classes
2 and 3 (yellow and green). We need only two color classes for the degree-2 vertices because 2d is even. By rotating the
color classes modulo 4, we obtain total tessellation covers that have different color classes for the degree-2 vertices and
edges of the external triangles. For instance, if the external triangles are tiles in tessellation with color class 2, then the
degree-2 vertices have color classes 3 and 4, and so on. We use the rotating method in the proof of the main theorem.

Now we introduce the Shifter Gadget, which admits only two independent 4-total tessellation covers depending on
the colors of two specific vertices, a and d. Fig. 12(a) depicts a 4-total tessellation cover of the Shifter Gadget when a and
158



A. Abreu, L. Cunha, C. Figueiredo et al. Discrete Applied Mathematics 323 (2022) 149–161

{

{

{

{

t
i

d
c
o

L
s

P
t
h

b
h
b
t
l
l
h

b

C
f

Fig. 11. A 4-total tessellation cover given by T1 = {{a1, i1, j1}, {c1, d1, h1}}, {e1}, {g1}, {a2, f2, h2}, {e2}, {g2}, {a3, i3, j3}, {ce, e3, h3}, {f3}, {g3}, {a4, f4, h4},

{e4}, {g4}, {a5, i5, j5}, {c5, f5, h5}, {e5}, {g5}, {a6, f6, h6}, {e6}, {g6}, {a7, i7, j7}, {c7, f7, h7}, {f7}, {g7}, {a8, f8, h8}, {f8}, {g8}, {b1, b2, c8}, {b3, b4, c2},
{b5, b6, c4}, {b7, b8, c6}, T2 = {{a1, b1, g1}, {e1, h1}, {c1}, {f1}, {i1}, {b2, c2, g2}, {e2, h2}, {a2}, {d2}, {a3, c3, g3}, {h3}, {i3}, {a4, b4, g4},
{a4, g4}, {c4}, {h4}, {a5, b5, g5}, {e5, h5}, {c5}, {d5}, {i5}, {b6, c6, g6}, {e6, h6}, {a6}, {d6}, {a7, c7, g7}, {b7}, {h7}, {i7}, {a8, b8, g8}, {c8}, {h8}}, T3 =

{a1, c1, g1}, {b1}, {h1}, {j1}, {c2}, {a2, b2, g2}, {h2}, {a3, b3, g3}, {f3, h3}, {c3, d3, j3}, {b4, c4, g4}, {e4, h4}, {a4}, {d4}, {a5, c5, g5}, {b5}, {h5}, {j5},
a6, b6, g6}, {c6}, {h6}, {a7, b7, g7}, {e7, h7}, {c7}, {d7}, {j7}, {c8, d8, g8}, {e8, h8}, {a8}, {d8}}, T4 = {{f1, h1, g1}, {b1, c1}, {a1}, {d1}{d2, g2, h2}, {a2, c2},
f2}, {d3, g3, h3}, {b3, c3}, {a3}, {e3}, {d4, g4, h4}, {a4, c4}, {b4}, {f4}, {d5, g5, h5}, {b5, c5}, {a5}, {f5}, {d6, h6, g6}, {a6, c6}, {b6}, {f6}, {d7, g7, h7}, {b7, c7},
a7}, {f7}, {d8, g8, h8}, {a8, c8}, {b8}, {f8}} for an example of a 2d-Duplicator Gadget with d = 2. The tiles of its external triangles belong to a same
essellation (color class blue) and the two degree-2 vertices of each of these tiles have their color classes respectively yellow and green. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

have the same color. Fig. 12(b) depicts the other case when the colors are different. Note that in both cases we may
onsistently permute the labels of the tessellations of the most external Equal Gadgets so that the most external vertices
f the Shifter Gadget may have any color different from its tile’s label.

emma 4.2. Any 4-total tessellation cover of the Shifter Gadget has the following property: Triangles T1 and T4 are tiles in a
ame tessellation and triangles T2 and T3 are tiles in another tessellation.

roof. Consider any 4-total tessellation cover of the Shifter Gadget. The tiles incident to vertex b (resp. c and e) need
hree different labels as depicted in Fig. 12(a) and (b), and by Lemma 4.1 the Equal Gadget incident to vertices a and d
as external triangles in a same tessellation.
Fig. 12(a) considers the case when vertices a and d have the same color. Tiles T1 and {b, d, e} have the same label

ecause vertices a and d have the same color (yellow) and the tiles of the external triangles of the incident Equal Gadget
ave the same label (green). By symmetry, tiles T2 and {a, b, c} have the same label (orange). Note that the color of vertex
is different from the color of vertices a and d and from the labels of tiles T1 and T2. Therefore, vertex c and tile T1 have
he same label. By symmetry, e and T2 have the same label. Tile {c, e, f } and vertex f receive labels different from the
abels of tiles T1 and T2. This implies that tiles T1 and T4 receive the same label. By symmetry, T2 and T3 have the same
abel, and the label of T1 and T4 is different from the label of T2 and T3. This completes the proof when vertices a and d
ave the same color because we have explicitly shown a 4-total tessellation cover in Fig. 12(a).
With a similar argument, the same result holds when vertices a and d have different colors and the proof is complete

ecause we have explicitly shown a 4-total tessellation cover for the second case in Fig. 12(b). □

