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THE HARDNESS OF RECOGNISING POORLY MATCHABLE GRAPHS AND
THE HUNTING OF THE d-SNARK*

LEANDRO M. ZATESKO'*, RENATO CARMO?, ANDRE L.P. GUEDES?,
RAPHAEL C.S. MACHADO? AND CELINA M.H. FIGUEIREDO*

Abstract. An r-graph is an r-regular graph G on an even number of vertices where every odd set
X C V(G) is connected by at least r edges to its complement V(G) \ X. Every r-graph has a perfect
matching and in a poorly matchable r-graph every pair of perfect matchings intersect, which implies
that poorly matchable r-graphs are not r-edge-colourable. We prove, for each fixed r > 3, that poorly
matchable r-graph recognition is coNP-complete, an indication that, for each odd d > 3, it may be
a hard problem to recognise d-regular (d — 1)-edge-connected non-d-edge-colourable graphs, referred
to as d-snarks in this paper. We show how to construct, for every fixed odd d > 5, an infinite family
of d-snarks. These families provide a natural extension to the well-known Loupekine snarks. We also
discuss how the hunting of the smallest d-snarks may help in strengthening and better understanding
the major Overfull Conjecture on edge-colouring simple graphs.
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1. INTRODUCTION

Let r be a positive integer, an r-graph is an r-regular graph G on an even number of vertices such that
|0c(S)| > r for every odd-cardinality S C V(G) (we refer the reader to Sect. 2 for technical definitions and
further preliminaries).

Due to their relation with the celebrated Edmonds’s matching polytope theorem [17] and with important
conjectures of Fulkerson and Tutte [52], r-graphs are much studied in Combinatorics [1, 5,50, 52,53]. A well-
known characterisation is that a graph is an r-graph if and only if it can be expressed as a conic combination
of the indicator vectors of its 1-factors [52], which implies that every edge of an r-graph G belongs to a 1-factor
of G (see [35,50,52]). It was then conjectured by Seymour [52,53] that, for every r > 4, it would be possible to
decompose every r-graph by expressing it as the sum of an (r —1)-graph and a 1-factor. However, this conjecture
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was proved false by Rizzi [50] two decades later, wherein he showed how to construct, for every r > 4, not only
an indecomposable r-graph, but also, and “more surprisingly”, a poorly matchable r-graph, i.e. an r-graph
wherein every pair of 1-factors intersect.

Concerning poorly matchable r-graphs, once conjectured not even to exist, we prove that the problem of
recognising if a given r-graph is poorly matchable is coNP-complete for any fixed r > 3.

Rizzi’s poorly matchable r-graphs are very large, with a number of vertices which is exponential on  (namely,
2 - 5772 vertices for r > 4, as it can be straightforwardly checked). Knowing now that recognising poorly
matchable r-graphs is a computational hard problem makes the task of finding these important graphs even
more challenging.

To the best of our knowledge, our complexity result is the first one from which the following general complexity
result can be derived: the problem of deciding if any given graph has two disjoint perfect matchings is NP-
complete.

In contrast, recall that deciding if any given graph has a perfect matching is a problem which can be solved
in polynomial time [16].

Let maxpppa(G) be the maximum number of pairwise-disjoint perfect matchings (PDPMs) that a graph
G has. When G is r-regular, the maximisation problem of determining maxpppas(G) can be viewed as a
generalisation of the problem of deciding if G is r-edge-colourable (i.e. has » PDPMs). Since the problem of
deciding if any given graph has two disjoint perfect matchings is NP-complete, maxpppas (G) is a hard parameter
to compute and also to approximate, since even deciding if maxpppys(G) > 2 is NP-hard. We note an interesting
dichotomy, since deciding if maxpppar(G) > 1 is polynomial [16].

In 1981, Holyer [26] proved that deciding if a graph G is A(G)-edge-colourable is NP-complete even when
restricted to cubic simple graphs. In 1983, Leven and Galil [34] showed that the problem remains NP-complete
when restricted to r-regular simple graphs for every fixed r > 3. We suspect the following.

Conjecture 1.1. For every fixed r > 3, deciding if a given r-graph is r-edge-colourable is an NP-complete
problem, even when restricted to simple graphs.

Conjecture 1.2. For every fixed d > 3, deciding if a given d-regular (d — 1)-edge-connected graph is d-edge-
colourable is an NP-complete problem, even when restricted to simple graphs.

When d is an odd integer, we refer to (d—1)-edge-connected d-regular non-d-edge-colourable simple graphs as
d-snarks. The 3-snarks correspond to the snarks (2-edge-connected non-3-edge-colourable cubic simple graphs').
Remark that, according to our definition, every d-snark is a d-graph: if G is a d-snark which is not a d-graph,
then some odd-cardinality set X C V(@) induces a cut with exactly d — 1 edges; but then the degree sum of
the vertices in G[X] would be d|X| — d — 1, an odd integer, since d is also odd, contradicting the Handshaking
Lemma.

Other snark generalisations have already appeared in the literature in the context of flow construction and
others [25,31], but they differ from ours, which emerges from the context of the Overfull Conjecture, as discussed
in Section 6. Non-d-edge-colourable (d—1)-edge-connected d-regular graphs are not an unexplored subject either,
as discussed in the sequel, in the subsection Further notes on related work concerning snarks and d-snarks.
However, not much seems to be known about these graphs, perhaps due to their rareness. An aim of this paper
is to discuss their importance and to present an infinite family of d-snarks for every fixed odd d > 5 (the reason
why our snark generalisation considers only odd values for d shall also be clear in Sect. 6).

An important observation concerning Conjecture 1.2 is the following.

Observation 1.3. If Conjecture 1.2 holds, then, for any fized odd integer d > 3, the d-snark recognition
problem is coNP-complete. O

1Sometimes in the literature, further restrictions are imposed on the definition of snarks, such as having girth at least five and
being cyclically 4-edge-connected (see e.g. [4,27]). We do not consider these restrictions, since our main interest on snarks and
d-snarks are their role in the major Overfull Conjecture in graph edge-colouring, as discussed in Section 6.
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FIGURE 1. (A) The Petersen graph; (B) J; and (C) Js, the two smallest of the Flower snarks.

We remark that the edge-connectivity value on the definition of d-snarks seems to be tight, since, according
to a recent submitted paper by Ma et al. [36], it “surprisingly seems” to be still an open question if there is any
non-5-edge-colourable 5-edge-connected 5-regular graph (even though snarks are often assumed to be at least
3-edge-connected [4,27]). This makes the hunting for d-snarks with d > 5 still more exciting, in addition to the
fact that these graphs are unlikely to be small. We also remark that the Conjecture 1.2 does not necessarily
imply Conjecture 1.1, since (r — 1)-edge-connected graphs are not necessarily r-graphs. This subtle remark is
the reason of the change of variables: to avoid confusion, when dealing with r-graphs, we use the letter r; when
dealing with (d — 1)-edge-connected graphs and d-snarks, we use the letter d.

