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A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A 
tessellation cover of a graph is a set of tessellations that covers all of its edges, and the 
tessellation cover number is the size of the smallest tessellation cover. These concepts are 
motivated by their application to quantum walk models, in special, the evolution operator 
of the staggered model is obtained from a graph tessellation cover. We show that the 
minimum between the chromatic index of the graph and the chromatic number of its 
clique graph, which we call chromatic upper bound, is tight with respect to the tessellation 
cover number for star-octahedral and windmill graphs; whereas for (3, p)-extended wheel 
graphs, the tessellation cover number is 3 and the chromatic upper bound is 3p. The 
t-tessellability problem aims to decide whether there is a tessellation cover of the 
graph with t tessellations. Using graph classes whose tessellation cover numbers achieve 
the chromatic upper bound, we obtain that t-tessellability is polynomial-time solvable 
for bipartite, {triangle, proper major}-free, threshold, and diamond-free K -perfect graphs; 
whereas is NP-complete for triangle-free for t ≥ 3, unichord-free for t ≥ 3, planar for t =
3, biplanar for t ≥ 3, chordal (2, 1)-graphs for t ≥ 4, (1, 2)-graphs for t ≥ 4, and diamond-
free with diameter at most five for t = 3. We improve the complexity of 2-tessellability

problem to linear time.
© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Random walks play an important role in Computer Science mainly in the area of algorithms and it is expected that quan-
tum walks, which are the quantum counterpart of random walks, will play at least a similar role in Quantum Computation. 
In fact, the interest in quantum walks has grown considerably in the last decades, especially because they can be used to 
build quantum algorithms that outperform their classical counterparts [2].

Recently, the staggered quantum walk model [3] was proposed. This model is defined by an evolution operator, which is 
described by a product of local unitary matrices obtained from a graph tessellation cover. A tessellation is a partition of the 

✩ An extended abstract was presented in LATIN 2018, The 13th Latin American Theoretical Informatics Symposium [1].
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Fig. 1. The spreading of a walker subject to locality across a 2-tessellable graph. At each step, the walker may be observed at filled vertices that represent 
non-zero amplitudes, meaning that a measurement of the position can reveal the walker at one of those vertices. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

vertices of a graph into vertex disjoint cliques, and a tessellation cover is a set of tessellations so that the union covers the 
edge set of the graph. To cover the entire edge set is important because an edge that would not be in the tessellation cover 
would play no role in the quantum walk dynamics. In order to fully understand the possibilities of the staggered model, it is 
fundamental to introduce the t-tessellability problem. This problem aims to decide whether a given graph can be covered 
by t tessellations.

The simplest evolution operators are the product of few local unitary matrices and, to obtain a non-trivial quantum 
walk, at least two matrices (corresponding to 2-tessellable graphs) are required [3]. There is a recipe to build a local unitary 
matrix based on a tessellation. Each clique in a tessellation is associated with a unit vector, and the set of those unit 
vectors spans a subspace of the model’s Hilbert space. A subspace has an associated orthogonal projection �, which is 
used to define the local unitary operator (2� − I) associated with the tessellation. Each clique of the partition establishes 
a neighborhood around which the walker can move under the action of the local unitary matrix. The evolution operator 
of the quantum walk is the product of the unitary operators associated with the tessellations of a tessellation cover. Fig. 1
depicts an example of how a quantum walker could spread across the vertices of a graph, given a particular tessellation 
cover, where the filled vertices represent that the probability of finding the walker is non-zero. Note that after each step 
the walker spreads across the cliques in the corresponding tessellation.

The study of tessellations in the context of Quantum Computing was proposed by Portugal et al. [3] with the goal 
of obtaining the dynamics of quantum walks. Portugal analyzed the 2-tessellable case in [4], showing that a graph is 
2-tessellable if and only if its clique graph is bipartite, and examples for the t-tessellable case are available in [5]. The 
present paper is the first systematic attempt to study the graph tessellation cover as a branch of Graph Theory. Our aim is 
the study of graph classes whose tessellation cover number is close or equal to chromatic upper bounds, efficient algorithms, 
and hardness.

In Section 2, we establish a chromatic upper bound as the minimum between the chromatic index of the graph and 
the chromatic number of its clique graph, and we present infinite families of star-octahedral graphs and windmill graphs, 
showing that this bound is tight. We also present the infinite family of extended wheel graphs whose tessellation cover 
number is far from the chromatic upper bound. We describe the tessellation cover number for the classes of bipartite 
graphs and {triangle, proper major}-free graphs, and we prove that t-tessellability for these classes is polynomial-time 
solvable, while is NP-complete for triangle-free graphs, when t ≥ 3. In Section 3, we present extremal graph classes, i.e., 
classes whose tessellation cover numbers reach the chromatic upper bound. Such classes are useful to establish hardness 
results in Section 4. We obtain proofs of NP-completeness for t-tessellability problem of planar graphs for t = 3, biplanar 
graphs for t ≥ 3, chordal (2, 1)-graphs for t ≥ 4, (1, 2)-graphs for t ≥ 4, and diamond-free graphs with diameter at most 
five for t = 3. Moreover, we describe a linear-time algorithm for 2-tessellability by improving the algorithm proposed by 
Peterson [6] for line graph of bipartite multigraph recognition. In Section 5, we summarize in Table 1 the extremal graph 
classes analyzed in Section 2.2 and in Section 3, whereas in Table 2 the complexity of the t-tessellability problem for 
the graph classes analyzed in Section 4. Moreover, we leave open questions and discuss future work, such as whether 
every minimum tessellation cover contains tessellations with at least one maximum clique, and whether two minimum 
tessellation covers in a same graph have different quantum walk dynamics.

2. Preliminaries on the tessellation cover number

In this section, we present the main definitions of this paper, we introduce the chromatic upper bound, and we show 
that this bound is tight by presenting infinite families of graphs whose tessellation cover numbers achieve this chromatic 
upper bound. On the other hand, we present an infinite family of graphs whose tessellation cover number is far from the 
chromatic upper bound.

2.1. Definitions and upper bounds

A clique is a subset of vertices of a graph such that its induced subgraph is complete, and a d-clique is a clique of size 
d. The size of a maximum clique of a graph G is denoted by ω(G). The clique graph K (G) is the intersection graph of the 
maximal cliques of G . A partition of the vertices of a graph into cliques is a collection of vertex disjoint cliques, where the union 
of these cliques is the vertex set. Clique graphs play a central role in tessellation covers. See [7] for an extensive survey on 
clique graphs and [8] for omitted graph theory terminologies.

Definition 1. A tessellation T is a partition of the vertices of a graph into cliques. An edge belongs to the tessellation T if 
and only if its endpoints belong to the same clique in T . The set of edges belonging to T is denoted by E(T ).
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Definition 2. Given a graph G with edge set E(G), a tessellation cover of size t of G is a set of t tessellations T1, ..., Tt , 
whose union ∪t

i=1 E(Ti) = E(G). A graph G is called t-tessellable if there is a tessellation cover of size at most t . The
t-tessellability problem aims to decide whether a graph G is t-tessellable. The tessellation cover number T (G) is the size of 
a smallest tessellation cover of G .

A coloring (resp. an edge-coloring) of a graph is a labeling of the vertices (resp. edges) with colors such that no two 
adjacent vertices (resp. adjacent edges) have the same color. A k-colorable (resp. k-edge-colorable) graph is the one which 
admits a coloring (resp. an edge-coloring) with at most k colors. The chromatic number χ(G) (resp. chromatic index χ ′(G)) of 
a graph G is the smallest number of colors needed to color the vertices (resp. edges) of G .

Note that an edge-coloring of a graph G induces a tessellation cover of G . Each color class induces a partition of the 
vertex set into disjoint cliques of size two (vertices incident to edges of that color) and cliques of size one (vertices not 
incident to edges of that color), which forms a tessellation. Moreover, a coloring of K (G) induces a tessellation cover of G . 
As presented in [5], two vertices of the same color in K (G) correspond to disjoint maximal cliques of G and every edge of 
G is in at least one maximal clique. So, each color in K (G) defines a tessellation in G by possibly adding cliques of size one 
(vertices that do not belong to the maximal cliques of G related to vertices of K (G) with that color), such that the union 
of these tessellations is the edge set of G . Hence, we have the chromatic upper bound, denoted by cub(G), as the minimum 
between χ ′(G) and χ(K (G)).

