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A tessellation of a graph is a partition of its vertices into cliques. A tessellation cover of a 
graph is a set of tessellations that covers all of its edges, and the tessellation cover number, 
denoted by T (G), is the size of a smallest tessellation cover. The t-tessellability problem 
aims to decide whether a graph G has T (G) ≤ t. The number of edges of a maximum 
induced star of G , denoted by s(G), is a lower bound on T (G). In this work we define good 
tessellable graphs as the graphs G with T (G) = s(G), and we introduce the corresponding
good tessellable recognition (gtr) problem, which aims to decide whether G is a good 
tessellable graph. We show that gtr is NP-complete not only if T (G) can be obtained in 
polynomial time or s(G) is fixed, but also when the gap between T (G) and s(G) is large. 
We establish graph classes that present distinct computational complexities considering 
problems related to the parameters T (G) and s(G), and we perform a comparative study 
of the gtr, t-tessellability, and star size problems, where the star size problem aims to 
decide whether the number of edges a maximum induced star of a graph is at least a given 
number.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

It is known that there is a strong connection between the areas of graph theory and quantum computing. For instance, 
algebraic graph theory provides many tools to analyze the time-evolution of the continuous-time quantum walk, because its 
evolution operator is directly defined in terms of the graph’s adjacency matrix. Recently, a new discrete-time quantum walk 
model has been defined by using the concept of graph tessellation cover [1]. Each tessellation in the cover is associated 
with a unitary operator and the full evolution operator is the matrix product of those operators. For practical applications, 
it is interesting to characterize graph classes that admit small-sized covers. Accordingly, we establish a new lower bound on 
tessellation cover.
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Table 1
Computational complexities of star size, t-tessellability, and gtr problems and examples of 
corresponding graph classes.

Behavior
Problem

star size t-tessellability gtr Examples

(a) P NP-complete NP-complete [2,3]
(b) P NP-complete P [4]

Sec. 3
(c) NP-complete P NP-complete Sec. 2
(d) NP-complete P P Sec. 2
(e) NP-complete NP-complete P Sec. 3

Throughout this paper we only consider undirected and simple graphs. A tessellation of a graph G is a partition of its 
vertices into cliques, and each clique of a tessellation is called a tile. We say a tessellation T is incident to a vertex v if v is 
contained in a clique of size at least 2 in T . A tessellation cover of G is a set of tessellations that covers all of its edges. The 
tessellation cover number of G , denoted by T (G), is the size of a smallest tessellation cover of G . If G admits a tessellation 
cover of size t , then G is t-tessellable. The t-tessellability problem aims to decide whether G is t-tessellable. We disregard 
cliques of size one in a tessellation since they play no role in our proofs. Note that a tessellation of a graph G defines a 
clique cover of G and a coloring of Gc , the complement graph of G .

The star number, denoted by s(G), is the number of edges of a maximum induced star of G . Notice that T (G) ≥ s(G), since 
any two edges of an induced star cannot be covered by a same tessellation. We say that G is good tessellable if T (G) = s(G), 
and the good tessellable recognition (gtr) problem aims to decide whether a graph is good tessellable.

The known results about the tessellation cover number up to now were related to upper bounds on T (G) and the 
complexities of the t-tessellability problem [2–4]. Abreu et al. [2,5] verified that T (G) ≤ min{χ ′(G), χ(K (G))}, and they 
proved that t-tessellability is in P for quasi-threshold, diamond-free K -perfect graphs, and bipartite graphs. On the other 
hand, they showed that the problem is NP-complete for triangle-free graphs, unichord-free graphs, planar graphs with � ≤
6, (2, 1)-chordal graphs, (1, 2)-graphs, and diamond-free graphs with diameter at most five. Surprisingly, all the hardness 
results presented by Abreu et al. [2,5] for t-tessellability aim to decide whether t = s(G), i.e., if the instance graph is 
good tessellable. Therefore, all their NP-complete proofs for t-tessellability also hold for gtr. The only previous NP-
completeness result for t-tessellability for non good tessellable graphs was presented by Posner et al. [4] for line graphs 
of triangle-free graphs (where t = 3 and s(G) = 2).