This paper is organised as follows. In the remainder of this section, we make a brief remark on some papers
from the literature concerning snarks, other snark generalisations, and non-d-edge-colourable d-regular graphs
with high (edge-)connectivity. In Section 2, we present preliminaries for the concepts appearing throughout the
text. In Section 3, we prove that the problem of recognising if a given r-graph is poorly matchable is coNP-
complete. In Section 4, we present the base gadget, with which, in Section 5, we construct the infinite families
of d-snarks. In Section 6, we discuss the relation between d-snarks, the Overfull Conjecture, and the hardness
of edge-colouring. In Section 7, we conclude with further remarks.

Further notes on related work concerning snarks and d-snarks

Playing an important role on major graph problems for almost 150 years [11,29,56], snarks were so called
by the mid-1970s [21] after the mysterious creature hunted in the poem The Hunting of the Snark, by Lewis
Carroll, due to their rareness and peculiar properties. The first known snark, and also the smallest one, is the
Petersen graph (Fig. 1A), dating from the 1890s [30,48]. Other snarks were found only half a century later:
the two 18-vertex Blanusa snarks [3] and the 210-vertex Descartes snark [14]. The graph considered to be the
fifth snark to be found is Szekeres snark, from 1973 [55], with 50 vertices. The first infinite family of snarks, the
Flower snarks (Figs. 1B and 1C), was introduced by Isaacs in 1975 [27].

Also in 1973 (a few months earlier than Szekeres’s paper), Meredith [39] showed a 3-vertex-connected non-
3-edge-colourable cubic graph, therefore a snark. This graph has also 50 vertices and it is not isomorphic to
the Szekeres snark. Even so, we have not found any mention in the literature on snarks referring to Meredith’s
graph as a snark, even less as the fifth to be found, possibly because this graph has girth four. Snarks with girth
at most four are called trivial, since, from a non-trivial snark, infinitely many trivial snarks can be obtained
(see e.g. [4,27]). In Isaacs’s paper [27] wherein the Flower snarks were introduced, he listed Petersen, Blanusa,
Descartes, and Szekeres’s graphs as the only five non-trivial snarks known by that time.

Another important infinite family, originally defined by Loupekine and first presented by Isaacs [28] in 1976,
are the Loupekine snarks (Fig. 2), whose base block was, in 1981, used as the base gadget in Holyer’s proof of
the NP-completeness of the edge-colouring problem [26].

In Meredith’s paper of 1973 [39], he presented a family of graphs G4, one for each d > 3, such that G4 is
d-regular, d-vertex-connected (therefore d-edge-connected), and non-d-edge-colourable if and only if d = 2,3, 4
(mod 6). Meredith also presented another family G/, only for d = 0,1,5 (mod 6), which are always non-d-edge-
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(A) (B)

FIGURE 2. (A) A smallest Loupekine snark, with three base blocks, one of them highlighted,
and (B) a Loupekine snark with five base blocks. A Loupekine snark can be constructed from
a cycle of any odd number of base blocks by: connecting each pair of consecutive blocks in the
cycle with either a parallel or a cross link (a cross link is depicted in (B); then gathering the
upper half-edges of the blocks either in groups of two, identifying both half-edges of each group,
or in groups of three, joining the half-edges of each group to a new vertex.

colourable. However, the graph G/, is d-vertex-connected only for d > 11. One can verify that A(G§) = A(Gg) =
A(G%) = 4, which implies that, amongst all non-d-edge-colourable graphs with odd d presented by Meredith,
the graph GY is the only one which is not a d-snark. Figure 3 depicts Gf, a 5-snark with 90 vertices. In fact, for
every d > 5, both the graphs G4 and G/, (the latter when defined) have 20d — 10 vertices.

For d = 3, it is already known that the number of snarks on n vertices is at least 2(*~84/18 for sufficiently
large even® n [54]. Nevertheless, we can still regard d-snarks as rare graphs. In fact, for any fixed d > 3, the
proportion of non-d-edge-colourable d-regular graphs on 2k vertices (a superset of the d-snarks on 2k vertices
when d is odd) over all d-regular graphs on 2k vertices goes to 0 as k goes to oo [51].

In 1999, Rizzi [50] showed how to construct, for every r > 4, examples of r-graphs that are poorly matchable
(thus not r-edge-colourable). All these graphs are 4-edge-connected and have a 4-edge cut, so only for r < 5
they are (r — 1)-edge-connected. Hence, Rizzi’s poorly matchable 5-graphs are examples of 5-snarks. There are
finitely many choices for Rizzi’s procedure to construct these 5-graphs from the Petersen graph, all of them
having 250 vertices. Differently from Meredith’s paper [39], from which we have a single d-snark for every odd
d>5,d# 7, and differently from Rizzi’s paper [50], from which we have finitely many 5-snarks, we present in
Section 5, for each fixed odd d > 5, an infinite family of d-snarks.

In the recent submitted paper by Ma et al. [36], the authors show that for all even d > 2, there are d-regular
d-edge-connected graphs with maxpppp(G) < d — 3. These graphs, however, are not d-snarks according to our
definition, because d is not odd.

2. DEFINITIONS AND TECHNICAL PRELIMINARIES

We use the term graph® to refer to an undirected loopless graph, which may be a simple graph or a multigraph.
The set of all edges between the same pair of vertices in a multigraph is referred to as a multiple edge e, in
contrast to the p. parallel edges of which e consists. The set of vertices and the (multi)set of edges of a graph G
are denoted V(G) and E(G), respectively. The set of neighbours of a vertex u in G and the (multi)set of edges
incident with u in G are denoted Ng(u) and dg(u), respectively. For X C V(G), we define dg(X) = {uv €
E(G):ue X and v ¢ X}, referred to as the cut induced by X in G if ) # X # V(G). The degree of u in G is
dg(u) = |0g(u)]. If dg(u) = d for all u € V(G) and some integer d, then G is said to be d-regular, in which

2Recall that, by the Handshaking Lemma, there cannot be a d-regular n-vertex graph with both d and n odd.
3Graph-theoretical definitions not present in this text follow their usual meanings (such as in [15]).
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FIGURE 3. The graph G%, defined by Meredith [39], is to the best of our knowledge the smallest
known 5-snark.

case we say that d is the degree of G. The d-regular complete bipartite graph is denoted K4 4. The maximum
(minimum) degree of G is denoted A(G) (6(G)). A cubic graph is a 3-regular graph. A subcubic graph is a (not
necessarily regular) graph G with A(G) < 3. When free of ambiguity, we may omit G from the notation, writing
simply d(u), (X), A etc.