Theorem 1. If G is a graph, then T (G) ≤ cub(G) = min{χ ′(G), χ(K (G))}.

Portugal [4] characterized the 2-tessellable graphs as those whose clique graphs are bipartite graphs. Note that if K (G)

is bipartite, then χ(K (G)) = 2, while χ ′(G) may be arbitrarily large due to the fact that this parameter is related to the 
maximum degree �(G). In order to characterize t-tessellable graphs, for t ≥ 3, we find graph classes such that T (G) = 3, 
with χ ′(G) and χ(K (G)) arbitrarily large, and graph classes whose tessellation cover number reaches the chromatic upper 
bound of Theorem 1, i.e., T (G) = χ ′(G) but χ(K (G)) arbitrarily large; and T (G) = χ(K (G)) but χ ′(G) arbitrarily large, some 
of those examples were described in [5], and further developed in Section 2.2.

An interesting case occurs for a triangle-free graph. Note that any of its tessellations can only be formed by cliques 
of size two or one. Hence, we have that if G is a triangle-free graph, then T (G) = χ ′(G) = χ(K (G)) = χ(L(G)), 
where L(G) is the line graph of G . Therefore, t-tessellability is polynomial-time solvable for bipartite graphs and for 
{triangle, proper major}-free graphs, and there are also polynomial-time algorithms to obtain a minimum tessellation cover 
for these graph classes [9,10]. On the other hand, it is known that �-edge colorability of triangle-free graphs for � ≥ 3
is NP-complete [11]. Therefore, t-tessellability of triangle-free graphs for t ≥ 3 is also NP-complete. Similarly, we know 
that �-edge colorability of regular unichord-free graphs with girth at least 15 for � ≥ 3 is NP-complete [12]. As this 
graph class is triangle-free, we conclude that the same hardness proof holds for t-tessellability for t ≥ 3.

2.2. Three infinite families

We present three infinite families of graphs G that illustrate some interesting situations: (i) T (G) = χ ′(G) with χ(K (G))

arbitrarily large; (ii) T (G) = χ(K (G)) with χ ′(G) arbitrarily large; and (iii) T (G) = 3 with both upper bounds arbitrarily 
large. Note that the first two situations are illustrated by families of graphs whose tessellation cover numbers achieve the 
chromatic upper bound.

A coalescence [13] of disjoint graphs G1 and G2 is obtained by identifying a vertex of G1 with another vertex of G2. 
The first family of star-octahedral graphs G p is the coalescence of the graphs S2p and O p — where S2p is the star graph 
with 2p leaves and O p is the p dimensional octahedral graph defined by the (2p − 2)-regular graph with 2p vertices — by 
identifying a leaf of S2p into any vertex of O p . Fig. 2 depicts the star-octahedral graph G4.

Next, we establish that the tessellation cover number of star-octahedral graph G p is equal to its chromatic index.

Theorem 2. Let G p be a star-octahedral graph. Then:

1. T (G p) = �(G p) = χ ′(G p) = χ(K (G p)) = 2p, for p ∈ {2, 3}, and;
2. T (G p) = �(G p) = χ ′(G p) = 2p and χ(K (G p)) = 2p−1 + 1, for p ≥ 4.

Proof. We know that the clique graph of the octahedral graph O p is the octahedral graph O 2p−1 [14]. Moreover, as the 
star-octahedral graph has only one vertex with maximum degree, we know that χ ′(G p) = 2p. The tessellation cover number 
of S2p is equal to 2p, hence T (G p) ≥ 2p. The proof is divided into two cases:

1. Consider p = 2. We know that K (O 2) = O 2 and K (S4) = K4, which are induced subgraphs of K (G2). Since G2 has 
a vertex v ∈ V (S4) identified with a vertex of O 2, it follows that K (G2) has a vertex u ∈ V (K (S4)) that is a neighbor of 
two vertices of K (O 2). Hence, the largest maximal clique of K (G2) has size 4, and χ(K (G2)) = 2p = 4. Moreover, �(G2) =
�(S4) = χ ′(G2) = 2p = 4. Then, from Theorem 1, it follows that T (G2) = χ ′(G2) = χ(K (G2)) = 2p. The proof is analogous 
for p = 3.



178 A. Abreu et al. / Theoretical Computer Science 801 (2020) 175–191
Fig. 2. (a) The star-octahedral graph G4, i.e., the coalescence between the octahedral graph O 4 and the star graph S8. (b) The clique graph K (G4). Notice 
that T (G4) = χ ′(G4) = 8, while χ(K (G4)) = 9.

Fig. 3. The windmill graph Wd3,5, composed by 5 copies of the complete graph K3. Notice that this graph has T (W3,5) = χ(K (Wd3,5)) = 5, since its clique 
graph K (Wd3,5) is the complete graph K5.

2. Notice that each vertex of O p belongs to 2p−1 maximal cliques. Since G p has a vertex v ∈ V (S2p) identified with a 
vertex of O p , it follows that v belongs to 2p−1 + 1 maximal cliques. Hence, χ(K (G p)) ≥ ω(K (G p)) ≥ 2p−1 + 1. One can 
obtain a (2p−1 + 1)-coloring of K (G p) as displayed in Fig. 2(b). Hence, χ(K (G p)) = 2p−1 + 1.

As �(G p) = �(S2p) = 2p, then χ ′(G p) = 2p. From Theorem 1, it follows that T (G p) ≤ min{χ ′(G p), χ(K (G p))} =
χ ′(G p) = 2p, since 2p ≤ 2p−1 +1 for p ≥ 4. As T (S2p) = χ ′(S2p) = 2p ≤ T (G p), we conclude that T (G p) = χ ′(G p) = 2p. �

The second family of windmill graphs Wdp,q is obtained by identifying q copies of the complete graph K p at a universal 
vertex. Note that T (Wdp,q) = χ(K (Wdp,q)) = q for p ≥ 2 and χ ′(Wdp,q) = (p − 1)q [5]. Fig. 3 depicts an example of the 
windmill graph Wd3,5, that is composed by 5 copies of the complete graph K3. Clearly, its clique graph K (Wd3,5) is a 
complete graph K5, then χ(K (Wd3,5)) = 5, which is equal to the tessellation cover number of Wd3,5. On the other hand 
χ ′(Wd3,5) = 10.

The third family of (k, p)-extended wheel graphs Ek,p , for k ≥ 3 and p ≥ 2, is defined by adding to the wheel graph 
Wkp (defined by a cycle Ckp , V (Ckp) = {0, 1, 2, . . . , kp − 1}, after adding a universal vertex with label kp.) the following 
edges: {ki, kj}, {ki + 1, kj + 1}, ..., {ki + k − 1, kj + k − 1}, for 0 ≤ i < j < p. When focusing on the case k = 3, we show 
that T (E3,p) = 3, χ ′(G) = 3p, and χ(K (E3,p)) = 3p + 3. The class E3,p comprises 3-tessellable graphs with arbitrarily large 
chromatic index, whose clique graphs have arbitrarily large chromatic numbers. It shows that the tessellation cover number 
does not necessarily depend neither on χ ′(G) nor on χ

(
K (G)

)
.

Lemma 1. The maximal cliques of E3,p are 3-cliques or (p + 1)-cliques. The number of maximal cliques is 3p + 3. The maximal cliques 
are the 3-cliques of the spanning wheel W3p, plus three new (p + 1)-cliques. All maximal cliques share the vertex with label 3p, which 
is the universal vertex.

Proof. Each of the 3p vertex sets {0, 1, 3p}, {1, 2, 3p}, . . . , {3p −2, 3p −1, 3p}, {3p −1, 0, 3p} is a maximal clique K3 because 
it induces a triangle of the spanning wheel graph and the vertex set {i : 0 ≤ i < 3p} contains no maximal clique of size 3 in 
E3,p .