We recently discovered that the concept of tessellation cover of graphs has been independently studied in the literature 
for a same problem, named as equivalence covering by Duchet [6] in 1979. Since the tessellation cover number T (G)

and the equivalence covering number eq(G) are the same parameter, we highlight the common results, as follows: χ ′(G)

is an upper bound for T (G) [2] and for eq(G) [7]; if G is triangle-free, then T (G) = χ ′(G) [2] and eq(G) = χ ′(G) [8]; if 
G is triangle-free, then 3-tessellability of line graphs L(G) is NP-complete [4] and to decide whether eq(G) ≤ 3 for the 
same class is NP-complete as well [8]; if G is (2, 1)-chordal, then t-tessellability is NP-complete for t ≥ 4 [2], whereas
equivalence covering is NP-complete for (1, 1)-graphs [7].

1.1. Contributions

We propose the gtr problem, which aims to decide whether a graph is good tessellable. We analyze the combined 
behavior of the computational complexity of the following problems: star size, t-tessellability, and gtr. Clearly, these 
three problems belong to NP .

star size

Instance: Graph G ,
integer k.

Question: s(G) ≥ k?

t − tessellability

Instance: Graph G ,
integer t .

Question: T (G) ≤ t?

gtr

Instance: Graph G .

Question: T (G) = s(G)?

In order to highlight our results, we define graph classes using triples that specify the computational complexities of
star size, t-tessellability, and gtr, summarized in Table 1.

All graph classes for which Abreu et al. [2] presented hardness proofs for t-tessellability obey behavior (a), since for 
those classes s(G) is a known constant and equal to some fixed value of t . (e.g. for planar graphs t = 3 and for chordal 
graphs t = 4). The graphs studied by Posner et al. [4] obey behavior (b), since for those graphs s(G) = 2 and 3-tessellability

is NP-complete. In Section 3, we present additional examples that obey behavior (b) with T (G) arbitrarily larger than 
a non fixed s(G). Graphs of Construction 2.2 (I) in Section 2 are examples that obey behavior (c), since T (G) can be 
obtained in polynomial time but star size is NP-complete for k = T (G), which implies that gtr is NP-complete. Graphs of 
Construction 2.2 (II) in Section 2 are examples that obey behavior (d), because star size is NP-complete for k = T (G) − 1, 
T (G) can be obtained in polynomial time and T (G) > s(G), which implies gtr is in P . Graphs of Construction 3.2 in 
82



A. Abreu, L. Cunha, C. de Figueiredo et al. Theoretical Computer Science 858 (2021) 81–89
Section 3 are examples that obey behavior (e), since it is known that T (G) > s(G), which implies gtr is in P , and we 
construct graphs so that star size and t-tessellability are NP-complete.

Notice that there are omitted triples in Table 1. Threshold graphs and bipartite graphs are examples of graph classes 
that obey behavior (P, P, P) [2]. Assuming that P �= NP , there are no graphs that obey behavior (P, P, NP-complete), 
since if both star size and t-tessellability are in P , so is gtr. Graph classes obtained by the union of graphs G1 and G2 so 
that G1 is in a graph class that obey behavior (a) and G2 is in a graph class that obey behavior (c) are examples satisfying 
behavior (NP-complete, NP-complete, NP-complete).

1.2. Notation and graph theory terminologies

Given a graph G = (V , E), the neighborhood N(v) (or NG(v)) of a vertex v ∈ V of G is given by N(v) = {u | uv ∈ E(G)}. 
�(G) is the size of a maximum neighborhood of a vertex of G . We say that a vertex u of G is universal if |N(u)| = |V (G)| −1. 
A graph is universal if it has a universal vertex. A clique of G is a subset of V with all possible edges between its vertices. 
An independent set of G is a subset of V with no edge between any of its vertices. A matching of G is a subset of edges 
of E without a common endpoint. A k-coloring of G is a partition of V into k independent sets. A k-clique cover of G is a 
partition of V into k cliques. A k-edge coloring of G is a partition of E into k matchings.

The parameters α(G), ω(G), and μ(G) are the size of a maximum independent set, the size of a maximum clique, and 
the size of a maximum matching of a graph G , respectively. The chromatic number χ(G) (chromatic index χ ′(G)) is the 
minimum k for which G admits a k-coloring (k-edge coloring), and the clique cover number θ(G) is the minimum k for 
which G admits a k-clique cover. Note that θ(G) = χ(Gc) and α(G) = ω(Gc), where Gc denotes the complement of G for 
which V (Gc) = V (G) and E(Gc) = {xy|x ∈ V (G), y ∈ V (G), x �= y} \ E(G). The k-colorability problem (k-edge colorability

problem) aims to decide whether a graph G has χ(G) ≤ k (χ ′(G) ≤ k). The k-independent set problem aims to decide 
whether a graph G has α(G) ≥ k.