We say that a graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G). If A(H) = A(G),
then H is said to be a A-subgraph of G. If V(H) = V(G), then H is said to be a spanning subgraph of G. Let
U CV(G) and F C E(G), the subgraph of G induced by U, denoted G[U], and the subgraph of G induced by
F, denoted G[F], are the graphs defined by:

V(GIU) =U and E(G[U]) ={uv € E(G) :u,v € U};
E(G[F]) =F and V(G[F]) ={u € V(G) :uv € F for some v € V(G)}.

Let u € V(G) and e € E(G), we define G — u := G[V(G) \ {u}] and G — e := G[E(G) \ {e}]. Analogously we
define G — U for U C V(G), and G — F for F C E(G).

An r-factor of G is a (not necessarily induced) subgraph H of G which is r-regular and spanning. A set
M C E(G) is said to be a matching if it induces a 1-regular subgraph of G. A perfect matching is the edge set
of a 1-factor, but often these terms are used as synonyms, by abuse.

The multiplicity of an edge e of a graph G is denoted ug(e), being u(uv)g = 0 for all u,v € V(G) such that
uv ¢ E(G). The sum G1 + G of two graphs G; and G5 on the same vertex set V' is the graph on V such that
e+ (u0) = pa, (uv) + pa, (wv) for all u,v € V. Let F = E(G3), the graph G + G2 is also denoted G + F.
If G is an r-graph and M is a 1-factor of the complete graph on V(G), then clearly G 4+ M is an (r + 1)-graph,
since for every odd-cardinality S C V(G) we have M N d¢(S) # @ and thus |dga(S)] > |0c(S)]-
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A connected graph G is said to be k-edge-connected, being k € Z~q, if |[V(G)| > 1 and G — F' is connected
for all F' C E(G) such that |F| < k. Similarly, G is said to be k-vertez-connected, being k € Z~o, if |V(G)| > k
and G — U is connected for all U C V(G) such that |U| < k. The greatest k for which G is k-edge-connected
(k-vertex-connected) is the edge-connectivity (vertez-connectivity) of G, denoted A\(G) (k(G)). Clearly, 6(G) >
AMG) > k(G).

Petersen’s Theorem states that every 2-edge-connected cubic graph has a perfect matching [47]. In fact, for
any (odd or even) d > 3, every (d — 1)-edge-connected d-regular graph on an even number of vertices (and,
thus, every d-snark) has a perfect matching, and any of its edges belongs to a perfect matching [40]. In the case
of 2-edge-connected cubic graphs, it has already been proved that the number of perfect matchings is bounded
below by an exponential on n [18].

A k-edge-colouring of a graph G is a function ¢: E(G) — € such that € is a set of k colours and p(e) # ¢(f)
for all distinct adjacent e, f € E(G). We also define ¢(F') = J,cp{¢(e)} for any F' C E(G) (including the
case wherein F is a multiple edge). The chromatic index of G, denoted x'(G), is the least k for which G is
k-edge-colourable. By Vizing’s Theorem [58], if G is simple, then x/(G) is either A(G) or A(G) +1, being G said
to be Class 1 in the former case, and Class 2 in the latter. A critical graph is a connected Class 2 simple graph
G such that x'(G —e) < X'(G) for every e € E(G). Seymour’s r-graph conjecture [52], proved for r < 11 [43],
is the statement that x'(G) < A(G) + 1 also for every (not necessarily simple) r-graph G.

Deciding if a graph is A-edge-colourable is an NP-complete problem [26], even when restricted to d-regular
simple graphs for any constant d > 3 [34], to perfect graphs [6], or to Cy-free simple graphs for any constant
k> 316,33]. An O(2™mCPM)-time exact algorithm for edge-colouring graphs with m edges is yielded by the set
partition algorithm by Bjrklund et al. [2].

In an edge-colouring ¢: E(G) — €, a colour a € € is said to be missing at some v € V(G) if no edge at u is
coloured .. The edge-colouring ¢ is said to be equitable if, for all o, 8 € €, the number of edges coloured « differs
from the number of edges coloured § by at most one. It is a well-known interesting property of edge-colouring
that every graph G has an equitable k-edge-colouring for any integer k > x/(G) [19].

Another interesting edge-colouring property is the Parity Lemma, which appears in the construction of the
Blanusa, the Descartes, and the Flower snarks [27]. The Parity Lemma states that if ¢ is a d-edge-colouring of
a d-regular graph G with d > 2, then, for any cut F' in G, the number of edges in F' coloured « has the same
parity for any a € %

A graph G on n vertices is said to be overfull if it has more than A|n/2] edges, or, equivalently [41], if n is
odd and }°, cy () (A—d(u)) < A=2. A graph G is said to be subgraph-overfull (shortly, SO) if it has an overfull
A-subgraph. Deciding if a graph is SO can be done in polynomial time [41,42,45]. In an edge-colouring, we need
at least A+1 colours to colour more than A|n/2| edges. Therefore, being SO is clearly a sufficient condition for
a simple graph to be Class 2. There has been much work (e.g. [7,12,13,24,37,62,63]) aimed at identifying graph
classes wherein being SO is also a necessary condition to be Class 2. The Overfull Conjecture states that this
necessity holds for all n-vertex simple graphs with A > n/3 [7,9,23]. This conjecture has already been settled
for some specific graph classes, such as graphs with A > n—3 [10,49], complete multipartite graphs [24], powers
of cycle graphs [38], regular join graphs [12], split-interval graphs [22,44], and split-comparability graphs [22].

Restricted to d-regular simple graphs with d > n/2, the Overfull Conjecture is also known as the
1-Factorisation Conjecture, being equivalent to the statement that every d-regular simple graph of even order
n < 2d is 1-factorisable (or, equivalently, Class 1 and regular) [8]. The 1-Factorisation Conjecture was demon-
strated to hold asymptotically, i.e. for any € > 0, there is an ng such that every d-regular graph on n vertices
with even n > ng and d > (1/2 + €)n is 1-factorisable [46].

Let EDGE-COLOURING and 2-PDPM be the problems of deciding if a given graph G satisfies x'(G) = A(G)
and maxpppp(G) > 2, respectively. Let A be any decision problem and r a predicate over the instances of A,
the restriction of A to the instances which satisfy = is denoted A(r).
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(A) i Doy (B) :(5:

FIGURE 4. (A) the inverting gadget; (B) the representation of the inverting gadget.