Now consider the three sets of vertices {0, 3, 6, ..., 3p − 3, 3p}, {1, 4, 7, ..., 3p − 2, 3p}, and {2, 5, 8, ..., 3p − 1, 3p}, each 
of them with cardinality p + 1. We claim that each one is a maximal clique K p+1. Consider the set {0, 3, 6, ..., 3p − 3, 3p}
(analogous for the other ones). All vertices in this set are adjacent because every pair of vertices is either {3i, 3 j} for some 
0 ≤ i, j < p or {3i, 3p} for some 0 ≤ i < p. In the first case, these edges were added to W3p to define E3,p , and in the 
second case the edges belong to the spanning wheel graph. If a new vertex is added, it must have the form 3i + 1 or 3i + 2
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Fig. 4. An example of the (3, 2)-extended wheel graph. Notice that the tessellations applied in this graph are T1 = {{0, 3, 6}, {1, 2}, {4, 5}}, T2 =
{{1, 4, 6}, {2, 3}, {5, 0}}, and T3 = {{2, 5, 6}, {3, 4}, {0, 1}}, as described in the proof of Theorem 3.

for some 0 ≤ i < p and it will not be adjacent to all vertices of set {0, 3, 6, ..., 3p − 3, 3p}. Hence, there are three maximal 
cliques of size p + 1 in E3,p . Then, the total number of maximal cliques is 3p + 3 and all of them share the vertex with 
label 3p. �
Theorem 3. Let E3,p be a (3, p)-extended wheel graph. Then, T (E3,p) = 3 for p ≥ 2.

Proof. Let us show that E3,p is 3-tessellable by describing explicitly three tessellations that cover the edges of E3,p . The 
tessellations are the following ones:

T1 = {{0, 3, 6..., 3p − 3, 3p}, {1, 2}, {4, 5}, ..., {3p − 5, 3p − 4}, {3p − 2, 3p − 1}};
T2 = {{1, 4, 7, ..., 3p − 2, 3p}, {2, 3}, {5, 6}, ..., {3p − 4, 3p − 3}, {3p − 1, 0}};
T3 = {{2, 5, 8, ..., 3p − 1, 3p}, {3, 4}, {6, 7}, ..., {3p − 3, 3p − 2}, {0, 1}}.

Let us show that T1 is a well defined tessellation (analogous for the other ones) by checking each item of the following list: 
(1) Each vertex set in T1 must induce a clique, (2) the vertex sets in T1 must be pairwise disjoint, and (3) the union of the 
vertex sets in T1 must be the vertex set of E3,p . Item (1) holds by Lemma 1, since the set {0,3,6,...,3p-3,3p} is a clique, and 
the remaining sets define edges of the spanning wheel. Item (2) holds since the set {0, 3, 6, ..., 3p − 3, 3p} is comprised of 
vertices that are multiple of 3 while the remaining sets are disjoint and contain no multiple of 3. Item (3) holds since the 
union of the sets in T1 is the vertex set. Since no edge belongs to more than one tessellation and each tessellation covers 
p (p + 3)/2 edges, the union E(T1) ∪ E(T2) ∪ E(T3) covers 3p(p + 3)/2 edges, which is the number of edges of E3,p . It is 
not possible to cover the edges of E3,p with less than three tessellations because if T (E3,p) = 2 then χ(K (E3,p)) = 2 [3]. 
However, the chromatic number of the clique graph of E3,p is 3p + 3. Then, T

(
E3,p

) = 3 for p ≥ 2. �
Fig. 4 depicts the (3, 2)-extended wheel graph E3,2.
It is straightforward to extend those results and to prove that T (Ek,p) ≤ k, χ ′(G) = kp, and χ

(
K (Ek,p)

) = k (p + 1). 
Therefore, we are able to provide examples of classes of k-tessellable graphs with arbitrarily large chromatic index, whose 
clique graphs have arbitrarily large chromatic number for any k ≥ 3.

3. Extremal graph classes

In this section, we show extremal graph classes, by presenting constructions that force the tessellation cover number of 
some graphs to be equal to the chromatic upper bound. An extremal graph is a graph whose tessellation cover number is 
equal to the chromatic upper bound of Theorem 1. We are particularly interested in constructing graphs with tessellation 
cover number corresponding or close to the chromatic upper bound. Note that the family of star-octahedral, windmill, 
triangle-free, bipartite, {triangle, proper major}-free, and unichord-free graphs with girth at least 15, analyzed in Section 2, 
are examples of extremal graph classes. For the sake of convenience, we may omit one-vertex cliques inside tessellations in 
our proofs.

Construction 1. Let H be obtained from a graph G by adding a star with χ ′(G) leaves and identifying one of these leaves 
with a minimum degree vertex of G . See Fig. 5.

The tessellation cover number of H , obtained from Construction 1 on a non-regular graph G , is equal to χ ′(G), i.e., 
T (H) = χ ′(H) = χ ′(G). For regular graphs, if χ ′(G) = �(G) + 1, then T (H) = χ ′(H) = χ ′(G). Otherwise, T (H) = χ ′(H) =
χ ′(G) + 1. Construction 1 also implies that every non-regular graph G is a subgraph of a graph H with T (H) = χ ′(H) =
χ ′(G).

Additionally, Construction 2 in diamond-free graphs G forces the tessellation cover number of the obtained graph H to 
be equal to the chromatic number of the clique graph χ(K (G)). First, we define a property of the cliques on a tessellation 
called exposed maximal clique. Such a property helps us with particular cases of diamond-free graphs.
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Fig. 5. Example of Construction 1. T (G) = 3, and T (H) = χ ′(H) = χ ′(G) = 4.

Fig. 6. Example of a 3-tessellable graph G whose clique graph is the Mycielskian of a C5, with χ(K (G)) = 4 but T (G) = 3. Each tessellation is depicted 
separately.

Definition 3. A maximal clique K of a graph G is said to be exposed by a tessellation cover C if E(K ) � E(T ) for all T ∈ C , 
that is, the edges of K are not covered by any single tessellation of C .

Lemma 2. A graph G admits a minimum tessellation cover with no exposed maximal cliques if and only if T (G) = χ(K (G)).

Proof. Given a minimum tessellation cover C = {T1, ..., Tt} of G , if there are no exposed maximal cliques in G , then C
induces a coloring of K (G). In fact, suppose that C v is a maximal clique of G associated with vertex v ∈ V (K (G)). If C v is 
covered by tessellation Ti then v receives color ci (if Cv is covered by more than one tessellation, we have more than one 
choice for coloring v). Using the definitions of tessellation and tessellation cover, we conclude that this method produces 
a coloring of K(G) with colors c1, . . . , ct , which implies that χ(K (G)) is at most t . And Theorem 1 implies the equality 
χ(K (G)) = t = T (G).

Conversely, the proof of Theorem 1 describes a minimum tessellation cover of size t with no exposed maximal clique 
when χ(K (G)) = T (G) = t . �

In the remaining part of this section we consider diamond-free graphs, which have the following properties [6]: (1) their 
clique-graphs are diamond-free, and (2) any two maximal cliques intersect in at most one vertex.

Theorem 4. If G is a diamond-free graph with χ(K (G)) = ω(K (G)), then T (G) = χ(K (G)).

Proof. Let d = χ
(

K (G)
) = ω(K (G)). Hence, there is a complete graph Kd , where V (Kd) = {v1, ..., vd} in K (G). Let 

Cv1 , ..., Cvd be the maximal cliques in G , such that each C vi is associated with vertex vi in K (G).
Since G is diamond-free, the cliques C v1 , ..., Cvd compose an induced subgraph H and these cliques share exactly one 

vertex in G , that is universal in H , because any two maximal cliques of a diamond-free graph intersect in at most one vertex 
and each edge belongs to exactly one maximal clique. Since χ(K (G)) = d, this coloring induces a tessellation cover with d
tessellations in H , that is optimal for H , then T (G) ≥ χ(K (G)). By Theorem 1 T (G) ≤ χ(K (G)), then T (G) = χ(K (G)). �

A graph is K -perfect if its clique graph is perfect [15]. Since a diamond-free K -perfect graph G satisfies the premises 
of Theorem 4, we have T (G) = χ(K (G)). Note that the size of the clique graph of a diamond-free graph is polynomially 
bounded by the size of the original graph [6]. Moreover, there is a polynomial-time algorithm to obtain an optimal coloring 
of K (G) with ω(K (G)) colors [16] and, by Theorem 1, a coloring of K (G) with t colors yields that G is t-tessellable. Thus, 
both the tessellation cover number and a minimum tessellation cover of diamond-free K -perfect graphs are obtained in 
polynomial time.

Interestingly, there are diamond-free graphs whose clique graphs have chromatic number greater than the tessellation 
cover number. Fig. 6 illustrates an example of a 3-tessellable diamond-free graph whose clique graph has chromatic num-
ber 4 (the clique graph K (G) is the Grötzsch graph, i.e. Mycielskian of a 5-cycle graph). Note that any minimum tessellation 
cover of this graph necessarily has an exposed maximal clique. Moreover, this graph shows that the upper bound of Theo-
rem 5 is tight.