The line graph L(G) of a graph G is the graph such that each edge of E(G) is a vertex of V (L(G)), and two vertices of 
V (L(G)) are adjacent if and only if their corresponding edges in G have a common endpoint. The clique graph K (G) of a 
graph G is the graph such that each maximal clique of G is a vertex of V (K (G)), and two vertices of V (K (G)) are adjacent 
if and only if their corresponding maximal cliques in G have a common vertex. Sk(G) is the graph obtained from G by 
subdividing k times each edge e = xy ∈ E(G), i.e., each edge e = xy is replaced by a path (x, v1, v2, . . . , vk, y).

The union G ∪ H of two graphs G and H has V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H). The join G ∨ H of 
two graphs G and H has V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = E(G) ∪ E(H) ∪ {v w | v ∈ V (G) and w ∈ V (H)}. We often 
denote by G ∨ {u} the join of the graph G with a graph containing the single vertex u. An induced subgraph H = (V H , E H )

of a graph G = (V G , EG) has V H ⊆ V G and E H = {v w | v ∈ V (H), w ∈ V (H), and v w ∈ E(G)}. G[S] is the induced subgraph 
of G by the set of vertices S ⊆ V (G).

2. Graphs whose T (G) can be obtained in polynomial time

We prove in this section that gtr is NP-complete for graphs of Construction 2.2 (I), whose tessellation cover number 
can be obtained in polynomial time. Using this result, we provide a graph class that obeys behavior (c) and another graph 
class that obeys behavior (d). Note that if the tessellation cover number of G is upper bounded by a constant, then we 
obtain s(G) in polynomial time using a brute force algorithm.

The Mycielski graph M j for j ≥ 2 has chromatic number j, maximum clique size 2, and is defined as follows. M2 = K2
and for j > 2, M j is obtained from M j−1 with vertices v1, . . . , v |V (M j−1)| by adding vertices u1, . . . , u|V (M j−1)| and one more 
vertex w . Each vertex ui is adjacent to all vertices of NM j−1 (vi) ∪ {w}.

Construction 2.1. Let i be a non-negative integer and G a graph. The (i, G)-graph is obtained as follows. Add i vertices to 
graph G , and then add a universal vertex.

Construction 2.2. Let i be a non-negative integer and G a graph with V (G) = {v1, . . . , vn}. We construct a graph H =
H1 ∪ H2 as follows. Add i disjoint copies G1, . . . , Gi of G to H1, such that V (G j) = {v j

1, . . . , v
j
n} for 1 ≤ j ≤ i, where v j

k
represents the same vertex vk of G for 1 ≤ k ≤ n. Add to H1 all possible edges between pairs of vertices that represent the 
same vertex of G . Add a vertex u to H1 adjacent to all v j

k for 1 ≤ j ≤ i and 1 ≤ k ≤ n. Now, we consider two possibilities: 
either (I) H2 is (|V (G)| − 3, Mc

3)-graph of Construction 2.1 or (II) H2 is (|V (G)| − 3, Mc
4)-graph of Construction 2.1. Denote 

the universal vertex of H2 by u′ .

Fig. 1 provides an example of a graph of Construction 2.2 (I). In (a) we have an edge coloring of the graph G ∨ {x} with 
|V (G)| colors. In (b) we have the graph H = H1 ∪ H2 and a tessellation cover of H with |V (G)| tessellations.

As a consequence of Constructions 2.1 and 2.2, given a graph H , we obtain the value |V (G)| by counting the number of 
pendant vertices in H2. Hence, |V (G)| is obtained in polynomial time.

We now verify that the graphs of Construction 2.2 (I) obey behavior (c) by showing that T (H) is equal to |V (G)| and 
that deciding whether s(H) ≥ k is NP-complete for k = T (H). This also implies that the graphs of Construction 2.2 (II) 
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Fig. 1. (a) An edge-coloring of G ∨ {x}. (b) Example of a graph H1 ∪ H2 of Construction 2.2 (I) obtained from graph G .

obey behavior (d), since we have increased T (H) by one unit by replacing Mc
3 for Mc

4 in H2. In this case T (H) > s(H) and
gtr is in P with answer always no, whereas to decide whether s(H) ≥ k remains NP-complete for k = T (H) − 1.