3. 2-PDPM(r-GrAPH) 1S NP-COMPLETE FOR EVERY FIXED r > 3

Holyer’s [26] proof of the NP-completeness of EDGE-COLOURING(cubic, simple) consists of a reduction from
3SAT which, given a 3SAT instance ®, constructs a cubic simple graph G which is 3-edge-colourable if and
only if ® is satisfiable. A 3SAT instance ® consists of a set of variables, and a set of clauses such that each
clause is a disjunction of three literals (the variable itself or the negation of the variable). We start this section
by briefly presenting Holyer’s reduction so that the following can be verified by inspection. The constructed
graph corresponding to a 3SAT instance consists of components called gadgets which carry out specific tasks.
Information is carried between gadgets by half-edges that contain just one end vertex in the gadget.

Lemma 3.1. For any 3SAT instance ®, the graph constructed by Holyer’s reduction is a 3-graph. O

We remark that, for the inspection, it suffices to verify that the structure of G is the same regardless of the
satisfiability of @ (this is expected, since otherwise the reduction would be solving 3SAT). If this holds, G cannot
have a bridge, otherwise, from the Parity Lemma, it would always be non-3-edge-colourable, even when & is
satisfiable. Also, no cubic simple graph can have a 2-cut induced by an odd-cardinality vertex set, since this cut
would allow us to construct a cubic (not necessarily simple) graph on an odd number of vertices, contradicting
the well-known Handshaking Lemma. Therefore, G must be a 3-graph.

The base gadget in Holyer’s reduction is the inverting gadget (Fig. 4), which had been previously used as
the base blocks in the construction of the Loupekine snarks [28]. The main feature, which explains the name
inverting, of this gadget is transcribed in Lemma 3.2.

Lemma 3.2 (26]). Holyer’s inverting gadget (Fig. 4) is 3-edge-colourable and, for any copy H of this gadget
in a cubic graph G and any 3-edge-colouring ¢ of G, all the following hold:

(i) each of the three colours appears either once or three times at the five half-edges (a,b,c, f,g) of H;
(ii) either p(a) = p(b), or o(f) = ¢(g)-

Moreover, any 3-edge-colouring of the half-edges satisfying 3.2 and 3.2 can be extended to a 3-edge-colouring of
H. O

In view of Lemma 3.2, a pair of half-edges (e1, e2) of a copy of the inverting gadget in a cubic graph G, under
a 3-edge-colouring of G, is said to be true if p(e1) = ¢(e2), and false otherwise. From Lemma 3.2, if (a,b)
((f,g)) is true, then any pair chosen from {c, f, g} ({a,b,c}) is false.

Let ® be a 3SAT instance wherein each variable is assumed, without loss of generality, to occur at least twice.
With the inverting gadget, a copy of the variable gadget (Figs. 5A and 5B) is constructed for each variable x of
®, with as many outputs as the occurrences of z in ®. In a copy of the variable gadget in a 3-edge-coloured cubic
graph, the outputs have all the same truth value [26]. Conversely, any assignment of 3 colours to the outputs of
a variable gadget X in which the outputs have all the same truth value can be extended to a 3-edge-colouring
of X [26]. For each occurrence of a variable as a negated literal in a clause, an extra inverting gadget is attached
to the corresponding output, as in Figure 5B. To complete the reduction, a copy of the clause gadget (Fig. 5C)
is constructed for each clause of ®, identifying each of its three inputs with the corresponding outputs of the
variable gadgets, according to the literals of the clause. In a copy of the clause gadget in a 3-edge-coloured cubic
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FIGURE 5. The variable gadget for a variable x with (A) two outputs and (B) four outputs, and
(C) the clause gadget. In (B), an extra inverting gadget is attached to one of the outputs for an
occurrence of = as a negated literal in a clause of ®. The (half-)edges marked # in (A)—(C) are
edges with multiplicity » — 2 in Leven and Galil’s reduction for r-regular graphs, as discussed
in Section 4.

graph, at least one of the inputs must be true [26]. Conversely, any assignment of three colours to the inputs of
the clause gadget = in which at least one of the inputs is true can be extended to a 3-edge-colouring of = [26].
Hence, the graph G constructed is 3-edge-colourable if and only if all clauses of ® are satisfiable. Remark that
G has some loose half-edges, which are handled by duplicating G and identifying each corresponding pair of
loose half-edges.

Our proof for the NP-completeness of 2-PDPM(r-graph) for every fixed > 3 combines Holyer’s reduction
with Rizzi’s [50] construction of poorly matchable r-graphs for every fixed r > 4. So, now we briefly describe
Rizzi’s construction.

Let r € Z>4 and let P(r) be the r-graph obtained from the Petersen graph P by adding r — 3 copies of a
1-factor M of P (Fig. 6A). Let zo € M and let a, b be the neighbours of z in P other than x. By the symmetry
of P, all choices for M, zx,a,b are equivalent under automorphisms. Let (a, z, b) () be the component obtained
by removing z from P(r) and leaving the r half-edges incident with a,,b to be linked to r (not necessarily
distinct) vertices in the construction of a larger r-graph (Fig. 6B).

Now comes what we call Rizzi’s r-step. Let G"—1) be an (r — 1)-graph with r» > 4, let M be a 1-factor of
G =1 and let U be a minimum vertex cover of M (thus |U| = |M]). Then, adding a copy M’ of M to GV,
we obtain an r-graph H. For each pair of parallel edges e € M and ¢’ € M’, let u be the endvertex of e in U
and apply the P(r)-splicing operation on (u,e,e’), i.e. replace u with a copy of (a,z,b)(") attaching e to a, €’
to b, and all other edges incident with w in H to x (see Fig. 7). Let G) be the r-graph obtained after this
operation is performed for every e € M. Clearly, |[V(G(™)| = 5|V(G—1)|, since for each of the |[V(G~=1)|/2
in U, the P(r)-splicing operation creates 8 new vertices, so

SIV(GTD)

V(G = V(G| + 5

=5|V(GU)].

Rizzi [50] proved that if G("=1 is poorly matchable, then so is G("). Actually, the converse also holds, as we
observe in Lemma 3.3.
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o Y

FIGURE 6. (A) the graph P(5); (B) the (a,z,b)® component; (C) the representation of the
component.
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FIGURE 7. (A) Ky, which is a 3-graph, but not poorly matchable; (B) K, after adding a
1-factor, with the vertex cover indicated by #; (C) graph G obtained by Rizzi’s 4-step on
G(B) = K4.

Lemma 3.3. Let r € Z>4. The r-graph G obtained from an (r —1)-graph G~V by applying Rizzi’s r-step
is poorly matchable if and only if G is poorly matchable.