Lemma 3. Let G be a 3-tessellable diamond-free graph. If C1 and C2 are two maximal cliques of G with a common vertex, then C1 and 
C2 cannot be both exposed by a minimum tessellation cover.
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Fig. 7. Example of Construction 2. T (G) = 3 and χ(K (G)) = 4, but T (H) = 4 and χ(K (H)) = 4.

Proof. For the sake of the contradiction, assume that v ∈ V (C1 ∩ C2), and that C1 and C2 are both exposed maximal cliques. 
Since G is diamond-free, the vertex v is the only vertex in the intersection between cliques C1 and C2. Let C be a minimum 
tessellation cover with size at most 3. Let us focus on cliques of size at least two in tessellations that cover edges of C1 . 
In a tessellation, no clique of size at least two covers all edges from v to its neighbors because C1 is an exposed maximal 
clique. Then, v belongs to at least two cliques of size at least two in different tessellations, where each one covers a proper 
subset of the edges of C1. The same is true for C2, that is, v belongs to at least two cliques of size at least two in different 
tessellations, where each one covers a proper subset of the edges of C2. This means that at least four cliques of size at least 
two intersect on v and all of them must belong to different tessellations. This contradiction shows that C1 and C2 cannot 
be both exposed by a minimum tessellation cover, if G is a diamond-free graph. �
Theorem 5. If G is a diamond-free graph with T (G) = 3, then 3 ≤ χ(K (G)) ≤ 4.

Proof. By Theorem 1, we have that 3 ≤ χ(K (G)). Given a minimum tessellation cover C = {T1, T2, T3} of G , Lemma 3
implies that the set of vertices in K (G) that are associated with the exposed maximal cliques in G is a stable set in K (G). 
K (G) can be colored with four colors in the following way: the vertices in K (G) that correspond to exposed cliques have 
color c4; the vertices in K (G) that correspond to a maximal clique fully contained in Ti have color ci . This coloring shows 
that χ

(
K (G)

) ≤ 4. �
Now we present a construction which forces the tessellation cover number of a graph H , obtained from Construction 2

on a diamond-free graph G , to be T (H) = χ(K (H)) = χ(K (G)). If G has T (G) < χ(K (G)), then there is no vertex of G that 
belongs to χ(K (G)) maximal cliques. The graph H obtained from G by Construction 2 satisfies χ(K (H)) = χ(K (G)) and 
contains a vertex that belongs to χ(K (G)) maximal cliques, which implies T (H) = χ(K (G)).

Construction 2. Let H be obtained from a graph G by iteratively adding pendant vertices to a vertex of G until it belongs 
to χ(K (G)) maximal cliques. See Fig. 7.

Construction 2 implies that every diamond-free graph G is a subgraph of a graph H with T (H) = χ(K (H)) = χ(K (G)). 
Note that this construction is not restricted to diamond-free graphs and it can also be applied several times to vertices that 
only belong to one maximal clique. The hardness proofs of Theorems 8 and 9 rely on this result.

We finish this section showing that threshold graphs are extremal graphs by proving that the tessellation cover numbers 
of these graphs achieve the chromatic upper bound. The class of threshold graphs is hereditary and self-complementary [17]. 
We can describe a threshold graph as G = (C ∪ S, E), where C represents a maximum clique of G , S represents an inde-
pendent set of G with nested neighborhood, and E represents the edge set of G . Threshold graphs can be constructed from 
an empty graph by repeatedly adding either an isolated vertex or a universal vertex. Considering a connected threshold 
graph G = (C ∪ S, E), in the clique graph K (G), C is represented by vertex vC , and each maximal clique containing ver-
tices vi ∈ S, i ∈ {1, ..., |S|} is represented by a vertex v Si . Since there exists a universal vertex u ∈ V (G), there are no disjoint 
maximal cliques in G , and the clique graph K (G) is a complete graph with |S| +1 vertices. Moreover, note that its chromatic 
index χ ′(G) can be arbitrarily large.

Theorem 6. If G = (C ∪ S, E) is a connected threshold graph, then T (G) = χ(K (G)).

Proof. Since G does not have disjoint maximal cliques and its clique graph is the complete graph with size |S| + 1, then 
χ(K (G)) = |S| + 1. Hence, by Theorem 1, T (G) ≤ |S| + 1. By the fact of C is a maximal clique in G , there is no vertex v ∈ S
such that v is neighbor of all vertices in C , otherwise there would exist a maximal clique C ′ , greater than C , containing the 
clique C and the vertex v . The vertices of S in a threshold graph G must have a nested neighborhood [18]. Hence, there is 
at least one vertex w ∈ V (C) such that w is not neighbor of any vertex in S . Since G has a universal vertex u, then G has 
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Fig. 8. The 3-tessellable graph-gadget of Lemma 5. Each tessellation is depicted separately. The external vertices are a, b, c, e, j, l, n, o, and the internal 
vertices are the remaining ones.

an induced star subgraph with |S| + 1 leaves centered in u, all vertices of S and w ∈ V (C) as its leaves. Therefore, such an 
induced star requires at least |S| + 1 tessellations, i.e., T (G) ≥ |S| + 1.

We conclude that T (G) = |S| + 1 = X(K (G)). �
Since to construct and to color the complete clique graph K (G) can be done in polynomial-time for a threshold graph G , 

we conclude that t-tessellability is polynomial-time solvable.

4. Computational complexity

Now, we focus on the computational complexity of t-tessellability by firstly proving that the problem is in NP . In 
Section 4.1, we use extremal graph classes obtained in the previous section to show NP-completeness of planar graphs 
with maximum degree �(G) ≤ 6 for t = 3, biplanar graphs for t ≥ 3, chordal (2, 1)-graphs for t ≥ 4, (1, 2)-graphs for t ≥ 4, 
and diamond-free graphs with diameter at most five for t ≥ 3. In Section 4.2, we efficiently solve 2-tessellability in linear 
time.

Lemma 4. t-tessellability is in NP .

Proof. Let G be an instance for t-tessellability. If t ≥ �(G) + 1, then by Theorem 1 and the well-known Vizing’s theorem 
on �-edge colorability, the answer is always YES. When t ≤ �(G), consider a certificate for t-tessellability, which consists 
of at most t tessellations that cover the edge set E(G). Note that each of these tessellations has at most |E(G)| edges. One 
can easily verify in polynomial time if the at most |E(G)| edges in each of the at most t ≤ �(G) tessellations form disjoint 
cliques in G and if the at most |E(G)|�(G) edges in these tessellations cover E(G). �
4.1. NP-completeness

We remarked in Section 2.1 that the 3-tessellability problem is NP-complete for the triangle-free graphs. This result 
comes from the result presented by Koreas [11], who proved that �-edge colorability problem of triangle-free graphs with 
maximum degree three is NP-complete. Since �-edge colorability of unichord-free graphs with girth at least 15 (which 
are triangle-free) for � ≥ 3 is NP-complete [12], t-tessellability for t ≥ 3 is also NP-complete for this graph class.

In this section, we present the NP-completeness of the t-tessellability problem of planar graphs with maximum degree 
�(G) ≤ 6 for t = 3 in Theorem 7, biplanar graphs for t ≥ 3 in Theorem 8, chordal (2, 1)-graphs for t ≥ 4 in Theorem 9, 
(1, 2)-graphs for t ≥ 4 in Theorem 10, and diamond-free graphs with diameter at most five for t ≥ 3 in Theorem 11.

A graph is planar if it can be embedded in the plane such that no two edges cross each other. We show a polynomial 
transformation from the NP-complete 3-colorability of planar graphs with maximum degree four [9] to 3-tessellability

of planar graphs with maximum degree six.

Lemma 5. Any tessellation cover of size 3 of the graph-gadget depicted in Fig. 8 contains a tessellation that covers the middle and the 
external triangles.

Proof. Consider any tessellation cover of size 3 for the graph-gadget of Fig. 8. For the sake of the contradiction, assume that 
the triangle {a, b, d} is exposed, needing to be covered by 3 tessellations, one tessellation for each one of its edges. However, 
the remaining neighborhood of vertex d does not induce a clique, needing at least other 2 tessellations to be covered, a 
contradiction with the fact that the graph-gadget is 3-tessellable.

