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Abstract
Even, Itai, and Shamir (1976) proved simple two-commodity integral flow is

NP-complete both in the directed and undirected cases. In particular, the directed

case was shown to be NP-complete even if one demand is unitary, which was

improved by Fortune, Hopcroft and Wyllie (1980) who proved the problem is still

NP-complete if both demands are unitary. The undirected case, on the other hand,

was proved by Robertson and Seymour (1995) to be polynomial-time solvable if

both demands are constant. Nevertheless, the complexity of the undirected case with

exactly one constant demand has remained unknown. We close this 40-year complex-

ity gap, by showing the undirected case is NP-complete even if exactly one demand

is unitary. As a by product, we obtain the NP-completeness of determining whether

a graph contains 1+ d pairwise vertex-disjoint paths, such that one path is between a

given pair of vertices and d paths are between a second given pair of vertices. Addi-

tionally, we investigate the complexity of another related network design problem

called strict terminal connection.

KEYWORDS

connection tree, disjoint paths, multicommodity integral flow, router vertices,

Steiner tree, terminal vertices, unitary demand

1 INTRODUCTION

Network design constitutes one of the most important class of combinatorial problems, with a wide variety of theoretical and

practical applications. Two fundamental network design problems are disjoint paths and, more generally, flow problems, which,

besides their undoubted theoretical importance, have applications in VLSI design [16], transportation networks cf. [15] and

routing networks [30], for instance.

The classical MAXIMUM FLOW problem, also known as SINGLE-COMMODITY FLOW, is polynomial-time solvable even

when the flow function must be integral, that is, the flow is an integer-valued function [7]. A natural generalisation of

SINGLE-COMMODITY FLOW is a flow problem with k different commodities, that is, a set of k pairs of source and sink

vertices such that each pair has a distinct demand. This problem is the so-called MULTICOMMODITY FLOW. By using

linear-programming, one can show that the MULTICOMMODITY FLOW problem is polynomial-time solvable, in the directed

and undirected cases, when the flow of each commodity is a real-valued function cf. [3]. In contrast, Knuth proved that MUL-

TICOMMODITY FLOW is an NP-complete problem, in both directed and undirected cases, if the flow functions must be integral

cf. [9,13].

An instance of a network flow problem is called simple if the capacities of all edges of the input network are unitary. In

1976, Even et al. extended the result due to Knuth by proving the NP-completeness of SIMPLE TWO-COMMODITY INTEGRAL

FLOW (SIMPLE 2CIF), also in the directed and undirected cases [9]. For the directed case, they proved that the problem is

†An extended abstract of this paper was published in the proceedings of IX Latin and American Algorithms, Graphs and Optimization Symposium [21].
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TABLE 1 Contribution of this work (last column) and known complexity results for SIMPLE MULTICOMMODITY INTEGRAL

FLOW, both in directed and undirected cases, and for the related vertex-disjoint paths problems, where k denotes the number of
commodities and di denotes the demand of the commodity (si, ti)

still NP-complete if the demand of exactly one commodity is unitary. Nevertheless, for the undirected case, the hard instance

constructed by them does not satisfy the condition of having a commodity with unitary demand, or even a commodity with

constant demand. In other words, in their proof, both commodities must have arbitrarily large demands. Thus, in the present

paper, we close this 40-year gap by establishing the NP-completeness of SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL

FLOW (SIMPLE U2CIF) when the demand of exactly one commodity is unitary.

SIMPLE U2CIF is a particular case of the EDGE-DISJOINT PATHS problem, which through the line graph reduces to the

VERTEX-DISJOINT PATHS problem, proved to be NP-complete cf. [13]. On the other hand, when k is fixed, Robertson and Sey-

mour gave an (n3)-time algorithm for VERTEX-DISJOINT PATHS [26], which was improved to (n2)-time by Kawarabayashi

et al. [14], where n denotes the number of vertices of the input graph. Consequently, EDGE-DISJOINT PATHS for fixed k and so,

SIMPLE U2CIF with the two demands bounded by constants are both polynomial-time solvable. With respect to the directed

case, when k≥ 2 is fixed, Fortune et al. proved that VERTEX-DISJOINT PATHS is NP-complete [11], and a slight change of the

proof also provides the NP-completeness of the edge-disjoint version cf. [8]. We remark that, if the demands of both commodi-

ties are unitary, SIMPLE 2CIF coincides with EDGE-DISJOINT PATHS when k = 2. Consequently, SIMPLE DIRECTED 2CIF

remains NP-complete even if both demands are unitary.

Moreover, we observe that SIMPLE U2CIF with exactly one unitary demand coincides with the decision problem of deter-

mining whether an undirected graph contains 1+ d pairwise edge-disjoint paths, such that one of these paths is between a given

pair of vertices and d of these paths are between another given pair of vertices. As a corollary of the proposed NP-completeness

of SIMPLE U2CIF with exactly one unitary demand, we also obtain the NP-completeness of 1+ d DISJOINT PATHS, both the

edge and vertex disjoint versions.

Table 1 summarizes the computational complexity of the problems discussed in the previous paragraphs and highlights

where exactly our contribution lies in. For thorough references on integral flow and disjoint paths problems, we refer to [24,28].

It is worth mentioning that, not only do our results close a long-standing complexity gap of a class of fundamental problems, but

they also reaffirm the fact brought up by Naves and Sebő [24] that, among the variety of possibilities, there are some interesting

questions related to integral flow and disjoint paths that may not even have been realised. As a theoretical application of our

results, we further analyse the complexity of the STRICT TERMINAL CONNECTION problem, which is a variant of STEINER

TREE, closely related to vertex-disjoint paths problems.

Given a graph G, a terminal set W ⊆V(G) and two nonnegative integers 𝓁 and r, the STRICT TERMINAL CONNECTION

problem (S-TCP) aims to decide whether G contains a tree subgraph whose leaf set coincides with W and that has at most 𝓁
vertices of degree exactly 2 and at most r vertices of degree at least 3. Dourado et al. proved that S-TCP is NP-complete, for each

fixed 𝓁 ≥ 0, and polynomial-time solvable when 𝓁 and r are simultaneously fixed [5]. Regarding the complexity of S-TCP when

only r is fixed, Melo et al. showed that the problem can be solved in polynomial-time when r ∈ {0, 1} [19]. More specifically,

they showed that, for r ∈ {0, 1}, S-TCP is Turing reducible to the problem of deciding whether a graph admits d vertex-disjoint

paths between a single given pair of vertices, whose sum of their lengths is at most a given positive integer x, which was proved

to be polynomial-time solvable by Suurballe [31]. In addition, Melo et al. studied S-TCP from the perspective of graph classes

and parameterized complexity [20]. It was proved that S-TCP restricted to split graphs can be solved in time n(r) but that the

existence of an f (r) ⋅ n(1)-time algorithm is unlikely for any computable function f , where n denotes the number of vertices

of the input graph. In spite of these results, for fixed r ≥ 2, the complexity of S-TCP on general graphs remains unsettled. It is

widely open whether, under reasonable complexity assumptions, S-TCP on general graphs admits an n(r)-time algorithm.