Proof. Since the necessity is by Rizzi [50], we prove only the sufficiency. Suppose that G("~1) has two disjoint
perfect matchings My, Ms. Clearly, My, M, are still disjoint matchings of G("), and we show how to extend each
of them by adding edges inside the (a, z, b>(T) components, so that all vertices of G(") are covered.

Let u be a vertex of G("=1) on which a P(r)-splicing operation was performed in the construction of G and
consider the corresponding (a, x, b>(’") component. It is important that the edge set selected in the component
for M is disjoint from the edge set selected for Ms. Let e € My and f € My be the edges incident with w in
G =1, By the construction of G("), at least one of e, f must be incident with z in G, since the edge incident
with b in G(") was not present in G"~1. We have two cases.

— Both e and f are incident with x in G("). In this case, we extend M; and M, by selecting, from each set of
parallel edges in the component (edge of multiplicity greater than one, see Fig. 8A), one edge for M; and
other for Ms.

— Exactly one of e, f (say e w.l.g.) is incident with a in G"). In this case, since f is incident with =, we
extend M, also by selecting one edge from each set of parallel edges in the component. To extend My, we
select the edges indicated in Figure 8B. Observe that all these edges have multiplicity one in the component,
except for edge y1ys2, from whose set of parallel edges one edge is selected for M7 and other for Ms.

The new matchings obtained are still disjoint and now each covers all vertices in the component. O
Now we are ready to prove that 2-PDPM(r-graph) is NP-complete for every fixed r > 3.

Theorem 3.4. Let v be any fized integer not smaller than 3. The problem of deciding if a given r-graph has
two disjoint perfect matchings is NP-complete. Equivalently, the problem of recognising if a given r-graph is
poorly matchable is coNP-complete.
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FIGURE 8. (A) a way (bold) to extend a matching in G("~1) containing an edge incident with
z; (B) a way (bold) to extend a matching in G"~1) containing an edge incident with a.

Proof. We already have that 2-PDPM(3-graph) is NP-complete by Lemma 3.1, since every non-3-edge-colourable
cubic graph is poorly matchable. Assume then r» > 4 and, by induction, that 2-PDPM((r — 1)-graph) is
NP-complete. By Lemma 3.3, Rizzi’s r-step constructs, from any (r — 1)-graph G=Y_ an r-graph G
such that maxPDpM(G(’")) > 2 if and only if maxPDpM(G(T*U) > 2. Hence, we have a reduction from
2-PDPM((r — 1)-graph) to 2-PDPM(r-graph) which can be clearly performed in polynomial time, since it con-
sists only of duplicating a 1-factor of G"=1) and P(r)-splicing half of its vertices. O

For a fixed » > 4, when we compose all the reduction chain of the proof of Theorem 3.4 and apply it on
a 3SAT instance ®, we obtain an r-graph whose number of vertices has a factor which is exponential on 7.
However, this is not a problem, since r is being regarded as a fixed constant.

From Theorem 3.4 follows the more general result below.

Corollary 3.5. The problem of deciding if any given graph has two disjoint perfect matchings is
NP-complete. O

4. THE BASE GADGET

Leven and Galil [34] extended Holyer’s reduction to produce, for any fixed constant d > 3, a d-
regular graph which is Class 1 if and only if a given 3SAT instance ® is satisfiable, thus proving that
EDGE-COLOURING(d-regular, simple) is NP-complete. It can be easily verified that the whole graph output
by Holyer’s reduction is always bridgeless. That is, the problem shown NP-complete by Holyer is the problem of
deciding if a 2-edge-connected cubic graph is 3-edge-colourable or a snark. Hence, the snark recognition problem
is coNP-complete.

In Leven and Galil’s proof for d-regular graphs, Holyer’s inverting gadget was extended by adding multiplicities
to the edges of Holyer’s original gadget. The way that these multiplicities are added to the edges is defined as
in Figure 9B for any p satisfying 1 < p < d — 2. In Leven and Galil’s proof, the (d — 1)-edge-connectedness of
the graph output by the reduction is not guaranteed. We do not have (d — 1)-connectedness even inside the
inverting gadget when d > 5 (for instance, see the cut induced by the endvertices of edge h).

The construction of our base gadget is presented throughout the remainder of this section, in which we show
how to modify Leven and Galil’s gadget for any odd d > 5, so that the graphs constructed in Section 5 are
always (d — 1)-edge-connected.

Our inverting gadget is also obtained from Holyer’s by adding multiplicities to the edges. As in Leven and
Galil’s proof, to guarantee that no multiple edges occur, each edge uv in a set of parallel edges is replaced with
a copy of the gadget obtained from K, 4 — zy, for any choice of zy, by joining = to w and joining y to v with
edges. This works because every bipartite graph is Class 1 [32] and, in any d-edge-colouring of K44 — xy, the
colours missing at  and y must be the same, since subdividing zy in K4 4 yields an overfull graph.

We define, for any fixed odd d > 5, an inverting gadget which depends solely on d, rather than defining a
distinct gadget for each p € {1,...,d — 2}. The multiplicities p. chosen for each edge e are defined in Table 1.
We call our inverting gadget H.
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c (1)
f (1) (d—2) (1)

FIGURE 9. (A) Holyer’s original inverting gadget for cubic graphs and (B) Leven and Galil’s
extension to d-regular graphs for d > 3 and for 1 < p < d — 2. In (B), the multiplicities are
shown in parentheses.

TABLE 1. The multiplicity of each edge of our inverting gadget, following Figure 9A.

For d=1 (mod 4) Ford=3 (mod 4)

Pa = phg = flm = pn (d+3)/4 (d+1)/4
po = pp=pi =pe  (d—1)/4 (d+1)/4
He 1 1

in (d+1)/2 (d—1)/2
i = pk (d—1)/2 (d—1)/2
Ho (d—3)/2 (d—1)/2

The multiplicities of the edges of our inverting gadget are chosen so that, in addition to the identities in the
first column of Table 1, we have Lemma 4.1, which follows by inspection on Table 1.

Lemma 4.1. For any odd integer d > 5, let H be the inverting gadget with the multiplicities as in Table 1.
Then, we have the following:

(i) each vertex has degree d and, as in Leven and Galil’s inverting gadget, there are d + 2 half-edges in total,
(ii) the cut induced by any non-empty set of vertices in the gadget has at least d — 1 edges. O

In Theorem 4.2, we show the properties that d-edge-colourings of our inverting gadget H must have, which
explains the name inverting, when considering a d-edge-colouring of a d-regular graph containing a copy of H.

