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Abstract
Chordal graphs are the intersection graphs of subtrees of a tree, while interval graphs

of subpaths of a path. Undirected path graphs, directed path graphs and rooted

directed path graphs are intermediate graph classes, defined, respectively, as the

intersection graphs of paths of a tree, of directed paths of an oriented tree, and of

directed paths of an out branching. All of these path graphs have vertex leafage 2.

DOMINATING SET, CONNECTED DOMINATING SET, and STEINER TREE prob-

lems are W[2]-hard parameterized by the size of the solution on chordal graphs,

NP-complete on undirected path graphs, and polynomial-time solvable on rooted

directed path graphs, and hence also on interval graphs. We further investigate

the (parameterized) complexity of all these problems when constrained to chordal

graphs, taking the vertex leafage and the aforementioned classes into consideration.

We prove that DOMINATING SET, CONNECTED DOMINATING SET, and STEINER

TREE are FPT on chordal graphs when parameterized by the size of the solution

plus the vertex leafage, and that WEIGHTED CONNECTED DOMINATING SET is

polynomial-time solvable on strongly chordal graphs. We also introduce a new sub-

class of undirected path graphs, which we call in–out rooted directed path graphs,

as the intersection graphs of directed paths of an in–out branching. We prove that

DOMINATING SET, CONNECTED DOMINATING SET, and STEINER TREE are solv-

able in polynomial time on this class, generalizing the polynomiality for rooted

directed path graphs proved by Booth and Johnson (SIAM J. Comput. 11 (1982),

191-199.) and by White et al. (Networks 15 (1985), 109-124.).
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1 INTRODUCTION

Given a graph G and a positive integer 𝜅, the DOMINATING SET problem consists of deciding whether G has a dominating set of

size at most 𝜅. DOMINATING SET is the canonical problem in the class W[2]-hard when parameterized by 𝜅, which explains the

great interest in it (see e.g., [20, 23, 24, 36]). Given its hardness, an approach often taken is to constrain the problem to certain

graph classes. In this article, given the hardness of Dominating Set parameterized by the size of the solution on chordal graphs,

we investigate DOMINATING SET and the related problems, CONNECTED DOMINATING SET and STEINER TREE, constrained

to the subclasses of chordal graphs known as path graphs. Two structural parameters have been studied for understanding

intractable problems on chordal graphs that admit polynomial-time algorithms on the proper subclass of interval graphs: the

leafage measures how close a chordal graph is to being an interval graph and the vertex leafage measures the closeness to

undirected path graphs [3, 28, 31].
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For basic definitions and notation on graph theory, we refer the reader to [34]. And for formal definitions of all attacked

problems and subclasses, we refer the reader to Section 2. Figure 1 and Table 1 summarize the complexity results cited along

the text. The present full paper extends the preliminary results published at WALCOM 2022 [12] by establishing a hardness

relation between DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE, including the weighted versions of

the problems and considering complexity separating subclasses of chordal graphs. An independent related work has recently

been presented at IPEC 2022 [16], where they study the complexity of these problems for the class of chordal graphs when

parameterized by the leafage, improving results presented in [15].

DOMINATING SET, as well as CONNECTED DOMINATING SET and STEINER TREE, are still W[2]-hard when parameterized

by the solution size, hereon denoted by 𝜅, and constrained to chordal graphs (and even split graphs, which form a strict subclass

of chordal graphs) [32]. However, they become polynomial-time solvable on rooted directed path graphs [4, 35], a superclass

of the more widely known interval graphs. A natural question therefore is whether they are also polynomial-time solvable on

undirected path graphs. This unfortunately is not the case, unless P = NP, as they are NP-complete on these graphs [4, 11].

Nevertheless, here we prove that they are FPT when parameterized by 𝜅 on undirected path graphs (Theorem 1 below). This

classification closes all the parameterized complexity open entries for undirected path graphs in a revised version of Column

16 of Johnson’s table [26] presented in [11].

Theorem 1. DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE can be solved on an undirected path
graph G in time 2

2𝜅 log 𝜅 ⋅ nO(1)
, where n = |V(G)| and 𝜅 denotes the solution size.

We mention that the complexity above can be improved to 2
O(𝜅) ⋅ nO(1)

by applying our results together with an algorithm

recently proposed in [16]. We nevertheless present our slightly slower algorithm because, being designed specifically to undi-

rected path graphs, it is much simpler than the one in [16]. In Theorem 2 below, however, we apply the algorithm in [16]

directly.

Undirected path graphs can also be defined as the chordal graphs with vertex leafage 2 [9]; the vertex leafage of a chordal

graph G is denoted by v𝓁(G). Because the investigated problems are NP-complete on undirected path graphs [4, 11], we get

that they are NP-complete on chordal graphs with vertex leafage k for every fixed k ≥ 2. This fact prevents the existence

FIGURE 1 Complexity of DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE on the investigated classes. An arrow from class A to

class B indicates that class A contains class B.
∗

Theorem 2 holds provided a tree model with optimal vertex leafage.

TABLE 1 Complexities of the weighted problems.

Weighted problem

Graph class STTREE CONNDOMSET DOMSET

CHORDAL W[2]-h [32] W[2]-h [32] W[2]-h [32]

STRONGLY CHORDAL NPc [35] P (Theorem 4) P [14]

UNDIRECTED PATH NPc [11] NPc [11] NPc [4]

ROOTED DIRECTED PATH Open P (Theorem 4) P [14]

Note: Nothing is known about the complexities on (in–out rooted) directed path graphs.
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of FPT algorithms parameterized by the vertex leafage of chordal graphs unless P = NP. We prove that they are FPT when

parameterized by 𝜅 + v𝓁(G), provided a tree model with optimal vertex leafage is given.

Theorem 2. Let G be a chordal graph on n vertices. If a tree model  of G such that v𝓁( ) = v𝓁(G) is given, then
DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE can be solved in time 2

O(𝜅⋅v𝓁(G)) ⋅ nO(1)
.

In fact, we solve explicitly a generalization of DOMINATING SET (see Theorem 6), and get the results on CONNECTED

DOMINATING SET and STEINER TREE by providing parameterized reductions from CONNECTED DOMINATING SET to

DOMINATING SET, and from STEINER TREE to CONNECTED DOMINATING SET. We write Π ⪯𝜅 Π′ to denote that there

exists a parameterized reduction from Π to Π′, both having parameter 𝜅. We improve on the reductions for STEINER TREE

and CONNECTED DOMINATING SET provided in [35], because here we preserve leafage and vertex leafage, and because our

reduction from CONNECTED DOMINATING SET to DOMINATING SET also works on the weighted versions of the problems.

Theorem 3. When constrained to the class of chordal graphs, and of chordal graphs with bounded (vertex) leafage,
we have that:

Steiner Tree ⪯𝜅 Connected Dominating Set ⪯𝜅 Dominating Set.

Now, because our reduction from CONNECTED DOMINATING SET to DOMINATING SET also works on the weighted ver-

sions of the problems, and since WEIGHTED DOMINATING SET is polynomial-time solvable on strongly chordal graphs [14], a

superclass of rooted directed path graphs, it follows that WEIGHTED CONNECTED DOMINATING SET is also polynomial-time

solvable on rooted directed path graphs. We prove that, in fact, our reduction works also on strongly chordal graphs.

Theorem 4. WEIGHTED CONNECTED DOMINATING SET is polynomial-time solvable on strongly chordal graphs.

The above theorem gives us that strongly chordal graphs separate these problems from WEIGHTED STEINER TREE since

the latter is NP-complete on strongly chordal graphs [35]. However, it should be noted that there is a fundamental difference

between the weighted versions of these problems, as WEIGHTED STEINER TREE considers weights on the edges, while the

others consider weights on the vertices. It should also be mentioned that STEINER TREE is polynomial-time solvable on strongly

chordal graphs [35]. Table 1 summarizes what is known about the weighted versions of these problems.

Observe that the complexity of all the problems constrained to directed path graphs is widely open, except that we know

their unweighted versions are FPT when parameterized by 𝜅, as this is a subclass of undirected path graphs. As an attempt

to understand the complexity on these graphs, we introduce the in–out rooted directed path graphs, which are the intersection

graphs of directed paths in an in–out branching. We prove that the unweighted problems on in–out rooted directed path graphs

are all polynomial-time solvable.

Theorem 5. DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE are polynomial-time solvable on in–out
rooted directed path graphs.

A parameter closely related to vertex leafage, and in fact an upper bound for it, is the leafage of G, denoted by 𝓁(G) [28].

Surprisingly enough, a tree model with 𝓁(G) leaves can be computed in polynomial time [22]. This unfortunately is not the

case for the vertex leafage parameter, as it is known [9] that it is NP-complete to decide whether a chordal graph G has vertex

leafage at most 3; they also give an algorithm to compute v𝓁(G) in time n𝓁(G), which is XP when parameterized by 𝓁(G). In [15]

they provide an FPT algorithm for DOMINATING SET when parameterized by 𝓁(G), which has been recently improved in [16].

