
Journal of Computer and System Sciences 111 (2020) 22–41
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A multivariate analysis of the strict terminal connection

problem ✩

Alexsander A. Melo a,∗, Celina M.H. Figueiredo a, Uéverton S. Souza b

a Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
b Universidade Federal Fluminense, Niterói, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2018
Received in revised form 29 January 2020
Accepted 4 February 2020
Available online 10 February 2020

Keywords:
Terminal vertices
Connection tree
Steiner tree
Bounded degree
Parameterized complexity

A strict connection tree of a graph G for a set W is a tree subgraph of G whose leaf set
equals W . The Strict terminal connection problem (S-TCP) is a network design problem
whose goal is to decide whether G admits a strict connection tree T for W with at most
� vertices of degree 2 and r vertices of degree at least 3. We establish a Poly vs. NP-c
dichotomy for S-TCP with respect to � and �(G). We prove that S-TCP parameterized by
r is W[2]-hard even if � is bounded by a constant; we provide a kernelization for S-TCP
parameterized by �, r and �(G), and we prove that such a version of the problem does
not admit a polynomial kernel, unless NP ⊆ coNP/poly. Finally, we analyze S-TCP on split
graphs and cographs.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Network design problems are combinatorial questions of great practical and theoretical interest. Indeed, such problems
are challenging tasks closely related to real-world applications. In this paper, we investigate the computational complexity
of a network design problem called Strict terminal connection.

A connection tree T of a graph G = (V , E) for a terminal set W ⊆ V is a tree subgraph of G such that W ⊆ V (T) and every
leaf of T belongs to W cf. [1,2]. In a connection tree T for W , the vertices belonging to V (T) \ W are called non-terminal
and are classified into two types according to their respective degrees in T , namely: the non-terminal vertices with degree
exactly equal to 2 in T are called linkers and the non-terminal vertices with degree at least 3 in T are called routers cf. [1,2].
Thus, there exists a partition VT = {W , L(T), R(T)} of the vertex set of a connection tree T into terminal vertices, linkers
and routers, where L(T) and R(T) denote the linker and router sets of T , respectively.

In some applications, the terminal vertices must be leaves. For example, in telecommunications, the message senders
and receivers, which correspond to the terminal vertices, are not allowed to behave as transmitters [3], which correspond to
the vertices with degree greater than 1. A connection tree T for W is said strict if all vertices belonging to W are leaves of
T , i.e. the leaf set of T coincides with the terminal set W . Based on that and also motivated by applications in information
security and network routing, Dourado et al. [2] introduced the Strict terminal connection problem (S-TCP), which has as

✩ This work was partially supported by the Brazilian agencies CNPq (Grant numbers: 132890/2015-1, 140399/2017-8, 407635/2018-1, 303726/2017-2),
CAPES (Finance Code 001) and FAPERJ (Grant numbers: CNE E-26/202.793/2017, JCNE E-26/203.272/2017).

* Corresponding author.
E-mail addresses: aamelo@cos.ufrj.br (A.A. Melo), celina@cos.ufrj.br (C.M.H. Figueiredo), ueverton@ic.uff.br (U.S. Souza).
https://doi.org/10.1016/j.jcss.2020.02.001
0022-0000/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:aamelo@cos.ufrj.br
mailto:celina@cos.ufrj.br
mailto:ueverton@ic.uff.br
https://doi.org/10.1016/j.jcss.2020.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.02.001&domain=pdf

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 23
Table 1
Contributions of this work (in bold) and known results for S-TCP.

Graph class Parameters

– � r �, r �, r,�

General NP-c [2] NP-c [2]
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2,

and W[2]-h Theorem 4

XP [2]
but W[2]-h Theorem 4

FPT [2] (and Theorem 5) but
No-poly kernel Theorem 6

� = 4 NP-c Theorem 1 NP-c Theorem 1
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2

FPT [2] (and Theorem 5) FPT [2] (and Theorem 5)

� = 3 NP-c Theorem 2 XP Theorem 3
Poly for r ∈ {0,1} [29]
but Open for r ≥ 2

FPT [2] (and Theorem 5) FPT [2] (and Theorem 5)

Split NP-c Theorem 7 NP-c Theorem 7
XP Theorem 7
but W[2]-h Theorem 7

XP [2] (and Theorem 7)
but W[2]-h Theorem 7

FPT [2] (and Theorem 5)

Cographs Poly Theorem 8 Poly Theorem 8 Poly Theorem 8 Poly Theorem 8 Poly Theorem 8

input a graph G = (V , E), a non-empty subset W ⊆ V and two non-negative integers � and r, and asks for the existence of
a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r.

Besides the practical point of view, S-TCP is strongly related to classical network design problems, such as vertex-disjoint
path problems and integral network flow problems. Furthermore, S-TCP can be viewed as a close variant of the unweighted
version of the Steiner tree problem in graphs, in which we are given a graph G = (V , E), a terminal set W ⊆ V and a
positive integer k, and we aim to decide whether G contains a connected subgraph T such that W ⊆ V (T) and |E(T)| ≤ k.
Since every minimal solution T for a given instance of Steiner tree is necessarily a connection tree for W , the constraints
on T being a tree and its leaf set being a subset of W can be omitted without loss of generality from the definition of
Steiner tree. However, for our target problem, S-TCP, neither constraint can be ignored. Indeed, as a result of the number
of non-terminal vertices with degree 2 being bounded, there exist instances I = (G, W , �, r) that would be considered Yes

instances of S-TCP although all connected subgraphs of G containing the vertices in W , and with at most � non-terminal
vertices with degree 2 and at most r non-terminal vertices with degree at least 3, have cycles or non-terminal vertices that
are leaves.

Steiner tree is a classical NP-complete problem [4], and it has been extensively studied from distinct classes of algorith-
mic paradigms, such as structured graph classes [5–9] and parameterized complexity [10–14].

Additionally, several variants of Steiner tree have been investigated over the years. One of the most well-known variants
is the so-called Full Steiner tree (or Terminal Steiner tree), in which the terminal vertices are further constrained to be
leaves of the sought connection tree T , i.e. T must be strict [15]. The original motivation to study the Full Steiner tree

problem was to use it as a building block to solve the Steiner tree problem itself, provided the fact that any connection
tree can be decomposed into strict connection trees [16,17]. Full Steiner tree was proved to be NP-complete [3,17,18]. On
the other hand, Fernau et al. [19] proved that the problem is in FPT when parameterized by k, the maximum size of the
sought strict connection tree T , but that it does not admit a strict polynomial kernel unless P = NP. It is also known that,
unless NP ⊆ coNP/poly, Full Steiner tree parameterized by k does not admit a polynomial kernel cf. [14,12]. In addition,
many approximation algorithms and approximation lower bounds for the problem have been proposed [3,17,20–25] in the
last years.

Motivated by applications in optical networks and bandwidth consumption minimization, another variant of Steiner tree

that has been investigated is the one in which the number of branching nodes, i.e. vertices with degree at least 3 in T (not
necessarily non-terminal), is bounded. In [26–28], the authors address the undirected and directed cases of this variant, for
which they devise approximation and parameterized polynomial-time algorithms, apart from obtaining some intractability
results.

Nevertheless, there is no variant of Steiner tree requiring simultaneously full Steiner trees and bounded number of branch-
ing nodes that has been investigated. Therefore, we emphasize that S-TCP certainly has its own merit to be studied. Thus,
this paper aims to provide a multivariate analysis of S-TCP with respect to the input aspects: �, number of linkers; r, number
of routers; and �, the maximum degree of the input graph.

S-TCP was proved to be polynomial-time solvable if � and r are bounded by constants [2], or if � is unbounded but
r ∈ {0, 1} [29]; and it was proved to be in FPT when �, r and � are parameters [2]. On the other hand, for every � ≥ 0,
S-TCP was proved to be NP-complete when r is unbounded, even if � is bounded by a constant [2].

In this paper, we extend the results described above by presenting several contributions to the complexity of S-TCP. More
specifically, in Section 2, we establish a Poly vs. NP-c dichotomy for S-TCP with respect to � and �; and in Section 3, we
provide further complexity results for S-TCP parameterized by �, r or �. Additionally, in Sections 4 and 5, we investigate
the problem on split graphs and cographs, respectively. Finally, in Section 6, we present some directions for future work.
Table 1 summarizes the contributions of this work.

Throughout this work we denote by n, m, and � the number of vertices, the number of edges, and the maximum degree
of the input graph G , respectively.

24 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 1. Gadgets Gxi and GCι .

2. Bounded maximum degree dichotomy

In this section, we address the analysis of the computational complexity of S-TCP when it is restricted to graphs with
bounded maximum degree. More specifically, we prove that S-TCP is NP-complete even if � is bounded by a constant and
� = 4, or � is unbounded and � = 3. On the other hand, we give a polynomial-time algorithm for the problem when � is
bounded by a constant and � = 3. Observe that S-TCP is easily solvable if � ≤ 2. Thus, our results establish a Poly vs. NP-c
dichotomy for S-TCP with respect to � and �.

2.1. Hardness results

We first prove the NP-completeness of S-TCP with � bounded by a constant and � = 4. Our proof consists in a
polynomial-time reduction from the NP-complete (cf. [30]) variant of 3-SAT, called 3-SAT(3), which has as input a set X
of boolean variables and a set C of clauses over X such that: (1) each clause in C has two or three distinct literals; and (2)
each variable in X appears exactly twice positive and once negative in the clauses belonging to C; and asks for the existence
of a truth assignment for the variables in X such that every clause in C has at least one true literal.

Theorem 1. For every � ≥ 0, S-TCP remains NP-complete even if � = 4.

Proof. Let I = (X, C) be an instance of 3-SAT(3), where X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. We construct from I
an instance f (I) = (G, W , r) of S-TCP with � bounded by a constant, such that � = 4, as follows (see Fig. 2):

• first, we create � vertices u1, u2, . . . , u� and, for each i ∈ {1, 2, . . . , � − 1}, add the edges uiui+1; moreover, we create the
vertices w I and v I and add the edges w I u1 and u�v I , originating the path P I = 〈w I , u1, . . . , u�, v I 〉;

• for each variable xi ∈ X , we create the gadget Gxi (see Fig. 1a) such that
– V (Gxi) = {v2

xi
, w2

xi
, w3

xi
, t1

xi
, t2

xi
, fxi } and

– E(Gxi) = {w2
xi

v2
xi
, v2

xi
t1

xi
, t1

xi
t2

xi
, t2

xi
w3

xi
, w3

xi
fxi , fxi v2

xi
};

moreover, we create the vertices w1
xi

and v1
xi

, and we add the edges w1
xi

v1
xi

and v1
xi

v2
xi

;
• we create a complete strict binary tree T I , rooted at v I , whose leaves are the vertices v1

x1
, v1

x2
, . . . , v1

xp
;

• for each clause Cι ∈ C , we create the gadget GCι such that, if |Cι| = 3, then (see Fig. 1b)
– V (GCι) = {vκ

Cι
, wκ

Cι
, w ′κ

Cι
| κ ∈ {1, 2, 3, 4, 6}} ∪ {v5

Cι
, w5

Cι
} and

– E(GCι) = {vκ
Cι

wκ
Cι

, vκ
Cι

w ′κ
Cι

| κ ∈ {1,2,3,4,6}} ∪ {v5
Cι

w5
Cι

} ∪ {v1
Cι

v4
Cι

, v4
Cι

v5
Cι

, v5
Cι

v2
Cι

, v5
Cι

v6
Cι

, v6
Cι

v3
Cι

},
and if |Cι| = 2, then (see Fig. 1c)
– V (GCι) = {vκ

Cι
, wκ

Cι
, w ′κ

Cι
| κ ∈ {1, . . . , 4}} and

– E(GCι) = {vκ
Cι

wκ
Cι

, vκ
Cι

w ′κ
Cι

| κ ∈ {1, . . . , 4}} ∪ {v1
Cι

v3
Cι

, v3
Cι

v4
Cι

, v4
Cι

v2
Cι

};

• for each clause Cι ∈ C , we add the edge t j
xi

vκ
Cι

if the κ-th literal belonging to Cι corresponds to the j-th occurrence in I
of the positive literal xi , for xi ∈ X , j ∈ {1, 2} and κ ∈ {1, . . . , |Cι|}; on the other hand, we add the edge fxi vκ

Cι
if the κ-th

literal belonging to Cι corresponds to the (only) occurrence in I of the negative literal xi , for xi ∈ X and κ ∈ {1, . . . , |Cι|};
• we define W = WC ∪ {w I } ∪ {w1

xi
, w2

xi
, w3

xi
| xi ∈ X}, where WC = ⋃

Cι∈C W Cι and

– W Cι =
{ {wκ

Cι
, w ′κ

Cι
| κ ∈ {1,2,3,4,6}} ∪ {w5

Cι
} if |Cι| = 3

{wκ
Cι

, w ′κ
Cι

| κ ∈ {1, . . . ,4}} if |Cι| = 2;
• finally, we define r = |V \ W | − �.