Theorem 4.2. For any odd integer d > 5, let H be the inverting gadget with the multiplicities as in Table 1.
Then, H is d-edge-colourable and, in any d-edge-colouring of a d-regular graph containing a copy of H, and

(1) each of d—1 colours appears exactly once at the d+2 half-edges of each H, whilst the other colour « appears
ezxactly three times.

Also,

(i) either « appears at a and b,
(ii) or « appears at f and g.

Moreover, any d-edge-colouring of the half-edges satisfying 4.2 and either 4.2 or 4.2 can be extended to a d-
edge-colouring of H.

Proof. Our strategy for the proof is as follows: first we prove that, if H is d-edge-colourable, then property
T is satisfied for any d-edge-colouring of a d-regular graph G containing a copy of H; second we prove that
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FIGURE 10. The ‘Moreover’ part of Theorem 4.2. Here, we show the colours at each edge of
H from a d-edge-colouring of the half-edges satisfying 4.2 and 4.2, with colour a appearing at
edges a and b and: (A) ¢; (B) f; (C) g. In (B) and (C), let 8 := ¢(c). In each of the three cases,
A, B, F,G are any disjoint colour sets containing neither « nor 8 such that, for e € {a,b, f, g},
the set identified by the corresponding capital letter has cardinality pe — |[{a, 8} N @(e)|. By
inspection on Table 1, one can verify that the edge-colourings use only d colours and each edge
has exactly as many colours as its multiplicity.

any d-edge-colouring of the half-edges of H satisfying property { and either (i) or (ii) can be extended to a
d-edge-colouring of H.

First, we show that, if H is d-edge-colourable, then 4.2 is satisfied for any d-edge-colouring ¢: E(G) — € of
a d-regular graph G containing a copy of H. Let P be the set of the half-edges of H. By the Parity Lemma, if
there are some colours in € not appearing at any edge in P, then all colours in 4 must appear an even number
of times at the d 4+ 2 edges in P, which is not possible, since d is odd. Again by the Parity Lemma, as every
colour appears at least once at edges in P, then some o € ¥ appears exactly three times, whilst each of the
other colours appears exactly once.

Now, we show that any d-edge-colouring of P satisfying 4.2 and either 4.2 or 4.2 can be extended to a d-
edge-colouring of H. For 4.2, we know that o appears at one amongst ¢, f, g, and the edge-colourings for these
three cases are presented in Figure 10. For 4.2, the edge-colourings are symmetric to the ones presented for 4.2.

It remains to show that any d-edge-colouring of H satisfying 4.2 satisfies either 4.2 or 4.2. For the sake of
contradiction, assume that neither 4.2 nor 4.2 holds. Then, one amongst Cases 1-3 does.

Case 1. Colour « appears at b, ¢, and f.

Since « cannot be missing at any vertex and it cannot appear at any amongst a, g, h, i, j, k, £, it must appear
at both m and n. Since p(a) and ¢(g) are disjoint, every colour at a (g) must appear at n (m). Therefore, we
have at least pq + 1 (pg + 1) colours at n (m), a contradiction, since pi, = fin = ftg = fm.

Case 2. Colour o appears at b, ¢, and g (at a, ¢, and f).
In this case, a cannot appear at any amongst ¢, j,n (at any amongst k, ¢, m), a contradiction.

Case 3. Colour « appears at a, ¢, and g.
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FIGURE 11. (A) The inverting gadget, having the multiplicities of the (half-)edges as defined
in Table 1; (B) the representation of the inverting gadget.

Analogously to Case 1. Since a cannot be missing at any vertex and it cannot appear at any amongst
b, f, 0,4, k,n,m, it must appear at both ¢ and ¢. However, any colour appearing at b (f) must also appear at £
(1), a contradiction, since pp = ft¢ = py = ;. a

With Theorem 4.2, now we can explain why the base gadget is referred to as inverting. Let H be a copy of
our inverting gadget in a d-regular graph G, and let ¢ be a d-edge-colouring of H. A pair of half-edges (e, e2)
of H, under g, is said to be true if |p(e1) N p(e2)| = 1, and false if p(e1) N p(e2) = B. From Theorem 4.2, if
© is part of a d-edge-colouring of G, we have that if (a,b) is true, then any pair chosen from {c, f, g} is false.
Else, if (a,b) is false, then (f,g) is true, which in turn implies that any pair chosen from {a,b,c} is false. A
d-edge-colouring 1 of a pair of half-edges (e1, es) of H is said to be consistent for (e, ea) if [1p(e1) N(e2)| < 1,
i.e. if (e1,e2) is either true or false. Again by Theorem 4.2, if ¢ is part of a d-edge-colouring of G, then it is
consistent for any pair chosen from the half-edges of H. In Figure 11, we introduce the representation of the
inverting gadget in the construction of our infinite families of d-snarks in Section 5.

5. AN INFINITE FAMILY OF d-SNARKS FOR EACH ODD d

A feature of our inverting gadget (recall Fig. 9A and Table 1) is that, differently from Leven and Galil’s
(Fig. 9B), the multiplicities of half-edges a and b are the same as the multiplicities of half-edges ¢g and f,
respectively. This symmetry is the key which allows us to extend the construction of the infinite family £ of the
Loupekine snarks (recall Fig. 2) to the construction of an infinite family £, of d-snarks for any fixed odd d > 5.
The graphs of £, are the d-snarks obtained by the following procedure, illustrated in Figure 12:

1. Take an odd integer r > d and any integer solution (z,y) of the equation 2z + dy = r. Observe that y must
be odd.

2. Let H be our inverting gadget for d, take r copies of H, to which we refer as the base blocks of the d-snark
under construction.

3. Arrange the r base blocks in a cycle, connecting each pair of consecutive blocks either with a parallel
(i.e. half-edge f (g) of a block is identified with half-edge b (a) of the other) or a cross (i.e. half-edge f (g)
of a block is identified with half-edge a (b) of the other) link. Remark that cross links are possible only when
d =3 (mod 4), otherwise, by Table 1, we do not have pq = py.

4. Gather the upper half-edges c of the blocks either in groups of two, identifying both half-edges of each group,
or in groups of d, joining the half-edges of each group to a new joining vertex, being x the amount of groups
of two half-edges, and y the amount of groups of three. Observe that there are many ways of grouping these
edges.

Theorem 5.1. Let d,r,t be fized odd integers with r > d >5 and 1 <t < |r/d]. Let G be a graph of Ly built
on r base blocks and t joining vertices. Then, G is a d-snark and the number of vertices of G 1is:

~ 137r +t if d=25;
- (T(d®>+ 1) —d)yr+tif d>T1.
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FIGURE 12. (A) The smallest graph of L5; (B) a graph of £7 with nine base blocks and a cross
link. Cross links are not possible for graphs of Ls.