Since v𝓁(G) ≤ 𝓁(G), we get that v𝓁(G) is a more restrictive parameter than 𝓁(G), and hence these algorithms are not readily

applicable to DOMINATING SET parameterized by 𝜅 and v𝓁(G). Nevertheless, we show that positive instances of DOMINATING

SET and CONNECTED DOMINATING SET must have bounded leafage, which brought us to the question about whether the same

holds for generalizations of DOMINATING SET. Indeed, we have found that the broader class of problems, called MIN-LC-VSP

problems [8, 15], have the same property. Given a graph G on n vertices and subsets 𝜎, 𝜌 ⊆ {0, … , n − 1}, a subset S ⊆ V(G)
is a (𝜎, 𝜌)-set if: |N(v) ∩ S| ∈ 𝜎 for every v ∈ S, and |N(v) ∩ S| ∈ 𝜌 for every v ∈ V(G)∖S. Fixing 𝜎, 𝜌, and given a graph G
and an integer 𝜅, the MIN-LC-VSP𝜎,𝜌 problem consists in deciding whether there exists a (𝜎, 𝜌)-set S of size at most 𝜅. Observe

that if 0 ∈ 𝜌, then the answer is always yes since taking the emptyset satisfies the constraints; this is why we suppose 0 ∉ 𝜌

in what follows. MIN-LC-VSP problems generalize a number of optimization problems, as for example, DOMINATING SET,

𝑑-DOMINATING SET, TOTAL DOMINATING SET, INDUCED 𝑑-REGULAR SUBGRAPH and so forth [8]. We state our result and

its corollary obtained from v𝓁(G) ≤ 𝓁(G).

Theorem 6. Let 𝜎, 𝜌 ⊆ {0, … , n − 1} be such that 0 ∉ 𝜌, G a chordal graph and 𝜅 a positive integer. If (G, 𝜅) is
a YES instance of MIN-LC-VSP𝜎,𝜌, then 𝓁(G) ≤ 𝜅 ⋅ v𝓁(G).

Corollary 1. Let 𝜎, 𝜌 ⊆ {0, … , n− 1}, G be a chordal graph and 𝜅 be a positive integer. If MIN-LC-VSP𝜎,𝜌 is FPT

when parameterized by v𝓁(G), then MIN-LC-VSP𝜎,𝜌 is also FPT when parameterized by 𝓁(G). And if MIN-LC-VSP𝜎,𝜌
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is FPT when parameterized by 𝓁(G) and a tree model  with v𝓁( ) = v𝓁(G) is provided, then MIN-LC-VSP𝜎,𝜌 is
also FPT when parameterized by 𝜅 + v𝓁(G).

The article is organized as follows. In Section 2, we present formal definitions and some basic results. We also estab-

lish the containment relations among the various graph classes investigated in this article, as well as some other related

classes. In Section 3, we prove an important lemma that directly implies Theorem 6, and the part of Theorem 2 that concerns

DOMINATING SET. In Section 4, we prove the part of Theorem 1 that concerns DOMINATING SET. Section 5 contains the

reduction from CONNECTED DOMINATING SET to DOMINATING SET, while Section 6 contains the reduction from STEINER

TREE to CONNECTED DOMINATING SET. These reductions finish the proof of Theorems 1–4. The proof of Theorem 5 is

presented in Section 7, and finally Section 8 presents some final remarks and open questions.

2 PRELIMINARIES

In this section, we formally define all investigated problems and graph subclasses. We also give some basic definitions of

parameterized complexity. For further definitions, we refer the reader to [10, 34].

2.1 Dominating set and variations
For a graph G, a set D ⊆ V(G) is dominating if, for every vertex v ∈ V(G)∖D, we have that v has a neighbor in D. Given a

graph G and a positive integer 𝜅, the DOMINATING SET problem consists of deciding whether G has a dominating set of size at

most 𝜅, while the CONNECTED DOMINATING SET asks the same but requires additionally that G[D] is connected. Given also

a subset X ⊆ V(G), called the set of terminals, the STEINER TREE problem consists of deciding whether there exists a subset

S ⊆ V(G)∖X, called a Steiner set, such that |S| ≤ 𝜅 and G[S ∪ X] is connected—and hence G[S ∪ X] has a spanning tree T ,

called a Steiner tree for (G,X). The natural parameter of all these problems is 𝜅. We restrict our attention to the case in which G
is connected, which ensures that connected dominating sets and Steiner trees do exist. Additionally, observe that DOMINATING

SET can also be reduced to the case where G is connected, since it suffices to solve the problem on the connected components

of G.

In the WEIGHTED DOMINATING SET, we are given a graph G, a positive number 𝜅 and a weight function 𝜔 on V(G),
and the problem consists of deciding whether there exists a dominating set S ⊆ V(G) such that

∑
u∈S 𝜔(u) ≤ 𝜅. The

WEIGHTED CONNECTED DOMINATING SET is analogous, except that we want additionally that G[S] is connected. Finally, in

the WEIGHTED STEINER TREE problem, we are given a graph G, a subset X ⊆ V(G), a positive number 𝜅 and a weight function

𝜔 on E(G), and are asked whether there is a Steiner tree T for (G,X) such that
∑

e∈E(T) 𝜔(e) ≤ 𝜅.

As said in the introduction, we solve STEINER TREE and CONNECTED DOMINATING SET by presenting the reductions that

prove Theorem 3, then solving DOMINATING SET. But in order to solve the latter, we actually solve a more general problem,

defined next. Given a graph G = (V ,E) and a subset B ⊆ V , we say that S ⊆ V(G) is a B-dominating set of (G,B) if N[u] ∩ S ≠ ∅
for every u ∈ B. The B-DOMINATING SET is the problem of, given a graph G, a subset B ⊆ V(G) and a positive integer 𝜅,

deciding whether (G,B) has a B-dominating set of size at most 𝜅.

2.2 Chordal graphs and subclasses
Given a graph G and a family of subsets  = {Su}u∈V(G) of a set U, we say that G is the intersection graph of  if uv ∈ E(G)
if and only if Su ∩ Sv ≠ ∅, and that (U,) is a intersection model (or simply, model) of G. In particular, a tree model of G
is an intersection model  = (T , {Tu}u∈V(G)) such that T is a tree, called characteristic tree, Tu is a subtree of T for every

u ∈ V(G), and two vertices are adjacent in the graph G if and only if their two corresponding subtrees have a nonempty vertex

intersection. A cycle of a graph G is chordless if any two vertices of the cycle are adjacent in G if and only if they are consecutive

in the cycle. Chordal graphs are defined as graphs having no chordless cycle of size bigger than three, but it is known that

they are precisely the intersection graphs admitting a tree model, that is, they are the vertex intersection graphs of subtrees

of a characteristic tree [17]. Nested subclasses of chordal graphs are defined by putting constraints in either the characteristic

tree, or the subtrees. Interval graphs are the intersection graphs of subpaths of a path [5]; rooted directed path graphs are the

intersection graphs of directed paths of an out-branching [18] (an oriented rooted tree with all vertices being reachable from the

root); directed path graphs are the intersection graphs of directed paths of an oriented tree [29]; and undirected path graphs are

the intersection graphs of paths of a tree [19]. The cited papers give polynomial-time recognition algorithms that also provide

tree models for these classes. Chordal graphs have a linear number of maximal cliques, which can be listed in polynomial time,

and a characteristic tree having the maximal cliques as nodes can be obtained in polynomial time [17].
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In Section 7, we give a polynomial time algorithm to solve DOMINATING SET on a subclass of directed path graphs that

contains the rooted directed path graphs. Let T be an oriented tree. A leaf of T is a vertex of degree 1. We say that T is an in–out
branching rooted at r if every path between r and a leaf 𝓁 is oriented either towards r or towards 𝓁. A graph G is an in–out
rooted directed path graph if G is the intersection graph of directed paths of a rooted in–out branching.

Given a tree model  = (T , {Tu}u∈V(G)) of a chordal graph G, the vertex leafage of  is the maximum number v𝓁( ) of

leaves in a subtree Tu, while the vertex leafage of G is the minimum vertex leafage over all of its tree models [9]. Similarly, the

leafage of G, denoted by 𝓁(G), is the minimum number of leaves 𝓁( ) in the tree of a tree model  of G [28].

Still considering a tree model  = (T , {Tu}u∈V(G)) of G, given a node t ∈ V(T), we denote by Vt the set {u ∈ V(G) ∶ t ∈
V(Tu)}. We say that u ∈ V(G) is a leafy vertex of G (with respect to  ) if V(Tu) = {𝓁u} and 𝓁u is a leaf in T; denote by (G,  )
the set of leafy vertices of G with respect to  , and for each u ∈ (G,  ), denote by 𝓁u the unique node in Tu.

A tree model (T , {Tu} u∈V(G)) of G is said to be minimal if there are no two adjacent nodes t, t′ ∈ V(T) such that Vt ⊆ Vt′ .

Even though obtaining a minimal tree model, given a tree model of G, is a standard operation, we prove it explicitly in order

to show that also the vertex leafage does not increase. The arguments used in the proposition are also presented along the text

in [9] without an explicit statement.

Proposition 1. Let G be a chordal graph, and  = (T , {Tu}u∈V(G)) be a tree model of G. Then, a minimal tree
model  ′ = (T ′, {T ′u}u∈V(G)) of G with v𝓁( ′) ≤ v𝓁( ) and 𝓁(T ′) ≤ 𝓁(T) can be computed in polynomial time.