Now, without loss of generality, assume that the triangle {a, b, d} is covered by tessellation 1. If we cover the trian-
gle {d, g, h} with tessellation 2, we will need more two tessellations to cover the edges {d, f } and {d, i}, a contradiction. 
Therefore, we need to cover the triangle {d, f , g} with tessellation 3 and the triangle {d, i, h} with tessellation 2.
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Fig. 9. Example of Construction 3.

Now, the middle triangle {g, h, k} needs to be covered by tessellation 1, otherwise, we need the edge {g, h} in tes-
sellation 1 and as the set of vertices {g, k, m} does not induce a clique, there will be two edges to be covered in the 
neighborhood of g with only one remaining tessellation, a contradiction. Next, we need to cover the triangles { f , g, m} and 
{h, i, m} with tessellations 2 and 3, respectively.

Finally, to obtain a 3-tessellation of this graph, the other external triangles {c, f , j}, {e, i, l}, and {m, n, o} must be covered 
by tessellation 1. �
Construction 3. Let graph H be obtained from a graph G by local replacements of each vertex u of G for a graph-gadget of 
Fig. 8 denoted by u-gadget. Each edge uv of G represents the intersection of the u-gadget with the v-gadget by identifying 
two external vertices of external triangles of those graph-gadgets. See Fig. 9.

Theorem 7. 3-tessellability of planar graphs with �(G) ≤ 6 is NP-complete.

Proof. Let G be an instance graph of 3-colorability of planar graphs with �(G) ≤ 4 and H be obtained by Construction 3
on G . Notice that applying Construction 3 on a planar graph with �(G) ≤ 4 results on a planar graph with �(H) ≤ 6.

Suppose that G is 3-colorable. Then, H is 3-tessellable because the middle and the external triangles of a v-gadget can 
be covered by the tessellation related to the color of v and the remaining triangles of the v-gadget can be covered by the 
other two tessellations.

Suppose that H is 3-tessellable. Then, G is 3-colorable because the color of v in G can be related to the tessellation that 
covers the middle triangle of the v-gadget. This assignment is a 3-coloring because by Lemma 5 all external triangles of the 
v-gadget belong to the same tessellation of the middle triangle. The external triangles of the v-gadget are connected to the 
external triangles of the graph-gadgets of the neighborhood of v . Then, the tessellations of the latter external triangles must 
differ from the external triangles of the v-gadget. This implies that the neighborhood of vertex v receives different colors 
from the color of v . �

The next construction allows us to show a hardness proof of t-tessellability, with any fixed t ≥ 3 of biplanar graphs. 
A graph G = (V , E) is biplanar if we can partition the edge set E into at most two sets E1 and E2 such that G1 = (V , E1)

and G2 = (V , E2) are planar graphs. Biplanar graphs are known as graphs of thickness ≤ 2. The polynomiality of �-edge 
colorability for planar graphs with �(G) ≥ 8 suggests that t-tessellability for planar graphs might be polynomial-time 
solvable for large enough t . On the other hand, by Theorem 8, we know that t-tessellability of biplanar graphs remains 
NP-complete, even for a large value of t .

Construction 4. Let t be an integer and H be a graph obtained from a graph G as follows. Initially H is equal to G . Add a star 
St with t leaves. Add three paths P 1, P 2, and P 3 with 2|V (G)| + 1 vertices each one. Identify the first vertex in each one of 
these paths with three different leaves of St . Let V (P 1) = {p1,1, p1,2, . . . , p1,2|V (G)|+1}, V (P 2) = {p2,1, p2,2, . . . , p2,2|V (G)|+1}, 
and V (P 3) = {p3,1, p3,2, . . . , p3,2|V (G)|+1}. For each edge of type (pi,2 j+1, pi,2 j+2) (for 1 ≤ i ≤ 3 and 0 ≤ j ≤ |V (G)| − 1), add 
t −1 vertices adjacent to both endpoints of the edge and, for each of these t −1 vertices, add t −1 pendant vertices adjacent 
to it. Add a stable set U = {u1, u2, . . . , u|V (G)|} and relate each one of these vertices with V (G) = {v1, v2, . . . , v |V (G)|}. For 
each vertex uk ∈ U add the edges: (uk , p1,2k), (uk , p1,2k+1), (uk , p2,2k), (uk , p2,2k+1), (uk , p3,2k), and (uk , p3,2k+1). For each 
vertex uk ∈ U add the edge (uk, vk). For each vertex uk , add the vertices wk,m (for 1 ≤ m ≤ t − 3) adjacent to both uk and 
vk , and add t − 1 pendant vertices for each of these wk,m (for 1 ≤ m ≤ t − 3) vertices. See Fig. 10.

Theorem 8. t-tessellability of biplanar graphs for t ≥ 3 is NP-complete.

Proof. Let G be an instance graph for 3-colorability of planar graphs with �(G) ≤ 4, B be the graph obtained from 
Construction 3 on G , and H be the graph obtained from Construction 4 on B . We claim that H is t-tessellable (for t ≥ 3) if 
and only if B is 3-tessellable. Therefore, the NP-completeness follows immediately from Theorem 7.
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Fig. 10. Example of Construction 4, for t = 4. The graph H is biplanar since we can partition its edges into two planar graphs as follows. The edges of G , 
St , P 1, P 2, P 3, the triangles connected to these paths, and the pendant vertices incident to these vertices define a planar graph and the remaining edges 
(incident to vertices ui and wk,m) define other planar graph. Colors a, b, c highlight three tessellations.

Consider the case when H is t-tessellable. Let a, b, and c be three tessellations used to cover the edges of St which have 
one of their endpoints identified with P 1, P 2, and P 3, respectively. The t − 1 triangles incident to the edges (p1,2 j−1, p1,2 j), 
for 1 ≤ j ≤ |V (G)|, are not exposed since there are t − 1 pendant vertices incident to a vertex in each of the triangles, 
which force them to be covered by t − 1 tessellations. Therefore, for j = 1, the tessellation a cannot cover the corre-
sponding t − 1 triangles which implies that edge (p1,2, p1,3) must be covered by tessellation a, which in turn implies that 
all edges (p1,2 j, p1,2 j+1), for 1 ≤ j ≤ |V (G)|, must be covered by tessellation a. The same holds with tessellation b and 
edges (p2,2 j, p2,2 j+1), and tessellation c and edges (p3,2 j, p3,2 j+1) (for 1 ≤ j ≤ |V (G)|). Moreover, as the vertices p1,2 j−1
(1 ≤ j ≤ |V (G)|) are in t − 1 tessellations because the triangles incident to the edges (p1,2 j−1, p1,2 j), the triangles with ver-
tices uk, p1,2k, p1,2k+1 need to be not exposed and use the tessellation a. The same holds for tessellation b and the triangles 
with the vertices uk, p2,2k, p2,2k+1, and for tessellation c and the triangles with the vertices uk, p3,2k, p3,2k+1.

Now, as the t −3 vertices wk,m are not exposed (because they have t −1 pendant vertices incident to them), the triangles 
they are part with vertices of U and vertices of B need to be covered by a single tessellation. There are t − 3 such wk,m
vertices incident to each vertex of B and they are part of t − 3 tessellations different from a, b, and c. Therefore, all vertices 
of B are part of these t − 3 tessellations and it remains only three tessellations (a, b, and c) to cover the edges of the 
original graph B , i.e., if H is t-tessellable, then B is 3-tessellable.

Conversely, if B is 3-tessellable, we can cover the edges of the triangles in vertices wk,m with t − 3 tessellations not 
used in B . Now, we can cover the edges of triangles uk, p1,2k, p1,2k+1 with one of the three remaining tessellations a, b or 
c. Without loss of generality, let it be the tessellation a, the triangles uk, p2,2k, p2,2k+1 be covered by tessellation b and the 
triangles uk, p3,2k, p3,2k+1 be covered by tessellation c. Now we can cover the t − 1 triangles which uses the edges of type 
(p2,2 j−1, p2,2 j) (1 ≤ j ≤ |V (G)|) with the t − 1 tessellations different from the one used to cover the edges (p2,2 j, p2,2 j+1). 
The remaining edges of pendant vertices are trivially covered by the non-used tessellations. Therefore, if B is 3-tessellable, 
then H is t-tessellable. �

A graph is (k, �) if its vertex set can be partitioned into at most k stable sets and at most � cliques. Next, we show a poly-
nomial transformation from the NP-complete 3-colorability [9] to 4-tessellability of chordal (2, 1)-graphs, and then we 
generalize this proof for any fixed t ≥ 4. This proof is based on a result of Bodlaender et al. [19] for 3-L(0, 1)-colorability

of split graphs.