The nonstrict variant, called TERMINAL CONNECTION (TCP), has the same input of S-TCP but asks for tree subgraphs

whose leaf sets contain the terminal set W—instead of coinciding with W—and that have at most 𝓁 nonterminal vertices of
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degree exactly 2 and at most r nonterminal vertices of degree at least 3. Similarly to S-TCP, Dourado et al. proved that TCP is

NP-complete, for each fixed 𝓁 ≥ 0, and is polynomial-time solvable when 𝓁 and r are both bounded by constants [4]. On the

other hand, they also proved that TCP remains NP-complete when r ≥ 0 is fixed.

Besides being related to disjoint paths, S-TCP and TCP might be seen as variants, or even generalisations, of the classical

STEINER TREE problem. STEINER TREE has as input a graph G, a terminal set W ⊆V(G) and a nonnegative integer x, and aims

to decide whether G contains a tree subgraph, called Steiner tree, that contains all vertices belonging to W and has at most x
nonterminal vertices, commonly called Steiner vertices. Among the several variants of STEINER TREE studied over the years,

the FULL STEINER TREE problem asks for Steiner trees whose leaf sets coincide with the terminal set W cf. [12,17,18]; and

another variant requires the number of branching nodes, that is, vertices of degree at least 3 in the Steiner tree—which not

necessarily are Steiner vertices—, to be bounded cf. [34,35]. Nevertheless, there is no variant of STEINER TREE in the literature

that requires full Steiner trees with bounded number of branching nodes. Therefore, we emphasise that S-TCP merits to be

studied.

In this work, we focus on the open question regarding the complexity of S-TCP when r ≥ 2 is fixed. We establish some

relations between S-TCP with fixed r and vertex-disjoint paths problems. Furthermore, in order to advance on the understanding

of such a question, we study variants of S-TCP for which additional constraints on topology and connectedness are imposed.

2 SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW

In this section, we present one of the main contributions of this paper, which consists in the NP-completeness proof of SIMPLE

UNDIRECTED TWO-COMMODITY INTEGRAL FLOW when the demand of exactly one commodity is unitary. This proof closes

a 40-year complexity gap. Next, we present a formal definition for the problem.

SIMPLE UNDIRECTED TWO-COMMODITY INTEGRAL FLOW (SIMPLE U2CIF)

Input: A graph G, two distinct unordered pairs of vertices {s1, t1} and {s2, t2} of G and two positive integers, called demands, d1 and d2.

Question: Are there two flow functions f1, f2 ∶ {−→uv,−→vu|uv ∈ E(G)} → Z
+
0 such that

(a) for each i∈ {1, 2} and each edge uv∈E(G), fi(−→uv) = 0 or fi(−→vu) = 0;

(b) for each i∈ {1, 2} and each vertex v∈V(G)∖si, ti, the flow function f i is conserved at v, i.e.,
∑

u∈NG(v)
fi(−→uv) =

∑
u∈NG(v)

fi(−→vu);
(c) for each i∈ 1, 2, the net flow from si, i.e.,

∑
v∈NG(si)

(fi(−→siv) − fi(−→vsi)), is at least di; and

(d) for each edge uv∈E(G), the total flow through uv, i.e., max{f1(−→uv), f1(−→vu)} + max{f2(−→uv), f2(−→vu)}, is at most 1?

The NP-completeness proof that we provide for SIMPLE U2CIF with exactly one unitary demand is built on the

polynomial-time reduction described below, from the variant of 3-SAT in which each clause has three distinct literals.

Construction 1. Let I = (X,) be an instance of 3-SAT, with variable set X = {x1, … , xn} and clause set  =
{C1, … ,Cm}, such that each clause in  has exactly three distinct literals. We let g(I) = (G, {s1, t1}, {s2, t2}, d1, d2) be
the instance of SIMPLE U2CIF defined follows.

• We create the vertices s1, t1, s2 and t2.

• For each variable xi ∈X, we create the variable gadget Hi such that
- V(Hi) = {vs

i , vt
i} ∪ {v𝓁i |𝓁 ∈ {1, … , 2pi}} ∪ {v𝓁i |𝓁 ∈ {1, … , 2qi}} and

- E(Hi) = {vs
i v1

i , vs
i v1

i , v
2pi
i vt

i, v
2qi
i vt

i} ∪ {v𝓁i v𝓁+1
i |𝓁 ∈ {1, … , 2pi − 1}} ∪ {v𝓁i v𝓁+1

i |𝓁 ∈ {1, … , 2qi − 1}},
where pi and qi denote the numbers of positive and negative occurrences of xi in I, respectively.

• We connect the variable gadgets in series, that is, we add the edges vt
ivs

i+1 for each i∈ {1, … , n− 1}. Additionally, we
add the edges s1vs

1 and vt
nt1.

• For each clause C𝜄 ∈ , we create the clause vertices u𝜄 and w𝜄; for each 𝜅 ∈ {1, … , 5}, we create the vertices a𝜅
𝜄 and

b𝜅
𝜄 and add the edges s2a𝜅

𝜄 , a𝜅
𝜄 u𝜄, w𝜄b𝜅

𝜄 and b𝜅
𝜄 t2; moreover, for each j∈ {1,2,3}, we create the literal vertices uj

𝜄 and wj
𝜄

and add the edges u𝜄uj
𝜄 and wj

𝜄w𝜄 (see Figure 1A).
• In addition, for each clause C𝜄 ∈ , we create the vertices y1

𝜄 , y2
𝜄 , z1

𝜄 and z2
𝜄 and add the edges u1

𝜄 y1
𝜄 , u2

𝜄 y1
𝜄 , y1

𝜄 w𝜄, u2
𝜄 y2

𝜄 ,
u3
𝜄 y2

𝜄 , y2
𝜄 w𝜄 and the edges z1

𝜄 w1
𝜄 , z1

𝜄 w2
𝜄 , u𝜄z1

𝜄 , z2
𝜄 w2

𝜄 , z2
𝜄 w3

𝜄 and u𝜄z2
𝜄 (see Figure 1B).

• For each clause C𝜄 ∈ , we also add the edges uj
𝜄v2𝓁−1

i and v2𝓁
i wj

𝜄 if the j-th literal in C𝜄 corresponds to the 𝓁-th occur-
rence of the positive literal xi, where j∈ {1,2,3} and 𝓁 ∈ {1, … , pi}; on the other hand, we add the edges uj

𝜄v2𝓁−1
i and v2𝓁

i wj
𝜄

if the jth literal in C𝜄 corresponds to the 𝓁th occurrence of the negative literal xi, where j∈ {1,2,3} and 𝓁 ∈ {1, … , qi}.

• Finally, we define d1 = 1 and d2 = 5m.

Figure 2 exemplifies the instance g(I) of SIMPLE U2CIF, described in Construction 1.
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(A) (B)

FIGURE 1 Partial construction of the instance g(I) of SIMPLE U2CIF: vertices and edges obtained from the clause set  of a given instance I of 3-SAT. For

readability, the labels of the vertices a𝜅
𝜄 and b𝜅

𝜄 are omitted [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Graph G of the instance g(I) of SIMPLE U2CIF, obtained from the instance I = (X,) of 3-SAT where X = {x1, x2, x3} and

 = {C1 = {x1, x2, x3},C2 = {x1, x2, x3},C3 = {x1, x2, x3}} [Color figure can be viewed at wileyonlinelibrary.com]

Theorem 2. SIMPLE U2CIF remains NP-complete even if the demand of exactly one commodity is unitary.