Proof. We iterate on the nodes of T , starting from the leaves. Recall that Vt denotes the set of vertices of G whose

tree contains t. If a leaf 𝓁 with neighbor t is such that V𝓁 ⊆ Vt, simply delete 𝓁 from T and from every subtree

Tu containing 𝓁. Observe that this operation cannot increase the number of leaves of T or of any subtree Tu. Now,

let t, t′ ∈ V(T) be such that Vt′ ⊆ Vt and 𝑑T (t′) > 1. Also, let t1, … , tq be the neighbors of t′ different from t.
Remove t′ from T , and add the edges {tt1, … , ttq}, obtaining T ′; this is equivalent to doing a contraction of the

edge tt′ in T . Observe that, because Vt′ ⊆ Vt, we get that t ∈ V(Tu) whenever t′ ∈ V(Tu). Thus we can do the same

with the subtrees containing t′, that is, if t′ ∈ V(Tu), then contract the edge tt′ in Tu to obtain T ′u. Denote by  ′

the obtained model. Clearly edge contractions cannot increase the number of leaves in a tree, so v𝓁( ′) ≤ v𝓁( )
and 𝓁(T ′) ≤ 𝓁(T). Now we need to argue that this is still a tree model for G. This can be seen to hold because Tu
changes if and only if t′ ∈ V(Tu), if and only if tt′ ∈ E(Tu), and because t ∈ V(T ′u) for every u that had its subtree

modified. ▪

The following lemma will also be useful.

Lemma 1. Let G be a chordal graph and  = (T , {Tu}u∈V(G)) be a tree model of G such that Vt ≠ ∅ for every
t ∈ V(T). Then G is connected if and only if, for every tt′ ∈ E(T), there exists u ∈ V(G) such that tt′ ∈ E(Tu).

Proof. For the necessity part, suppose by contradiction that tt′ ∈ E(T) is such that tt′ ∉ E(Tu) for any u ∈ V(G).
Let Tt be the component of T − {tt′} containing t and Tt′ be the one containing t′. Also, let V∗

t ⊆ V(G) be such that

Tu ⊆ Tt for every u ∈ V∗
t , and define V∗

t′ ⊆ V(G) similarly with relation to Tt′ . Since Vt′′ ≠ ∅ for every t′′ ∈ V(T),
we get that V∗

t and V∗
t′ are non-empty and form a partition of V(G), and by definition of tree model we know that

there are no edges between V∗
t and V∗

t′ . It follows that G is disconnected.

Now, suppose that, for every tt′ ∈ E(T), there exists u ∈ V(G) such that tt′ ∈ E(Tu). If we prove that for every

partition V1,V2 of V(G), there exists an edge uv with u ∈ V1 and v ∈ V2, then it follows that G is connected.

So consider an arbitrary partition V1,V2 of V(G). Let T1 be the subgraph of T induced by
⋃

u∈V
1

V(Tu); define

T2 similarly with relation to V2. If V(T1) ∩ V(T2) ≠ ∅, then we are done. Otherwise, since Vt ≠ ∅ for every

t ∈ V(T), note that V(T1) and V(T2) define a partition of V(T). By taking any tt′ such that t ∈ V(T1) and t′ ∈
V(T2), which must exist because V1 and V2 are non-empty, we get a contradiction as tt′ is not contained in Tu for

any u ∈ V(G). ▪

Since there is much confusion in the literature about the relations involving path graphs
1
, we present the next proposition.

See Figure 2. Given k ≥ 3, the k-sun is obtained from a k-clique by appending k vertices in a way that the 2k vertices form a

cycle alternating vertices in the clique and vertices not in the clique. Figure 3A depicts the 4-sun. We call a k-sun an odd sun if

k is odd, and an even sun, otherwise. A graph is strongly chordal if it is a sun-free chordal graph [13]. Finally, a graph is dually
chordal if it is the clique graph (intersection graph of maximal cliques) of a chordal graph.

1
For instance, on the platform “Information System on Graph Classes and their Inclusions” (www.graphclasses.org/classes.cgi), DOMINATING SET is wrongly

reported as linear-time solvable on directed path graphs as a consequence of these being a subclass of strongly chordal and of dually chordal.

https://www.graphclasses.org/classes.cgi
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FIGURE 2 Relations between mentioned classes. An arrow from class A to class B means that A is a strict superclass of B.

FIGURE 3 Example of in–out rooted directed path graph that is not a strongly chordal graph, and hence also not rooted directed path. (A) 4-sun. (B) Tree

model of the 4-sun.

Proposition 2. The following relations hold between the mentioned classes.

I. In–out rooted directed path graphs is a proper subclass of directed path graphs;

II Every even sun is an in–out rooted directed path graph that is not dually chordal (and hence not strongly
chordal, nor rooted directed path);

Proof. For Item I, the graph in Figure 4A was presented in [21] as an example of a directed path graph that is not

rooted directed path. It turns out that the same graph is also an example of directed path graph that is not in–out

rooted directed path. This can be seen from the fact that the tree model presented in the figure is the unique model

for the graph using directed paths (see [21]), and that it is not an in–out branching.

For Item II, Figure 3B presents a tree model of the 4-sun where the tree is an in–out branching and each path

is a directed path in such a tree; in other words, the 4-sun is an in–out rooted directed path graph. A similar trick

can be applied to every even sun. For this, consider the even sun on vertices {v1, … , v2q, a1 … , a2q} where C =
{v1, … , v2q} forms a clique, and ai is adjacent to vi and v(i+1) mo𝑑 2q, for every i ∈ [2q]. Let T be such that V(T) =
{t0, … , t2q} and E(T) = {t2i−1t0, t0t2i|i ∈ [q]}; in words, the edge between ti and t0 points to t0 if i is odd, and to ti
if i is even. Now, for each i ∈ [2q], relate ai to the subtree containing the single node ti. Finally, for each i ∈ [q],
relate v2i−1 to the subtree formed by {t(2i−2) mo𝑑 2q, t0, t2i−1}, and relate v2i to the subtree formed by {t2i−1, t0, t2i}.
As t0 ∈ V(Tvi) for every i ∈ [2q], we get that C is indeed a clique. Also, observe that ti belongs exactly to the

subtree of vi and of v(i+1) mo𝑑 2q for every i ∈ [2q]. It follows that this is indeed an in–out branching model of the

even sun. We then get that all even suns are in–out rooted directed path graphs. As for not being dually chordal, it

is known that these graphs are exactly those admitting a maximum neighborhood ordering [6]. Because a sun does
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FIGURE 4 Example of a directed path graph that is not an in–out rooted directed path graph. The nodes of the tree model are related to the following

subsets: Vt1 = {1, 2, 3}; Vt2 = {2, 3, 4, 5}; Vt3 = {2, 3, 5, 6, 7}; Vt4 = {5, 7, 8}; Vt5 = {2, 6, 9}; Vt6 = {9, 11, 15}; Vt7 = {11, 12, 14, 15, 16}; Vt8 = {14, 16, 17};
Vt9 = {11, 12, 13, 14}; Vt10

= {10, 11, 12}. (A) Graph G. (B) Tree model of G.

not contain a vertex with maximum neighborhood [6], it follows that they are not dually chordal. Therefore, even

suns are in–out rooted directed path graphs (and hence also directed path graphs) that are not dually chordal. Since

it is known that strongly chordal graphs are dually chordal [6], and that rooted directed path graphs are strongly

chordal [7], the item follows. ▪

2.3 Parameterized complexity
A parameterized problem is a language Π ⊆ Σ∗ × N, where Σ is a fixed finite alphabet. A pair (I, 𝜅) ∈ Σ∗ × N is called

an instance of Π with parameter 𝜅, and we say that it is a YES instance if (I, 𝜅) ∈ Π. Given instances (I, 𝜅), (I′, 𝜅′) of the

same parameterized problem Π, it is said that they are equivalent if (I, 𝜅) is a YES instance of Π if and only if so does (I′, 𝜅′).
A reduction rule for Π is a polynomial-time computable function that maps an instance (I, 𝜅) to another instance (I′, 𝜅′). A

reduction rule is safe if (I, 𝜅) and (I′, 𝜅′) are equivalent and 𝜅
′ ≤ g(𝜅), where g is a computable function.

Given two parameterized problems Π,Π′ ⊆ Σ∗ ×N, a parameterized reduction from Π to Π′ is an algorithm that, given an

instance (I, 𝜅) of Π, computes an equivalent instance (I′, 𝜅′) of Π′ such that 𝜅
′ ≤ g(𝜅) in time f (𝜅) ⋅ |I|O(1), where f and g are a

computable functions.

We refer the reader to [10] for further background on parameterized complexity.

3 PROOF OF PART OF THEOREM 2 AND OF THEOREM 6

Recall that Theorem 2 states that the investigated problems can be solved in time 2
O(𝜅⋅v𝓁(G)) ⋅ nO(1)

, given that a tree model

achieving v𝓁(G) is given, and that Theorem 6 states that if (G, 𝜅) is a YES instance of MIN-LC-VSP𝜎,𝜌, then 𝓁(G) ≤ 𝜅 ⋅ v𝓁(G).
We start with the proof of these two theorems because the tool lemma will also be used in the next section to prove Theorem 1.