One may verify that the maximum degree of G is 4.
Fig. 2 exemplifies the graph G and the terminal set W of f (I).
Now, we prove that I is a Yes instance of 3-SAT(3) if and only if f (I) is a Yes instance of S-TCP with � bounded by a

constant.

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 25
Fig. 2. Graph G and terminal set W (blue square vertices) of f (I) obtained from the instance I = (X, C) of 3-SAT(3), where X = {x1, x2, x3} and C = {C1 =
{x1, x2, x3}, C2 = {x1, x2, x3}, C3 = {x1, x2, x3}}. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Patterns used to connect the vertices of GCι to T .

First, suppose that I is a Yes instance of 3-SAT(3). Hence, there exists a truth assignment α : X → {true, false} that satisfies
all clauses in C . Based on α, we construct a strict connection tree T of G for W as follows:

• we add the path P I to T ;
• we add the complete strict binary tree T I to T along with the vertices w1

xi
and the edges w1

xi
vxi for every xi ∈ X ;

• for each variable xi ∈ X , we add the vertices v2
xi

, w2
xi

and w3
xi

and the edges v1
xi

v2
xi

and v2
xi

w2
xi

to T ; furthermore, if
α(xi) = true, then we add the vertices t1

xi
and t2

xi
to T along with all of their neighbors and incident edges in G; on the

other hand, if α(xi) = false, then we add the vertex fxi to T along with all of its neighbors and incident edges in G .

Since by hypothesis α satisfies all clauses in C , for each Cι ∈ C , there exists at least one vertex either t j
xi

(where j ∈ {1, 2})
or fxi , for some xi ∈ X , which is adjacent to one of the vertices v1

Cι
, v2

Cι
(and v3

Cι
if |Cι| = 3) in T . Thus, we can connect all

the other vertices of the gadget GCι to T by following one of the patterns (or their symmetrical cases) depicted in Fig. 3,
concluding the construction of T .

Fig. 4 exemplifies the strict connection tree T of G for W , referring to the instance f (I) described in Fig. 2, obtained
from a truth assignment α.

Observe that, T is indeed a strict connection tree of G for W and, besides that, L(T) = {u1, u2, . . . , u�} and R(T) =
V (T I) ∪

(⋃
Cι∈C V (GCι) \ W C

) ∪ {v2
xi

| xi ∈ X} ∪ {t1
xi
, t2

xi
| α(xi) = true, xi ∈ X} ∪ { fxi | α(xi) = false, xi ∈ X}. Hence, |L(T)| ≤ �

and, obviously, |R(T)| ≤ |V \ W | − �. Therefore, f (I) is a Yes instance of S-TCP with � bounded by a constant.
Conversely, suppose that f (I) is a Yes instance of S-TCP with � bounded by a constant. Hence, there exists a strict

connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ |V \ W | − �. Since the path P I is necessarily contained in
T and there are precisely � vertices in P I with degree 2, the vertices belonging to V (T) \ (W ∪ V (P I)) are routers of T .
However, we have dG(t1

xi
) = dG (t2

xi
) = dG(fxi) = 3. Thus, if t1

xi
∈ V (T), then NT (t1

xi
) = NG(t1

xi
); if t2

xi
∈ V (T), then NT (t2

xi
) =

NG(t2
xi
); and, if fxi ∈ V (T), then NT (fxi) = NG(fxi). Hence, if t1

xi
∈ V (T) or t2

xi
∈ V (T), then fxi /∈ V (T), otherwise T would

have a cycle (and the degree of the terminal w3
xi

would be greater than 1 in T). Analogously, if fxi ∈ V (T), then t1
xi
, t2

xi
/∈

V (T). Thus, we can define a truth assignment α : X → {true, false} in the following way: α(xi) = true if and only if fxi /∈

26 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 4. Strict connection tree of G for W obtained from the truth assignment α(x1) = true, α(x2) = true and α(x3) = false.

V (T). Since by hypothesis WC ⊂ W ⊆ V (T) and, for every clause Cι ∈ C , the path in T between any terminal wCι ∈ W Cι

and any other terminal w ∈ W \ W Cι must contain either t j
xi

(where j ∈ {1, 2}) or fxi , for some xi ∈ X , we have that all
clauses in C are satisfied by α. Therefore, I is a Yes instance of 3-SAT(3). �

Now, we analyze S-TCP when � = 3. First, by a polynomial-time reduction from the 1-in-3-SAT(3) problem — which has
the same input of 3-SAT(3) but asks whether there exists a truth assignment such that every clause has exactly (instead of
at least) one true literal — we prove that, if � is unbounded, then S-TCP remains NP-complete even if � = 3.

The next proposition shows that 1-in-3-SAT(3) is an NP-complete problem and that, unless ETH fails, it does not admit
a 2o(|X |+|C|)-time algorithm. To prove such a result, we first present a polynomial-time reduction from 3-SAT (where each
clause has exactly three distinct literals) to 1-in-3-SAT, which has the same input of 3-SAT and the same question of
1-in-3-SAT(3); then, we present a polynomial-time reduction from 1-in-3-SAT to 1-in-3-SAT(3).

For simplicity, in the context of 1-in-3-SAT and 1-in-3-SAT(3), we say that a truth assignment α satisfies a given clause
C if there is exactly (instead of at least) one true literal in C under α.

Proposition 1. 1-in-3-SAT(3) is NP-complete and cannot be solved in time 2o(|X |+|C|) , unless ETH fails.

Proof. Polynomial-time reduction from 3-SAT to 1-IN-3-SAT.
Let I = (X ′, C′) be an instance of 3-SAT. We construct from I an instance f (I) = (X ′′, C′′) of 1-in-3-SAT, as follows: X ′′ =

X ′ ∪ {y1
j , y

2
j , y

3
j , y

4
j | C j ∈ C′} and C′′ = {C1

j , C
2
j , C

3
j | C j ∈ C′}, where, for C j = {z1

j , z
2
j , z

3
j }, with zi

j ∈ {xi
j, x

i
j} for some variable

xi
j ∈ X ′ , we have C1

j = {z1
j , y1

j , y
2
j }, C2

j = {z2
j , y

2
j , y

3
j } and C3

j = {z3
j , y

3
j , y

4
j }. Note that, |X ′′| = |X ′| + 4|C′| and |C′′| = 3|C′|.

Suppose that I is a Yes instance of 3-SAT, and let α : X ′ → {true, false} be a truth assignment that satisfies all clauses in
C′ . Then, from α, we defined a truth assignment β : X ′′ → {true, false}, as follows: β(xi) = α(xi) for all xi ∈ X ′ , and

• β(y1
j) = false, β(y2

j) = true, β(y3
j) = false and β(y4

j) = false if α(z1
j) = true, α(z2

j) = false and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = false and β(y4

j) = false if α(z1
j) = false, α(z2

j) = true and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = true and β(y4

j) = false if α(z1
j) = false, α(z2

j) = false and α(z3
j) = true;

• β(y1
j) = true, β(y2

j) = false, β(y3
j) = false and β(y4

j) = false if α(z1
j) = true, α(z2

j) = true and α(z3
j) = false;

• β(y1
j) = false, β(y2

j) = true, β(y3
j) = false and β(y4

j) = true if α(z1
j) = true, α(z2

j) = false and α(z3
j) = true;

• β(y1
j) = false, β(y2

j) = false, β(y3
j) = false and β(y4

j) = true if α(z1
j) = false, α(z2

j) = true and α(z3
j) = true;

• β(y1
j) = true, β(y2

j) = false, β(y3
j) = false and β(y4

j) = true if α(z1
j) = true, α(z2

j) = true and α(z3
j) = true;

for all C j ∈ C′ , where α(zi
j) = α(xi

j) if zi
j = xi

j , and α(zi
j) = α(xi

j) otherwise. It is easy to see that β satisfies all clauses in
C′′ . Therefore, f (I) is a Yes instance of 1-in-3-SAT.

Conversely, suppose that f (I) is a Yes instance of 1-in-3-SAT, and let β : X ′′ → {true, false} be a truth assignment that
satisfies all clauses in C′′ . We let α : X ′ → {true, false} be the truth assignment such that, for each xi ∈ X ′ , α(xi) = β(xi).
For the sake of contradiction, suppose that there exists a clause C j = {z1

j , z
2
j , z

3
j } ∈ C′ that is false under α, i.e. α(z1

j) = false,
α(z2) = false and α(z3) = false, where zi ∈ {xi , xi

j} for some variable xi ∈ X ′ . Then, β(y1) = false and β(y2) = false, otherwise
j j j j j j j

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 27
C1
j would have more than one true literal under β . Consequently, β(y3

j) = true, otherwise C2
j would have no true literal

under β . However, this contradicts the hypothesis that C3
j has exactly one true literal under β , since in this case z3

j and
y3

j are both true literals under β . As a result, we obtain that α is indeed a truth assignment that satisfies all clauses in C′ .
Therefore I is Yes instance of 3-SAT.

Polynomial-time reduction from 1-IN-3-SAT to 1-IN-3-SAT(3).

Now, let I = (X ′′, C′′) be an instance of 1-in-3-SAT. For a given variable xi ∈ X ′′ , let γi denote the number of positive
occurrences of xi in I , and let γ i denote the number of negative occurrences of xi in I . We construct from I an instance
f (I) = (X, C) of 1-in-3-SAT(3), as follows:

• for each xi ∈ X ′′ such that γi ≥ 2 and each j ∈ {2, . . . , γi}, we create the variable μ j
i and replace the j-th positive

occurrence of xi with the positive literal μ j
i ; moreover, if γ i ≥ 1, then we create the variable μγi+1

i ;

• for each xi ∈ X ′′ such that γ i ≥ 1 and each j ∈ {1, . . . , γ i}, we create the variable ν j
i and replace the j-th negative

occurrence of xi with the positive literal ν j
i ; moreover, we create the variable νγ i+1

i ;

• for each xi ∈ X ′′ such that γi = 0 and γ i ≥ 1, we create the clauses {xi, xi}, {xi, ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i },

{νγ i
i , νγ i+1

i }, {νγ i+1
i , νγ i+1

i };

• for each xi ∈ X ′′ such that γi = 1 and γ i ≥ 1, we create the clauses {xi, ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i }, {νγ i

i , xi};

• for each xi ∈ X ′′ such that γi ≥ 2 and γ i = 0, we create the clauses {xi, μ2
i }, {μ2

i , μ
3
i }, . . ., {μγi−1

i , μγi
i }, {μγi

i , xi};

• finally, for each xi ∈ X ′′ such that γi ≥ 2 and γ i ≥ 1, we create the clauses {xi, μ2
i }, {μ2

i , μ
3
i }, . . ., {μγi

i , μγi+1
i },

{μγi+1
i , xi}, {μγi+1

i , ν1
i }, {ν1

i , ν
2
i }, . . ., {νγ i−1

i , νγ i
i }, {νγ i

i , νγ i+1
i }, {νγ i+1

i , νγ i+1
i }.

It is easy to see that every variable in X appears exactly twice positive and once negative in f (I). Additionally, note that
|X | ≤ 2|X ′′| + ∑

xi∈X ′′ (γi + γ i) ≤ 2|X ′′| + 3|C′′| and |C| ≤ |C′′| + 3|X ′′| + ∑
xi∈X ′′ (γi + γ i) ≤ 4|C′′| + 3|X ′′|.

Suppose that I is a Yes instance of 1-in-3-SAT, and let α : X ′′ → {true, false} be a truth assignment that satisfies all clauses
in C′′ . From α, we defined a truth assignment β : X → {true, false}, as follows: β(xi) = α(xi) for all xi ∈ X ′′; β(μ

j
i) = α(xi)

for all j ∈ {2, . . . , γi}∪ {γi + 1 | γi ≥ 2, γ i ≥ 1} and all xi ∈ X ′′; and β(ν
j

i) = α(xi) for all j ∈ {1, . . . , γ i}∪ {γ i + 1 | γ i ≥ 1} and
all xi ∈ X ′′ . One may verify that β satisfies all clauses in C′′ . Therefore, f (I) is a Yes instance of 1-in-3-SAT(3).

Conversely, suppose that f (I) is a Yes instance of 1-in-3-SAT(3), and let β : X → {true, false} be a truth assignment that
satisfies all clauses in C . Note that, the truth assignment α : X ′′ → {true, false}, where α(xi) = β(xi) for all xi ∈ X ′′ , satisfies
all clauses in C′′ . Therefore I is Yes instance of 1-in-3-SAT.