Proof. Let I = (X,) be an instance of 3-SAT such that X = {x1, … , xn},  = {C1, … ,Cm} and each clause in 

has exactly three distinct literals. Let g(I) = (G, {s1, t1}, {s2, t2}, d1, d2) be the instance of SIMPLE U2CIF described in

Construction 1.

Assume that there exists a truth assignment 𝛼 : X → {true, false} that satisfies all clauses in . Based on 𝛼, we define

flow functions f 1 and f 2 for the first and the second commodities, respectively. Initially, consider fi(−→uv) = 0 and fi(−→vu) = 0

for each uv∈E(G) and each i∈ {1, 2}. Next, update f 1 as follows: for each xi ∈X, if 𝛼(xi) = true, then the first commodity

flow passes through the lower part of Hi (see Figure 3A); otherwise, it passes through the upper part of Hi (see Figure 3B).

Additionally, set f1(
−−→
s1vs

1) = 1, f1(
−−→
vt

1vs
2) = 1, … , f1(

−−−−→
vt

n−1vs
n) = 1 and f1(

−−→
vt

nt1) = 1.

For each C𝜄 ∈ , let 𝛾𝜄 be a true literal under 𝛼 of C𝜄. Assume that 𝛾𝜄 is the j-th literal in C𝜄, for some j∈ {1,2,3}.

Then, update f 2 as follows: if 𝛾𝜄 is the 𝓁-th occurrence of the positive literal xi, then the second commodity flow

passes through the path ⟨s2, a1
𝜄 , u𝜄, uj

𝜄, v2𝓁−1
i , v2𝓁

i ,wj
𝜄,w𝜄, b1

𝜄 , t2⟩; on the other hand, if 𝛾𝜄 is the jth occurrence of the neg-

ative literal xi, then the second commodity flow passes through the path ⟨s2, a1
𝜄 , u𝜄, uj

𝜄, v2𝓁−1
i , v2𝓁

i ,wj
𝜄,w𝜄, b1

𝜄 , t2⟩. Note

that, only || units of the second commodity flow, from s2 into t2, have been sent. The remaining 4|| units are sent

through the paths ⟨s2, a2
𝜄 , u𝜄, u

j1
𝜄 , y1

𝜄 ,w𝜄, b2
𝜄 , t2⟩ and ⟨s2, a3

𝜄 , u𝜄, u
j2
𝜄 , y2

𝜄 ,w𝜄, b3
𝜄 , t2⟩ and the paths ⟨s2, a4

𝜄 , u𝜄, z1
𝜄 ,w

j1
𝜄 ,w𝜄, b4

𝜄 , t2⟩ and

⟨s2, a5
𝜄 , u𝜄, z2

𝜄 ,w
j2
𝜄 ,w𝜄, b5

𝜄 , t2⟩, where j1, j2 ∈ {1,2,3}∖{j} and j1 < j2. Clearly, f 1 and f 2 meet the demands d1 = 1 and d2 = 5m,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B)

FIGURE 3 The first commodity flow passing through the lower and upper parts of the variable gadget Hi, according to the truth values 𝛼(xi) = true and

𝛼(xi) = false, respectively [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 4 Edges that must be used by the second commodity flow; and flow obstruction as a consequence of the first commodity flow using an edge whose

either endpoint is not a vertex of the variable gadgets [Color figure can be viewed at wileyonlinelibrary.com]

respectively, and satisfy the unitary capacity and flow conservation constraints. Moreover, for each uv∈E(G) and each

i∈ {1, 2}, fi(−→uv) = 0 or fi(−→vu) = 0. Therefore, we obtain that g(I) is a YES-instance of SIMPLE U2CIF.

Conversely, suppose now that there exist flow functions f 1 and f 2 that certify that g(I) is a YES-instance of SIMPLE

U2CIF. Since dG(s2) = dG(t2) = 5m = d2, all edges incident to s2 and all edges incident to t2 are used by the second

commodity flow, that is, f2(−→s2u) = 1 for each u∈NG(s2), and f2(v⃗t2) = 1 for each v∈NG(t2). Furthermore, dG(u) = 2

for each u∈NG(s2) and dG(v) = 2 for each v∈NG(t2). Thus, all edges incident to the neighbours of s2 and all edges

incident to neighbours of t2 are used by the second commodity flow. Moreover, ∪u∈NG(s2)NG(u)∖{s2} = {u𝜄|C𝜄 ∈ },

∪v∈NG(t2)NG(v)∖{t2} = {w𝜄|C𝜄 ∈ } and, for each C𝜄 ∈ , ∣NG(u𝜄)∖NG(s2) ∣ = 5 as well as |NG(w𝜄)∖NG(t2)| = 5. Conse-

quently, all edges incident to the vertices u1, u2, … , um and all edges incident to the vertices w1, w2, … , wm are also

used by the second commodity flow (see Figure 4A). Then, apart from s1vs
1 and vt

nt1, the first commodity flow only uses

edges whose both endpoints belong to ∪xi∈XV(Hi), that is, for each uv ∈ E(G)∖{s1vs
1, vt

nt1} such that {u, v}�⊆∪xi∈XV(Hi),
we have that f1(−→uv) = 0 and f1(−→vu) = 0, otherwise the unitary capacity and flow conservation constraints would not be

simultaneously satisfied by f 1 and f 2 (see Figure 4B).

As a result, the first commodity flow passes through all the variable gadgets Hi, for xi ∈X. Thus, we can define a

truth assignment 𝛼 : X → {true, false} as follows: if the first commodity flow passes through the lower part of Hi, then

we set 𝛼(xi) = true; otherwise, if it passes through the upper part of Hi, then we set 𝛼(xi) = false. It is easy to verify that,

for each clause C𝜄 ∈ , the second commodity flow necessarily uses, for some xi ∈X, an edge e𝜄 ∈E(Hi) such that either

e𝜄 = v𝓁i v𝓁+1
i or e𝜄 = vl

ivl+1
i , where 𝓁 ∈ {1, … , 2pi − 1} and l∈ {1, … , 2qi − 1}. If e𝜄 = v𝓁i v𝓁+1

i , then the first commodity

flow must pass through the lower part of Hi, and so the truth value 𝛼(xi)= true satisfies C𝜄; on the other hand, if e𝜄 = vl
ivl+1

i ,

then the first commodity flow must pass through the upper part of Hi, and so the truth value 𝛼(xi) = false satisfies C𝜄.

Consequently, the truth assignment 𝛼 satisfies all clauses belonging to . Therefore, I is a YES-instance of 3-SAT. ▪

3 1+d VERTEX-DISJOINT PATHS

A problem closely related to SIMPLE U2CIF is EDGE-DISJOINT PATHS, which has as input a graph G and k≥ 1 distinct

unordered pairs {s1, t1}, {s2, t2}, … , {sk, tk} of vertices of G, and asks whether G contains k pairwise edge-disjoint paths

P1, P2, … , Pk such that, for each i∈ {1, … , k}, Pi is a path between si and ti. We remark that SIMPLE U2CIF is a par-

ticular case of EDGE-DISJOINT PATHS. Indeed, let I = (G, {s1, t1}, {s2, t2}, d1, d2) be an instance of SIMPLE U2CIF and

I′ = (G′, {s1
1, t1

1}, … , {s𝑑1

1 , t𝑑1

1 }, {s1
2, t1

2}, … , {s𝑑2

2 , t𝑑2

2 }) be the instance of EDGE-DISJOINT PATHS, where s1
i = si, t1

i = ti and G′

is the graph obtained from G by simply adding di − 1 twins s2
i , … , s𝑑i

i of the vertex si, and adding di − 1 twins t2
i , … , t𝑑i

i of the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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vertex ti, for each i∈ {1, 2}. One can easily verify that I is a YES-instance of SIMPLE U2CIF if and only if I ′
is a YES-instance

of EDGE-DISJOINT PATHS.