We will see that the following lemma directly implies Theorem 6 and the part of Theorem 2 that concerns DOMINATING SET.

The part of Theorem 2 concerning CONNECTED DOMINATING SET and STEINER TREE then follows from Theorem 3, which

is proved in Sections 5 and 6.

Lemma 2. Let G be a chordal graph,  = (T , {Tu}u∈V(G)) be a minimal tree model of G such that v𝓁( ) = v𝓁(G),
𝜅 be a positive integer and S ⊆ V(G) such that N[u] ∩ S ≠ ∅ for every leafy vertex u ∈ (G,  ). If |S| ≤ 𝜅, then
𝓁(G) ≤ 𝜅 ⋅ v𝓁(G).

Proof. By contradiction, let 𝓁1, … ,𝓁k be the leaves of T , with k > 𝜅 ⋅ v𝓁(G). Since  is minimal, for each

i ∈ {1, … , k}, there exists vi ∈ V𝓁i such that V(Tvi) = {𝓁i}, as otherwise we would have V𝓁i ⊆ Vti where ti is

the neighbor of 𝓁i in T . For each u ∈ S, let Du = {vi|u ∈ N[vi]}. Observe that if vi ∈ S, then Dvi = {vi} since

𝓁1, … ,𝓁k are all distinct leaves of T (i.e., {v1, … , vk} is an independent set). Note also that if u ∈ S∖{v1, … , vk},
then |Du| ≤ v𝓁(G). By assumption, we know that N[vi] ∩ S ≠ ∅ for every vi ∈ {v1, … , vk}∖S, which means that
⋃

u∈S Du = {v1, … , vk}. However, we know that |
⋃

u∈S Du| ≤
∑

u∈S |Du| ≤ |S|⋅v𝓁(G) ≤ 𝜅 ⋅v𝓁(G), a contradiction

since k > 𝜅 ⋅ v𝓁(G). ▪
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Since in Theorem 6 we have 0 ∉ 𝜌, we get directly that a solution S to MIN-LC-VSP𝜎,𝜌 applied to (G, 𝜅) must be such

that N[u] ∩ S ≠ ∅ for every u ∈ V(G), and in particular for every leafy vertex. Hence, Theorem 6 follows from the above

lemma. Additionally, it is known that DOMINATING SET can be solved in time 2
O(𝓁) ⋅ nO(1)

on a chordal graph G, where

𝓁 = 𝓁(G) and n = |V(G)| [16]. Since the hypothesis of Lemma 2 applies to DOMINATING SET, we get that it can be solved

in time 2
O(𝜅⋅v𝓁(G)) ⋅ nO(1)

on a chordal graph, provided the appropriate model is given, that is, the part of Theorem 2 concerning

DOMINATING SET follows.

4 PROOF OF PART OF THEOREM 1

Theorem 1 states that the investigated problems can be solved in time 2
2𝜅 log 𝜅 ⋅ nO(1)

. We now prove the part of this theorem

concerning DOMINATING SET and the remainder follows from Theorem 3, which we prove in Sections 5 and 6. Even though

this complexity is worse than the one achieved by Theorem 2, we propose this algorithm for its simplicity when compared to

the one presented in [16] that we used to conclude Theorem 2.

Recall that in the B-DOMINATING SET problem, we are given a graph G, a subset B ⊆ V(G) and a positive integer 𝜅, and

we want to decide whether (G,B) has a B-dominating set (i.e., a set S such that N[u] ∩ S ≠ ∅ for every u ∈ B) of size at most

𝜅. Therefore, DOMINATING SET is a particular case of B-DOMINATING SET where B = V(G).
In this section, we present an FPT algorithm for B-DOMINATING SET parameterized by 𝜅 restricted to undirected path

graphs. Clearly, solving DOMINATING SET on (G, 𝜅) is equivalent to solving B-DOMINATING SET on (G,V(G), 𝜅).
From this point on, we assume that G is an undirected path graph, and that  = (T , {Pu}u∈V(G)) is a tree model of G where

each Pu is a subpath of T (this can be computed in polynomial time [19]). We also denote by  the set (G,  ). We solve this

problem by first applying a series of reduction rules.

Reduction Rule 1. Let (G,B, 𝜅) be an instance of B-DOMINATING SET.

• If there exists v ∈ ∖B, then DELETE v, obtaining the instance (G − v,B, 𝜅).
• If there exists v ∈ ∩B such that v is an isolated vertex, then DELETE v, obtaining the instance (G−v,B−v, 𝜅−1).

Proof of Safeness. Deleting a vertex clearly does not increase the vertex leafage, so we just need to prove the

equivalence between instances. For the first case, clearly a B-dominating set in G − v is also a B-dominating set in

G. So let S be a B-dominating set in G. If v ∉ S, then there is nothing to prove. Otherwise, since v is a leafy vertex,

we get that N[v] is a clique, which means that any b ∈ B dominated by v can be dominated by any u ∈ N(v) instead.

The second part is analogous, except that in such case the only vertex that can dominate v is v itself. ▪

Now we can assume that every leafy vertex v of G is in B and is not isolated. The following rule allows us to bound the

number of leaves in T .

Reduction Rule 2. If B = ∅ and 𝜅 = 0, then output YES. Else if B = ∅ and 𝜅 < 0, then output NO. Else if B ≠ ∅
and either 𝜅 ≤ 0 or T has more than 2𝜅 leaves, then output NO.

Proof of Safeness. It follows from the assumption that every leafy vertex v is in B and from Lemma 2. ▪

Thus, we assume that T has at most 2𝜅 leaves. Furthermore, if |V(T)| = 1, then G is the complete graph and any vertex

dominates B; so from now on we assume that T has at least 2 leaves. Our next operation is not a reduction rule, but a branching

rule instead. More specifically, we create a number of smaller instances in order to solve the problem. The amount of instances

created is bounded by a function of 𝜅, due to the fact that T has at most 2𝜅 leaves.

Given nodes t, t′ of T , denote by P(t, t′) the unique t, t′-path in T . Also, given a subpath P of T , denote by VP the set

{u ∈ V(G)|Pu ⊆ P}. Say that u ∈ VP is P-maximal if there is no v ∈ VP such that Pu is a proper subpath of Pv.

Branching Rule 1. Let  = (G,B, 𝜅) be an instance of B-DOMINATING SET. Let 𝓁 ∈ V(T) be a leaf of T , and
u ∈ V(G) be such that V(Pu) = {𝓁}. For each leaf t ∈ V(T), t ≠ 𝓁, do the following:

1. Choose v ∈ VP(𝓁,t) to be a P(𝓁, t)-maximal vertex such that 𝓁 ∈ V(Pv);
2. Define G′ = G − VPv and B′ = B∖NG[v];
3. Create the instance (u, t) = (G′

,B′, 𝜅 − 1).
We remark that {u, v} ⊆ VPv and thus those two vertices are not in G′

.

Safeness of the Branching Rule. First, observe that a minimal tree model of G′
can again be obtained by apply-

ing Proposition 1 to the tree model  restricted to G′
. Therefore, it remains to show that  is a YES instance of
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B-DOMINATING SET if and only if there exists a leaf t of T distinct from 𝓁 such that the instance (u, t) is also a

YES instance.

For the necessity part, let S be a B-dominating set of G. By our assumption that Reduction Rule 1 is not appli-

cable, we get that u ∈ B, and N(u) ≠ ∅. Note that, since V(Pu) = {𝓁} we get that N(u) is a clique. This means that

if u ∈ S, then (S∖{u}) ∪ {v} is also B-dominating, for any v ∈ N(u). Therefore, we can assume that u ∉ S. Now,

let v be a neighbor of u in S. Also, let t′ be the endpoint of Pv distinct from 𝓁, and let t be any leaf separated from

𝓁 by the edge of Pv incident to t′ (it might happen that t = t′). Then, either v is P(𝓁, t)-maximal, or there exists

x ∈ V𝓁 which is P(𝓁, t)-maximal. If the latter occurs, we get that Pv ⊆ Px, which in turn gives us that N[v] ⊆ N[x]
and that (S∖{v}) ∪ {x} is a B-dominating set of G. We can therefore suppose, without loss of generality, that v is

P(𝓁, t)-maximal. Now, let (u, t) be the instance of B-DOMINATING SET constructed as in the statement of the

Branching Rule. Observe that if v′ is also P(𝓁, t)-maximal such that 𝓁 ∈ V(Pv′ ), then Pv′ = Pv and the constructed

instance is the same, so we can suppose that indeed v is the iterated P(𝓁, t)-maximal vertex. It remains to prove that

S′ = S∖{v} is a B′-dominating set of (u, t). For this, let b ∈ B′. By construction b ∈ B∖NG[v]. Therefore, b has a

neighbor in S∖{v}, as we wanted to show.

For the sufficiency, let (u, t) = (G′
,B′, 𝜅 − 1) be the instance given by the Branching Rule, and let S′ be a

B′-dominating set of G′
. Because every b ∈ B′ is dominated by S′, and B∖B′ = NG[v], we get that S = S′ ∪ {v} is

a B-dominating set of G, as we wanted.