To conclude this proof, note that, based on the above reductions, the existence of a 2o(|X |+|C|)-time algorithm for
1-in-3-SAT(3) implies the existence of a 2o

(|X ′|+|C′ |)-time algorithm for 3-SAT. Thus, unless ETH fails, 1-in-3-SAT(3) can-
not be solved in time 2o(|X |+|C|) . �
Theorem 2. S-TCP remains NP-complete and, unless ETH fails, cannot be solved in time 2o(�+n) even if � = 3.

Proof. Let I = (X, C) be an instance of 1-in-3-SAT(3), where X = {x1, x2, . . . , xp} and C = {C1, C2, . . . , Cq}. We construct
from I an instance f (I) = (G, W , �, r) of S-TCP, such that � = 3, as follows (see Fig. 5):

• first, we create the vertices v I and w I and add the edge v I w I ;
• for each variable xi ∈ X , we create the gadget Gxi such that

– V (Gxi) = {v2
xi
, u1

xi
, u2

xi
, t1

xi
, t2

xi
, fxi , wxi } and

– E(Gxi) = {v2
xi

u1
xi
, u1

xi
t1

xi
, t1

xi
t2

xi
, t2

xi
wxi , wxi fxi , fxi u

2
xi
, u2

xi
v2

xi
};

we also create the vertices w ′
xi

and v1
xi

and add the edges w ′
xi

v1
xi

and v1
xi

v2
xi

;
• we create a complete strict binary tree T I , rooted at v I , whose leaves are the vertices v1

x1
, v1

x2
, . . . , v1

xp
;

• for each clause Cι ∈ C , we create the vertex wCι ; moreover, we add the edge t j
xi

wCι if one of the literals in Cι corre-
sponds to the j-th occurrence in I of the positive literal xi , for xi ∈ X and j ∈ {1, 2}; on the other hand, we add the
edge fxi wCι if one of the literals in Cι corresponds to the (only) occurrence in I of the negative literal xi ;

• we define W = {w I } ∪ {wxi , w ′
xi

| xi ∈ X} ∪ {wCι | Cι ∈ C};
• finally, we define � = 2p and r = 2p + |V (T I)| = 4p − 1.

One may verify that the maximum degree of G is 3. Furthermore, note that, G has n = 10p + q vertices.
Fig. 5 exemplifies the graph G and the terminal set W of f (I).
Now, we prove that I is a Yes instance of 1-in-3-SAT(3) if and only if f (I) is a Yes instance of S-TCP.

28 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 5. Graph G and terminal set W (blue square vertices) of f (I) obtained from the instance I = (X, C) of 1-in-3-SAT(3), where X = {x1, x2, . . . , x9}
and C = {C1 = {x1, x2, x3}, C2 = {x1, x5}, C3 = {x1, x5}, C4 = {x3, x8}, C5 = {x2, x6}, C6 = {x2, x6}, C7 = {x4, x5, x7}, C8 = {x3, x7}, C9 = {x7, x8}, C10 = {x4, x9},
C11 = {x4, x9}, C12 = {x6, x8, x9}}.

Fig. 6. Strict connection tree of G for W obtained from the truth assignment α(x1) = false, α(x2) = false, α(x3) = true, α(x4) = false, α(x5) = false, α(x6) =
false, α(x7) = true, α(x8) = true e α(x9) = false. (For simplicity, some vertex labels are omitted.)

First, suppose that I is a Yes instance of 1-in-3-SAT(3). Hence, there exists a truth assignment α : X → {true, false} that
satisfies all clauses in C . Based on α, we construct a strict connection tree T of G for W as follows:

• we add the complete strict binary tree T I to T along with the terminal vertex w ′
xi

and the edges w ′
xi

v1
xi

for every
xi ∈ X ; we also add the vertex w I and the edge w I v I to T ;

• for each variable xi ∈ X , we add the vertices v2
xi

and wxi and the edge v1
xi

v2
xi

to T ; moreover, if α(xi) = true, then we
add the vertices u1

xi
, t1

xi
and t2

xi
to T along with all of their neighbors and incident edges in G; on the other hand, if

α(xi) = false, then we add the vertices u2
xi

and fxi to T along with all of their neighbors and incident edges in G .

Fig. 6 exemplifies the strict connection tree T of G for W , referring to the instance f (I) described in Fig. 5, obtained
from a truth assignment α.

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 29
Clearly, for every clause Cι ∈ C , wCι ∈ V (T). Furthermore, observe that these terminals are necessarily leaves of T , since
by hypothesis every clause Cι ∈ C has exactly one true literal under the truth assignment α. Thus, it is easy to see that T
is a strict connection tree of G for W . Additionally, note that L(T) = {v2

xi
| xi ∈ X} ∪ {u1

xi
| α(xi) = true, xi ∈ X} ∪ {u2

xi
| α(xi) =

false, xi ∈ X} and R(T) = V (T I) ∪ {t1
xi
, t2

xi
| α(xi) = true, xi ∈ X} ∪ { fxi | α(xi) = false, xi ∈ X}. Consequently, |L(T)| = 2p = � and

|R(T)| ≤ 2p + |V (T I)| = r. Therefore, f (I) is a Yes instance of S-TCP.
Conversely, suppose that f (I) is a Yes instance of S-TCP. Hence, there exists a strict connection tree T of G for W

such that |L(T)| ≤ � and |R(T)| ≤ r. Note that, for every variable xi ∈ X , the path in T between the terminals wxi and
w ′

xi
, say P xi , necessarily consists in one of the following possibilities: either P xi = 〈wxi , t2

xi
, t1

xi
, u1

xi
, v2

xi
, v1

xi
, w ′

xi
〉 or P xi =

〈wxi , fxi , u2
xi
, v2

xi
, v1

xi
, w ′

xi
〉. Hence, fxi ∈ V (T) if and only if t1

xi
/∈ V (T). Indeed, if fxi and t1

xi
simultaneously belonged to

V (T), then ux1
i
, ux2

i
, and at least one of the vertices fxi , t1

xi
or t2

xi
would be linkers of T , which would imply |L(T)| > 2p = �.

Thus, we can define a truth assignment α : X → {true, false} in the following way: α(xi) = true if fxi /∈ V (T), and α(xi) = false
otherwise.

Let WC = {wCι | Cι ∈ C}. Since WC ⊂ W ⊆ V (T) and every path in T between the terminal wCι ∈ WC and any other
terminal w ∈ W must contain one of the edges wCιt

1
xi

, wCιt
2
xi

or wCι fxi , for some xi ∈ X , all clauses in C have at least
one true literal under α. Indeed, for every clause Cι ∈ C , if wCιt

1
xi

∈ E(T) or wCιt
2
xi

∈ E(T), then fxi /∈ V (T), and so the
assignment α(xi) = true satisfies Cι; on the other hand, if wCι fxi ∈ E(T), then obviously fxi ∈ V (T), and so the assignment
α(xi) = false satisfies Cι . Furthermore, observe that, each clause in C has no more than one true literal under α, since by
hypothesis all terminals belonging to W ⊃ W Cι are leaves of T and, for every vertex ρxi ∈ {t1

xi
, t2

xi
, fxi | xi ∈ X} ∩ V (T), we

have that NT (ρxi) = NG(ρxi) — otherwise, |L(T)| > 2p = � or some non-terminal vertex would be a leaf of T . Therefore, I is
a Yes instance of 1-in-3-SAT(3).

To conclude this proof, note that, since n = 10p + q and � = 2p, the existence of a 2o(�+n)-time algorithm for S-TCP, even
if � = 3, implies the existence of a 2o(p+q)-time algorithm for 1-in-3-SAT(3). Therefore, based on Proposition 1, unless ETH
fails, S-TCP cannot be solved in time 2o(�+n) even if � = 3. �
2.2. Tractable case: maximum degree 3 and bounded number of linkers

Motivated by Theorems 1 and 2, which state that S-TCP remains NP-complete when � = 4 — even if � is bounded by
a constant — and when � = 3, respectively, we now prove that, if � is bounded by a constant and � = 3, then S-TCP is
polynomial-time solvable. More specifically, we show that S-TCP can be solved in time 2O(� log n) when � = 3. The following
proposition and the following lemmas provide the basis of this result.

Let G be a graph, and let W ⊆ V such that |W | ≥ 3. Given a strict connection tree T of G for W , we denote by L′(T) the
subset of L(T) defined as follows: v ∈ L′(T) if and only if v ∈ L(T) and v belongs to a path in T whose (two) endpoints are
routers of T ; and we denote by T ∗ the subgraph of T induced by the vertices belonging to L′(T) ∪ R(T). Observe that, since
|W | ≥ 3, R(T) �= ∅, and thus we have that T ∗ is well-defined, containing at least one vertex. Furthermore, observe that T ∗
is a tree.

Proposition 2. Let G = (V , E) be a graph, and let W ⊆ V such that |W | ≥ 3. If T is a strict connection tree of G for W , then ⌈ |W |−2
�−2

⌉
≤ |R(T)| ≤ |W | − 2.

Proof. Note that, |W | = ∑
v∈R(T) (dT (v) − dT ∗ (v)). Furthermore, we have that

∑
v∈R(T)

dT ∗(v) =
∑

v∈V (T ∗)\L′(T)

dT ∗(v) =
∑

v∈V (T ∗)
dT ∗(v) −

∑
v∈L′(T)

dT ∗(v)

= 2|E(T ∗)| − 2|L′(T)| = 2
(|L′(T)| + |R(T)| − 1

) − 2|L′(T)|
= 2|R(T)| − 2.

Thus, |W | = ∑
v∈R(T) dT (v) − 2|R(T)| + 2. Finally, observe that 3|R(T)| ≤ ∑

v∈R(T) dT (v) ≤ �|R(T)|. Therefore,
⌈ |W |−2

�−2

⌉
≤

|R(T)| ≤ |W | − 2. �
By Proposition 2, we can assume without loss of generality that r = |W | − 2 whenever � = 3. Thus, in the remainder of

this section, we omit the input aspect r in the description of the instances of S-TCP. Furthermore, we also assume that G
does not contain edges whose endpoints are both terminals, i.e. W is an independent set of G .

Lemma 1. Let G = (V , E) be a graph such that � = 3. Then, G admits a strict connection tree T for W with L(T) = ∅ if and only if
there exists a subset V ′ ⊆ V such that T ′ = G[V ′] is a strict connection tree for W with L(T ′) =∅.

30 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 7. Operations corresponding to the possible configurations of u ∈ L being a linker in a strict connection tree of G for W .

Proof. First, suppose that G admits such a tree T . Since L(T) = ∅, all non-terminal vertices of T are routers, i.e. V (T) \ W =
R(T). Thus, if ρ ∈ V (T) \ W , then NT (ρ) = NG(ρ), otherwise ρ /∈ R(T) since � = 3. Finally, since W is an independent set
of G , we have G[V ′] = T , where V ′ = V (T).

Conversely, it is immediate that if there exists a subset V ′ such that T ′ = G[V ′] is a strict connection tree for W with
L(T ′) = ∅, then G admits a strict connection tree T for W with L(T) = ∅. Indeed, T ′ is itself such a tree T . �

Given a terminal vertex w ∈ W and a non-terminal vertex v ∈ NG(w), we denote by Hv the subgraph of G induced by
the vertices belonging to V (H′

v) ∪ W , where H′
v is the component of G − W that contains v .

Lemma 2. Let G = (V , E) be a graph such that � = 3, and let w ∈ W be an arbitrary terminal. Then, there exists a subset V ′ ⊆ V
such that T ′ = G[V ′] is a strict connection tree for W with L(T ′) = ∅ if and only if, for some non-terminal vertex v ∈ NG(w), Hv is a
strict connection tree for W with L(Hv) = ∅.

Proof. First, suppose that there exists such a subset V ′ ⊆ V . Let v ∈ NT ′ (w) be the only neighbor of w in T ′ , where T ′ =
G[V ′]. Since by hypothesis all terminals in W are leaves of T ′ , we have that T ′ − W = G[V ′ \ W] is connected. Consequently,
all non-terminal vertices ρ ∈ V ′ \ W (including v) belong to a same component of G − W . Thus, V ′ \ W ⊆ V (H′

v). On the
other hand, since � = 3 and |L(T ′)| =∅, NT ′ (ρ) = NG(ρ) for every ρ ∈ V ′ \ W . Consequently, we have that V ′ \ W ⊇ V (H′

v).
Thus, V ′ = V (H′

v) ∪ W and, therefore, Hv is a strict connection tree for W such that L(Hv) =∅.
Conversely, suppose that, for some non-terminal vertex v ∈ NG(w), Hv is a strict connection tree for W with L(Hv) = ∅.