A more interesting observation relating SIMPLE U2CIF with disjoint paths is the fact that SIMPLE U2CIF with exactly one

unitary demand coincides with the problem 1+ d EDGE-DISJOINT PATHS (1+ d EDP), which has as input a graph G, two

distinct unordered pairs {s1, t1}, {s2, t2} of vertices of G and a positive integer d, and asks whether G contains 1+ d pairwise

edge-disjoint paths, such that one path is between s1 and t1 and d paths are between s2 and t2. As a result, it immediately follows

from Theorem 2 that 1+ d EDP is an NP-complete problem. Thus, a natural question that arises is about the complexity of 1+ d
VERTEX-DISJOINT PATHS (1+ d VDP), the vertex-disjoint version of 1+ d EDP.

We show that 1+ d VDP is also an NP-complete problem. More specifically, building on the fact that edge-disjoint paths

problems are polynomially reducible to their respective vertex-disjoint paths problems through the line graph cf. [14,25,28], we

obtain as a corollary of Theorem 2 the NP-completeness of 1+ d VDP.

Construction 3. Let I = (G, {s1, t1}, {s2, t2}, d1, d2) be an instance of SIMPLE U2CIF, such that d1 = 1. Then, we let
g(I) = (G′, {s′1, t′1}, {s′2, t′2}, 𝑑) be the instance of 1+ d VDP defined as follows.

• We create the vertices s′1, t′1, s′2 and t′2.

• We define G′ as the graph with vertex set and edge set
- V(G′) = V(L(G)) ∪ {s′1, t′1, s′2, t′2} and
- E(G′) = E(L(G))∪s′ie ∣ e is incident to si, i ∈ {1, 2}

}
∪{t′i e ∣ e is incident to ti, i ∈ {1, 2}}, respectively, where L(G)

denotes the line graph of G, that is, the graph with vertex set V(L(G)) = E(G) and edge set E(L(H)) = {ee′
|

e and e′ share an endpoint}.

• Finally, we define d = d2.

Corollary 4. 1+ d VDP is NP-complete.

Proof. Let I be an instance of SIMPLE U2CIF with d1 = 1, and let g(I) be the instance of 1+ d VDP described in

Construction 3. Note that g(I) can be constructed in time polynomial in the size of I. Furthermore, since SIMPLE U2CIF

with exactly one unitary demand coincides with 1+ d EDP, one can verify that I is an YES-instance of SIMPLE U2CIF

if and only if g(I) is an YES-instance of 1+ d VDP. Therefore, 1+ d VDP is NP-complete. ▪

4 CONNECTING TERMINALS WITH FEW ROUTERS

Let G be a graph and W be a nonempty subset of V(G). A connection tree T of G for W is a tree subgraph of G such that

leaves(T)⊆W ⊆V(T). The vertices in W are called terminal, and the vertices in V(T)∖W are called nonterminal and are clas-

sified into two types according to their respective degrees in T , namely: the nonterminal vertices of degree exactly 2 in T are

called linkers and the nonterminal vertices of degree at least 3 in T are called routers. We let L(T) = {u∈V(T) ∣ dT (u) = 2}

denote the linker set of T and R(T) = {u∈V(T) ∣ dT (u)≥ 3} denote the router set of T . We remark that the vertex set of every

connection tree can be partitioned into terminal vertices, linkers and routers.

Note that, the definition of connection tree does not impose any restriction on the degree of terminal vertices. However, in

some applications, such as in telecommunications cf. [17], terminal vertices are not allowed to behave as linkers or routers, they

must be leaves. A connection tree T for W is said to be strict if all vertices belonging to W are leaves of T , that is, leaves(T) = W.

Next, we present a formal definition for the STRICT TERMINAL CONNECTION problem.

STRICT TERMINAL CONNECTION problem (S-TCP)

Input: A connected graph G, a terminal set W ⊆V(G) with |W |≥ 2, and two nonnegative integers 𝓁 and r.

Question: Does G admit a strict connection tree T for W such that |L(T)|≤𝓁 and |R(T)|≤ r?

S-TCP is strongly related to vertex-disjoint paths problems. As shown in [19], S-TCP with r = 1 is Turing reducible to

the MIN-SUM st-VERTEX-DISJOINT PATHS problem (MIN-SUM st-VDP), which has as input a graph G, a single pair {s, t} of

vertices of G and two positive integers d and x, and asks whether G contains d pairwise vertex-disjoint paths between s and

t whose sum of their lengths is at most x. Additionally, one can verify without much effort that S-TCP with r = 2 is Turing

reducible to the min-sum version of 1+ d VDP, which is an NP-complete problem by Corollary 4.

More generally, given an instance I = (G, W, 𝓁, r) of S-TCP and a set R⊆V(G)∖W such that 2≤ |R|≤ r, a strategy to decide

whether G admits a strict connection tree for W such that |L(T)|≤𝓁 and R(T) = R may consist in solving in a combined way

the following two problems.

I. Connecting the terminals to the vertices in R, through vertex-disjoint paths whose sum of their lengths is bounded, in a

way that each terminal is connected to exactly one vertex in R and, for a given map f : R→ {0,1,2}, each 𝜌∈R connects at least

f (𝜌) terminals.
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II. Connecting the vertices in R to one another, through vertex-disjoint paths whose sum of their lengths is bounded.

We remark that, even if both of these problems are separately polynomial-time solvable, not necessarily the corresponding

case of S-TCP can be solved in polynomial-time. On the other hand, it is easy to see that the NP-completeness of Problem (II)

implies the NP-completeness of the corresponding case of S-TCP. However, through a Turing reduction to MIN-SUM st-VDP,

one can prove that, for |R|≤ 3, Problem (II) is polynomial-time solvable. For fixed |R|≥ 4, nevertheless, the complexity of

Problem (II) is surprisingly unknown. We remark that, by considering R as the terminal set, Problem (II) might be seen as the

variant of STEINER TREE that asks for Steiner trees whose nonterminal vertices (i.e., Steiner vertices) must have degree 2, and

through polynomial-time reductions it might be seen as a generalisation of the so-called SHORTEST K-CYCLE problem, whose

complexity for fixed number of terminals is a long-standing open question cf. [2,33]. With respect to Problem (I), one can also

prove by a Turing reduction to MIN-SUM st-VDP, similar to the one described in Lemma 10, that Problem (I) is polynomial-time

solvable, even if |R| is not fixed.

Besides the relations described above, we have that, if r and the number of terminal vertices are both fixed, then the variant

of S-TCP that does not impose any restriction on the number of linkers can be solved in polynomial-time through a Turing

reduction to the VERTEX-DISJOINT PATHS problem. A question that naturally arises from this remark is about using a similar

approach in order to solve the original S-TCP—which asks for strict connection trees with a bounded number linkers—when

both r ≥ 2 and the number of terminals are fixed. However, for fixed k≥ 2, the complexity of MIN-SUM VERTEX-DISJOINT

PATHS (MIN-SUM VDP), the min-sum version of VERTEX-DISJOINT PATHS, has remained open for more than 20 years cf.