The part of Theorem 1 concerning DOMINATING SET follows by bounding the number of instances, since each instance is

solved in polynomial time. As for CONNECTED DOMINATING SET and STEINER TREE, they follow from Theorem 3, proved

in Sections 5 and 6.

Lemma 3. Let G be an undirected path graph. Then DOMINATING SET can be solved in time 2
2𝜅 log 𝜅 ⋅ nO(1)

.

Proof. We start by obtaining a tree model with optimal vertex leafage for G by applying the polynomial algorithm

in [19]. Then, we iteratively apply Reduction Rules 1 and 2 (also applying Proposition 1 to maintain a minimal

tree model), until we reach the need to apply the Branching Rule. Recall that we are assuming that T has at most

2𝜅 leaves. The latter is then applied for every leaf of the current tree model, which generates at most (2𝜅)2 = 4𝜅
2

new instances. The process then starts over on each of the generated instances. Finally, since the budget for the

size of the solution decreases by 1 after applying the Branching Rule, we get that a new application of the rule

would generate at most (2𝜅 − 2)2 new instances, and so on. Observe that this cascade can be done at most 𝜅 times,

since at each application we keep one vertex in the dominating set that is being constructed. Therefore, in the

worst case scenario, we get that the total number of generated instances is: (2𝜅)2 ⋅ (2𝜅 − 2)2 · · · (2𝜅 − (2𝜅 − 2))2

= [2𝜅(𝜅 ⋅ (𝜅 − 1) · · · 1)]2. Applying Stirling’s approximation, we get time

[

2
𝜅 ⋅

(
𝜅

e

)
𝜅

⋅
√

2𝜋𝜅

]2

= 2
2𝜅 log 𝜅 ⋅ nO(1)

.

Observe that if an instance eventually ends up with a non-empty set of vertices of B and a budget of 0 (base case

of the branching procedure), then Reduction Rule 2 will output NO. Because the applications of Reduction Rules 1

and 2 and of Proposition 1 are done in polynomial time, we get the claimed running time. ▪

5 REDUCING CONNECTED DOMINATING SET TO DOMINATING SET

In this section, we prove that Connected Dominating Set ⪯𝜅 Dominating Set (second part of Theorem 3). Recall that we need

this to conclude the part of Theorems 1 and 2 concerning CONNECTED DOMINATING SET. We also prove Theorem 4, which

states that WEIGHTED CONNECTED DOMINATING SET is polynomial-time solvable on strongly chordal graphs.

Consider (G, 𝜅) an instance of CONNECTED DOMINATING SET, where G is a chordal graph. Consider also a minimal tree

model  = (T , {Tu}u∈V(G)) of G. We construct an instance (G′
, 𝜅) of DOMINATING SET by modifying  and taking G′

as the

intersection graph of the modified model.

We give the construction step by step. Observe Figure 5 to follow the construction.

• Let T ′ be obtained from T by subdividing each tt′ ∈ V(T); denote the obtained node by 𝜂(tt′).
• Do the same for the subtrees related to Tu for each u ∈ V(G) containing tt′, denoting the obtained subtree of T ′ by T ′u.

• Finally, for each tt′ ∈ E(T), create a new vertex u and relate it to the subtree T ′u containing just the node 𝜂(tt′); denote

such vertex by 𝜈(tt′) and let  be the set of all new vertices.

• Let G′
be the graph whose tree model is  ′ = (T ′, {T ′u}u∈V(G)∪ ).

• If we are dealing with the weighted version of these problems, where we are also given a weight function 𝜔 ∶ V(G)→ R,

then we let 𝜔
′(u) = 𝜔(u) if u ∈ V(G), and 𝜔

′(u) = M + 1 if u ∉ V(G), where M = max𝜔(V(G)).
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FIGURE 5 Example for the construction. The nodes of the tree are related to the following subsets. White nodes: Vt0 = {a, b, c, 𝑑, e}; Vt1 = {a, e, 1};
Vt2 = {b, 𝑑, 2}; Vt3 = {𝑑, e, 3}; Vt′

0

= {a, b, c, f , g}; Vt4 = {a, f , 4}; Vt5 = {c, g, 5}; Vt6 = {f , g, 6}. Gray nodes: Vt′1
= {a, e, 1′}; Vt′2

= {b, d, 2′};
Vt′3

= {d, e, 3′}; Vt′4
= {a, f, 4′}; Vt′5

= {c, g, 5′}; Vt′6
= {f, g, 6′}; Vt = {a, b, c, 7}. (A) The tree model of graph G is represented by white nodes, while the new

nodes are in gray. (B) The original graph G is formed by the white vertices, while the new vertices are in gray. Some of the edges are dotted in order to make

the figure visually cleaner.

Observe that the last step ensures that u ∈  is never chosen for a minimum weight dominating set of G′
. In Figure 5, the

new nodes are {t, t′
1
, … , t′

6
}, while the new vertices in G′

are {h, 1′, … , 6
′}. We now prove the desired reduction.

Lemma 4. (G, 𝜅) is a YES instance of CONNECTED DOMINATING SET if and only if (G′
, 𝜅) is a YES instance of

DOMINATING SET. The same holds for the weighted versions of these problems.

Proof. Suppose first that S ⊆ V(G) is a connected dominating set of G such that |S| ≤ 𝜅. We want to prove that S is

also a dominating set of G′
. By definition and since G is an induced subgraph of G′

, we know that ∅ ≠ S∩NG[u] ⊆
S ∩ NG′ [u] for every u ∈ V(G). It thus remains to show that S also dominates  . For this we prove that, for every

tt′ ∈ E(T), there exists u ∈ S such that tt′ ∈ E(Tu); note that this finishes the proof by the construction of G′
(i.e.,

the added vertices are exactly the ones related to the edges of T). Suppose otherwise and let tt′ ∈ E(T) be such

tt′ ∉ E(Tu) for every u ∈ S. Let also Tt be the component of T − {tt′} containing t, and define Tt′ analogously. Let

G′′ = G[S], and T ′′ be the subgraph of T formed by the subtrees related to S, that is, T ′′ =
⋃

u∈S Tu. Since G′′
is

connected, we know by Lemma 1 that T ′ is connected and, since tt′ ∉ E(T ′′), we get that T ′′ is either contained

in Tt or in Tt′ , say Tt. But now, because  is minimal, there is some leafy vertex u of G such that 𝓁u ∈ V(Tt′ ), a

contradiction as in this case u has no neighbors in S.

Now, suppose S ⊆ V(G′) is a dominating set of G′
such that |S| ≤ 𝜅. We first show that we can suppose that

S ⊆ V(G). For this, consider some tt′ ∈ E(G); also, let u = 𝜈(tt′). Since G is connected, by Lemma 1 there exists

v ∈ V(G) such that tt′ ∈ E(Tv). By definition of tree model, we get that NG′ [u] ⊆ NG′ [v]. Therefore, if u ∈ S, then

(S∖{u}) ∪ {v} is also a dominating set of G′
. We can then suppose that S ⊆ V(G), as we wanted to show. Since

G is an induced subgraph of G′
, it follows that S is a dominating set of G. It remains to prove that G[S] is also

connected. Because S also dominates  in G′
, we get that for every u ∈  , there exists v ∈ NG′ (u) ∩ S. This means

that tt′ ∈ E(Tv), where tt′ is such that u = 𝜈(tt′). In other words, for every tt′ ∈ E(T), there exists v ∈ S such that

tt′ ∈ E(Tv), and it follows that G[S] is connected by Lemma 1.

Observe that the weighted version holds by the definition of the weight function. Indeed, we have that 𝜔(S) =
𝜔
′(S) for every S ⊆ V(G). On the other hand, if S ⊆ V(G′) is a dominating set of G′

not contained in V(G), then the

definition of the weight function and the above paragraph tells us there exists a dominating set S′ of G′
contained

in V(G) such that 𝜔(S′) < 𝜔(S). ▪

Observe that each vertex added to G′
is a simplicial vertex, which is a vertex whose neighborhood is a clique. We call

them edge-simplicial since they are adjacent exactly to the set of vertices whose trees contain a certain edge of T . Because
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the construction of G′
can be done in polynomial time, we get the following corollary, which proves the part of Theorem 3

concerning the reduction from CONNECTED DOMINATING SET to DOMINATING SET.

Corollary 2. If (WEIGHTED) DOMINATING SET can be solved in time f (𝜅 + v𝓁(G)) ⋅ nO(1) on a chordal graph G, for
every G belonging to a subclass of chordal graphs closed under inclusion of edge-simplicial vertices, then so does
(WEIGHTED) CONNECTED DOMINATING SET.

Observe also that the construction of G′
preserves the vertex leafage of G. In other words, path graphs are closed under inclu-

sion of edge-simplicial vertices. We then get that the complexities given in Theorems 1 and 2 for CONNECTED DOMINATING

SET follow by applying the algorithm presented in Sections 3 and 4 to (G′
, 𝜅). Additionally, it follows that if G is a rooted path

graph, then the algorithm for WEIGHTED DOMINATING SET presented in [4] for strongly chordal graphs can be applied to

(G′
, 𝜔

′
, 𝜅) in order to solve WEIGHTED CONNECTED DOMINATING SET. The next lemma shows that in fact this extends to all

strongly chordal graphs, as stated in Theorem 4.