Therefore, for V ′ = V (Hv), we have that T ′ = G[V ′] is a strict connection tree for W such that L(T ′) = ∅. �
Corollary 1. S-TCP is linear-time solvable when � = 0 and � = 3.

Proof. Let I = (G, W) be a given instance of S-TCP with � = 0 and � = 3. Let w ∈ W be an arbitrary terminal vertex. It
is easy to see that, for every non-terminal vertex v ∈ NG(w), the graph Hv can be constructed in time linear in the size
of I; for instance, we can obtain Hv by running the variant of the breadth-first search rooted at v on which the terminal
vertices are not explored (i.e. they must be leaves in the resulting search tree). Moreover, we can also verify in linear-time
whether Hv is a strict connection tree for W such that L(Hv) = ∅. Therefore, it follows from Lemmas 1 and 2 that S-TCP
is linear-time solvable if � = 3 and � = 0. �
Theorem 3. S-TCP can be solved in time 2O(� log n) when � = 3, but assuming ETH there is no 2o(�+n)-time algorithm for the problem.

Proof. We first prove that S-TCP can be solved in time 2O(� log n) when � = 3. Let I = (G, W , �) be an instance of S-TCP
such that � = 3. For each subset L ⊆ V \ W such that |L| ≤ �, we generate all combinations of graphs G ′

L obtained from G
by successively applying, for each vertex u ∈ L, the operation depicted in Fig. 7a if dG (u) = 2, or one of the three operations
depicted in Fig. 7b if dG(u) = 3. These operations simulate the possible configurations of the vertex u ∈ L being a linker in
a strict connection tree of G for W . In the end, after all vertices belonging to L have been processed as described above,
we verify whether the resulting graphs G ′

L admit a strict connection tree T ′ for W such that L(T ′) = ∅. Then, the algorithm
returns that I is a Yes instance of S-TCP if and only, for some subset L ⊆ V \ W , with |L| ≤ �, there exists a graph G ′

L that
admits such a tree T ′ . Algorithm 1 presents this Turing reduction formally, where the function Get-tree-without-linkers,
with input (G, W), denotes a linear-time procedure for solving S-TCP with � = 0, when � = 3, that returns either a strict
connection tree T of G for W such that L(T) = ∅ or null if such a tree does not exist.

The correctness of the algorithm follows from the fact that all possible relevant configurations for the existence of a
strict connection tree of G for W with at most � linkers are analyzed. In fact, if there exists a graph G ′

L that admits a
strict connection tree T ′

L for W such that L(T ′
L) = ∅, for some subset L ⊆ V \ W , with |L| ≤ �, then by construction G

admits a strict connection tree T for W such that L(T) ⊆ L, and thus we have that I = (G, W , �) is a Yes instance of S-TCP.
Conversely, if G admits a strict connection tree T for W such that |L(T)| ≤ �, then clearly, for L = L(T), there exists a graph
G ′

L that admits a strict connection tree T ′
L for W such that L(T ′

L) = ∅, and thus we have that I ′ = (G ′
L, W) is a Yes instance

of S-TCP with � = 0.

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 31
Algorithm 1: Turing reduction from S-TCP to S-TCP with � = 0, restricted to graphs with maximum degree 3.
Input: A graph G = (V , E) such that � = 3, a terminal set W ⊆ V and a non-negative integer �.
Output: A strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r, or null if such a tree does not exist.

1 Let L be a collection of all subsets L ⊆ V \ W , with |L| ≤ �, such that the sets in L are ordered according to their inclusion order.
2 foreach L ∈ L do
3 T := Get-tree-given-linker-superset(G, W , L, 1)

4 if T �= null then return T

5 return null

6 Function Get-tree-given-linker-superset(G, W , L, i)
7 if i > |L| then return Get-tree-without-linkers(G, W)

8 u := L[i] // L[i] denotes the i-th element in L
9 if dG (u) = 1 then return null

10 foreach x, y ∈ NG (u) such that x �= y do
11 Let G ′

L be the graph defined as follows: V (G ′
L) := V \ {u} and E(G ′

L) := (E \ {uv | v ∈ NG (u)}) ∪ {xy}
12 T := Get-tree-given-linker-superset(G ′

L , W , L, i + 1)

13 if T �= null then
14 E(T) := (E(T) \ {xy}) ∪ {ux, uy}
15 return T

16 return null

Regarding the running time of the algorithm, in the worst case the number of recursive calls to Get-tree-given-linker-

superset is

∑
L⊆V \W
|L|≤�

∏
u∈L

(
dG(u)

2

)
≤

∑
L⊆V \W
|L|≤�

3|L| ≤
�∑

i=0

(
n

i

)
3i = O

(
3� · n�

)
.

Thus, the total time spent by the algorithm is O
(
3� · n�+1

)
, since Get-tree-without-linkers runs in time linear in n and all

the other operations of the algorithm can be performed in constant time. Therefore, S-TCP can be solved in time 2O(� log n)

when � = 3.
The proof that S-TCP cannot be solved in time 2o(�+n) , even when � = 3, unless ETH fails, follows directly from Theo-

rem 2. �
3. Using �, r and � as parameters

In the present section, we investigate the parameterized complexity of S-TCP when �, r and � are parameters. We remark
that, as a result of Theorem 1, S-TCP parameterized by � and � is para-NP-complete; consequently, the problem does not
even admit an XP-time algorithm, unless P = NP. On the other hand, Dourado et al. [2] showed that S-TCP parameterized
by � and r is in XP.

Nevertheless, we now prove that S-TCP parameterized by � and r is W[2]-hard. Particularly, we show that, for every
� ≥ 0, S-TCP parameterized by r is W[2]-hard. Thus, unless FPT = W[2], S-TCP does not admit an algorithm with running
time g(r) · nh(�) , for any computable functions g and h.

Theorem 4. For every � ≥ 0, S-TCP parameterized by r is W[2]-hard.

Proof. Let I = (U , F , k) be an instance of Set cover, a classical W[2]-hard problem [14], where U is the universe, F is
the collection of non-empty sets over U , and k is the parameter of the problem, a non-negative integer. We construct an
instance f (I) = (G, W , r) of S-TCP with � bounded by a constant as follows:

• for each i ∈ {1, . . . , �}, we create the vertices ui and w ′
i , and we add the edge ui w ′

i ; let L = {u1, u2, . . . , u�};
• for each set Fi ∈ F , we create the vertex v Fi ; moreover, for each pair Fi, F j ∈ F with i �= j, we add the edge v Fi v F j ;

let KF = {v Fi | Fi ∈F};
• we create the vertices wa and wb and, for each set Fi ∈F , we add the edges wa v Fi and wb v Fi ;
• for each pair of vertices ui, v F j , where ui ∈ L and v F j ∈ KF , we add the edge ui v F j ;
• for each element xi ∈ U , we create the vertex wi;
• for each set F j ∈F and each element xi ∈ F j , we add the edge v F j wi ;
• finally, we define W = {wa, wb} ∪ {w ′

i | i ∈ {1, . . . , �}} ∪ {wi | xi ∈ U } and r = k.

Now we prove that I is a Yes instance of Set cover if and only if f (I) is a Yes instance of S-TCP with � bounded by a
constant.

32 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
First, suppose that I is a Yes instance of Set cover, and let F ′ = {F ′
1, F

′
2, . . . , F

′
z} be a subcollection of F such that ⋃

F ′∈F ′ F ′ = U and z ≤ k. Assume without loss of generality that F ′ is minimal with respect to the property of covering
all elements of U , i.e. for any set F ′ ∈ F ′ , F ′ \ {F ′} does not cover all elements of U . Based on F ′ , we construct a strict
connection tree T of G for W as follows:

• for each i ∈ {1, 2, . . . , �}, we add the vertices ui and w ′
i to T along with the edges ui w ′

i ;• for each set F ′
j ∈F ′ , we add the vertex v F ′

j
to T ;

• for each i ∈ {1, 2, . . . , z − 1}, we add the edge v F ′
i
v F ′

i+1
to T ;

• moreover, for each i ∈ {1, 2, . . . , �}, we add the edge ui v F ′
1

to T ; we also add the edges wa v F ′
1

and wb v F ′
z

to T ;
• finally, for each element xi ∈ U , we add the vertex wi to T along with the edge v F ′

j
wi , where j = min{1, . . . , z} such

that xi ∈ F ′
j and F ′

j ∈F ′ .

It is easy to verify that T is a strict connection tree of G for W . Now, we prove that |L(T)| ≤ � and |R(T)| ≤ r. First, note
that the vertices u1, u2, . . . , u� have degree exactly 2 in T . Thus, L(T) ⊇ L. On the other hand, it follows from the minimality
of F ′ that, for every set F ′

j ∈ F , the vertex v F ′
j

is adjacent to at least one terminal wi ∈ W , since F ′
j covers at least one

element xi ∈ U which is not covered by any other set in F ′ . Consequently, every vertex v F ′
j

has degree at least 3 in T , for
F ′

j ∈ F ′ . Thus, L(T) = L and R(T) = {v F ′
j
| F ′

j ∈ F ′}, which implies |L(T)| ≤ � and |R(T)| = z ≤ k = r. Therefore, f (I) is a Yes

instance of S-TCP with � bounded by a constant.
Conversely, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r = k. Note that, for

every i ∈ {1, 2, . . . , �}, the path in T between the terminal w ′
i and any other terminal belonging to W necessarily contains

the vertex ui ∈ L. Hence, V (T) ⊇ L. Furthermore, since the vertices in W ⊃ {wi | xi ∈ U } are leaves of T , there is a vertex
v F j ∈ KF such that NT (wi) = {v F j } for every xi ∈ U . However, the vertices v F j are non-terminal and T contains at most
� + r non-terminal vertices. Thus, since V (T) ⊇ L and |L| = �, there are at most r vertices belonging to KF in T , i.e.
|V (T) ∩ KF | ≤ r = k. Then, F ′ = {F j | v F j ∈ V (T) ∩ KF } is a subcollection of F such that |F ′| ≤ k. Finally, it follows from
the fact that W ⊆ V (T) that

⋃
F ′∈F ′ F ′ = U . Therefore, I is a Yes instance of Set cover. �

Based on the technique called bounded search tree, Dourado et al. [2] provided an O
(
(2�−1)�+r�n

)
-time algorithm for

S-TCP. As an immediate result, they proved that if, besides � and r, the maximum degree � of G is also considered as
a parameter, then S-TCP is in FPT. We now present an alternative, but substantially simpler, proof for the tractability of
S-TCP parameterized by �, r and �, which consists in a kernelization algorithm for the problem derived from the following
reduction rules.

Reduction rule 1. For any two terminals w1, w2 ∈ W , if the distance between them in G − (W \ {w1, w2}) is greater than
� + r + 1, then conclude that G does not admit a strict connection for W with at most � linkers and at most r routers.

Reduction rule 2. Let v ∈ V \ W and w ∈ W . If the distance between v and w in G − (W \ {w}) is greater than � + r + 1,
then remove v from G .

Lemma 3. Reduction rules 1 and 2 are safe.

Proof. Suppose that there exist w1, w2 ∈ W such that the distance between w1 and w2 in G − (W \ {w1, w2}) is greater
than � + r + 1. Thus, every strict connection tree of G for W ⊇ {w1, w2} has more than � linkers or more than r routers.
Therefore, we are dealing with a No instance of the problem in this case, and so Reduction rule 1 is indeed safe. Now,
suppose that there exists a non-terminal vertex v ∈ V \ W such that, for some terminal w ∈ W , the distance between v and
w in G − (W \ {w}) is greater than � + r + 1. Note that, v does not belong to any strict connection tree T of G for W ⊃ {w},
otherwise T would have more than � linkers or more than r routers. Thus, G admits a strict connection tree for W with at
most � linkers and at most r routers if and only if G − v admits a strict connection tree for W with at most � linkers and
at most r routers. Therefore, we have that Reduction rule 2 is also safe. �
Theorem 5. S-TCP admits a kernel with O

(
�2(�+r+1)

)
vertices.

Proof. Based on Reduction rule 1, suppose that, for every pair of terminal vertices w1, w2 ∈ W , the distance between them
in G − (W \ {w1, w2}) is at most � + r + 1. Moreover, while it is possible, apply Reduction rule 2 successively. Let G ′ denote
the resulting graph. Note that, the distance between any non-terminal vertex v ∈ V (G ′) \ W and any terminal vertex w ∈ W
in G ′ − (W \ {w}) is at most � + r + 1. Moreover, the distance between any two non-terminal vertices u, v ∈ V \ W in G ′
is at most 2(� + r + 1). Thus, the diameter of G ′ is at most 2(� + r + 1) and, therefore, the number of vertices in G ′ is
O

(
�2(�+r+1)

)
. �

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 33
Fig. 8. Complete strict binary tree T j and paths P (vi
j , x), where x ∈ NG ′

i
(w j), for i ∈ {1,2, . . . , t} and j ∈ {1,2, . . . ,k}.