Theorem 2.1. star size and gtr are NP-complete for graphs of Construction 2.2 (I).

Proof. Let G be a graph without a universal vertex and an instance of the q-colorability problem, a well-known NP-
complete problem [9]. Consider the graph H = H1 ∪ H2 of Construction 2.2 (I) on G with i = q.

We need 3 tessellations to cover the edges of Mc
3 ∨ {u′}, and another |V (G)| − 3 tessellations to cover the remaining 

edges of the pendant vertices, thus, by construction, T (H2) = |V (G)|. Moreover, since α(Mc
3) = 2, then s(H2) = |V (G)| − 1.

We define a tessellation cover of H1 with |V (G)| tessellations as follows. Consider an optimum edge-coloring of the 
graph G ∨{x}. Since G has no universal vertex, x is the unique universal vertex and we know that χ ′(G ∨{x}) = �(G ∨{x}) =
|V (G)| [10]. Now, when we remove x and the edges incident to it, we can use this edge coloring to obtain a tessellation 
cover of G with size |V (G)| by taking edges that have a same color into the same tessellation. Note that for each vertex of 
G , there exists a tessellation that is not incident to it in this tessellation cover. We now use this tessellation cover to each 
copy of G in H1. Next, we entirely cover each clique between vertices that represent the same vertex of G and the edges 
incident to u with the available tessellation for this clique. Therefore, T (H1) ≤ |V (G)|.

We have T (H) = max{T (H1), T (H2)} = |V (G)| = |V (H1)|−1
q and s(H) = max{s(H1), s(H2)}. Since s(H2) = |V (G)| − 1, H

is good tessellable if and only if s(H1) = |V (G)|. Chvátal [11] proved that a graph G admits a q-coloring if and only if 
α(H1 \ {u}) = |V (G)|. Since s(H1) = α(H1 \ {u}), deciding whether H is good tessellable is equivalent to deciding whether 
G is q-colorable. �
3. Universal graphs

The local behavior of tessellation covers given by Lemma 3.1 motivates the study of the problem on universal graphs, 
since the induced subgraph G[{v} ∪ N(v)] is a universal graph. We prove that t-tessellability remains NP-complete even 
if the gap between T (G) and s(G) is large. Using this proof, we provide a graph class that obeys behavior (e).

Given a t-tessellable graph G and a vertex v ∈ V (G), we consider the relation between χ(Gc[NG(v)]) and the tiles of 
those t tessellations that share a same vertex v . Note that these tiles cover all edges incident to v in any tessellation 
cover of G . Moreover, the vertices of the neighborhood of v in a same tile are a clique in G and, therefore they are an 
independent set in Gc . The independent sets in Gc given by these tiles of NG(v) may share some vertices, and we can 
choose whichever color class they belong in such coloring of Gc[NG(v)]. Therefore, for any vertex v of G , χ(Gc[NG(v)]) ≤ t . 
Since s(G[v ∪ NG(v)]) = ω(Gc[NG(v)]), s(G[v ∪ NG(v)]) = ω(Gc[NG(v)]) ≤ χ(Gc[NG(v)]) ≤ t , and we have the following 
result.

Lemma 3.1. If G is a t-tessellable graph, then

max
v∈V (G)

{s(G[v ∪ NG(v)])} ≤ max
v∈V (G)

{χ(Gc[NG(v)])} ≤ t.

Let u /∈ V (G) be a vertex. If G ∨ {u} is a t-tessellable graph, then

s(G ∨ {u}) = α(G) ≤ χ(Gc) ≤ t.
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Next, we show that

χ(Gc) ≤ T (G ∨ {u}) ≤ χ(Gc) + �(G) + 1. (1)

The lower bound of Equation (1) is given by Lemma 3.1. For the upper bound we obtain a tessellation cover with χ(Gc) +
�(G) + 1 tessellations as follows. Consider a partition of vertices of G in p1, . . ., pi cliques with i = χ(Gc). For each 
1 ≤ j ≤ χ(Gc) we assign a tile {u} ∪ p j to the tessellation j. The remaining edges of G are covered by tiles of size 2 with 
the unused �(G) + 1 tessellations χ(Gc) + 1, . . ., χ(Gc) + �(G) + 1 described by an �(G) + 1 edge coloring of G . Thus, 
there is no universal graph G ∨ {u} such that the gap between T (G ∨ {u}) and χ(Gc) is larger than �(G) + 1. In particular, 
if χ(Gc) ≥ 2�(G) + 1, then by Theorem 3.1 below T (G ∨ {u}) = χ(Gc).