Proof. First assume, for the sake of contradiction, that G is d-edge-colourable. Then, by Section 4, each link
connecting two consecutive base blocks in the cycle is either true or false. Moreover, no matter how the base
blocks are coloured, even though the coloured assigned to a base block may affect the coloured assigned to other
base block, the truth values appear along the cycle alternately, since each base block is an inverting gadget.
However, the number of base blocks is odd, so G must be a d-snark.

Now we count the number of vertices of G. Let H be the inverting gadget with multiplicities as defined in
Table 1. The vertices in H are the seven vertices displayed in Figure 9A, plus the 2d vertices of each copy of
K, 4 used in the middle of an edge for each set of at least two parallel edges. Since, in G, a pair (f, g) of a base
block is the pair (a,b) of the next base block in the cycle, we shall count only the copies of K4 4 for half-edges
a and b, avoiding counting them twice in the whole graph G. Recall that half-edge ¢ has multiplicity one.

If d = 5, the (half-)edges of H with multiplicity greater than one, disregarding f and g, are a, h, j, k,m,n.
Since the sum of the multiplicities of these edges is 13, we count, for each of the r base blocks of G, the seven
vertices displayed in Figure 9A plus the 13(2d) = 130 vertices for the 13 copies of Ky 4. Counting also the ¢
joining vertices, we have that the number of vertices of G is 137r 4+ ¢ in this case.

If d > 7, then all the (half-)edges a,b, h, 4, j, k, £, m,n, o have multiplicity greater than one, and the sum of
the multiplicities of these edges is, from Table 1, equal to (7d — 1)/2 for both cases d = 1 (mod 4) and d = 3
(mod 4). Hence, for each of the r base blocks of G, we count the seven vertices displayed in Figure 9A plus the
(2d)(7d —1)/2 = 7d? — d vertices for the (7d —1)/2 copies of K, 4, yielding a total of 7d* —d+7=7(d*+1) —d
vertices per base block. Therefore, in this case, the number of vertices of G is (7(d? + 1) — d)r + t. O

Corollary 5.2. Let d > 5 be a fized odd integer. The number of vertices of a smallest d-snark of Lg is: 686 if
d=5;T(d*+d)—d>+1if d>T1.

Proof. Follows from Theorem 5.1 considering a d-snark of £4 built on d base blocks (and thus one joining vertex,
since d is odd). O

6. ON d-SNARKS AND THE HARDNESS OF EDGE-COLOURING

Our discussion on d-snarks and the Overfull Conjecture starts with a useful characterisation of regular SO
graphs of odd degree. We recall that a graph G on n vertices is said to be overfull if it has more than A|n/2]
edges, or, equivalently [41], if nis odd and }_ /() (A—d(u)) < A=2. A graph G is said to be subgraph-overfull
(shortly, SO) if it has an overfull A-subgraph.

Lemma 6.1. Let d > 3 be a positive integer, a d-regular graph G on n vertices is SO if and only if n is odd
or G has a cut with at most d — 2 edges induced by some U C V(G) with odd |U| and A(G[U]) = d.

proof. Every regular graph G of odd order is overfull, thus SO, since it has 3~ v/ () (A(G) — de(u)) = 0. On
the other hand, if G is a regular graph of even order, then, since G cannot be overfull itself, it is SO if and only
if it has a proper A-subgraph H which is overfull, which holds if and only if |V (H)| is odd and

S (A —du(w) = [96(V(H))| < A-2. 0

uw€V (H)
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Theorem 6.2 brings that d-snarks are Class 2 graphs which are not SO, as it is known for snarks [9].
Theorem 6.2. No d-snark can be SO.

Proof. A d-snark is a d-regular graph with odd d and so with an even number of vertices. By Lemma 6.1, a
d-snark to be SO must have a cut with at most d — 2 edges, which contradicts the (d — 1)-edge-connectivity of
d-snarks. 0

Theorem 6.2 brings a reason why we do not define d-snarks for even d. If we defined d-snarks for even d, then
we would have d-snarks with odd order (e.g. K441), being all overfull, but we are interested on hunting non-S0O
Class 2 graphs, to better understand the limits of the Overfull Conjecture, as discussed in the sequel.

The following is another snark property which is extended to d-snarks.

Theorem 6.3. Let G be a d-snark and u be any vertex of G. Then, G — u is also a non-SO Class 2 graph.

Proof. Let G be a d-snark on n vertices. Recall that n must be even by the Handshaking Lemma. Also, notice
that a d-snark G' cannot have universal vertices; otherwise, it would be a spanning subgraph of K411, which
is Class 1 because d is odd. Thus, G — u is a non-regular graph with A(G — u) = d. We assume, for the sake
of contradiction, that there is some u € V(G) such that G — u has a d-edge-colouring. Recall that every graph
G has an equitable k-edge-colouring for any integer k > x/(G) [19]. Since in any equitable d-edge-colouring of
G — u, each of the d colours must be assigned to the same number of (n — 2)/2 edges, implying that each colour
is missing at exactly one neighbour of w in G, yielding the construction of a d-edge-colouring of G. O

Let P* be the graph obtained from the Petersen graph by the removal of any vertex, in view of the symmetry
of the Petersen graph. Since the Petersen graph is the smallest snark and since P* is critical, the graph P* is
the one which maximises the ratio A(G)/|V (G)| amongst all known non-SO Class 2 graphs G with A = 3. This
is one of the reasons why the Overfull Conjecture states the equivalence between Class 2 and SO for n-vertex
simple graphs satisfying A > n/3. However, we believe that, for graphs with A > 3, we could replace the lower
bound n/3 by a smaller fraction of n, enlarging the set of graphs for which the equivalence between SO and
Class 2 seems to hold. In order to do so, it is important to find the order of the smallest non-SO Class 2 graphs
in function of its maximum degree. For example, if one discovers that the smallest 5-snark G has 26 vertices,
then, since G — u is by Theorem 6.3 also Class 2 for any u € V(G), we may propose the following stronger form
of the Overfull Conjecture: if G is an n-vertex simple graph G satisfying A > n/3, or A > 5 and A > n/5,
then G is Class 2 if and only if G is SO. To the best of our knowledge, the smallest known d-snarks for d > 5,
d # 7, are Meredith’s graphs Gy, for d = 2,3,4 (mod 6), and G/}, for d = 0,1,5 (mod 6), both with 20d — 10
vertices, as discussed in Section 1.