Lemma 5. The class of strongly chordal graphs is closed under inclusion of edge-simplicial vertices.

Proof. Let G be a strongly chordal graph,  = (T , {Tu}u∈V(G)) be a minimal tree model of G, and consider tt′ ∈
E(T). Denote by N the set {u ∈ V(G)|tt′ ∈ E(Tu)}, and let G′

be obtained from G by adding x that is adjacent to

every vertex in N. Observe that if we prove that G′
is strongly chordal, then the lemma follows. Suppose otherwise.

Because G′
is trivially chordal, and strongly chordal graphs are exactly the sun-free chordal graphs [13], there must

be a sun H in G′
containing x. Denote the vertices in the clique of H by K = {v1, … , vq}, and the vertices not in

the clique of H by x1, … , xq. Suppose, without loss of generality, that x = x1, and that x1 is adjacent to v1 and v2.

By definition of sun and the fact that NG′ (x) = N, we get that N ∩ K = {v1, v2}. Now, define Tt and Tt′ as before.

Also, let Gt be the subgraph of G induced by the vertices u such that V(Tu) ∩ V(Tt) ≠ ∅; define Gt′ similarly.

By definition of tree model, we know that V(Gt) ∩ V(Gt′ ) = N. Since q ≥ 3 and there must exist a node t′′ for

which K ⊆ Vt′′ , we get that H − {x, v1, v2} is contained in Gt or in Gt′ , say it is contained in Gt. This means that

K ∩ Vt′ = {v1, v2}. But since  is minimal, there exists x′ ∈ Vt′∖Vt, and because {v1, v2} ⊆ Vt we know that

x′ ∉ {v1, v2}. We get a contradiction as in this case x′ is adjacent exactly to {v1, v2} in H − x, that is, H − x + x′ is

a sun in G. ▪

6 REDUCING STEINER TREE TO CONNECTED DOMINATING SET

In this section, we make a reduction from STEINER TREE to CONNECTED DOMINATING SET that, as we will see, preserves

leafage and vertex leafage. This finishes the proofs of Theorems 1–3.

Given an instance (G,X, 𝜅) of STEINER TREE and a minimal tree model (T , {Tu} u∈V(G)) of G, we construct an equivalent

instance (G′
, 𝜅) of CONNECTED DOMINATING SET as follows. Denote (G,  ) by . First, we iteratively apply the following

operations.

• If u ∈ ∖X, then remove u from G, removing also 𝓁u from the model if u is the only leafy vertex in V𝓁u .

• Do the same if u ∈  ∩ X is such that there exists x ∈ (X ∩ N(u))∖.

• At the end, we have an instance (G′
,X′, 𝜅), together with a minimal tree model  ′ of G′

, such that (G′
,  ′) ⊆ X′ and

X′ ∩ V𝓁 ⊆ (G′
,  ′) for every leaf 𝓁 of the tree model  ′. We call such an instance a clean instance.

Now, consider a clean instance (G,X, 𝜅), and a minimal tree model  of G; again denote (G,  ) by . We now use the

bypass operation to eliminate vertices in X∖ while maintaining the connectivity that is gained by including these vertices in

the induced subgraph G[S ∪ X]. The bypass operation of a vertex v ∈ X∖ consists of:

• Removing v from V(G); and

• Adding uw for every pair u,w of neighbors of v (such that uw ∉ E(G) to avoid multiple edges).

Denote by (G′
, 𝜅) the obtained instance, that is, the instance of CONNECTED DOMINATING SET obtained from the clean

instance (G,X, 𝜅) of STEINER TREE by applying bypass to each vertex v ∈ X∖. We first show how to modify  into a tree

model of G′
.

Lemma 6. Let (G,X, 𝜅) be a clean instance of STEINER TREE where G is chordal,  = (T , {Tu}u∈V(G)) be a minimal
tree model of G, and let G′ be constructed as above. Then there exists a tree model  ′ of G′ such that v𝓁( ′) ≤
v𝓁( ) and 𝓁( ′) ≤ 𝓁( ).
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Proof. We prove that if G′
is obtained from G by bypassing v ∈ V(G), then we can modify  into  ′, a tree

model of G′
, ensuring that v𝓁( ′) ≤ v𝓁( ) and 𝓁( ′) ≤ 𝓁( ). By iteratively applying this operation to every

u ∈ X∖(G,  ), we get the desired result. Consider  ′ = (T ′, {T ′u}u∈V(G′)) obtained by applying the following

operation.

1. T ′ is the tree obtained from T by contracting Tv to a single vertex, tv; and

2. For each u ∈ V(G′), if V(Tv)∩V(Tu) = ∅, then Tu remains the same; otherwise, T ′u is the subtree of T ′ containing

exactly the vertices in (V(Tu)∖V(Tv)) ∪ {tv}.

To see that the vertex leafage and the leafage does not increase, just observe that edge contractions in trees

cannot increase the number of leaves. It remains to argue that  ′ is indeed a tree model of G′
. For this, we must

have uw ∈ E(G′) if and only if V(T ′u) ∩ V(T ′w) ≠ ∅, which holds because tv ∈ V(T ′u) if and only if u ∈ N(v). ▪

Now, we prove that the reduction works.

Lemma 7. Let (G,X, 𝜅) be a clean instance of STEINER TREE, where G is a chordal graph, and let  = (T , {Tu}u∈V(G))
be a minimal tree model of G. Then, (G,X, 𝜅) is a YES instance of STEINER TREE if and only if (G′

, 𝜅) is a YES instance
of CONNECTED DOMINATING SET.

Proof. Let  ′ = (T ′, {T ′u}u∈V(G′)) be the tree model of G′
obtained as in Lemma 6; denote by  the set (G,  ).

First note that, since (G,X, 𝜅) is a clean instance, we have that X∩V𝓁 ⊆  for every leaf node 𝓁 of  . In other words,

all the subtree contractions made to  in order to obtain  ′ cannot contract a leaf node; hence (G′
,  ′) = .

Now, consider a Steiner set S for (G,X) of size at most 𝜅. We argue that S is also a connected dominating set of G′
.

By Lemma 1, the facts that G[S ∪ X] is connected, and  ⊆ X and every edge of T is within the unique path in T
between two leaves of T , we get that:

There exists u ∈ (X ∪ S) such that tt′ ∈ E(Tu), for every tt′ ∈ E(T). (1)

We want to prove that the same holds for S and T ′, that is, that there exists u ∈ S such that tt′ ∈ E(T ′u), for every

tt′ ∈ E(T ′). Observe that this directly implies that S is a dominating set of G′
, and we get that it is connected by

Lemma 1. So consider any tt′ ∈ E(T ′). If tt′ ∈ E(T), then let u ∈ (S ∪ X) be such that tt′ ∈ E(Tu). Note that,

since X ∩ V𝓁 ⊆  for every leaf 𝓁 of T and because every x ∈ X∖ has its subtree contracted, it follows that

u must be in S and we are done. So now consider that tt′ ∈ E(T ′)∖E(T) and suppose, without loss of generality,

that t ∈ V(T ′)∖V(T). This means that t is a node obtained by contracting subtrees Ty
1
, … ,Tyq for some subset

Y = {y1, … , yq} ⊆ X∖. Let TY be the subgraph of T formed by the union of Ty
1
, … ,Tyq ; in other words, the

subgraph whose contraction generated t. Since only edge contractions are allowed, we know that TY is a subtree

of T . Observe that t′ could also be the product of edge contractions. We treat the cases separately. Suppose first

that t′ ∈ V(T); by the definition of edge contraction, we know that t′ must be adjacent to a node in TY , say t′′. By

Equation (1), there exists u ∈ X ∪ S such that t′t′′ ∈ E(Tu), which in turn implies that tt′ ∈ E(T ′u). It thus remains to

show that u ∈ S. Since E(Tu) ≠ ∅, we know that u ∉ . And because every node of X not in got its tree contracted

to a single node, while T ′u is not a single node as it contains the edge tt′, we get that u ∉ X, that is, u ∈ S, as we

wanted to show. Now suppose that t′ is obtained by the contraction of a subset Y ′ = {y′
1
, … , y′q} ⊆ X∖. Let TY ′

be the subgraph of T formed by the union of Ty′
1

, … ,Ty′q . By definition of edge contraction, there exists h ∈ V(TY )
and h′ ∈ V(TY ′ ) such that hh′ ∈ E(T). By Equation (1), there exists u ∈ X ∪ S such that hh′ ∈ E(Tu), which implies

that tt′ ∈ E(T ′u). A similar argument can be applied to conclude that u ∈ S.