At this point, a natural question that arises is whether there exists a polynomial kernel for S-TCP parameterized by �,
r and �. However, we show that this does not seem to be the case, the existence of such a kernel is unlikely. By using a
framework developed by Bodlaender et al. [31,32], called cross-decomposition, we prove that S-TCP parameterized by �, r and
� does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

By Proposition 2, if a graph G with maximum degree � admits a strict connection tree T for a terminal set W with at
most r routers, then

⌈ |W |−2
�−2

⌉
≤ r, which implies |W | ≤ r(� − 2) + 2. Thus, if r and � are parameters, then, without loss of

generality, |W | can be considered as a parameter as well.

Theorem 6. S-TCP parameterized by �, r, � and |W | does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof. We prove this theorem by showing that S-TCP cross-composes into S-TCP parameterized by �, r, � and |W |. We
first need to present a polynomial equivalence relation. Thus, let R be the equivalence relation defined as follows: all
bitstrings which do not encode a valid instance of S-TCP belong to a same equivalence class; and two well-formed instances
(G1, W1, �1, r1) and (G2, W2, �2, r2) of S-TCP belong to a same equivalence class if and only if |V (G1)| = |V (G2)|, �(G1) =
�(G2), |W1| = |W2|, �1 = �2 and r1 = r2. One may verify that any set of well-formed instances of S-TCP on at most n
vertices each can be partitioned into O

(
n5

)
equivalence classes. Therefore, R is a polynomial equivalence relation.

Let I ′1, I ′2, . . . , I ′t be t ≥ 1 input instances which are equivalent under R. If such instances are not well-formed, then we
output a single trivial No instance of S-TCP parameterized by �, r, � and |W |. Thus, assume that all of the input instances
I ′1, I ′2, . . . , I ′t are well-formed and encode structures (G ′

1, W ′
1, �

′
1, r

′
1), (G ′

2, W
′
2, �

′
2, r

′
2), . . ., (G ′

t , W ′
t , �′

t, r′
t), respectively. For

simplicity, we also assume without loss of generality that, for every i ∈ {1, 2, . . . , t}, �′
i = �′ ≤ |V (G ′

i)|, r′
i = r′ ≤ |V (G ′

i)|,
�(G ′

i) = γ ≥ 3 and W ′
i is an independent set of G ′

i such that W ′
i = {w1, w2, . . . , wk}, where k ≥ 3. Then, we compose

I ′1, I ′2, . . . , I ′t into a single instance I = (G, W , �, r) of S-TCP parameterized by �, r, � and |W |, as follows:

• we add the vertices w1, w2, . . . , wk to G;
• for each j ∈ {1, 2, . . . , k}, we create the vertices v j, v1

j , v
2
j , . . . , v

t
j and a complete strict binary tree T j , rooted at v j ,

whose leaves are the vertices v1
j , v

2
j , . . . , v

t
j ; moreover, we add the edge w j v j to G;

• for each i ∈ {1, 2, . . . , t}, we add all the vertices and all the edges of the graph G ′
i − W ′

i to G;
• for each i ∈ {1, 2, . . . , t}, for each j ∈ {1, 2, . . . , k} and for each vertex x ∈ NG ′

i
(w j), we add the edge vi

j x to G and
subdivide this edge into α new vertices, where α = �′ + k

⌈
log2 t

⌉ + 1; in other words, for each vertex x ∈ NG ′
i
(w j), we

create the vertices x∗
1, x

∗
2, . . . , x

∗
α and the path P (vi

j, x) = 〈vi
j, x

∗
1, x

∗
2, . . . , x

∗
α, x〉 (see Fig. 8);

• finally, we define W = {w1, w2, . . . , wk}, � = (k + 1)α − 1 and r = r′ .

Fig. 9 illustrates the overall structure of G and W .
One may easily verify that I can be constructed in time polynomial in

∑t
i=1|I ′i |, and that �(G) ≤ γ + 1, |W | = k,

� =O
(
k�′ + k2 log2 t

)
and r = r′ .

We now proof that there exists i ∈ {1, 2, . . . , t} such that I ′i is a Yes instance of S-TCP if and only if I is a Yes instance of
S-TCP parameterized by �, r, � and |W |.

First, suppose that, for some i ∈ {1, 2, . . . , t}, I ′i is a Yes instance of S-TCP, and let T ′ be a strict connection tree of G ′
i for

W ′
i such that |L(T ′)| ≤ �′ and |R(T ′)| ≤ r′ . Then, consider the subgraph T of G defined as follows:

V (T) = V (T ′) ∪ ⋃
w j∈W

V (P (w j, vi
j)) ∪ ⋃

x∈NT ′ (w j)

w j∈W

V (P (vi
j, x)) and

E(T) = (
E(T ′) \ {w jx | w j ∈ W }) ∪ ⋃

w j∈W
E(P (w j, vi

j)) ∪ ⋃
x∈NT ′ (w j)

w ∈W

E(P (vi
j, x)),
j

34 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 9. Graph G and terminal set W . For simplicity, the vertices x∗
1, x∗

2, . . . , x∗
α corresponding to the subdivision of the edges vi

j x are omitted, where
x ∈ NG ′

i
(w j).

where P (w j, vi
j) denotes the only path in T j between the vertices w j and vi

j . It is easy to see that T is a strict
connection tree of G for W such that |L(T)| ≤ |L(T ′)| + k�log2 t� + kα ≤ (k + 1)α − 1 = � and |R(T)| ≤ r′ = r, since
L(T) = L(T ′) ∪ ⋃

x∈NT ′ (w j)

w j∈W

(
V (P (vi

j, x)) \ {x}
)

∪ ⋃
w j∈W

(
V (P (w j, vi

j)) \ {w j}
)

and R(T) = R(T ′). Therefore, I is a Yes in-

stance of S-TCP.
Conversely, suppose that I is a Yes instance of S-TCP, and let T be a strict connection tree of G for W such that

|L(T)| ≤ � and |R(T)| ≤ r. Note that, for each w j ∈ W , all paths in G between w j and any other terminal must contain
a path P (vi

j, x) as a subpath, for some x ∈ NG ′
i
(w j) and some i ∈ {1, 2, . . . , t}; so, since W ⊆ V (T), for each w j ∈ W , T

contains a path P (vi
j, x). Thus, |L(T)| ≥ kα. Consequently, for every j ∈ {1, 2, . . . , k}, the intersection between T and the

complete binary tree T j can only contain the path P (w j, vi
j) of T j whose endpoints are w j and vi

j , otherwise: T would
have a leaf which is not a terminal; or, besides P (vi

j, x), T would have a further path P (vι
j, y), for some y ∈ NG ′

ι
(w j) and

some ι ∈ {1, 2, . . . , t} with ι �= i, which would imply |L(T)| ≥ (k + 1)α > �. By similar reasons, we have that the degree
of vi

j in T must be equal to 2. Hence, for every j ∈ {1, 2, . . . , k}, the subgraph of T j in T — i.e. the path P (w j, vi
j) —

can be viewed as a leaf of T (in the sense that its only purpose in T is connecting the terminal w j , as a leaf of T).
Consequently, there exists precisely one index i ∈ {1, 2, . . . , t} such that V (T) ∩ V (G ′

i − W ′
i) �= ∅, otherwise T would be

disconnected. Therefore, I ′i is a Yes instance of S-TCP. Indeed, the graph T ′ , where V (T ′) = (
V (T) ∩ V (G ′

i − W ′
i)

) ∪ W ′
i and

E(T ′) = (
E(T) ∩ E(G ′

i − W ′
i)

) ∪ {w j x | vi
j x ∈ E(T)}, is a strict connection tree for W ′

i such that |L(T ′)| ≤ �′ and |R(T ′)| ≤ r′ ,
since L(T ′) = L(T) ∩ V (G ′

i − W ′
i) and R(T ′) = R(T). �

4. The split graph case

A split graph is a graph whose vertex set can be partitioned into a clique and an independent set.
S-TCP on split graphs may have interesting applications in IoT (Internet of Things), where devices with high communicat-

ing/processing power (such as wireless routers) are modeled as a cluster, while devices with low communicating/processing
power (such as wireless printers) are modeled as an independent set, being able to send (receive, resp.) messages just
to (from, resp.) devices of the cluster. Thus, motivated by applications in IoT and by the fact that it is well-known that
Steiner tree is NP-complete on split graphs [6], we analyze in this section the complexity of S-TCP restricted to split
graphs.

More specifically, we prove that S-TCP restricted to split graphs can be solved in time nO(r) , implying thereby that S-TCP
on split graphs is polynomial-time solvable when r is bounded by a constant. On the other hand, we extend Theorem 4
by showing that S-TCP parameterized by r remains W[2]-hard even if it is restricted to split graphs and � is bounded by a
constant; furthermore, we show that, for any computable function g , there is no g(r) · no(r)-time algorithm for the problem,
unless ETH fails.

Given an instance I = (G, W , �, r) of S-TCP, where G = (V , E) is a split graph. We assume throughout this section that
V = K ∪ S , where K is a maximal clique and S is a maximal independent set of G . We also assume that r ≥ 1 and |W | ≥ 3.

Fact 1. If K ⊆ W , then G does not admit a strict connection tree for W .

Fact 2. If K \ W �=∅ and W ∩ S = ∅ (i.e. W ⊂ K), then G admits a strict connection tree T for W such that |L(T)| = 0 and
|R(T)| = 1.

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 35
Lemma 4. Suppose that K \ W �= ∅ and W ∩ S �= ∅. If G admits a strict connection tree T ′ for W , then there exists a strict connection
tree T of G for W such that |L(T)| ≤ |L(T ′)|, |R(T)| ≤ |R(T ′)|, and R(T) ⊆ K .

Proof. Since S is an independent set of G , NT ′ (S) ⊆ K . Moreover, it follows from the assumptions W ∩ S �= ∅ and |W | ≥ 3
that

(
V (T ′) \ W

) ∩ K �= ∅. Thus, let v be an arbitrary vertex in
(
V (T ′) \ W

) ∩ K . Since K is a clique of G , we have that
v ∈ NG(v ′) for all v ′ ∈ NT ′ (S) \ {v}. Then, consider the graph T defined as follows: V (T) = V (T ′) \ (

R(T ′) ∩ S
)

and E(T) =(
E(T ′) \ {ρv ′ | v ′ ∈ NT ′ (ρ), ρ ∈ R(T ′) ∩ S}) ∪ {v v ′ | v ′ ∈ NT ′ (R(T ′) ∩ S)}. One may easily verify that T is a strict connection

tree of G for W such that |L(T)| ≤ |L(T ′)|, |R(T)| ≤ |R(T ′)|, and R(T) ⊆ K . �
Lemma 5. Let T ′ be a strict connection tree of G for W such that R(T ′) ⊆ K . There exists a strict connection tree T of G for W , with
|L(T)| ≤ |L(T ′)| and R(T) ⊆ R(T ′), which holds the following properties:

(i) L(T) ⊆ K ;
(ii) each vertex in L(T) is adjacent to exactly one vertex in R(T) and exactly one vertex w ∈ W , where w ∈ S and w /∈ NG(R(T));

(iii) T [R(T)] is a path.

Proof. (i). Note that, for every vertex u ∈ L(T ′) ∩ S , if xu and yu are the two distinct neighbors of u in T ′ , then xu, yu ∈ K .
Thus, the graph obtained from T ′ by removing all the vertices in L(T ′) ∩ S and adding all the edges in {xu yu | xu, yu ∈
NT ′ (u), u ∈ L(T ′) ∩ S} is a strict connection tree of G for W with linker set L(T ′) \ S ⊆ K and router set R(T ′). Thus, for
simplicity, we assume hereinafter that L(T ′) ⊆ K .

(ii). Since |W | ≥ 3, for every vertex u ∈ L(T ′), if xu and yu are the two distinct neighbors of u in T ′ , then xu /∈ W or
yu /∈ W , otherwise T ′ would not be a strict connection tree for W . If xu, yu /∈ W , then xu, yu ∈ K . Hence, we can remove u
from T ′ and add the edge xu yu . Thus, suppose that xu ∈ W and yu /∈ W . If yu ∈ L(T ′), then yu has exactly one neighbor in
T ′ in addition to u. Let z be this second neighbor of yu in T ′ . Since |W | ≥ 3 and we are supposing that xu ∈ W , we have
z /∈ W , which implies z ∈ K . As a result, the graph obtained from T ′ by removing yu and adding the edge uz is a strict
connection tree of G for W with linker set L(T ′) \ {yu} and router set R(T ′). Suppose now that yu ∈ R(T ′) but there exists
a vertex ρ ∈ R(T ′), possibly ρ = yu , such that ρxu ∈ E(G). Consequently, the graph H obtained from T ′ by removing u and
adding the edge ρxu is a strict connection tree of G for W such that L(H) = L(T ′) \ {u} and R(H) = R(T ′) if dT ′ (yu) > 3
or ρ = yu , and L(H) = (

L(T ′) \ {u}) ∪ {yu} and R(H) = R(T ′) \ {yu} otherwise. Therefore, one may verify that, by applying
successively the steps described above, it is always possible to obtain a strict connection tree of G for W which holds
property (ii).