The proof of the main theorem uses a graph H constructed as follows.

onstruction 3. Let H be the graph obtained from an instance of 3-colorability of a planar graph G with degree at most
our in the following way:

• Add a universal vertex u to G, i.e., obtain the graph G ∨ {u};
• Replace each vertex z of degree d(z) of G ∨ {u} by a 2d-Duplicator Gadget with d = d(z) and, simultaneously, replace

each edge vw of G∨ {u} by a NotEqual Gadget merging its external triangles with the external triangles of the Duplicator
Gadgets that replace v and w. Ignore d external triangles of each 2d-Duplicator Gadget in the merging process.
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Fig. 12. Two independent 4-total tessellation covers of the Shifter Gadget: (a) when vertices a and d have the same color and (b) when they have
different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Replace crossing triangles by Shifter Gadgets.

In the first step of Construction 3, the only crossing edges of G ∨ {u} have u as one of their endpoints. In the second
tep, these crossing edges become crossing triangles. In the third step, when a pair of crossing triangles is removed, there
re four free vertices that are used to dock a Shifter Gadget with compatible labels. The crossing triangles are replaced
y Shifter Gadgets because the resulting graph H is planar.

Theorem 4.4. 4-total tessellability is NP-complete for planar graphs.

Proof. Let G be an instance of 3-colorability of planar graphs with degree at most four [8] and let H be a graph obtained
n Construction 3. We have that G ∨ {u} has a 4-coloring if and only if G has a 3-coloring. We claim that the resulting
lanar graph H of Construction 3 has a 4-total tessellation cover if and only if G has a 3-coloring.
Consider a 4-total tessellation cover of H . If two vertices v and w are adjacent in G∨{u}, then the external triangles of

he 2d-Duplicator Gadgets that replace v and w belong to different tessellations because they are connected by a NotEqual
adget. Therefore, we obtain a 4-coloring of G∨{u} by assigning the color of a vertex as the label of the tile of the external
riangles of the 2d-Duplicator Gadget that replaces the vertex. Then, G has a 3-coloring.

Now suppose that G has a 3-coloring. We obtain a 4-total tessellation cover of H induced by this 3-coloring following
the steps of Construction 3. Let f be a 4-coloring of G ∨ {u} induced by the 3-coloring of G. For each degree-d vertex v,
assign label f (v) to the external triangles of the 2d-Duplicator Gadget of H and label the remaining vertices and tiles of
the 2d-Duplicator Gadget using the rotating method as described when we introduced this gadget.

Consider the external triangles of two 2d-Duplicator Gadgets that will be merged with a NotEqual Gadget. The labels
a and b of these two external triangles, A and B, are different because they correspond to adjacent vertices in the original
160
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graph. The labels of the degree-2 vertices of A (B) can be interchanged. Let c (d) be the label of the most external degree-2
vertex of A (B). If the cardinality of set {a, b, c, d} is 4, we need to interchange the labels of the degree-2 vertices of A or B.

hen we select the labels so that the cardinality of set {a, b, c, d} is at most 3, the 4-tessellation cover of the remaining
art of the NotEqual Gadget is straightforward.
When we replace the crossing triangles by Shifter Gadgets in the third step of Construction 3, note that the labels of

he crossing triangles are different because the color of the universal vertex, which is the label of one of these triangles,
ust be different from the colors of all other vertices of G. As described in Lemma 4.2 and Fig. 12, the extremal Equal
adgets of a Shifter Gadget allow us to replicate the exact same colors of the four free vertices that appear when we
elete a pair of crossing triangles, allowing a consistent docking procedure in terms of vertex and tile labels.
We have described a compatible 4-total tessellation cover of all gadgets, which is a 4-total tessellation cover of H

induced by a 3-coloring of G. □

As a corollary of Theorem 4.4, to decide whether a graph has both Tt (H) = s(H)+1 and Tt (H) = ω(H) is NP-complete
or planar graphs because any graph H obtained in Construction 3 has s(H) + 1 = ω(H) = 4.

A reader may wonder whether it is really necessary to use a non-planar graph G ∨ {u} in the proof of Theorem 4.4.
This seems unavoidable because both 4-colorability for planar graphs and 3-total tessellability are in P . On the other
and, 3-colorability for planar graphs is NP-complete.

. Open problems

We leave as an open problem to search for graphs with at least 3 vertices satisfying Tt (G) = 3T (G) and Tt (G) > χ (G).
oreover, it would be interesting to define graph classes with Tt (G) = T (G) = k for k ≥ 4, since for k = 3 the only such
raphs are the odd cycles Cn with n ≡ 0 mod 3.
We have shown that 4-total tessellability is NP-complete for planar graphs satisfying s(G) + 1 = ω(G) = 4.

This is important since the hardness of k-edge colorability and k-total colorability for planar graphs are still open.
On the other hand, we know that planar graphs with large maximum degree have edge and total colorings as small
as possible [5,6]. We leave the following open problems: to find a threshold for Tt (G) for which all planar graphs are
Type II; to find a graph class for which k-total colorability is NP-complete and k-total tessellability is in P . We have
not identified a class answering the latter open problem, because so far all known NP-completeness proofs of k-total
colorability are restricted to graph classes with χt (G) = Tt (G), in order to fully achieve the P vs NP-complete dichotomy
in Table 1.
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