[8,10,15]. Despite the recent result due to Björklund and Husfeldt [1], which proves that, for k = 2, MIN-SUM VDP admits a

Monte Carlo polynomial-time algorithm, there is no known deterministic polynomial-time algorithm for the problem.

Most of the Turing reductions mentioned in the previous paragraphs have as a subroutine enumerating all sets R⊆V(G)∖W
with |R|≤ r and, then, asking for the existence of a strict connection tree T for W, such that |L(T)|≤𝓁 and R(T)⊆R. Motivated

by this fact, one can also consider the variant of S-TCP called CONSTRAINED ROUTER SET, which has as input a connected

graph G, a terminal set W ⊆V(G) with |W |≥ 2, a nonnegative integer 𝓁 and a nonempty set R⊆V(G)∖W, and asks whether G
admits a strict connection tree T for W such that |L(T)|≤𝓁 and R(T)⊆R.

Clearly, for fixed r ≥ 0, S-TCP is Turing reducible to CONSTRAINED ROUTER SET. Indeed, I = (G, W, 𝓁, r) is a YES-instance

of S-TCP if and only there exists a set R⊆V(G)∖W, with |R|≤ r, such that (G, W, 𝓁, R) is a YES-instance of CONSTRAINED

ROUTER SET. Thus, if CONSTRAINED ROUTER SET is polynomial-time solvable when |R|∈ {0, … , c} for some fixed c≥ 0,

then S-TCP is polynomial-time solvable when r ≤ c. However, the converse not necessarily holds: it is not clear whether, for

fixed |R|≥ 0, CONSTRAINED ROUTER SET is Turing reducible to S-TCP with fixed r.

To better understand S-TCP when r ≥ 2 is fixed, we investigate in Section 4.1 the complexity of some variants of the problem

for which further constraints on the topology and/or connectedness of the router set are imposed. Figure 5 provides a general

overview on the complexity landscape of S-TCP and its variants, focusing especially on the relationship (i.e., the existence of

polynomial-time or Turing reduction) between the vertex-disjoint paths problems and the variants of S-TCP discussed in the

previous paragraphs, and the relationship of the former problems with the variants of S-TCP that we analyse in Section 4.1.

4.1 Constraints on topology and connectedness
Let G be a graph, W ⊆V(G) be a terminal set and T be a strict connection tree of G for W. We say that a terminal vertex w∈W
is connected in T by a router 𝜌∈R(T) if the distance in T between w and 𝜌 is less than the distance in T between w and any other

router 𝜌
′ ∈R(T)∖𝜌. In this case, we equivalently say that 𝜌 connects w in T . We remark that every terminal vertex belonging to

W is connected in T by exactly one router.

The first variant of S-TCP that we consider is called CONSTRAINED TERMINAL PARTITION. Note that, every strict con-

nection tree T for a terminal set W induces a partition  of W, such that the terminal vertices belonging to a same part of 

are connected in T by a same router. Motivated by this fact, it is interesting to analyse the variant of S-TCP which additionally

gives in its input a partition of the terminal set and asks for strict connection trees whose terminal vertices belonging to a same

part of the partition are enforced to be connected by a same router.

CONSTRAINED TERMINAL PARTITION

Input: A connected graph G, a terminal set W ⊆V(G) with |W |≥ 2, two nonnegative integer 𝓁 and r, and a partition  into

subsets of W.

Question: Does G admit a strict connection tree T for W such that |L(T)|≤𝓁, |R(T)|≤ r, and, for every subset W ′ ∈  , the

terminals belonging to W ′
are connected in T by a same router 𝜌∈R(T)?

By a polynomial-time reduction from 1+ d VDP, we prove in Theorem 6 that CONSTRAINED TERMINAL PARTITION is an

NP-complete problem.
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FIGURE 5 Relationship between vertex-disjoint paths problems and variants of S-TCP, where 𝜋→𝜋
′

denotes that 𝜋 is polynomially reducible to 𝜋
′
, and

𝜋⇒𝜋
′

denotes that 𝜋 is Turing reducible to 𝜋
′
; in particular, we use thinner lines to denote that the corresponding reduction is straightforward. Moreover, we

use (blue) rounded squares to represent polynomial-time solvable problems, (pinkish-orange) double squares to represent NP-complete problems, dashed

squares to represent problems whose complexity is open, and double dotted squares to represent problems whose complexity is a long-standing open question.

For readability, some reductions are omitted [Color figure can be viewed at wileyonlinelibrary.com]

Construction 5. Let I = (G, {s1, t1}, {s2, t2}, d) be an instance of 1+ d VDP and r be an integer such that r ≥ 2. We let
g(I, r) = (G′,W,𝓁, r,) be the instance of CONSTRAINED TERMINAL PARTITION defined as follows.

• We define G′ as the graph obtained from G by performing the following operations:
- we let 𝜌1 = s1 and 𝜌2 = s2, create the vertices 𝜌3, … , 𝜌r, and add the edges 𝜌1𝜌2, … , 𝜌r − 1𝜌r;
- for each i∈ {1, … , r}, we create the vertices w1

i and w2
i , and add the edges w1

i 𝜌i and w2
i 𝜌i;

- we replace the vertex t2 with d twins t1
2, … , t𝑑2 of itself .

• We define W = {w1
1,w2

1, … ,w1
r ,w2

r} ∪ {t1, t1
2, … , t𝑑2}.

• We define 𝓁 = |V(G)∖W |− r.

• Finally, we define  = {W1, … ,Wr}, where W1 = {w1
1,w2

1} ∪ {t1}, W2 = {w1
2,w2

2} ∪ {t1
2, … , t𝑑2} and, for each

i∈ {3, … , r}, Wi = {w1
i ,w2

i }.

Theorem 6. For each fixed r ≥ 2, CONSTRAINED TERMINAL PARTITION is NP-complete.

Proof. Let I = (G, {s1, t1}, {s2, t2}, d) be an instance of 1+ d VDP and g(I, r) = (G′,W,𝓁, r,) be the instance of

CONSTRAINED TERMINAL PARTITION described in Construction 4. Consider R = {𝜌1, … , 𝜌r}.

First, assume that there exist in G pairwise vertex-disjoint paths P1 and P2, 1, … , P2, d, such that P1 is between s1

and t1 and P2, 1, … , P2, d are between s2 and t2. For each j∈ {1, … , d}, let P′
2,j be the path in G′

obtained from P2, j by

replacing the vertex t2 with its twin tj
2. We let T be the graph with vertex set V(T) = R∪W ∪V(P1)∪∪𝑑

j=1V(P′
2,j) and edge

set E(T) = {𝜌1𝜌2, … , 𝜌r−1𝜌r} ∪ {w1
1𝜌1,w2

1𝜌1, … ,w1
r𝜌r,w2

r𝜌r} ∪ ∪𝑑
i=1E(P′

2,i). One can see that T is a strict connection

tree of G′
for W, such that |L(T)|≤𝓁, |R(T)|≤ r and, for every i∈ {1, … , r}, the terminals in Wi are connected in T by

the router 𝜌i ∈R(T). Thus, g(I, r) is a YES-instance of CONSTRAINED TERMINAL PARTITION.