Construction 5. Let H be a graph obtained from a non-bipartite graph G as follows. Initially V (H) = V (G) ∪ E(G) and 
E(H) = ∅. Add edges to H so that the E(G) vertices induce a clique. For each e = v w ∈ E(G), add to H edges ve and we. 
For each vertex v ∈ V (H) ∩ V (G), add three pendant vertices adjacent to v . Add a vertex u adjacent to all E(G) vertices. 
Add three pendant vertices adjacent to u. Denote all pendant vertices by V 2. See Fig. 11.

Theorem 9. The t-tessellability of chordal (2, 1)-graphs is NP-complete, for any fixed t ≥ 4.
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Fig. 11. Example of Construction 5.

Proof. Firstly, we show that the 4-tessellability is NP-complete for chordal (2, 1)-graphs, and then, we extend to the 
cases when t ≥ 4, for any fixed t .

Let G be a non-bipartite instance graph of 3-colorability. We show that G is 3-colorable if and only if H , obtained by 
Construction 5 on G , is 4-tessellable.

Let f be a 3-coloring of G . Consider the following tessellation cover: for any vertex v ∈ V (G), cover the maximal clique 
it belongs with vertices of E(G) in H with tessellation f (v), and use tessellation 4 to cover the maximal clique of vertices 
of E(G) with vertex u. Now, cover the three pendant vertices of each vertex of V (G) and u with their 3 non incident 
tessellations. Note that all edges of H were covered and two maximal cliques between vertices of V (G) and E(G) in H can 
only share a vertex in E(G). However, if the maximal cliques of these vertices share a vertex in E(G), it means these two 
vertices are adjacent in G and, therefore, their maximal cliques are covered by different tessellations.

Conversely, consider a tessellation cover of H with 4 tessellations. We need the maximal clique given by u and the 
vertices of E(G) not be exposed. Additionally, the tessellation used to cover it cannot cover any other maximal clique 
between vertices of V (G) and E(G). Therefore, there are only three remaining tessellations to cover them.

Each vertex of V (G) in H has 4 maximum cliques incident to them sharing only one vertex. Thus, all maximal cliques 
incident to them must not be exposed. Note that if two vertices v and w of G are adjacent, then their related maximal 
cliques between vertices of V (G) and E(G) share a vertex v w . Therefore, the colors of f (v) and f (w), which are related to 
the tessellations that cover these maximal cliques, are different.

This proof holds for t-tessellability, with t ≥ 5, of chordal (2, 1)-graphs. The idea is to use the same proof considering
(t − 1)-colorability of G instead of 3-colorability, and adding the necessary number of pendant vertices to H to force all 
its maximal cliques not to be exposed.

Note that the vertices of H can be partitioned into one clique and two stable sets: The vertices in H related with E(G)

and vertex u define a clique, the vertices in H related with V (G) define a stable set, and the pendant vertices define another 
stable set. Moreover, clearly H is chordal as the induced graph by the vertices related with E(G) and V (G) is a split graph (a 
subclass of chordal graph), and the addition of pedant vertices does not create any cycles in the graph, i.e., H is chordal. �
Construction 6. Let H ′ be a graph obtained from the graphs G and H of Construction 5 by transforming the stable set S of 
H corresponding to V (G) into a clique, removing one pendant vertex of each vertex of S , and adding a vertex u′ adjacent 
to all vertices of S with three new pendant vertices adjacent to it. See Fig. 12.

Theorem 10. The t-tessellability of (1, 2)-graphs is NP-complete, for any fixed t ≥ 4.

Proof. Firstly, we show that the 4-tessellability is NP-complete for (1, 2)-graphs, and then, we extend to the cases when 
t ≥ 4, for any fixed t .

Consider the graph H ′ , obtained from Construction 6 on graph H of Theorem 9 for 4-tessellability. Clearly, H ′ is a 
(1, 2)-graph. We will show that H is 4-tessellable if and only if H ′ is 4-tessellable.

In the 4-tessellation cover given by the proof of Theorem 9, an edge of a pendant vertex of each of V (G)’s vertices is 
covered by tessellation 4 (the same tessellation of the maximal clique of u and the vertices of E(G)). Define 3 tessellations 
of H ′ using the first three tessellations of H . Now, we cover the edges in the maximal clique of V (G)’s vertices and u′ with 
tessellation 4 and the three remaining edges of the pendant vertices incident to u′ with tessellations 1, 2, and 3.

Consider a tessellation cover of H ′ with 4 tessellations. First, the maximal clique of vertices of V (G) and u′ must be 
covered by the same tessellation of the maximal clique of vertices of E(G) and u. For the sake of the contradiction, assume 
these two maximal cliques are covered by different tessellations. Therefore, now there are only two available tessellations to 
cover maximal cliques between vertices of V (G) and E(G) in H ′ . However, these maximal cliques are related to a coloring 
of vertices of G and if we could obtain a tessellation cover of them using only two colors, then G would be a bipartite 
graph (which we exclude from the 3-colorability instance graphs), a contradiction.
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Fig. 12. Example of Construction 6.

Now we obtain a tessellation cover of H with the same number of tessellations as follows. We remove the edges of the 
maximal clique of V (G) and u′ (which are all covered by the tessellation 4). Then, we remove the vertex u′ and its pendant 
vertices. Moreover, we add a pendant vertex to each vertex of V (G) with the tessellation 4 covering their edges.

This proof holds for t-tessellability with t ≥ 5 of (1, 2)-graphs considering the t-tessellability of chordal (2, 1)-graphs 
with t ≥ 5 presented in Theorem 9. Moreover, the NP-completeness of (t −1)-colorability for non-(t −2)-colorable graphs, 
for t ≥ 5, holds by the following facts: (1) an edge coloring of a graph � is equivalent to a vertex coloring of its line graph 
L(�); (2) the k-edge-colorability problem is NP-complete for any fixed k = �(�) ≥ 3 [20], and; (3) the line graph of a 
graph � is non-(�(�) − 1)-colorable because a vertex of degree �(�) of � implies a clique of size �(�) in L(�). �

Next, we show a polynomial transformation from the NP-complete problem NAE 3-SAT [9] to 3-tessellability of 
diamond-free graphs with diameter at most five. The NAE 3-SAT problem consists in finding, in a given set U of literals 
and a set C of clauses all of size three, if we can assign true/false values to each literal in U satisfying all clauses in C , with 
the restriction that in each clause at least one literal must have true value and at least one literal must have false value. 
Hereinafter, we do not consider clauses with two repeated variable, i.e., if there is a clause (v1, v1, v2), we create a new 
instance I ′ with a new variable x and exchange the previous clause for two clauses (x, v1, v2) and (x, v1, v2), such that I is 
satisfiable if and only if I ′ is satisfiable.

This proof is given in two phases: given an instance I of NAE 3-SAT we construct a graph B for which we show that 
there is a 3-coloring of B if and only if I is satisfiable; subsequently, we show that there is a construction of a diamond-free 
graph G with diameter at most five for which G is 3-tessellable if and only if K (G) is 3-colorable and K (G) is isomorphic 
to B .

Construction 7. Let B be a graph obtained from an instance of NAE 3-SAT as follows. For each variable v of I , include a P2
with vertices v and v in B . Moreover, add a vertex u adjacent to all P2’s vertices. And, for each clause {a ∨ b ∨ c} of I , add 
a triangle with vertices Ta, Tb, Tc in B and three edges aTa , bTb , and cTc . See Fig. 13.

Lemma 6. Let B be obtained from Construction 7 on a NAE 3-SAT instance I . Then B is 3-colorable if and only if I is satisfiable.

Proof. If B is 3-colorable, then there are no three vertices connected to a clause’s triangle with the same color. Moreover, 
without loss of generality, the color 1 given to the vertex u in a 3-coloring cannot be used in any vertex of a P2. Besides, 
each one of the literal vertices v and v of a P2 receives either the color 2 or 3. Assume without loss of generality that a 
literal is true if its color is 2, and false otherwise. Therefore, the above assignment of values to literals gives a satisfiable 
solution to the instance.