(iii). If |R(T ′)| ≤ 1, then trivially T ′ holds property (iii). Thus, assume that |R(T ′)| ≥ 2. Additionally, assume that T ′
holds property (ii). Consequently, H R = T [R(T ′)] is a tree. Note that, H R contains at least two leaves. Let R∗ be the set
defined in the following way: ρ∗ ∈ R∗ if and only if ρ∗ ∈ R(T ′) and there is at least one terminal vertex w ∈ W such that
distT ′ (w, ρ∗) = distT ′ (w, R(T ′)), i.e. the path between w and ρ∗ in T ′ does not contain any other router. Note that, every
leaf of H R necessarily belongs to R∗; more specifically, for every leaf ρ∗ of H R , there exists at least two distinct terminal
vertices w1

ρ∗ , w2
ρ∗ ∈ W such that distT ′ (wi

ρ∗ , ρ∗) = distT ′ (wi
ρ∗ , R(T ′)) for i ∈ {1, 2}, otherwise the degree of ρ∗ in T ′ would

be less than 3. Let 〈ρ1, . . . , ρk〉 be an arbitrary ordering of the vertices in R∗ such that ρ1 and ρk are leaves of H R , where
k = |R∗|. Then, consider the graph T defined as follows: V (T) = V (T ′) \ (

R(T ′) \ R∗) and E(T) = (
E(T ′) \ E(H R)

) ∪ {ρiρi+1 |
i ∈ {1, . . . , k − 1}}. One may verify that T is a strict connection tree of G for W such that L(T) = L(T ′), R(T) = R∗ ⊆ R(T ′),
and T [R(T)] is a path. �
Proposition 3. Suppose that K \ W �= ∅ and W ∩ S �= ∅. Given two non-negative integers � and r, with r ≥ 1, we can in time nO(r)

obtain a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| ≤ r, or conclude that such a tree does not exist.

Proof. Since S-TCP can be solved in polynomial-time when r ≤ 1 [29], for simplicity, we assume that G does not admit
a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ 1. Based on Lemmas 4 and 5, our strategy consists in
enumerating all possible subsets R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and all possible unordered pairs {ρ1, ρk} ⊆ R of distinct
vertices in order to try to obtain a strict connection T of G for W such that |L(T)| ≤ �, R(T) = R and T [R(T)] is a path
with endpoints ρ1 and ρk . Hence, let R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and ρ1 and ρk be two distinct vertices belonging
to R .

Let W R = W ∩ NG(R) and W R = W \ W R . Note that, if |W R | > �, then G does not admit a strict connection tree for
W such that |L(T)| ≤ � and R(T) = R . Thus, assume |W R | ≤ �. Let H1 be the bipartite graph defined as follows: V (H1) =
X1 ∪ Y1 and E(H1) = {xy ∈ E(G) | x ∈ X1, y ∈ Y1}, where X1 = W R and Y1 = (V (G) \ (R ∪ W)) ∩ NG(X1).

Claim 1. If X1 �= ∅ and G admits a strict connection tree T for W such that |L(T)| ≤ � and R(T) = R, then there exists a matching
M1 in H1 that saturates all vertices belonging to X1.

36 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fig. 10. Strict connection tree of G for W obtained from a matching M2 in H2 that saturates all vertices belonging to X2.

Proof of claim. Assume that T holds properties (i)–(iii) described in Lemma 5. Thus, each linker u ∈ L(T) is adjacent to
exactly one vertex in R(T) and exactly one vertex w ∈ W such that w /∈ NG(R(T)). As a consequence, the set of terminal
vertices which are adjacent to a linker of T coincides with X1. In addition to that, note that, since |W | ≥ 3, each vertex
belonging to L(T) is adjacent in T to at most one vertex belonging to X1. Therefore, the set M1 = {uw ∈ E(T) | u ∈ L(T), w ∈
W } is a matching in H1 that saturates all vertices belonging to X1. �

Based on Claim 1, we assume that X1 = ∅, or that there exists a matching M1 in H1 that saturates all vertices belonging
to X1. From such a matching M1 (if any), we let L = ∅ if X1 = ∅, and L = {u ∈ Y1 | uw ∈ M1, w ∈ X1} otherwise; and we
let H2 be the bipartite graph such that V (H2) = X2 ∪ Y2 and

E(H2) = {xy ∈ E(G) | x ∈ R \ {ρ1,ρk}, y ∈ Y2}
∪ {ρ j

i y | ρi y ∈ E(G), y ∈ Y2, i ∈ {1,k}, j ∈ {1,2}},

where X2 = (R \ {ρ1, ρk}) ∪ {ρ1
1 , ρ2

1 , ρ1
k , ρ2

k }, Y2 = W R ∪ L and ρ1
1 , ρ2

1 , ρ1
k , ρ2

k are new auxiliary vertices, not belonging to G .

Claim 2. G admits a strict connection tree T for W such that |L(T)| ≤ �, R(T) = R and T [R(T)] is path with endpoints ρ1 and ρk if
and only if there exists a matching M2 in H2 that saturates all vertices belonging to X2.

Proof of claim. First, suppose that such a tree T exists. Additionally, assume that T holds properties (i)–(iii) described in
Lemma 5. As a result, we have |L| = |X1| = |L(T)|. Let φ : L(T) → L be an arbitrary bijection. Since all routers of T have
degree at least 3, each endpoint of the path T [R(T)] — i.e. the vertices ρ1 and ρk — must be adjacent to at least two distinct
vertices in W R ∪ L(T); thus, for i ∈ {1, k}, let v1

i , v
2
i ∈ W R ∪ L(T) be two arbitrary distinct neighbors of ρi in T . Furthermore,

we have that each internal vertex of T [R(T)] must be adjacent to at least one vertex in W R ∪L(T); thus, for i ∈ {2, . . . , k −1},
let vi ∈ W R ∪ L(T) be an arbitrary neighbor of ρi in T . Let Y M2 = {v j

i | i ∈ {1, k}, j ∈ {1, 2}} ∪ {vi | i ∈ {2, . . . , k − 1}}. We
remark that Y M2 \ W R ⊆ L(T). Therefore, one may verify that

M2 = {ρ j
i v j

i | ρi v j
i ∈ E(T), v j

i ∈ Y M2 ∩ W R , i ∈ {1,k}, j ∈ {1,2}}
∪ {ρi vi ∈ E(T) | vi ∈ Y M2 ∩ W R , i ∈ {2, . . . ,k − 1}}
∪ {ρ j

i φ(v j
i) | ρi v j

i ∈ E(T), v j
i ∈ Y M2 \ W R , i ∈ {1,k}, j ∈ {1,2}}

∪ {ρiφ(vi) | ρi vi ∈ E(T), vi ∈ Y M2 \ W R , i ∈ {2, . . . ,k − 1}}
is a matching in H2 that saturates all vertices belonging to X2.

Conversely, suppose that there exists a matching M2 in H2 that saturates all vertices belonging to X2. Let W ′
R and L′

be the subsets of W R and L, respectively, composed by the vertices which are not saturated by M2. Also, let ϕ : W ′
R → R

be a mapping such that, for each w ∈ W ′
R , if ϕ(w) = ρ , then w ∈ NG(ρ). Consider the graph T defined as follows: V (T) =

W ∪ L ∪ R and

E(T) = M1 ∪ (M2 \ {ρ j
i vi | vi ∈ Y2, i ∈ {1,k}, j ∈ {1,2}})

∪ {ρi vi | ρ j
i vi ∈ M2, vi ∈ Y2, i ∈ {1,k}, j ∈ {1,2}}

∪ {ρ1 v | v ∈ L′} ∪ {ϕ(w)w | w ∈ W ′
R} ∪ {ρiρi+1 | i ∈ {1, . . . ,k − 1}}.

Fig. 10 illustrates the graph T . One may verify that T is a strict connection tree of G for W such that L(T) = L, R(T) = R
and T [R(T)] is a path with endpoints ρ1 and ρk . �

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 37
To conclude the proof of this proposition, we remark that, based on Lemmas 4 and 5, there exists a strict connection tree
of G for W with at most � linkers and at most r routers if and only if, for some set R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and
some unordered pair {ρ1, ρk} ⊆ R of distinct vertices, there exists a strict connection tree T of G for W such that |L(T)| ≤ �,
R(T) = R and T [R(T)] is a path with endpoints ρ1 and ρk .

Furthermore, based on the previous claims, we have that, for a given set R ⊆ K \ W , with 2 ≤ |R| = k ≤ r, and a given
unordered pair {ρ1, ρk} ⊆ R of distinct vertices, we can obtain a strict connection tree T of G for W such that |L(T)| ≤ �,
R(T) = R and T [R(T)] is a path with endpoints ρ1 and ρk , or conclude that such a tree T does not exist, in time polynomial
in n. Therefore, since all unordered pair {ρ1, ρk} ⊆ R of distinct vertices can be enumerated in time O

(
n2

)
and all subsets

R ⊆ K \ W , with 2 ≤ |R| ≤ r, can be enumerated in time nO(r) , the total running time of the algorithm is nO(r) . �
Theorem 7. S-TCP restricted to split graphs can be solved in time nO(r) but, assuming FPT �= W[2], cannot be solved in time g(r) · nh(�)

and, assuming ETH, cannot be solved in time g(r) · no(r) , for any computable functions g and h.

Proof. It follows immediately from Facts 1 and 2 and Proposition 3 that S-TCP restricted to split graphs can be solved in
time nO(r) .

On the other hand, to see that S-TCP restricted to split graphs does not admit a g(r) · nh(�)-time algorithm, unless
FPT = W[2], note that the proof of Theorem 4 can be easily adapted so that the constructed graph G becomes a split graph.
Indeed, it is enough to add to G the edge uiu j for each i, j ∈ {1, . . . , �} with i �= j. In this case, {K = L ∪ KF , S = W } is a
partition of the vertex set V of G into a clique and an independent set, respectively. Therefore, S-TCP remains W[2]-hard
even if it is restricted to split graphs and � is bounded by a constant.

Finally, to show that S-TCP restricted to split graphs does not admit a g(r) ·no(r)-time algorithm, unless ETH fails, consider
the following claim.

Claim 3. Assuming ETH, Set cover cannot be solved in time g(k) · no(k) , for any computable function g.

Proof of claim. We present a polynomial-time reduction from Dominating set, another classical W[2]-complete problem,
which under ETH was proved not to admit a g(k) · no(k)-time algorithm, for any computable function g , where k is the
parameter of the problem cf. [14]. Let I = (G ′, k′) be an instance of Dominating set. We construct an instance f (I) =
(U , F , k) of Set cover, as follows: U = V (G ′), F = {NG ′ [u′] | u′ ∈ V (G ′)} and k = k′ .

It is easy to see that, if a set S ′ ⊆ V (G ′) is a dominating set of G ′ , then F ′ = {NG ′ [u′] | u′ ∈ V ′} ⊆ F is a vertex cover of
G such that |F ′| = |S ′|.

Conversely, if F ′ ⊆ F is a vertex cover of G , then S ′ = {u′ | NG ′ [u′] ∈ F ′} ⊆ V (G ′) is a dominating set of G ′ such that
|S ′| = |F ′|.

Thus, I is a Yes instance of Dominating set if and only if f (I) is a Yes instance of Set cover. Consequently, the existence
of a g(k) · |V (G)|o(k)-time algorithm for Set cover implies the existence of a g(k′) · |V (G ′)|o

(
k′)

-time algorithm for Dominating
set. �

Therefore, we obtain from the proof of Theorem 4 that the existence of such an algorithm for S-TCP implies the failure
of ETH. �
5. The cograph case

A cograph is a graph that does not contain any induced path of length 3. Alternatively, cographs can be characterized by
the following recursive definition given by Corneil et al. [33]: G is a cograph if and only if G = K1 or there exist two other
cographs G1 and G2 such that either G = G1 ∪ G2 or G = G1 ∧ G2, where K1 denotes the trivial graph with a single vertex,
and G1 ∪ G2 and G1 ∧ G2 respectively denote the disjoint union and the join of G1 and G2, i.e. V (G1 ∪ G2) = V (G1 ∧ G2) =
V (G1) ∪ V (G2), E(G1 ∪ G2) = E(G1) ∪ E(G2) and E(G1 ∧ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.