Conversely, assume that G′
admits a strict connection tree T for W, such that |L(T)|≤𝓁, |R(T)|≤ r and, for every

i∈ {1, … , r}, the terminals in Wi are connected in T by a same router in R(T). Note that, the only neighbour in G′
of the

terminals w1
i and w2

i is the vertex 𝜌i. Thus, R(T) = R. In addition, since Wi ⊇ {w1
i ,w2

i }, every terminal in Wi is connected

http://wileyonlinelibrary.com
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in T by 𝜌i, which implies that t1 ∈W1 is connected in T by 𝜌1, and t1
2, … , t𝑑2 ∈ W2 are connected in T by 𝜌2. Let P′

1 be the

path in T between s1 = 𝜌1 and t1. For each j∈ {1, … , d}, let P2, j be the path in G between s2 = 𝜌2 and t2 obtained from

P′
2,j by simply replacing tj

2 with t2, where P′
2,j denotes the path in T between s2 = 𝜌2 and tj

2. Since V(P′
1) ∩ R(T) = {𝜌1},

every internal vertex of P′
1 has degree 2 in T . Similarly, for each j∈ {1, … , d}, V(P′

2,j) ∩ R(T) = {𝜌2}, which implies

every internal vertex of P′
2,j has degree 2 in T . As a result, P1 and P2, 1, … , P2, d are pairwise vertex-disjoint paths of G,

and therefore I is a YES-instance of 1+ d VDP. ▪

An additional consequence obtained from the proof of Theorem 5 is that CONSTRAINED TERMINAL PARTITION remains

NP-complete even if the restriction on the number of linkers in the strict connection trees is not taken into account. In fact, in

Construction 4 the parameter 𝓁 is defined as being the largest possible.

The labelled router topology, or simply router topology, of a strict connection tree T is the unique tree 𝜏(T) with vertex

set V(𝜏(T)) = R(T) that satisfies the following property: for each pair of distinct vertices 𝜌i, 𝜌j ∈R(T), there exists the edge

𝜌i𝜌j ∈E(𝜏(T)) if and only if the path P in T between 𝜌i and 𝜌j does not contain any other vertex belonging to R(T), that is,

V(P)∩R(T) = {𝜌i, 𝜌j}. We remark that 𝜏(T) is a topological minor of T .

Given an instance I = (G, W, 𝓁, r) of S-TCP, with r ≥ 2 fixed, a reasonable strategy to decide in polynomial-time whether I
is a YES-instance of the problem would consist in enumerating all possible subsets R⊆V(G)∖W, with |R|≤ r, enumerating all

spanning trees HR of G[R] and, then, verifying whether G admits a strict connection tree for W with at most 𝓁 linkers and whose

router topology is equal to HR. Nevertheless, we prove in Theorem 7 that, unless P = NP, this strategy does not work. In order

to prove such a result, we present a polynomial-time reduction from 1+ d VDP to the variant of S-TCP called CONSTRAINED

ROUTER TOPOLOGY, formally defined below.

CONSTRAINED ROUTER TOPOLOGY

Input: A connected graph G, a terminal set W ⊆V(G) with |W |≥ 2, a nonnegative integer 𝓁, and a tree H.

Question: Does G admit a strict connection tree T for W such that |L(T)|≤𝓁 and whose router topology 𝜏(T) is equal to H?

Construction 7. Let I = (G, {s1, t1}, {s2, t2}, d) be an instance of 1+ d VDP and r be an integer such that r ≥ 3. We let
g(I, r) = (G′

, W,𝓁, H) be the instance of CONSTRAINED ROUTER TOPOLOGY, with |V(H)| = r, defined as follows.

• We define G′ as the graph obtained from G by performing the following operations:
- we let 𝜌3 = s2, create the vertices 𝜌1, 𝜌2 and 𝜌4, … , 𝜌r, and add the edges 𝜌2𝜌3, … , 𝜌r − 1𝜌r;
- we add the edges 𝜌1s1 and t1𝜌2;
- for each i∈ {1, … , r}, we create the vertices w1

i and w2
i , and add the edges w1

i 𝜌i and w2
i 𝜌i;

- we replace the vertex t2 with d twins t1
2, … , t𝑑2 of itself .

• We define W = {w1
1,w2

1, … ,w1
r ,w2

r} ∪ {t1
2, … , t𝑑2}.

• We define 𝓁 = |V(G)∖W |− r.

• Finally, we define H as the graph with vertex set V(H) = {𝜌1, … , 𝜌r} and edge set E(H) = {𝜌1𝜌2, … , 𝜌r − 1𝜌r}.

Theorem 8. For each fixed |V(H)| = r ≥ 3, CONSTRAINED ROUTER TOPOLOGY is NP-complete.

Proof. Let I = (G, {s1, t1}, {s2, t2}, d) be an instance of 1+ d VDP and g(I, r) = (G′
, W,𝓁, H) be the instance of

CONSTRAINED ROUTER TOPOLOGY described in Construction 7. Consider R = {𝜌1, … , 𝜌r}.

The proof that I being a YES-instance of 1+ d VDP implies g(I, r) being a YES-instance of CONSTRAINED

ROUTER TOPOLOGY is analogous to the corresponding proof, for CONSTRAINED TERMINAL PARTITION, presented in

Theorem 6.

For the converse, assume that g(I, r) is a YES-instance of CONSTRAINED ROUTER TOPOLOGY, and let T be a strict

connection tree of G′
for W, such that L(T)≤𝓁 and whose router topology is equal to H. Since 𝜌1𝜌2 ∈E(H), the path

between 𝜌1 and 𝜌2 in T , say the path P′
1, does not contain any other router of T . Consequently, every internal vertex of P′

1

has degree 2 in T . Furthermore, note that the only nonterminal neighbour of 𝜌1 (𝜌2, resp.) in G′
is the vertex s1 (t1, resp.).

Thus, since 𝜌1𝜌2 �∈ E(G), P′
1 necessarily passes through s1 and t1. In addition, we obtain that neither 𝜌1 nor 𝜌2 connects

t1
2, … , t𝑑2 in T , otherwise there would exist an internal vertex of P′

1 with degree greater than 2 in T . As a result, all the

terminals t1
2, … , t𝑑2 are necessarily connected in T by 𝜌3. In other words, for each j∈ {1, … , d}, if P′

2,j is the path in T
between 𝜌3 and tj

2, then V(P′
2)∩R(T) = {𝜌3}, which implies that every internal vertex of P′

2,j has degree 2 in T . Therefore,

I is a YES-instance of 1+ d VDP. Indeed, let P1 be the path in G between s1 and t1 obtained from P′
1 by removing 𝜌1 and

𝜌2, and for each j∈ {1, … , d}, let P2, j be the path in G between s2 = 𝜌3 and t2 obtained from P′
2,j by simply replacing tj

2

with t2. Then, one can readily verify that P1 and P2, 1, … , P2, d are pairwise vertex-disjoint paths of G, which certifies

that I is a YES-instance of 1+ d VDP. ▪
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(A) (B) (C) (D)

FIGURE 6 (A) Instance I = (G, W, 𝓁, R′
), where 𝓁 = 2 and R′ = {𝜌1, 𝜌2}; (B) instance IR′ = (GR′ ,W,𝓁,R = {𝜌∗}); (C) A YES-certificate of IR′ for the