Theorem 3.1. A graph G ∨ {u} with θ(G) ≥ 2�(G) + 1 has T (G ∨ {u}) = θ(G).

Proof. Note that θ(G) = χ(Gc). Consider a graph G ∨ {u}. By Lemma 3.1, T (G ∨ {u}) ≥ χ(Gc). We prove that T (G ∨ {u}) ≤
χ(Gc). Since χ(Gc) ≥ 2�(G) + 1, there is a tessellation cover of G ∨ {u} with χ(Gc) tessellations as follows. We first repeat 
the process of partitioning the vertices of G into cliques p1, . . ., pi with i = χ(Gc) and assigning tiles {u} ∪ p j to the 
tessellation j, for 1 ≤ j ≤ χ(Gc).

Now, the maximum number of tessellations incident to the endpoints of an uncovered edge xy is 2�(G) because 2
tessellations come from the edges ux and uy, and 2�(G) − 2 come from the edges of G incident to x and y. Therefore, 
T (G ∨ {u}) ≤ χ(Gc) because it is possible to greedily cover these edges with tiles of size two. �
Corollary 3.1. A graph G ∨{u} with s(G ∨{u}) = α(G ∨{u}) ≥ 2�(G) +1 has T (G ∨{u}) = χ(Gc). Moreover, if H is a (2�(G) +1, G)-
graph of Construction 2.1 on G with 2�(G) + 1 pendant vertices to u, then T (H) = θ(G) = χ(Gc) + 2�(G) + 1.

Proof. Note that if α(G ∨{u}) ≥ 2�(G) +1, then χ(Gc) ≥ ω(Gc) = α(G ∨{u}) ≥ 2�(G) +1 and, by Theorem 3.1, T (G ∨{u}) =
χ(Gc). Consider now the graph H . Each pendant vertex added to u in H increases s(H) by one unit, hence s(H) ≥ 2�(G) +1. 
Moreover, the set of pendant vertices in H is a clique in Hc and each vertex is adjacent to all vertices of G in Hc , which 
implies that χ(Hc) = χ(Gc) + 2�(G) + 1. Thus, T (H) = χ(Hc) = χ(Gc) + 2�(G) + 1. �
3.1. Good tessellable universal graphs

A universal graph G ∨ {u} is good tessellable if T (G ∨ {u}) = s(G ∨ {u}). In this case, by Lemma 3.1, T (G ∨ {u}) = χ(Gc) =
s(G ∨ {u}). Therefore, if G ∨ {u} has T (G ∨ {u}) > χ(Gc), then it is not a good tessellable graph. By Corollary 3.1, if α(G ∨
{u}) ≥ 2�(G) + 1, then T (G ∨ {u}) = χ(Gc), and G ∨ {u} is good tessellable when χ(Gc) = ω(Gc) = s(G ∨ {u}).

The computational complexity of gtr of a subclass of universal graphs depends on the restrictions used to define the 
subclass. On the one hand, perfect graphs G with α(G) ≥ 2�(G) + 1 can be recognized in polynomial time [12], and 
the addition of a universal vertex results in a good tessellable universal graph. On the other hand, planar graphs G with 
�(G) ≤ 4 and α(G) ≥ 2�(G) + 1 = 9 for which to decide whether χ(G) = ω(G) = 3 is NP-complete [9].

3.2. Graphs with arbitrary gap between T (G) and s(G)

We start by showing that the gap between T (G) and s(G) can be arbitrarily large for graphs G composed by the join of 
the complement of Mycielski graphs with a vertex u.