In complex networks, cograph communities are defined as the connected components of a network such that the underly-
ing graph is a cograph. According to [34], as a whole community, cograph communities reveal more intensive social roles or
biological functions than those obtained by general communities. Thus, motivated by the relevance of cographs in complex
networks, we analyze in this section the complexity of S-TCP restricted to cographs.

More specifically, we prove that S-TCP on cographs is polynomial-time solvable. Although this can be an expected re-
sult (for instance, it is known that Steiner tree on cographs is polynomial-time solvable [9]), since cographs have strong
structural properties that are useful for the development of polynomial-time algorithms, our proof is not trivial whatsoever,
consisting in providing a sophisticated dynamic programming algorithm for the problem.

Since S-TCP can be easily solved in linear-time when r < 1 or |W | < 3, we assume that r ≥ 1 and |W | ≥ 3. Next, we
analyze all the other possible cases, and then we finally summarize in Theorem 8 the recurrence relation of our algorithm.

38 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Fact 3. Let G = (V , E) be a cograph such that G = G1 ∪ G2. Then, G admits a strict connection tree for W with at most
� ≥ 0 linkers and at most r ≥ 1 routers if and only if V (G j) ∩ W = ∅ and Gi admits a strict connection tree for W with at
most � linkers and at most r routers, where V (Gi) ∩ W �=∅, i, j ∈ {1, 2} and i + j = 3.

Fact 4. Let G = (V , E) be a cograph such that G = G1 ∧ G2, V (G1) ⊆ W and |V (G2) ∩ W | ≤ 1. Then, there exists a strict
connection tree of G for W if and only if W = V (G1), or V (G2) ∩ W = {w} and NG2 (w) �= ∅. In particular, if such a tree
exists, then G admits a strict connection tree T for W such that |L(T)| = 0 and |R(T)| = 1.

Lemma 6. Let G = (V , E) be a cograph such that G = G1 ∧ G2 , V (G1) ⊂ W and |V (G2) ∩ W | = 2. Let w ′
1 and w ′

2 be the two vertices
belonging to V (G2) ∩ W . Then, G admits a strict connection tree for W with at most � ≥ 0 linkers and at most r ≥ 1 routers if and
only if the distance in G ′

2 = G2 − w ′
1 w ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1, where n1 = |V (G1)|.

Proof. First, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r. Let P be the
path in T between w ′

1 and w ′
2. Observe that, the length of P is at most |L(T)| + |R(T)| + 1, otherwise T would have

more than |L(T)| linkers or more than |R(T)| routers. Since by hypothesis V (G1) ⊂ W and |V (G2) ∩ W | = 2, we have that
n1 = |V (G1)| = |W | − 2. Furthermore, we know that |R(T)| ≤ |W | − 2 (see Proposition 2), which implies |R(T)| ≤ n1. Thus,
|R(T)| ≤ min{r, n1}, and so the length of P is at most |L(T)| + min{r, n1} + 1 ≤ � + min{r, n1} + 1. Finally, since V (G1) ⊂ W
and |W | ≥ 3, P is contained in G ′

2, otherwise T would have some terminal with degree greater than 1. Therefore, the
distance in G ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1.
Conversely, suppose that the distance in G ′

2 between w ′
1 and w ′

2 is at most � + min{r, n1} + 1. Let P = 〈w ′
1, u

′
1, u

′
2, . . . ,

u′
z, w ′

2〉 be a shortest path in G ′
2 between w ′

1 and w ′
2, and let α = 〈w1, w2, . . . , wn1 〉 be an arbitrary ordering of the vertices

in V (G1). We define from P and α the subgraph T of G as follows: V (T) = V (P) ∪ V (G1) and E(T) = E(P) ∪ {u′
i wi | i ∈

{1, . . . , min{r, n1, z}}} ∪ {u′
1 wi | i ∈ {min{r, n1, z} + 1, . . . , n1}}. Observe that, T is a strict connection tree of G for W such

that L(T) = {u′
i | i ∈ {min{r, n1} + 1, . . . , z}} and R(T) = {u′

i | i ∈ {1, . . . , min{r, n1, z}}}. Since by hypothesis the length of P
is at most � + min{r, n1} + 1, z ≤ � + min{r, n1}, and consequently |L(T)| ≤ �. Finally, note that |R(T)| = min{r, n1, z} ≤ r.
Therefore, G admits a strict connection tree for W with at most � linkers and at most r routers. �
Lemma 7. Let G = (V , E) be a cograph such that G = G1 ∧ G2 , V (G1) ⊂ W and |V (G2) ∩ W | ≥ 3. Then, G admits a strict connection
tree for W with at most � ≥ 0 linkers and at most r ≥ 1 routers if and only if G2 admits a strict connection tree for V (G2) ∩ W with
at most � + λ linkers and at most r − λ routers, for some λ ∈ {0, 1, . . . , min{r − 1, n1}}, where n1 = |V (G1)|.

Proof. First, suppose that G admits a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r. Since |V (G2) ∩
W | ≥ 3 and all vertices in V (G1) are terminal, there exists at least one router ρ ∈ R(T) such that ρ ∈ V (G2).

Suppose that there is a vertex v ∈ V (G2) \ W with NT (v) ∩ V (G1) �= ∅, such that |NG2 (v) ∩ V (T)| < 2. Then, let H
be the graph obtained from T by removing the vertex v and by adding, for each w ∈ NT (v) ∩ V (G1), the edge ρw . We
remark that H possibly contains non-terminal vertices that became leaves. Then, let T H be the graph obtained from H by
successively removing such non-terminal vertices. One can easily verify that T H is a strict connection tree of G for W such
that L(T H) ⊆ L(T) and R(T H) ⊆ R(T). Thus, hereinafter, assume without loss of generality that |NG2 (v) ∩ V (T)| ≥ 2 for every
vertex v ∈ V (G2) \ W with NT (v) ∩ V (G1) �=∅.

Let T ′ = T − V (G1). Since by hypothesis V (G1) ⊂ W , the vertices belonging to V (G1) are leaves of T . Thus, T ′ is a
connected graph. More specifically, it follows from the assumption described in the previous paragraph that T ′ is a strict
connection tree of G2 for V (G2) ∩ W . Let

R ′ = {v ∈ V (G2) \ W | NT (v) ∩ V (G1) �= ∅,dT ′(v) < 3}.

Note that, the vertices belonging to R ′ are routers of T and linkers of T ′ . Thus, |L(T ′)| = |L(T)| + |R ′| and |R(T ′)| = |R(T)| −
|R ′|. Moreover, since the vertices belonging to V (G1) are leaves of T and |W | ≥ 3, each vertex w ∈ V (G1) is adjacent in T
to exactly one vertex v ∈ V (G2) \ W . Consequently, |R ′| ≤ n1. On the other hand, since by hypothesis |V (G2) ∩ W | ≥ 3, T ′
has at least one router. Thus, |R ′| ≤ r − 1, which implies |R ′| ≤ min{r − 1, n1}. Therefore, we can define λ = |R ′|, and so we
have that G2 admits a strict connection tree for V (G2) ∩ W with at most � + λ linkers and at most r − λ routers.

For the converse, suppose now that G2 admits a strict connection tree T ′ for V (G2) ∩ W such that |L(T ′)| ≤ � + λ and
|R(T ′)| ≤ r − λ, for some λ ∈ {0, 1, . . . , min{r − 1, n1}}. Since |V (G2) ∩ W | ≥ 3, R(T ′) is non-empty. Then, let ρ ∈ R(T ′),
arbitrarily chosen. Let R ′ be a subset of L(T ′) such that |R ′| = z, where z = min{|L(T ′)|, λ}; and let 〈u′

1, u
′
2, . . . , u

′
z〉 be

an arbitrary ordering of the vertices belonging to R ′ . Also, let 〈w1, w2, . . . , wn1 〉 be an arbitrary ordering of the vertices
belonging to V (G1). Then, the graph T , defined as follows: V (T) = V (T ′) ∪ V (G1) and E(T) = E(T ′) ∪{u′

i wi | i ∈ {1, . . . , z}}∪
{ρwi | i ∈ {z+1, . . . , n1}}, is a strict connection tree for W such that L(T) = L(T ′) \{u′

i | i ∈ {1, . . . , z}} and R(T) = R(T ′) ∪{u′
i |

i ∈ {1, . . . , z}}. Therefore, G admits a strict connection tree T for W such that |L(T)| = |L(T ′)|− z = |L(T ′)|−min{|L(T ′)|, λ} ≤
� and |R(T)| = |R(T ′)| + z = |R(T ′)| + min{|L(T ′)|, λ} ≤ r. �

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 39
Proposition 4. Let G = (V , E) be a cograph such that G = G1 ∧G2 , V (G1) �⊂ W , V (G1) ∩ W �= ∅, V (G2) �⊂ W and V (G2) ∩ W �=∅.
Given � ≥ 0 and r ≥ 1, we can in polynomial-time obtain a strict connection tree T for W such that |L(T)| ≤ � and |R(T)| ≤ r, or
conclude that such a tree does not exist.

Proof. First, consider r = 1. By a Turing reduction to the problem of finding vertex-disjoint paths with minimum total cost,
we can in polynomial-time obtain a strict connection tree T of G for W such that |L(T)| ≤ � and |R(T)| = 1, or conclude
that such a tree does not exist [29].

Thus, hereinafter, assume that r ≥ 2 and that G does not admit a strict connection tree T for W such that |L(T)| ≤ � and
|R(T)| ≤ 1. Consequently, assume also that |W | ≥ 4. There are two cases to be analyzed.

Case 1: |V (G1) ∩ W | = 1.

In this case, we can additionally assume that � = 0 and NG1 (w) = ∅, where w is the only vertex in V (G1) ∩ W . Indeed,
suppose that � ≥ 1. Then, for v ∈ V (G1) \ W and v ′ ∈ V (G2) \ W , we have that the graph T , where V (T) = W ∪ {v, v ′} and
E(T) = {v v ′, v ′w} ∪ {v w ′ | w ′ ∈ V (G2) ∩ W }, is a strict connection tree of G for W such that L(T) = {v ′} and R(T) = {v}.
Now, suppose that NG1 (w) �=∅, and let v ∈ NG1 (w). Note that, NG(v) ⊇ W . Consequently, G admits a strict connection tree
for W without linkers and with at most one router. For example, the graph T , where V (T) = W ∪ {v} and E(T) = {v w |
w ∈ W }, is a strict connection tree of G for W such that L(T) = ∅ and R(T) = {v}. Thus, we assume hereinafter that � = 0
and NG1 (w) = ∅.

If NG2 (w ′) \W �= ∅ for some terminal w ′ ∈ V (G2) ∩W , then G admits a strict connection tree T for W such that |L(T)| =
0 and |R(T)| = 2. Indeed, for v ′ ∈ NG2 (w ′) \ W and v ∈ V (G1) \ W , we have that the graph T , where V (T) = W ∪ {v, v ′}
and E(T) = {v v ′, v ′w, v ′w ′} ∪ {v w ′ | w ′ ∈ (V (G2) ∩ W) \ {w ′}}, is a strict connection tree for W such that L(T) = ∅ and
R(T) = {v, v ′}. Thus, assume that, for every vertex w ′ ∈ V (G2) ∩ W , NG2 (w ′) \ W = ∅.

Note that, if r = 2 or |V (G2) ∩ W | = 3, then G does not admit a strict connection tree for W without linkers and with at
most r routers. Suppose for purposes of contradiction that it is not true, and let T be such a tree. Since NG1 (w) =∅, the only
neighbor of w in T is a non-terminal vertex v ′ ∈ V (G2) \ W . However, if r = 2, then |R(T)| = 2; and if |V (G2) ∩ W | = 3,
then |R(T)| ≤ |W | − 2 = 2 (see Proposition 2). Consequently, T has at most two non-terminal vertices, being v ′ one of
those vertices. Thus, v ′ is adjacent to at most one non-terminal vertex in T , and so its degree in T is at most 2, since
NG2 (v ′) ∩ W = ∅. Therefore, G does not admit a strict connection tree for W without linkers and with at most r routers.
Similarly, it is easy to see that G does not admit such a tree if |V (G1) \ W | = 1. Hence, assume that r ≥ 3, |V (G2) ∩ W | ≥ 4
and |V (G1) \ W | ≥ 2.

Let v1, v2 ∈ V (G1) \ W and v ′ ∈ V (G2) \ W . Also, let 〈w ′
1, w

′
2, . . . , w

′
n2

〉 be an arbitrary ordering of the vertices
belonging to V (G2) ∩ W , where n2 = |V (G2) ∩ W |. Then, the graph T , where V (T) = W ∪ {v1, v2, v ′} and E(T) =
{v1 v ′, v2 v ′, v1 w ′

1, v2 w ′
2, v

′w ′} ∪ {v2 w ′
i | i ∈ {3, . . . , n2}}, is a strict connection tree for W such that L(T) = ∅ and R(T) =

{v1, v2, v ′}. Therefore, G admits a strict connection tree T for W such that |L(T)| = 0 = � and |R(T)| = 3 ≤ r.