Conversely, if I is satisfiable, then one may assign color 2 to each literal vertex which is true and color 3 to its negation. 
Moreover, vertex u receives color 1. Since there are no three literal vertices with the same color adjacent to the clause 
triangles, one may assign colors to the vertices of the triangles in a 3-coloring where one vertex of the triangle adjacent 
to a vertex with color 2 receives color 3, and one vertex adjacent to a vertex with color 3 receives color 2. The remaining 
vertex receives color 1. �

Next, we construct a graph G whose clique graph K (G) is isomorphic to graph B obtained from Construction 7.

Construction 8. Let G be obtained from the graph B (of Construction 7), which is isomorphic to the clique graph K (G) of G , 
as follows. For each clause’s triangle in B , add a star with three leaves in G , where each of those leaves represents a literal 
of this clause. Next, all P2’s triangles in B are represented in G by a clique C of size the number of P2’s. Each vertex of this 
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Fig. 13. Example of Construction 7.

Fig. 14. Example of Construction 8, where K (G) is isomorphic to graph B (Construction 7).

clique C represents a variable of I (of Construction 7). For each vertex v of C include the edges of two other cliques (one 
for each literal of the variable v) composed by the leaves of the stars which represent the literals v and v and the vertex v
of C , as depicted in Fig. 14.

Lemma 7. Let B be obtained by Construction 7 on a NAE 3-SAT instance I and G be obtained by Construction 8 on B, such that B is 
isomorphic to K (G). Then G is 3-tessellable if and only if K (G) is 3-colorable.

Proof. If G is 3-tessellable, then we need one tessellation to cover the clique composed by the vertices related with the 
variables, whose size is the number of variables. Therefore, the other two tessellations are used by at most two maximal 
cliques of each variable, which represent their literals. Moreover, the star of three leaves of each clause also needs to be 
covered by 3 tessellations. Note that these maximal cliques represent vertices in K (G) and the tessellations represent their 
colors. Therefore, K (G) is 3-colorable.

If K (G) is 3-colorable, by Theorem 1 G is 3-tessellable. �
Clearly, the graph G obtained from Construction 8 is diamond-free with diameter at most five. Therefore, by Lemmas 6

and 7, the next theorem follows.

Theorem 11. 3-tessellability of diamond-free graphs with diameter at most five is NP-complete.

4.2. 2-tessellability

Portugal [4] showed that a graph G is 2-tessellable if and only if K (G) is a bipartite graph. Moreover, Peterson [6] showed 
that K (G) is bipartite if and only if G is the line graph of a bipartite multigraph. Hence, determine if G is 2-tessellable is 
equivalent to verifying if G is the line graph of a bipartite multigraph.

Protti and Szwarcfiter [21] showed an O (n2m) time algorithm to decide if the clique graph of a given graph is bipartite. 
Moreover, Peterson [6] showed an O (n3) time algorithm to decide if G is the line graph of a bipartite multigraph.

A vertex u is true twin of a vertex v of a graph G if u and v have the same closed neighborhood in G . The key idea of 
Peterson’s algorithm is to group true twin vertices of a same clique of a line graph G . These true twin vertices represent 
multiedges in the bipartite multigraph H , where G = L(H). Then, it removes all those true twin vertices in each group but 



188 A. Abreu et al. / Theoretical Computer Science 801 (2020) 175–191
one, and the resulting graph is a line graph of a bipartite simple graph if and only if K (G) is a bipartite graph. To verify if 
a graph is a line graph of a bipartite graph, the Roussopoulos’ linear-time algorithm is used [22].

We improve Peterson’s algorithm [6], by showing a faster way to remove true twin vertices belonging to a clique of a 
graph using its modular decomposition. Throughout this section, we use notations of modules of a graph given in [23]. In a 
graph G , a subset S of V (G) is a emphmodule if all elements of S have the same set of neighbors among vertices that are 
in V (G)\S . We say that S is a strong module if for every module S ′ , S ∩ S ′ = ∅, or S ⊆ S ′ , or S ′ ⊆ S holds. A strong module 
S � V (G) is a maximal strong module if the only strong module properly containing S is V (G).

Let F be the family of bipartite multigraphs obtained by adding multiple edges to C4, Sn or P4. In order to make a 
modular decomposition of a graph G , we only consider graphs G which are not line graphs of a graph in F . If G is a line 
graph of a graph in F , we can consider this case separately, and easily achieve linear time. Note that there are bipartite 
multigraphs with a same line graph. Therefore, we only consider the ones which maximize the number of multiple edges. 
Moreover, we only consider connected graphs, since the tessellation cover number of a disconnected graph is the maximum 
among the parameter on its connected components.

Lemma 8. Let H be a bipartite multigraph not in F and L(H) be its line graph. Two edges e1 and e2 with same endpoints in H
represent vertices in a same maximal strong module of L(H).

Proof. By hypothesis, we consider H a bipartite multigraph. Therefore, we do not consider the cases H has an induced 
cycle of odd size, including triangles and other complete graphs. For the sake of the contradiction, assume there are such 
two edges e1 and e2 of H and that its related vertices in L(H) are in different maximal strong modules M1 and M2. Since 
the vertices associated to e1 and e2 are adjacent in L(H), there are all edges between vertices of M1 and M2 in L(H).

(Case 1) Assume there is a vertex outside M1 and M2. Therefore, without loss of generality, there is a vertex e3 /∈
(M1 ∪ M2) such that e3 ∈ N(w1) for all w1 ∈ M1 and e3 /∈ N(w2) for all w2 ∈ M2, otherwise, M1 ∪ M2 would be a maximal 
strong module, a contradiction with the fact that M1 and M2 were maximal. However, e1 and e2 are multiedges with 
same endpoints of H , i.e., there cannot be another edge e3 in H which shares an endpoint with e1 but does not share one 
endpoint with e2, as e1 and e2 have the same endpoint vertices, a contradiction.

(Case 2) Assume there is no vertex outside M1 and M2, and neither M1 nor M2 induces cliques in L(H). Note that all 
vertices in M1 and M2 are adjacent to e2 and e1, respectively. Let w1 and w ′

1 be two non-adjacent vertices of M1 and w2
and w ′

2 be two non-adjacent vertices of M2. Therefore, w1 and w ′
1 are edges in H that share vertices of e2 in H , as both 

of them are non-adjacent vertices which are adjacent to e2 in L(H). Note that w2 and w ′
2 must be adjacent to w1, w ′

1, 
and e1, i.e., they must have the same endpoints as e1 and e2 in H . However, w2 and w ′

2 cannot be incident to the same 
endpoints in H since they are not adjacent in L(H), a contradiction.

(Case 3) Assume there is no vertex outside M1 and M2, and M1 or M2 induces cliques in L(H). If M1 and M2 induces 
cliques in L(H), then L(H) is a complete graph and H is a multigraph of a P2 (which is a star multigraph), a contradiction 
with the fact that H is not a graph in F . Otherwise, without loss of generality, let M1 induces a clique in L(H). Note that 
the vertices of M1 represent multiedges with same endpoints in H , since H is a bipartite multigraph that maximizes the 
number of multiple edges. Moreover, all vertices of M2 are adjacent to e1 (and to e2). Therefore, the vertices of M2 in L(H)

represent edges in H incident to one of the endpoints of e1 and e2 (and two of those edges in different endpoints do not 
share other same endpoint, or H would not be a bipartite graph). However, this is a contradiction as H is a multigraph of a 
P4 which is a graph in F . �
Lemma 9. Let H be a bipartite multigraph not in F and L(H) be its line graph. Any maximal strong module in a modular decomposition 
of L(H) with size less than |V (L(H))| induces a clique in L(H).

Proof. By hypothesis, we consider H a bipartite multigraph. Therefore, we do not consider the cases H has an induced cycle 
of odd size, including triangles and other complete graphs. For the sake of the contradiction, assume there is such strong 
module Mk of L(H), which is not a clique. Note that |Mk| ≥ 2, and since Mk does not induce a clique, then there are two 
vertices wk and w ′

k in Mk that are not adjacent. Therefore, as wk and w ′
k are not adjacent in L(H), then wk and w ′

k have 
different endpoint in H .