Since the Mycielski graph M j is triangle-free [13], the graph Mc
j has no independent set of size three and s(Mc

j ∨{u}) = 2. 
Moreover, χ(M j) = j [13], and by Lemma 3.1, T (Mc

j ∨ {u}) ≥ χ((Mc
j)

c) ≥ j. Fig. 2 depicts an example of the Mycielski 
graph M4 and the relation between its 4-coloring and a minimal tessellation cover of Mc

4 ∨ {u}. Therefore, there is a graph 
H = Mc

j ∨ {u} with s(H) = 2 and T (H) ≥ j for j ≥ 3.
Now, we describe a subclass of universal graphs for which the gap between T (G) and s(G) is very large. We also show 

that star size and t-tessellability are NP-complete for graphs of Construction 3.2, for which gtr is in P .

Construction 3.1. Let G = (V , E) be a graph. Obtain S2(G) by subdividing each edge of G two times, so that each edge 
v w ∈ E(G) becomes a path v, x1, x2, w , where x1 and x2 are new vertices. Let L(S2(G)) be the line graph of S2(G). Add a 
universal vertex u to L(S2(G)), that is, consider the graph L(S2(G)) ∨ {u}.

First, we show that there is a connection between T (H) of a graph H of Construction 3.1 on G with the size of a 
maximum stable set of G .

Theorem 3.2. If G = (V , E) is a graph with |E(G)| ≥ 4 and H = (L(S2(G)) ∨ {u}) is obtained from Construction 3.1 on G, then 
T (H) = |V (G)| + |E(G)| − α(G).
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Fig. 2. A Tessellation cover of Mc
j ∨ {u} with 4 tessellations and possible 4-colorings of M4 guided by this tessellation cover.

Proof. We claim that T (H) = χ((H \ {u})c). By Lemma 3.1, T (H) ≥ χ((H \ {u})c). Now, we obtain a tessellation cover of H
with χ((H \ {u})c) tessellations as follows. Consider a partition of the vertices of (H \ {u}) into χ(H \ {u})c cliques. Each 
clique p j with 1 ≤ j ≤ χ(H \ {u})c becomes a tile in the tessellation j. Since H \ {u} = L(S2(G)) is the line graph of a 
S2(G) graph, every vertex of (H \ {u})c has a maximal clique of size two and another maximal clique incident to it with 
an arbitrary size. Consider now a maximal clique Ka of size at least three which is not completely covered yet. We cannot 
have two tiles completely inside Ka (otherwise their merge would result in a coloring of the complement graph with less 
than its chromatic number). Therefore, we have only one tile using edges of Ka at this moment and the remaining tiles 
covering the vertices of Ka are the maximal cliques of size two that are incident to the vertices of Ka . Thus, if Ka has only 
tiles using maximal cliques of size two given by edges incident to Ka , then each edge e of Ka has at most two already used 
tessellations on cliques incident to their endpoints (the ones given to the tiles of these maximal cliques of size two).

Poljak [14] proved that χ(L(S2(G))c) = |V (G)| + |E(G)| − α(G). Since |E(G)| ≥ 4 and α(G) ≤ |V (G)|, we have |V (G)| +
|E(G)| − α(G) ≥ 4 and there is at least one available tessellation for each edge of Ka . We claim that these available tes-
sellations for each edge are enough. First, pick an arbitrary tessellation for each edge. Since the endpoint vertices of any 
collection of edges of Ka on a same available tessellation do not have these tessellations incident to their endpoints, we 
cover the clique induced by these vertices as a tile in this tessellation.

Otherwise, Ka is covered by a tile Kb and all the other vertices of Ka must be covered by tiles given by maximal cliques 
of size two with edges outside Ka . Now, we modify the tessellation cover by including all edges of Ka in the tile of Kb and 
removing the vertices of Ka from tiles of size two, i.e., now they are tiles of size one and Ka is entirely covered by the 
tessellation of the tile Kb .

The remaining uncovered edges of H \{u} are maximal cliques of size two. Now, if an edge is uncovered and it is incident 
to a maximal clique of size two or more, then we need this clique to be a tile entirely covered by a single tessellation. 
Therefore, the maximum number of already used tessellations incident to the endpoints of a remaining edge is three.