Case 2: |V (G1) ∩ W | ≥ 2 and |V (G2) ∩ W | ≥ 2.

Let v ∈ V (G1) \ W and v ′ ∈ V (G2) \ W . Then, the graph T , where V (T) = W ∪ {v, v ′} and E(T) = {v v ′} ∪ {v w ′ | w ′ ∈
V (G2) ∩ W } ∪ {v ′w | w ∈ V (G1) ∩ W }, is a strict connection tree for W such that L(T) = ∅ and R(T) = {v, v ′}. Therefore, in
this case, G always admits a strict connection tree T for W such that |L(T)| = 0 and |R(T)| = 2.

To conclude the proof of this proposition, note that all operations described above can be computed in time polynomial
in n. �

An important property of cographs is that every cograph G can be uniquely represented by a rooted tree TG , called
cotree, such that (1) the leaves of TG correspond to the vertices of G; and, (2) each internal node u of TG corresponds
to either the disjoint union or the join of the cographs induced by the leaves of the subtrees of T G rooted at each child
of u [33]. Throughout this section, we assume without loss of generality that a cotree is a binary tree. Thus, the cotree TG

of a cograph G can be viewed as the tree corresponding to the unique decomposition of G as the trivial graph K1, or either
the join or the union of two other cographs. Another important property is the fact that the recognition of a given graph G
as a cograph, as well as obtaining its respective cotree (if any), can be performed in time linear in n and m [35].

Theorem 8. S-TCP is polynomial-time solvable if it is restricted to cographs.

Proof. Let I = (G, W , �, r) be an instance of S-TCP, where G = (V , E) is a cograph, and let TG be the cotree of G . We define
a dynamic programming table M such that: for each node u′ of TG and for each pair of non-negative integers �′ and r′ , with
�′ + r′ < |V (Gu′) \ W |, there is an entry M[Gu′ , �′, r′] which is set true if and only if V (Gu′) ∩ W �=∅ and Gu′ admits a strict
connection tree for V (Gu′) ∩ W with at most �′ linkers and at most r′ routes, where Gu′ denotes the cograph associated
with the subtree of TG rooted at u′ .

40 A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41
Facts 3 and 4, Lemmas 6 and 7 and Proposition 4 are used to fill M and, thus, decide whether G admits a strict
connection tree for W with at most � linkers and at most r routers. More specifically, M[G, �, r] is defined on the basis of
the following rules:

M[G, �, r] :=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

case 1. |V ∩ W | ≤ 2 or r = 0 :
true if |V ∩ W | = 1,

true if V ∩ W = {w1, w2} and distG(w1, w2) ≤ � + 1,

false otherwise;⎡
⎢⎣

case 2. G = G1 ∪ G2 :
M[G1, �, r] if V (G2) ∩ W = ∅,

false otherwise;[
case 3. G = G1 ∧ G2 and V (G1) = W :
true;⎡

⎢⎣
case 4. G = G1 ∧ G2, V (G1) ⊂ W and V (G2) ∩ W = {w} :
true if NG2(w) �= ∅,

false otherwise;
⎡
⎢⎢⎢⎣

case 5. G = G1 ∧ G2, V (G1) ⊂ W and V (G2) ∩ W = {w ′
1, w ′

2} :
true if distG ′

2
(w ′

1, w ′
2) < � + min{r,n1} + 1,

false otherwise,

where G ′
2 = G2 − w ′

1 w ′
2 and n1 = |V (G1)|;⎡

⎢⎢⎢⎢⎣
case 6. G = G1 ∧ G2, V (G1) ⊂ W and |V (G2) ∩ W | ≥ 3 :

min{r−1,n1}∨
λ=0

M[G2, � + λ, r − λ],

where n1 = |V (G1)|;⎡
⎢⎣

case 7. G = G1 ∧ G2, V (Gi) �⊂ W , V (Gi) ∩ W �= ∅,∀i ∈ {1,2} :
Alg(G, W , �, r),

where Alg denotes the algorithm described in Proposition 4.

Note that, the size of M is O
(
n3

)
. Furthermore, one may verify that each entry of M can be computed in time poly-

nomial in n, in a bottom-up manner according to the post-order traversal of TG . Regarding the correctness of the dynamic
programming algorithm, case 1 can be easily verified cf. [29]; case 2 derives from Fact 3; case 3 and 4 derive from Fact 4;
case 5 derives from Lemma 6; case 6 derives from Lemma 7; and case 7 clearly derives from Proposition 4. �
6. Conclusions and open problems

We have presented several complexity results for S-TCP (see Table 1). Nonetheless, the complexity of the problem remains
unknown on some particular cases. Thus, to conclude this work, three open questions are highlighted.

(i) Is S-TCP parameterized by r in XP?
(ii) Is S-TCP parameterized by � in FPT when � = 3?

(iii) Is S-TCP parameterized by |W | in FPT? And if r and � are parameters?

Although Steiner tree parameterized by |W | is in FPT [10], it is not clear that S-TCP parameterized by |W |, or even
parameterized by r and �, is also in FPT.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

A.A. Melo et al. / Journal of Computer and System Sciences 111 (2020) 22–41 41
References

[1] M.C. Dourado, R.A. Oliveira, F. Protti, U.S. Souza, Design of connection networks with bounded number of non-terminal vertices, in: Proceedings of V
Latin-American Workshop on Cliques in Graphs, in: Matemática Contemporânea, vol. 42, SBM, Buenos Aires, 2014, pp. 39–47.

[2] M.C. Dourado, R.A. Oliveira, F. Protti, U.S. Souza, Conexão de terminais com número restrito de roteadores e elos, in: Proccedings of XLVI Simpósio
Brasileiro de Pesquisa Operacional, 2014, pp. 2965–2976.

[3] G. Lin, G. Xue, On the terminal Steiner tree problem, Inf. Process. Lett. 84 (2) (2002) 103–107.
[4] R.M. Karp, Reducibility Among Combinatorial Problems, Springer US, Boston, MA, 1972, pp. 85–103.
[5] M.R. Garey, D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32 (4) (1977) 826–834.
[6] K. White, M. Farber, W. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1) (1985) 109–124.
[7] H. Müller, A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theor. Comput. Sci. 53 (2–3) (1987)

257–265.
[8] A. D’Atri, M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (3) (1988) 521–538.
[9] C.J. Colbourn, L.K. Stewart, Permutation graphs: connected domination and Steiner trees, Discrete Math. 86 (1–3) (1990) 179–189.

[10] S.E. Dreyfus, R.A. Wagner, The Steiner problem in graphs, Networks 1 (3) (1971) 195–207.
[11] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius: fast subset convolution, in: Proceedings of the Thirty-Ninth Annual ACM Sympo-

sium on Theory of Computing, STOC ’07, Association for Computing Machinery, New York, NY, USA, 2007, pp. 67–74.
[12] M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Kernelization hardness of connectivity problems in d-degenerate graphs, Discrete Appl. Math.

160 (15) (2012) 2131–2141.
[13] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion, Algorithmica 65 (4) (2013) 868–884.
[14] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[15] F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, vol. 53, Elsevier, 1992.
[16] F. Hwang, A linear time algorithm for full Steiner trees, Oper. Res. Lett. 4 (5) (1986) 235–237.
[17] C.L. Lu, C.Y. Tang, R.C.-T. Lee, The full Steiner tree problem, Theor. Comput. Sci. 306 (1–3) (2003) 55–67.
[18] A. Biniaz, A. Maheshwari, M. Smid, On the hardness of full Steiner tree problems, J. Discret. Algorithms 34 (2015) 118–127.
[19] H. Fernau, T. Fluschnik, D. Hermelin, A. Krebs, H. Molter, R. Niedermeier, Diminishable parameterized problems and strict polynomial kernelization,

in: Sailing Routes in the World of Computation. Proceedings of 4th Conference on Computability in Europe, in: Lecture Notes in Computer Science,
vol. 10936, Springer, 2018, pp. 161–171.

[20] R. Khandekar, G. Kortsarz, Z. Nutov, On some network design problems with degree constraints, J. Comput. Syst. Sci. 79 (5) (2013) 725–736.
[21] B. Fuchs, A note on the terminal Steiner tree problem, Inf. Process. Lett. 87 (4) (2003) 219–220.
[22] D.E. Drake, S. Hougardy, On approximation algorithms for the terminal Steiner tree problem, Inf. Process. Lett. 89 (1) (2004) 15–18.
[23] F.V. Martinez, J.C. de Pina, J. Soares, Algorithms for terminal Steiner trees, Theor. Comput. Sci. 389 (1) (2007) 133–142.
[24] Y.H. Chen, An improved approximation algorithm for the terminal Steiner tree problem, in: Proceedings of International Conference on Computational

Science and Its Applications, Springer, Berlin, Heidelberg, 2011, pp. 141–151.
[25] A. Biniaz, A. Maheshwari, M. Smid, On full Steiner trees in unit disk graphs, Comput. Geom. 48 (6) (2015) 453–458.
[26] L. Gargano, M. Hammar, P. Hell, L. Stacho, U. Vaccaro, Spanning spiders and light-splitting switches, Discrete Math. 285 (1) (2004) 83–95.
[27] D. Watel, M.-A. Weisser, C. Bentz, D. Barth, Steiner problems with limited number of branching nodes, in: Proceedings of 20th International Colloquium

on Structural Information and Communication Complexity, in: Lecture Notes in Computer Science, vol. 8179, Springer-Verlag Inc., New York, 2013,
pp. 310–321.

[28] D. Watel, M.-A. Weisser, C. Bentz, D. Barth, Directed Steiner trees with diffusion costs, J. Comb. Optim. 32 (4) (2016) 1089–1106.
[29] A.A. Melo, C.M.H. Figueiredo, U.S. Souza, Connecting terminals using at most one router, in: Proceedings of VII Latin-American Workshop on Cliques in

Graphs, in: Matemática Contemporânea, vol. 45, SBM, 2017, pp. 49–57.
[30] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1–3) (1996) 291–298.
[31] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Cross-composition: a new technique for kernelization lower bounds, CoRR, arXiv:1011.4224 [abs].
[32] H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math. 28 (1) (2014) 277–305.
[33] D.G. Corneil, H. Lerchs, S.L. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (3) (1981) 163–174.
[34] S. Jia, L. Gao, Y. Gao, J. Nastos, Y. Wang, X. Zhang, H. Wang, Defining and identifying cograph communities in complex networks, New J. Phys. 17 (1)

(2015) 013044.
[35] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (4) (1985) 926–934.

http://refhub.elsevier.com/S0022-0000(18)30764-5/bib446F757261646F3230313461s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib446F757261646F3230313461s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib646F757261646F32303134s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib646F757261646F32303134s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6C696E32303032s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6B61727031393732s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib67617265793139373761s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib776869746531393835s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6D756C6C657231393837s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6D756C6C657231393837s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib646174726931393838s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib636F6C626F75726E31393930s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4472657966757331393731s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib426A6F726B6C756E6432303037s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib426A6F726B6C756E6432303037s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib435947414E3230313232313331s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib435947414E3230313232313331s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4E656465726C6F6632303133s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib637967616E32303135s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6877616E6731393932s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4857414E4731393836323335s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6C7532303033s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib42494E49415A32303135313138s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4665726E617532303138434345s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4665726E617532303138434345s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4665726E617532303138434345s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4B48414E44454B415232303133373235s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib465543485332303033323139s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4452414B45323030343135s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4D415254494E455A32303037313333s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4368656E32303131s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4368656E32303131s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib42494E49415A32303135343533s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib47617267616E6F32303034s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib776174656C32303133s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib776174656C32303133s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib776174656C32303133s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib776174656C32303135s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4D656C6F32303137s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4D656C6F32303137s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib6D756C6C657231393936s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib426F646C61656E64657232303130s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib426F646C61656E64657232303134s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib636F726E65696C31393831s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4A696132303135s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib4A696132303135s1
http://refhub.elsevier.com/S0022-0000(18)30764-5/bib636F726E65696C31393835s1

	A multivariate analysis of the strict terminal connection problem
	1 Introduction
	2 Bounded maximum degree dichotomy
	2.1 Hardness results
	2.2 Tractable case: maximum degree 3 and bounded number of linkers

	3 Using l, r and Δ as parameters
	4 The split graph case
	5 The cograph case
	6 Conclusions and open problems
	References