CONSTRAINED ROUTER SET problem; (D) the only two strict connection trees T of G for W, such that R(T)⊆R′
[Color figure can be viewed at

wileyonlinelibrary.com]

Similarly to CONSTRAINED TERMINAL PARTITION, CONSTRAINED ROUTER TOPOLOGY remains NP-complete even if

the restriction on the number of linkers in the strict connection trees is not considered. Furthermore, it is worth mentioning that

the proof that we presented for Theorem 8 actually does not depend on the constructed topology H itself, but it only depends

on the facts that the target strict connection tree T might have three distinct routers and, for two specific nonterminal vertices

𝜌1, 𝜌2 ∈V(G)∖W, 𝜌1𝜌2 must be an edge of 𝜏(T). Consequently, through a slight change of Construction 7, we also obtain as a

by-product of the proof of Theorem 7 that the following simpler problem is still NP-complete: given graph G, a terminal set

W ⊆V(G) with |W |≥ 2, a set R⊆V(G)∖W with fixed |R|≥ 3, and two specified vertices 𝜌1, 𝜌2 ∈R, decide whether G admits

a strict connection tree T for W such that R(T)⊆R and 𝜌1𝜌2 ∈E(𝜏(T)). In addition, we remark that the proof of Theorem

7 can be also used to show the NP-completeness of the variant of the problem that further asks for T[R(T)]+ 𝜌1𝜌2 being a

connected graph. Note that, requiring the connectedness of T[R(T)] is equivalent to requiring the equality 𝜏(T) = T[R(T)].

Hence, 𝜌1𝜌2 ∈E(𝜏(T)) and T[R(T)]+ 𝜌1𝜌2 is a connected graph if and only if 𝜏(T) = T[R(T)]+ 𝜌1𝜌2.

Now, we analyse the variant of S-TCP called CONNECTED ROUTER SUBGRAPH, which has the same input of CON-

STRAINED ROUTER SET but asks for the existence of strict connection trees T that additionally satisfy the condition of having

their router subgraph T[R(T)] connected, that is, 𝜏(T) = T[R(T)]. It follows from the observations described in the previous

paragraph that if, for some especial pair of vertices 𝜌1, 𝜌2 ∈R, the existence of the single edge 𝜌1𝜌2 ∈E(𝜏(T))∖E(T) is allowed,

then the corresponding problem becomes NP-complete. Contrasting with this fact, we prove that CONNECTED ROUTER SUB-

GRAPH is polynomial-time solvable for each fixed |R|≥ 1, although it can be shown to be NP-complete if |R| is not fixed (e.g.,

see Theorem 1 in [20]). Below, we present a formal definition for the problem.

CONNECTED ROUTER SUBGRAPH

Input: A connected graph G, a terminal set W ⊆V(G) with |W |≥ 2, a nonnegative integer 𝓁 and a nonempty set R⊆V(G)∖W.

Question: Does G admit a strict connection tree T for W such that |L(T)|≤𝓁, R(T)⊆R and T[R(T)] is a connected subgraph?

Since CONSTRAINED ROUTER SET is polynomial-time solvable when |R| = 1 cf. [19], one could try to decide whether an

arbitrary instance I = (G, W, 𝓁, R), with |R|≥ 1 fixed, is a YES-instance of CONNECTED ROUTER SUBGRAPH by performing

the following operations, for each nonempty subset R′
⊆R:

• Construct the graph GR′ obtained from G by contracting all vertices belonging to R′
into a unique vertex 𝜌*;

• Return that I is a YES-instance of S-TCP if (GR′ ,W,𝓁,R = {𝜌∗}) is a YES-instance of CONSTRAINED ROUTER SET.

Despite reasonable at first glance, especially when |R′
| = 2, the approach described above does not work. Possibly, IR′ is a

YES-instance of CONSTRAINED ROUTER SET whereas I is a NO-instance of CONNECTED ROUTER SUBGRAPH. As a matter

of fact, Figure 6 exemplifies such a case.

By a Turing reduction to MIN-SUM st-VDP, we prove in Theorem 11 the polynomial tractability of CONNECTED ROUTER

SUBGRAPH when |R|≥ 2 is fixed.

Construction 9. Let I = (G, W, 𝓁, R) be an instance of CONNECTED ROUTER SUBGRAPH, R′ be a subset of R such
that |R′

|≥ 2 and G[R′
] is a connected graph, and let TR′ be a spanning tree of G[R′

]. We let g(I,TR′ ) = (G′, {s, t}, 𝑑, x) be
the instance of MIN-SUM st-VDP defined as follows. Consider R′

1 = {𝜌i ∈ R′|𝑑TR′ (𝜌i) = 1}, R′
2 = {𝜌i ∈ R′|𝑑TR′ (𝜌i) = 2}

and q = |W|−(2|R′|1 + |R′
2|). If q≤ 0, then clearly G does not admit a strict connection tree T for W such that R(T) = R′

and 𝜏(T) = TR′ . Thus, assume without loss of generality that q≥ 0.

• We define G′ as the graph obtained from G by performing the following operations:
- we create the vertices s and t and remove all the edges incident to the vertices belonging to R′;
- for each 𝜌i ∈ R′

1 ∪R′
2, we let 𝜌1

i = 𝜌i, and we create the vertex 𝜌2
i if 𝜌i ∈ R′

1; moreover, for each j ∈ {1, 3− 𝑑TR′ (𝜌i)},
we add the edges s𝜌j

i and 𝜌
j
iv for each v∈NG(𝜌i)∖R′;

- if q≥ 1, then, for each j∈ {1, … , q}, we create the vertex 𝜌j
∗ and add the edges s𝜌j

∗ and 𝜌
j
∗v for each v∈NG(R′

)∖R′;
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(A) (B) (C)

FIGURE 7 (A) Instance I = (G, W, 𝓁 = 1, R); (B) YES-certificate of I for the CONSTRAINED ROUTER SET problem; (C) the only three (nonsymmetrical)

strict connection trees T of G for W, such that R(T)⊆R and T[R(T)] is connected [Color figure can be viewed at wileyonlinelibrary.com]

- for each w∈W, we add the edge wt.
• Finally, we define d = |W | and x = 𝓁 + 3d.

Lemma 10. I = (G, W, 𝓁, R) is a YES-instance of CONNECTED ROUTER SUBGRAPH if and only if there exists a
nonempty subset R′

⊆R and a spanning tree TR′ of G[R′
] such that g(I,TR′ ) is a YES-instance of MIN-SUM st-VDP, where

g(I,TR′ ) denotes the instance described in Construction 9.