Now, let S be a connected dominating set of G′
of size at most 𝜅. We want to prove that S is a Steiner set for

(G,X), that is, that H = G[S∪X] is connected. We first prove that S dominates X. Indeed, because G′[S] is connected

and dominates , by Lemma 1 we get that there exists u ∈ S such that tt′ ∈ E(T ′u) for every tt′ ∈ E(T ′). It follows

that S also dominates every x ∈ X∖, it suffices to take any u ∈ S such that T ′u contains any edge incident to tx,

the node containing the contraction of Tx. It remains to argue that H is connected. For this let T∗ be the subgraph

of T formed by the union
⋃

x∈X∖ Tx. By construction, we know that T ′ is obtained from T by contracting each

component of T∗ to a single node. Now, if tt′ ∈ E(T∗), then by definition there exists x ∈ X such that tt′ ∈ E(Tx).
And if tt′ ∈ E(T)∖E(T∗), then there exists an edge of T ′ related to tt′, in which case we know that there exists u ∈ S
such that tt′ ∈ E(Tu). We then get that there exists u ∈ S ∪ X such that tt′ ∈ E(Tu) for every tt′ ∈ E(T). It follows

from Lemma 1 that H is connected. ▪
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7 PROOF OF THEOREM 5

In this section, we prove Theorem 5, namely that DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE are

polynomial-time solvable on in–out rooted directed path graphs. We do this again by solving B-DOMINATING SET and applying

Theorem 3, as we did in Section 4. Recall that an oriented tree T is an in–out branching rooted at r if every path between r and

a leaf 𝓁 is oriented either towards r or towards 𝓁. Also, a graph G is an in–out rooted directed path graph if G is the intersection

graph of directed paths of a rooted in–out branching.

Consider an instance of B-DOMINATING SET, (G,B, 𝜅), where G is an in–out rooted directed path graph with tree model

 = (T , {Pu}u∈V(G)), with T rooted in r ∈ V(T). Observe that Reduction Rules 1 and 2 still apply. In what follows, we introduce

a third rule.

Let L = {𝓁1, … ,𝓁h} be the set of source leaves of T (i.e., leaves without-degree 1) and L′ = {𝓁′
1
, … ,𝓁′h′ } the set of sink

leaves of T (leaves with in-degree 1). Also, for each i ∈ [h], denote by Qi the 𝓁i, r-path in T; similarly, for each i ∈ [h′], denote

by Q′
i the r,𝓁′i -path in T . Suppose that 𝓁i is such that every u ∈ V𝓁i has a path strictly contained in Qi, and let x ∈ V𝓁i be

such that Pu ⊆ Px for every u ∈ V𝓁i ; we say that x is 𝓁i-maximal. Let t ∈ V(T) be the extremity of Px different from 𝓁i. The

problem is reduced by adding x to the searched solution. Recall from Section 4 that, given a path P ⊆ T , VP denotes the set

{u ∈ V(G)|Pu ⊆ P}.

Reduction Rule 3. Let (G,B, 𝜅) be an instance of B-DOMINATING SET, with G being an in–out rooted directed path
graph, and  = (T , {Pu}u∈V ) be a minimal tree model of G. Suppose that Reduction Rule 1 cannot be applied, and
that 𝓁i is such that Pu ⊂ Qi for every u ∈ V𝓁i . Let x be an 𝓁i-maximal vertex. Then ADD x to the solution, obtaining
the instance (G − VPx ,B∖NG[x], 𝜅 − 1).

Proof of Safeness. If Reduction Rule 1 cannot be applied, then we get that there exists v ∈  ∩ V𝓁i ∩ B. Additionally,

because v is not isolated we have V𝓁i∖{v} ≠ ∅. Observe that there exists an 𝓁i-maximal vertex x in V𝓁i∖{v}. We

want to prove that (G,B, 𝜅) is a YES instance of B-DOMINATING SET if and only if so is (G−VPx ,B−N[x], 𝜅−1).
Denote G − VPx by G′

and B − NG[x] by B′.
First, consider a B-dominating set S for (G,B) of size at most 𝜅. Since v ∈ B and NG[v] ⊆ V𝓁i ⊆ VPx , we get that

S∩VPx ≠ ∅; hence |S′| ≤ 𝜅 − 1, where S′ = S∖VPx . We now want to prove that S′ is a B-dominating set for (G′
,B′).

For this, let u ∈ B′. Since u ∈ B, there exists u′ ∈ NG[u] ∩ S. If u′ ∈ S′, then there is nothing to prove; so suppose

otherwise, in which case u′ ∈ VPx . By definition of VPx , this gives us that Pu′ ⊆ Px and hence NG[u′] ⊆ NG[x], a

contradiction as in this case u ∈ NG[x] and should not be in B′.
Now consider a B-dominating set S′ for (G′

,B′) of size at most 𝜅 − 1. We want to prove that S = S′ ∪ {x} is

a B-dominating set for (G,B). For this, let u ∈ B. If u ∈ B′, then it follows since NG′ [u] ∩ S′ ≠ ∅ and G′
⊆ G.

Otherwise, u ∈ NG[x], and it follows trivially that NG[u] ∩ S ≠ ∅ as x ∈ S. ▪

Clearly, the same kind of operation can be applied if the analogous holds for any of the sink nodes. Therefore we refrain

from proving safeness of the next reduction rule.

Reduction Rule 4. Let (G,B, 𝜅) be an instance of B-DOMINATING SET, with G being an in–out rooted directed path
graph, and  = (T , {Pu}u∈V ) be a minimal tree model of G. Suppose that Reduction Rule 1 cannot be applied, and
that 𝓁′i is such that Pu ⊂ Q′

i for every u ∈ V𝓁′i . Let x be an 𝓁′i -maximal vertex. Then ADD x to the solution, obtaining
the instance (G − VPx ,B∖N[x], 𝜅 − 1).

Now, for each 𝓁 ∈ L ∪ L′, let Q∗
𝓁 denote Qi in case 𝓁 = 𝓁i ∈ L or Q′

i in case 𝓁 = 𝓁′i ∈ L′. Observe that, if Reduction

Rules 3 and 4 cannot be applied, then there exists x𝓁 ∈ V𝓁 such that Q∗
𝓁 ⊆ Px𝓁 . But note additionally that, in fact, if there exists

also u ∈ V𝓁∖ with Pu ⊂ Q∗
𝓁 , then the same argument in the proof of safeness can be used to consider that u surely is not in any

minimum solution; indeed such a vertex could always be replaced by x𝓁 . Therefore, from now on we assume that the following

holds for every 𝓁 ∈ L ∪ L′:
V𝓁∖ ≠ ∅ and Q∗

𝓁 ⊆ Pu, for every u ∈ V𝓁∖. (2)

Now, we construct an auxiliary graph that allows us to solve the problem by applying a matching algorithm. Let H =
(L∪L′,E) be a bipartite graph, that is, a graph where the edges connect L to L′, obtained by adding an edge 𝓁i𝓁′j in E whenever

there exists u ∈ V(G) whose path Pu is equal to the 𝓁i,𝓁′j -path in T (in math terminology, Pu = Qi ∪Q′
j). We make an abuse of

language and write u ∈ E in this case. An edge cover of H is a subset S ⊆ E ⊆ V(G) such that every non-isolated vertex of H
is incident to some u ∈ S. The minimum size of an edge cover of H is denoted by 𝛽

′(H) and the number of isolated vertices of

H is denoted by i(H). We prove that we can solve our problem by finding a minimum edge cover of H, which is known to be

polynomial-time solvable (see e.g., [34]).
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Lemma 8. Let (G,B, 𝜅) be an instance of B-DOMINATING SET, with G being an in–out rooted directed path graph,
and  = (T , {Pu}u∈V ) be a minimal tree model of G. Suppose that Reduction Rules 1 -4 cannot be applied, and let
H be constructed as above. Then (G,B, 𝜅) is a YES instance if and only if 𝜅 ≥ 𝛽′(H) + i(H).

Proof. First, let S be a B-dominating set for (G,B) of size at most 𝜅. If there exists x ∈ V𝓁 ∩, for some leaf 𝓁, then

Equation 2 tells us that there must exist u ∈ V𝓁∖ such that Q∗
𝓁 ⊆ Pu, or in other words, such that NG[x] ⊆ NG[u].

Therefore we could replace x by u in S. This allows us to suppose that S ∩  = ∅. Also, because Reduction Rule 1

cannot be applied, we get that S ∩ V𝓁 ≠ ∅ for every 𝓁 ∈ L ∪ L′. We prove that, additionally, we can suppose that if

𝓁i ∈ L is such that 𝓁i is not an isolated vertex in H, then S ∩ V𝓁i ∩ E ≠ ∅. Suppose otherwise and let u ∈ S ∩ V𝓁i .

Also, let 𝓁′j ∈ NH(𝓁i); therefore, there exists u′ ∈ V(G) such that Pu′ is equal to the 𝓁i,𝓁′j -path in T . We want to

prove that (S∖{u}) ∪ {u′} is a B-dominating set for (G,B). For this, let t be the endpoint of Pu different from 𝓁i,

and denote by Q′′
u the r, t-path contained in Pu. Note that Equation (2) tells us that Qi ⊆ Pu and hence Pu can be

seen as the concatenation of Qi and Q′′
u . Now, let 𝓁′k be any sink leaf separated from 𝓁i by t; it exists because we

suppose that u ∉ E, that is, t is not a leaf. Now observe that Equation (2) gives us that Q′
k ⊆ Pv for every v ∈ V𝓁′k∖.