Recall that by Lemma 3.1, T (H) ≥ χ((H \ {u})c) and by Poljak [14] χ((H \ {u})c) = χ(L(S2(G))c)) = |V (G)| + |E(G)| −
α(G). Since |V (G)| ≥ α(G) and |E(G)| ≥ 4, we have |V (G)| + |E(G)| − α(G) ≥ 4. Therefore, there is always an available 
tessellation for these edges. Finally, the edges incident to u are included in the tiles of the tessellations of the cliques of the 
clique cover of H \ {u}. Thus, T (H) ≤ χ((H \ {u})c). �

Fig. 3 depicts the proof of Theorem 3.2. In (a), we have graph G . In (b), we have a clique cover of L(S2(G)). In (c), we 
modify the clique cover so that the tile with label 7 is covered by a new tessellation and at the same time we remove the 
vertices of the tiles of size two incident to the tile with label 7. Now the tiles with labels 6 and 8 have only one vertex 
each. Finally, in (d) we obtain a tessellation cover of L(S2(G)) by including the edges incident to u in the tiles related to 
the clique cover.

Since deciding whether α(G) ≥ k is NP-complete [9], by Theorem 3.2 we have the following result for the graphs of 
Construction 3.1.

Corollary 3.2. t-tessellability is NP-complete for universal graphs.
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Fig. 3. A tessellation cover of H = L(S2(G)) ∨ {u} with |V (G)| + |E(G)| − α(G) tessellations.

Proof. Let G be an instance graph of k-independent set with |E(G)| ≥ 4. We know that deciding whether α(G) ≥ k is NP-
complete [9]. Consider the graph H of Construction 3.1 on G with H = L(S2(G)) ∨ {u}. By Theorem 3.2, T (H) = |E(G)| +
|V (G)| − α(G). Therefore, deciding whether α(G) ≥ k is equivalent to deciding whether T (H) ≤ t = |E(G)| + |V (G)| − k. �
Lemma 3.2. Let G be an arbitrary graph. We have s(L(S2(G)) ∨ {u}) = |E(G)| + μ(G).

Proof. Note that s(L(S2(G)) ∨ {u}) = α(L(S2(G))) = μ(S2(G)). We claim that μ(S2(G)) = |E(G)| + μ(G). Any two adjacent 
vertices in G are joined by a path of length 3 in S2(G). In a maximum matching of S2(G), we need to select at least one 
of them, otherwise, we could include the middle edge to a maximum matching, which is a contradiction. Moreover, if there 
is only one edge and it is not a middle edge, then we obtain another maximum matching by replacing this edge by the 
middle edge. Clearly, we cannot choose three edges and in case we choose two edges, different from the middle edge. The 
case of two edges forces that both of them are incident to vertices of G in S2(G).

Therefore, the maximum number of such selection of two edges in S2(G) is equal to the size of a maximum matching 
of G . For each edge in a maximum matching μ(G) of G we have two edges in the maximum matching in S2(G) and, for 
each other edge of G , we have one edge in the maximum matching of S2(G). Thus, μ(S2(G)) = 2μ(G) + |E(G)| − μ(G) =
|E(G)| + μ(G). �

Next, we show that there are graphs of Construction 3.1 for which the gap between T (G) and s(G) is very large, whereas
t-tessellability remains NP-complete.

Theorem 3.3. Let H = L(S2(G ′)) ∨{u} be obtained from Construction 3.1 on a graph G ′ , where G ′ is obtained from an arbitrary graph 
G with |E(G)| ≥ 4 by adding x universal vertices, with x polynomially bounded by the size of G. To decide whether T (H) = k with 
k ≥ s(H) + c, for c = O (|V (G)|d) and constant d, is NP-complete.

Proof. By Theorem 3.2, T (H) = |E(G ′)| + |V (G ′)| − α(G ′). By Lemma 3.2, s(H) = |E(G ′)| + μ(G ′). The addition of universal 
vertices to a graph does not change the size of its maximum independent sets. So, α(G ′) = α(G). However, the addition of 
one universal vertex makes the maximum matching size μ(G ′) goes up by one until μ(G ′) = |V (G)| − μ(G), after that we 
need two new universal vertices for μ(G ′) to go up by one unit. In that case, we start to increase the difference between 
T (H) = |E(G ′)| +|V (G ′)| −α(G ′) and s(H) = |E(G ′)| +μ(G ′), since for each two universal vertices we add to G ′ , we increase 
T (H) by two units and s(H) by one unit. Therefore, we can arbitrarily enlarge the gap between T (H) and s(H). And, as 
long as the additions of these universal vertices are polynomially bounded by the size of G , it holds the same polynomial 
transformation of Corollary 3.2 from k-independent set of G to t-tessellability of H = L(S2(G ′)) ∨ {u}. �

Finally, we show that the graphs from Construction 3.2 below obey behavior (e).