Proof. First, assume that there exists a strict connection tree T of G for W such that |L(T)|≤𝓁, R(T)⊆R and T[R(T)]

is connected. Assume that |R(T)|≥ 2. Let R′ = R(T) and TR′ = T[R′]. Consider R′
1 = {𝜌i ∈ R′|𝑑TR′ (𝜌i) = 1} and

R′
2 = {𝜌i ∈ R′|𝑑TR′ (𝜌i) = 2}. For each router 𝜌i ∈R′

, let Qi = ∅ if 𝜌i �∈ R′
1 ∪R′

2, Qi = {𝜌1
i , 𝜌

2
i } if 𝜌i ∈ R′

1 and Qi = {𝜌1
i } if

𝜌i ∈ R′
2. Additionally, let Q∗ = {𝜌1

∗, 𝜌
2
∗, … , 𝜌

q
∗}, where q = |W|− (2|R′

1|+ |R′
2|). By definition |Q1 ∪ · · · ∪Q|R′| ∪Q∗| =|W|. Moreover, note that, for i∈ {1, 2}, each router belonging to R′

i connects at least 3− i terminals in T . Thus, there

exists a bijection 𝛼 ∶ W → Q1 ∪ · · · ∪ Q|R′| ∪ Q∗ such that, for each w∈W, if 𝛼(w) = 𝜌
j
i ∈ Qi for some j∈ {1, |Qi|}

and some 𝜌i ∈ R′
1 ∪ R′

2, then the terminal w is connected in T by 𝜌i. For each terminal w∈W, let Pw be the path

in T between w and its connecting router 𝜌i ∈R′
, and let P′

w be the path obtained from Pw by adding s and t at the

beginning and at the end, respectively, and replacing 𝜌i with 𝛼(w)∈Qi ∪Q*. One can verify that, if W = {w1, … , wd}, then

P′
w1
, … ,P′

w𝑑
are d pairwise vertex-disjoint paths, between s and t, such that the sum of their lengths is at most |L(T)|+

3d ≤𝓁 + 3d.

Conversely, assume that there exists a nonempty subset R′
⊆R and a spanning tree TR′ of G[R′

] such that g(I,TR′ ) =
(G′, {s, t}, 𝑑, x) is a YES-instance of MIN-SUM st-VDP. Let P′

1, … ,P′
𝑑 be d pairwise vertex-disjoint paths, between s

and t, such that the sum of their lengths is at most x = 𝓁 + 3d. Note that, for each h∈ {1, … , d}, the path P′
h contains

either a vertex 𝜌
j
i, where 𝜌i ∈R′

and j∈ {1, 2}, or a vertex 𝜌
j
∗, where j∈ {1, … , d}. If P′

h contains a vertex 𝜌
j
i, then let Ph

be the path obtained from P′
h by removing s and t and replacing 𝜌

j
i with 𝜌i. On the other hand, if P′

h contains a vertex 𝜌
j
∗,

then let Ph be the path obtained from P′
h by removing s and t and replacing 𝜌

j
∗ with an arbitrary vertex 𝜌∈R′ ∩NG(v),

where v denotes the vertex that immediately follows 𝜌
j
∗ in P′

h. Let T be the graph with vertex set V(T) = ∪𝑑
h=1V(Ph) and

edge set E(T) = E(TR′ ) ∪ ∪𝑑
h=1E(Ph). One can verify that T is a strict connection tree of G for W such that |L(T)|≤𝓁,

R(T) = R′
⊆R and T[R(T)] = TR′ is connected. ▪

Theorem 11. For each fixed |R|≥ 2, CONNECTED ROUTER SUBGRAPH can be solved in polynomial time.

Proof. Let I = (G, W, 𝓁, R) be an instance of CONNECTED ROUTER SUBGRAPH. For each nonempty subset R′
⊆R,

such that |R′
|≥ 2 and G[R′

] is connected, and for each spanning tree TR′ of G[R′
], construct the instance g(I,TR′ ) of

MIN-SUM st-VDP described in Construction 9. Then, decide whether g(I,TR′ ) is a YES-instance by using a polynomial

time algorithm for MIN-SUM st-VDP, such as Suurballe’s algorithm [31]. If g(I,TR′ ) is a YES-instance of MIN-SUM

st-VDP for some R′
and some TR′ , then return that I is a YES-instance of CONNECTED ROUTER SUBGRAPH. Otherwise,

return that I is a NO-instance of CONNECTED ROUTER SUBGRAPH. The correctness of this procedure follows directly

from Lemma 10. Regarding its running time, since |R| is fixed, the numbers of subsets R′
and spanning trees TR′ to be

considered are constant. Furthermore, note that, for every nonempty subset R′
⊆R and every spanning tree TR′ of G[R′

],

the instance g(I,TR′ ) can be constructed (and solved) in time polynomial in the size of I. ▪

As a by-product of the proof of Theorem 11, we obtain that CONSTRAINED ROUTER SET is polynomial-time solvable when

restricted to instances I in which 1≤ |R|≤ 3 and G[R] is connected. Indeed, through simple analyses one can verify that, in this

restricted case, I is a YES-instance of CONSTRAINED ROUTER SET if and only if I is a YES-instance of CONNECTED ROUTER

SUBGRAPH. On the other hand, this remark is not extensible for instances of CONSTRAINED ROUTER SET in which |R|≥ 4 and

G[R] is connected. Figure 7 exemplifies such an instance I = (G, W, 𝓁, R) that is a YES-instance of CONSTRAINED ROUTER

SET but is a NO-instance of CONNECTED ROUTER SUBGRAPH.
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5 CONCLUDING REMARKS

The main result of this work consists in establishing that SIMPLE UNDIRECTED 2-COMMODITY INTEGRAL FLOW (SIMPLE

U2CIF) is still NP-complete if the demand of exactly one commodity is unitary—equivalently, if the demand of exactly one

commodity is arbitrary large—, closing a 40-year complexity gap. As a consequence of our proof, we obtain that, for every

fixed k, SIMPLE UNDIRECTED k-COMMODITY INTEGRAL FLOW remains NP-complete if there exists exactly one commodity

with unbounded demand, and all the others have unitary demands. The theoretical importance of this result lies in the fact that

it completes the P vs NP-hard dichotomy on the complexity of simple integral flow problems, on general graphs, with respect to

the number of commodities and their respective demands, as properly shown in Table 1. In addition, our result emphasises that,

among the variety of possibilities, there are interesting questions related to integral flow and disjoint paths that may not even

have been realised cf. [24]. Indeed, the comprehensive survey by Naves and Sebő presents a table outlining the complexity of

189 interesting special cases of integral multicommodity flow and disjoint paths problems, of which 21 remain unsettled, and

our unitary cost distinction represents a possible extra row in the table, as a subcase of two commodities with demands encoded

in unary.

As an open problem, we intend to investigate the complexity of SIMPLE U2CIF when the input graph is constrained to be

planar. Despite the several results in the literature with respect to multicommodity integral flow and disjoint paths problems on

planar graphs [8,15,22,23,29,32], as far as we were able to verify, none of them answer the question about the complexity of the

particular case of SIMPLE U2CIF with exactly one unitary demand on planar graphs. On the other hand, it is worth mentioning

that 1+ d VDP on planar graphs can be solved in polynomial-time [27]. For a thorough reference on this topic, we refer to

Schrijver’s book [28], in addition to Naves and Sebő’s survey [24].

Another interesting question is about the complexity of the MIN-SUM VERTEX-DISJOINT PATHS problem when the number

of required paths k is fixed. For k = 2, Björklund and Husfeldt proved that the problem admits a Monte Carlo polynomial-time

algorithm [1]. Nevertheless, even for k = 2, determining whether MIN-SUM VERTEX-DISJOINT PATHS is in P still remains a

challenging open problem [1,8,10,15].

Finally, with respect to the STRICT TERMINAL CONNECTION problem (S-TCP), the main open question that we leave in

this work consists in determining the complexity of the problem when r ≥ 2 is fixed. It is important mentioning that, although

it is well-known that STEINER TREE can be solved in polynomial-time when |W | is fixed [6], the complexity of S-TCP in this

even more restricted case also remains unknown.
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