Because t is within the r,𝓁′k-path if T , we get that Q′′
u ⊆ Q′

k ⊆ Pv for every v ∈ V𝓁′k∖. Since we can suppose that

S ∩ (V𝓁′k∖) ≠ ∅, we get that the portion of Pu not necessarily intersected by Pu′ (namely, Q′′
u ) is intersected by

some v ∈ S ∩ (V𝓁′k∖). In other words, if x ∈ B is such that NG(x) ∩ S = {u} and x ∉ NG(u′), then x ∈ NG(v). It

follows that (S∖{u}) ∪ {u′} is a B-dominating set for (G,B) as we wanted to prove. The analogous can be applied

to the sink leaves, so from now on we suppose that:

if 𝓁 ∈ L ∪ L′ is such that 𝓁 is not an isolated vertex in H, then S ∩ V𝓁 ∩ E ≠ ∅. (3)

Now let S′ = S ∩ E, that is, S′ is obtained from S by removing every u whose path Pu is not a path between

two leaves of T . We argue first that |S∖E| ≥ i(H). Indeed, consider 𝓁 ∈ L ∪ L′ an isolated vertex in H, and let

u𝓁 ∈ S ∩ V𝓁 . Because 𝓁 is isolated in H, the path Pu𝓁 is not a path between two leaves, that is, u𝓁 ∉ E and hence

u𝓁 ∈ S∖E. But again because 𝓁 is isolated in H, we get that u𝓁 ≠ u𝓁′ for every pair of isolated vertices 𝓁,𝓁′; hence

|S∖E| ≥ i(H) as claimed. Now, note that |S′| = |S ∩ E| = |S| − |S∖E| ≤ 𝜅 − i(H). Finally note that Equation (3)

also gives us that S′ is an edge cover of H; hence 𝛽
′(H) ≤ 𝜅 − i(H) as desired.

For the converse, assume that 𝛽
′(H) ≤ 𝜅 − i(H), and let S ⊆ E be a minimum edge cover of H and S′ ⊆ V(G)

be obtained from S by adding, for each isolated vertex 𝓁 of H, some u ∈ V𝓁 such that P𝓁 ⊆ Pu (it exists by

Equation (2)). Clearly |S′| = |S|+ i(H) = 𝛽′(H) + i(H) ≤ 𝜅, so it remains to prove that S′ is a B-dominating set for

(G,B). Just observe that V𝓁 ∩ S′ ≠ ∅, for every 𝓁 ∈ L ∪ L′, and recall Equation (2) to see that Vt ∩ S′ ≠ ∅ for every

t ∈ V(T). It thus follows that S′ is a dominating set for G, and in particular, a B-dominating set for (G,B). ▪

8 CONCLUSION

In this article, we have investigated the complexity of DOMINATING SET, CONNECTED DOMINATING SET and STEINER TREE

when parameterized by the size of the solution plus the vertex leafage (𝜅 + v𝓁(G)) of a given chordal graph G. We have found

that they are all FPT, provided that a tree model with optimal vertex leafage of G is given. Since such a tree model can be found

in polynomial time if G is an undirected path graph (which are graphs with vertex leafage 2), we get that they are all FPT on

these graphs when parameterized by the size of the solution. A question is whether the condition about the provided tree model

can be lifted. Because positive instances have leafage bounded by a function of 𝜅 and v𝓁(G), we know that if computing v𝓁(G)
is FPT when parameterized by 𝓁(G), then we would have a complete fixed-parameter algorithm. Another option could be to

provide a tree model which is not very far from an optimal one, that is, that has vertex leafage at most c ⋅v𝓁(G) for some constant

c. This would increase only the constants in our complexities, and we would again have fully FPT algorithms. We ask whether

this is achievable. We recall the reader that deciding v𝓁(G) ≤ 3 is NP-complete, but that the vertex leafage can be computed in

time nO(𝓁(G))
[9]. We then reinforce the following question posed in [9], and add a new question.

Question 1 ([9]). Is deciding whether v𝓁(G) ≤ k solvable in FPT time when parameterized by 𝓁(G)?

Question 2. Can v𝓁(G) be approximated by a constant factor in polynomial (or FPT) time?

Recall the broad class of problems defined in the Introduction, called MIN-LC-VSP problems [8, 15]. Given a graph G
on n vertices and subsets 𝜎, 𝜌 ⊆ {0, … , n − 1}, a subset S ⊆ V(G) is a (𝜎, 𝜌)-set if: |N(v) ∩ S| ∈ 𝜎 for every v ∈ S, and

|N(v) ∩ S| ∈ 𝜌 for every v ∈ V(G)∖S. Fixing 𝜎, 𝜌, and given a graph G and an integer 𝜅, the MIN-LC-VSP𝜎,𝜌 problem consists

in deciding whether there exists a (𝜎, 𝜌)-set S of size at most 𝜅. The inequality v𝓁(G) ≤ 𝓁(G) says that the vertex leafage of

G is a more restrictive parameter, that is, that if a problem is FPT when parameterized by v𝓁(G), then it is also FPT when
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parameterized by 𝓁(G). However, we have also seen that if some MIN-LC-VSP problem is FPT when parameterized by 𝓁(G),
then we get also parameterization by 𝜅 + v𝓁(G); this is because we can prove 𝓁(G) ≤ 𝜅 + v𝓁(G) when 0 ∉ 𝜌. In [15] they

provide a fixed-parameter algorithm for DOMINATING SET when parameterized by 𝓁(G). A question is whether their result

can be generalized to all MIN-LC-VSP problems. Given the complexity of the algorithm given in [15], this seems to be a very

challenging problem.

Question 3. Are all MIN-LC-VSP problems FPT when parameterized by 𝓁(G)?

As mentioned above, when G is chordal and 0 ∉ 𝜌, then a bound on the leafage of G can be given in terms of the vertex

leafage and the size of a solution to MIN-LC-VSP𝜎,𝜌. The same bound does not seem to hold for MAX-LC-VSP𝜎,𝜌 problems,

which consist of deciding whether there exists a (𝜎, 𝜌)-set S such that |S| ≥ 𝜅. Nevertheless, many of the MAX-LC-VSP𝜎,𝜌

problems cited in [8] are known to be polynomial-time solvable in chordal graphs, for example, INDEPENDENT SET, MAX-

IMUM INDUCED MATCHING, MAXIMUM EFFICIENT EDGE DOMINATING SET and MAXIMUM DOMINATING INDUCED

MATCHING, STRONG STABLE SET and so forth (see for instance [26]). We then ask the following:

Question 4. Are all MAX-LC-VSP𝜎,𝜌 problems polynomial-time solvable on chordal graphs?

In the 1985 column of the Ongoing Guide to NP-completeness by Johnson [26], the only separating problem for undirected

path graphs and rooted directed path graphs was DOMINATING SET [4]. A revised version of the table [11] adds two separating

problems for these classes: STEINER TREE and GRAPH ISOMORPHISM. As for problems separating rooted directed path graphs

from directed paths graphs, only GRAPH ISOMORPHISM is known [1]. In fact, the complexities of the problems investigated in

this article are widely open for directed path graphs, except that we prove that STEINER TREE should be the easiest among the

three, while DOMINATING SET, the hardest (Theorem 3).

Question 5. What are the complexities of STEINER TREE, CONNECTED DOMINATING SET and DOMINATING

SET on directed path graphs?

A byproduct of one of our reductions is that WEIGHTED CONNECTED DOMINATING SET is polynomial-time solvable on

strongly chordal graphs, and hence on rooted directed path graphs. The analogous cannot hold for WEIGHTED STEINER TREE

as it is NP-hard on strongly chordal graphs [35]. Additionally, we have introduced a new refinement between these classes, the

in–out rooted directed path graphs, proving that the unweighted versions of the investigated problems are all polynomial-time

solvable in these. Therefore, we ask:

Question 6. What is the complexity of WEIGHTED STEINER TREE on (in–out) rooted directed path graphs? What

are the complexities of WEIGHTED DOMINATING SET and WEIGHTED CONNECTED DOMINATING SET on in–out

rooted directed path graphs?

As for the graph classes, all the investigated classes can be recognized in polynomial time (see Section 2.2 for appropriate

citations), and forbidden subgraph characterizations exist for undirected path graphs [27] and directed path graphs [30]. We

then ask:

Question 7. Can we recognize in–out rooted directed path graphs in polynomial time? Is there a forbidden subgraph

characterization for (in–out) rooted directed path graphs?

Finally, another parameter of interest is the mim-width of G [33]. Since many problems can be solved in XP time when

parameterized by mim-width [2, 8, 25], and rooted directed path graphs have mim-width 1 [25], one could ask whether undi-

rected path graphs also have bounded mim-width. Up to our knowledge, no explicit construction of undirected path graphs with

unbounded mim-width is known, but the fact that LC-VSP problems can be solved in polynomial time on graphs with bounded

mim-width [8], combined with the NP-hardness of DOMINATING SET on undirected path graphs, give evidence that undirected

path graphs do not have bounded mim-width, unless P = NP. Nevertheless, we ask:

Question 8. Does there exist an explicit construction of undirected path graphs with unbounded mim-width?
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