(Case 1) All vertices of Mk in L(H) share both endpoints in H with edges wk or w ′
k . As L(H) is connected, there is a 

vertex i outside Mk that shares one endpoint with wk and other endpoint with w ′
k . Moreover, there could be another vertex 

j outside Mk that shares one endpoint with wk and other endpoint with w ′
k different from the endpoints of i. However, all 

other vertices outside Mk must share the same endpoints of i or j, otherwise there would be an edge −k in H which shares 
an endpoint with i (or j) and did not share an endpoint with wk and w ′

k , a contradiction. Therefore, H is a multigraph of 
a C4 or a P4, which are in F , a contradiction.

(Case 2) There is a vertex of Mk in L(H) whose endpoints do not coincide with edge wk nor with edge w ′
k .

(Case 2.a) There is a vertex x of Mk that shares one endpoint with wk and the other with w ′
k in H . As L(H) is a 

connected graph, there is a vertex i outside of Mk adjacent to all vertices in Mk . Note that i must share both endpoints 
with x in H . Assume there is a vertex j such that no vertex in Mk is adjacent to j in L(H), therefore as L(H) is connected, 
there is a vertex l adjacent to all vertices of Mk , that is adjacent to a vertex l′ , where l′ is adjacent to no vertex in Mk . 
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Table 1
Extremal graph classes and tight upper bounds.

Graph class T (G) ≤ min{χ ′(G),χ(K (G))} Reference

Bipartite T (G) = χ ′(G) = �(G) Sec. 2.1
Triangle-free T (G) = χ ′(G) Sec. 2.1
Unichord-free with girth ≥ 15 T (G) = χ ′(G) = �(G) Sec. 2.1
W dp,q T (W dp,q) = χ(K (W dp,q)) = q Sec. 2.2, [5]
G p , p ∈ {2,3} T (G p) = χ ′(G p) = χ(K (G p)) = 2p Theorem 2
G p , any p T (G p) = χ ′(G p) = 2p Theorem 2
E3,p T (G) = 3 Theorem 3
Diamond-free K -perfect T (G) = χ(K (G)) = ω(K (G)) Theorem 4
Threshold T (G) = χ(K (G)) = |S| + 1 Theorem 6

However, this is a contradiction, because l shares both endpoints with i, while l′ shares one endpoint with l, but l′ does not 
share any endpoint with neither wk nor w ′

k . Therefore, all vertices outside Mk are adjacent to all vertices in Mk , and H is 
a P4 multigraph in F .

(Case 2.b) Each vertex y of Mk shares precisely one endpoint either with wk or with w ′
k in H . Note that with a similar 

reasoning of (Case 2.a) all vertices outside Mk must be adjacent to all vertices of Mk , and H is a P4 multigraph in F .
(Case 2.c) There is a vertex z of Mk that shares no endpoint with neither wk nor with w ′

k in H . As L(H) is connected, 
there is a vertex i adjacent to all vertices in Mk , however, i has only two endpoints and it must share at least one endpoint 
with all edges of z, wk and w ′

k in H , which have distinct endpoints, a contradiction. �
Theorem 12. 2-tessellability can be solved in linear time.

Proof. First, we use McConnell and Spinrad’s linear-time algorithm to obtain a modular decomposition of G . By Lem-
mas 8 and 9, we know that the strong modules in any modular decomposition of a line graph of a bipartite multigraph 
H /∈F induce cliques. Moreover, the vertices of these cliques in L(H) are related to edges of H with same endpoints.

Then, we check if each of at most O (|V (G)|) strong modules induces cliques in G , which can be done in O (|V (G)| +
|E(G)|). Otherwise, we know that G is not a line graph of a bipartite multigraph. Next, we remove all true twins vertices in 
each strong modules but one, obtaining the graph G ′ . This step is related to remove all multiedges of H which share same 
endpoints. Therefore, the graph G is a line graph of a bipartite multigraph H if the resulting graph G ′ is a line graph of a 
simple bipartite graph H ′ .

Finally, we use Roussopoulos’ linear-time algorithm to determine if G ′ is a line graph, and if so, obtain its root graph H ′
whose line graph is isomorphic to G ′ . Note that verifying if H ′ is a bipartite graph can be done in linear time by using a 
breadth-first search (because the size of the root graph of G ′ is asymptotically bounded by the size of G ′). �
5. Concluding remarks and discussion

We investigate the tessellation cover number for extremal graph classes, which are fundamental for the development of 
quantum walks in the staggered model. These results help to understand the complexity of the unitary operators necessary 
to express the evolution of staggered quantum walks. We establish tight upper bounds for the tessellation cover number of a 
graph G related to the chromatic parameters χ ′(G) and χ(K (G)), and we determine graph classes which reach these upper 
bounds. This study provides tools to distinguish several classes for which the t-tessellability problem is efficiently tractable 
(bipartite graphs, {triangle, proper major}-free graphs, diamond-free K -perfect graphs, and threshold graphs) from others 
where the problem is NP-complete for t ≥ 3 (planar graphs, triangle-free graphs, chordal (2, 1)-graphs, (1, 2)-graphs, and 
diamond-free graphs with diameter at most five). We also establish the t-tessellability NP-completeness for biplanar 
graphs. Moreover, we improve to linear-time the known algorithm to recognize line graphs of bipartite multigraphs [21], 
and consequently, for 2-tessellable graphs [4], and graphs G such that K (G) is bipartite [6]. Table 1 and Table 2 summarize 
the extremal graph classes and the complexity of the t-tessellability problem, respectively, for the graph classes studied in 
this paper.

We establish an interesting complexity dichotomy between �-edge colorability and t-tessellability: �-edge colorabil-

ity of planar graphs with �(G) ≥ 8 is in P [24], while t-tessellability for t ≥ 3 is NP-complete, (Theorem 7 replacing 
each of the four non external triangles that share two vertices of external triangles by K4’s) and; �-edge colorability of 
line graph of bipartite graphs for � ≥ 3 is NP-complete [25], while t-tessellability is in P (Theorem 12). We have not 
managed yet to establish the same dichotomy between k-colorability of clique graph and t-tessellability.

Regarding (k, �)-graph classes, since any (k, �)-graph is a (k +1, �)-graph and a (k, � +1)-graph, the NP -completeness of
t-tessellability for (1, 2)-graphs and (2, 1)-graphs imply that the problem is NP-complete for (k, �)-graphs with k + � ≥ 3
and min{k, �} ≥ 1 for t ≥ 4. We are currently working on the complexity of t-tessellability for split graphs that are a super 
class of threshold graphs of Theorem 6, (k, 0)-graphs with k ≥ 3, and (0, �)-graphs with � ≥ 2.

A question that naturally arises is whether every graph has a minimum tessellation cover such that every tessellation 
contains a maximal clique. Although we believe in most cases the answer is true, we have computationally found a surpris-
ing example of a graph, which is depicted in Fig. 15, with all minimum tessellation covers requiring a tessellation without 



190 A. Abreu et al. / Theoretical Computer Science 801 (2020) 175–191
Table 2
The complexity of the t-TESSELLABILITY problem for graph classes.

t Graph class Complexity Reference

t = 2 Generic Linear Theorem 12

t = 3 Planar, �(G) ≤ 6 NP-complete Theorem 7
Diamond-free, diameter = 5 NP-complete Theorem 11

t ≥ 3 Threshold Polynomial Sec. 3
Bipartite Polynomial Sec. 2.1
{triangle, proper major}-free Polynomial Sec. 2.1
Diamond-free K -perfect Polynomial Sec. 3
Unichord-free with girth ≥ 15 NP-complete Sec. 2.1
Triangle-free NP-complete Sec. 2.1
Biplanar NP-complete Theorem 8

t ≥ 4 Chordal (2,1)-graphs NP-complete Theorem 9
(1,2)-graphs NP-complete Theorem 10

Fig. 15. 3-tessellable graph. Rightmost tessellation does not contain a maximal clique.

maximal cliques. We are currently trying to establish an infinite family of graphs for which this property does not hold and 
to establish other graph classes where it holds. The computational verification was performed through a reduction from
t-tessellability problem to set-covering problem (the description of set-covering is available at [9]), where the finite set 
is the edge set of the input graph, and the family of subsets consists of the edge subsets corresponding to all possible 
tessellations of the input graph. Another interesting issue is that two minimum tessellation covers may present different 
quantum walk dynamics. Therefore, we intend to study the different tessellation covers using the same number of tes-
sellations, which may result in simpler quantum walks and more efficient quantum algorithms. More recently, a general 
partition-based framework for quantum walks has been proposed [26].
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