Construction 3.2. Let H1 be the graph obtained from Construction 2.2 (I) on a given graph G1 and a non-negative integer 
i. Let H2 be the graph obtained from Construction 3.1 on the graph G2 ∨ K3|V (G1)| of a given graph G2. Let u and u′ be the 
two universal vertices of the two connected components of H1. Add s(H2) degree-1 vertices to H1 adjacent to u and s(H2)

degree-1 vertices adjacent to u′ . Consider H1 ∪ H2.
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Theorem 3.4. star size and t-tessellability are NP-complete for graphs of Construction 3.2, for which gtr is in P .

Proof. Let G1 be an instance graph with no universal vertex of the well-known NP-complete problem q-colorability [9]. 
Let G2 be an instance graph of the well-known NP-complete problem p-independent set with E(G2) ≥ 4 [9]. Consider a 
graph H = H1 ∪ H2 obtained from Construction 3.2 on G1 and G2 with i = q.

Since H2 is obtained from Construction 3.1 on G2 ∨ K3|V (G1)| , by Theorem 3.3, T (H2) − s(H2) > |V (G1)|. By Theorem 2.1, 
1 ≤ s(H1) ≤ T (H1) = |V (G1)|. The parameter s(H2) can be obtained in polynomial time by applying a maximum matching 
algorithm [9] (see Theorem 3.3). And the addition of the degree-1 vertices to H1 of Construction 3.2 implies that 1 + s(H2) ≤
s(H1) ≤ T (H1) = |V (G1)| + s(H2).

Therefore, H = H1 ∪ H2 is a graph that obeys s(H2) ≤ s(H1) ≤ T (H1) ≤ T (H2) with T (H) = T (H2) and s(H) = s(H1). 
The proof holds because gtr is in P with answer always no and both star size on graphs H1 of Construction 2.2 (I) (see 
Theorem 2.1) and t-tessellability on graphs H2 of Construction 3.1 (see Theorem 3.3) are NP-complete. �
4. Concluding remarks

The concept of tessellation cover of graphs appeared in a thesis by Duchet [6], and subsequently in [7,8], as equivalence 
covering. The known results about tessellation cover number of a graph up to now were related to upper bounds of the 
values of T (G), and the complexities of the t-tessellability problem [2]. In this work we focus on a different approach by 
analyzing the tessellation cover number T (G) with respect to s(G), one of its lower bounds, which implicitly appeared in 
the previous hardness proofs of [2].

The motivation to define the tessellation cover number comes from the analysis of the dynamics of quantum walks on 
a graph G in the context of quantum computation [1]. Since it is advantageous to implement physically as few operators 
as possible in order to reduce the complexity of the quantum system, it is important to analyze the gap between T (G) and 
s(G).

We have proposed the good tessellable recognition problem (gtr), which aims to decide whether a graph G satisfies 
T (G) = s(G), and we have analyzed the combined behavior of the computational complexities of the problems star size,
t-tessellability, and gtr. We have defined graph classes corresponding to triples which specify the computational com-
plexities of these problems, summarized in Table 1. We have defined graph classes in Construction 2.2 (I) and Construction 
2.2 (II) that obey behaviors (NP-complete, P , NP-complete) and (NP-complete, P , P), respectively. Graphs that obey 
behavior (NP-complete, NP-complete, P) are obtained using Construction 3.2. We also note that there are omitted triples 
in Table 1, which are either empty or easy to provide examples, as described in Section 1.

We are interested in the following two research topics: (i) The concept of good tessellable graphs can be extended to 
perfect tessellable graphs, the graphs G for which T (H) = s(H) for any induced subgraph H of G . A natural open task is 
to establish the characterization by forbidden induced subgraphs and a polynomial-time recognition algorithm for perfect 
tessellable graphs. We conjecture that this class is exactly the {gem, W4, odd cycles}-free graphs; (ii) We have already estab-
lished relations between T (G) with other well-known graph parameters such as the chromatic number and the maximum 
size of a stable set. We are currently investigating further relations such as those between T (G) with the chromatic index 
and the total chromatic number.
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