It is surprising that, due to the Overfull Conjecture, when restricted to n-vertex simple graphs G with
A(G) bounded below by a fraction of n, the edge-colouring problem (deciding if a graph is Class 1) would be
reducible to the test of a polynomial-time verifiable property. An evidence for this is the fact that we present
in Theorem 6.4 on k-EDGE-COLOURING, i.e. the problem of deciding, for some fixed integer k, if a graph
is k-edge-colourable. Notice that this problem is also NP-complete, for any k& > 3, from Leven and Galil’s
reduction [34]. We show that k-EDGE-COLOURING is polynomial whenever A(G) is bounded below not only by
a fraction of n, but by any Q(n) function (or, equivalently, when n is bounded above by any O(A(G)) function).
The proof is inspired in the paper by Galby et al. [20], wherein the authors use the same argument to show
that k-EDGE-COLOURING is linear-time solvable, i.e. solvable in time O(n), for P;-free graphs for any fixed ¢.
In contrast, the computational complexity of EDGE-COLOURING for P,-free graphs (also known as cographs)
remains open despite much effort [12,13,37,62,63].

Theorem 6.4. Let k € Z>q be a fized constant, k-EDGE-COLOURING is polynomial when restricted to n-vertex
graphs with n bounded above by an O(A(G)) function f: Z>o — R.
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Proof (inspired in [20]). Our polynomial algorithm works on a given input graph G as follows. First, find in
linear time the maximum degree A of G. If A # k, output yes if A < k, or no if A > k, in view of Vizing’s
Theorem. If A = k, we know that n < f(A) and |E(G)| < (f(A))? for some O(A) function f: Zso — R.
Since, in this case, A = k is a constant, we have that (f(A))? is bounded above by a constant which does not
depend on the size of the input graph. Ergo, any exact edge-colouring algorithm, even a brute-force search, can
determine the k-edge-colourability of G in constant time. (]

For all that we have discussed in this section, it seems that the hunting of the smallest d-snarks may be related
to the very nature of the hardness of the edge-colouring problem. An interesting graph class wherein d-snarks
could be hunted is the class of the complementary prisms. Let G be any graph on a non-empty set of vertices,
the complementary prism GG is the graph obtained from the graphs G and its complement G by connecting
with an edge each vertex in G to its corresponding vertex in G. The Petersen graph is the complementary prism
C5Cs.

Edge-colouring complementary prisms was the subject of a previous study of ours, joint with A. Zorzi [61],
in which we proved that:

— every non-regular complementary prism with maximum degree A is A-edge-colourable;
— every d-regular complementary prism on n vertices has odd d, is (d — 1)-edge-connected, and satisfies n =
4d — 2.

Therefore, the Petersen graph is the only complementary prism which is 3-regular and, if some d-regular com-
plementary prism is not d-edge-colourable, then it is a d-snark. However, we could not find yet any non-d-edge-
colourable d-regular complementary prism with d > 5. In fact, we verified that all complementary prisms with
d =5 (and thus 18 vertices) are d-edge-colourable, as well as 10 000 randomly generated regular complementary
prisms with d = 7 (thus 26 vertices).

7. FURTHER REMARKS

As discussed in Section 6, finding the smallest d-snarks may be of much interest to better understand the
hardness of edge-colouring and the Overfull Conjecture. However, all d-snarks with d > 5 which we know are
either Meredith’s graphs with 20d — 10 vertices and d # 7, or the even larger graphs of the infinite families
presented in Section 5. In an undergraduate final project supervised by one of the authors [57], the student
conducted a computational experiment to search for 5-snarks amongst all 5-regular graphs on 16 vertices and
90 billion distinct 5-regular graphs on 18 vertices. No graph tested was a 5-snark.

We encourage future investigation on how the base gadget presented in Section 4 could be used to prove
Conjectures 1.1 and 1.2. As already discussed in Section 4, these conjectures are already settled for d = 3 by
Holyer’s proof [25]. By the use of a Turing oracle reduction (instead of a more common Karp reduction), we
can also settle Conjecture 1.2 for d = 5, as discussed in a local workshop [60] and presented below.

Proof of Conjecture 1.2 for d =5. Let G be a 5-regular graph which admits a 5-edge-colouring. From the Parity
Lemma follows that, if G has a cut with fewer than four edges separating two induced subgraphs H; and Hs, then
this cut must be a matching with exactly two edges uv and zy, both coloured the same. Assuming u,z € V(H;)
and v,y € V(Hay), let Gy := Hy + ux and Gy := Hy + vy (see Fig. 13). If uz (vy) is an edge of Hy (Hsz), we
can get rid of multiple edges in G; (G2) in the same manner as multiple edges have been handled in Section 4.
Clearly, the 5-edge-colouring of G yields a 5-edge-colouring of the union of the 5-regular graphs G; and Gs.
Conversely, to construct a 5-edge-colouring of G from a 5-edge-colouring of G; U G, it suffices to rename the
colours in G or in Gg so that the colours assigned to ux and vy are the same.

We  have, then, a Turing oracle reduction from EDGE-COLOURING(5-regular) to
EDGE-COLOURING(5-regular, 4-edge-connected). The reduction works on an input graph G as follows:

1. if G has some cut with fewer than four edges which is not a matching with exactly two edges, output no;
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FIGURE 13. (A) Graph G with a matching {uv, xy} separating two induced subgraphs H; and
Hs; (B) the disjoint union of the graphs G; := H; 4+ uz and Gy := Hy + vy.

2. break each cut with two edges as in Figure 13, obtaining 4-edge-connected 4-regular graphs Gi,..., Gk,
handling multiple edges as in Section 4;

call the oracle for G;, for each i € {1,...,k};

4. output yes if and only if G4, ..., G} are all 5-edge-colourable.

e

O

This Turing reduction does not help much in the hunting of 5-snarks. If the proof had been constructed with
a Karp reduction from 3SAT, then, for every non-satisfiable 3SAT formula, even the smallest one, the Karp
reduction would output a 5-snark. With the Turing reduction, on the other hand, if we get a 5-snark G; from
a non-5-edge-colourable 5-regular graph G, we already had G; as a 4-edge-connected component of G, up to
the simple operation described in Figure 13. Therefore, in the beginning of this project, when the Turing oracle
reduction was all that we had, we could prove that 5-snarks must exist, otherwise P = NP, but we could not
find any of these graphs.

One can verify that all d-snarks with d > 5 appearing in this paper (Meredith’s d-snarks, Rizzi’s 5-snarks
discussed in Sect. 1 and the d-snarks from the infinite families constructed in Sect. 5) contain snarks as subgraphs.
This leads to the following.

Question 7.1. Does every d-snark with d > 5 contain a snark (as a subgraph)?

This question does not seem easy to answer. We know that every d-snark with d > 5 contains a Class 2
subcubic graph?, but not necessarily cubic. Relatedly, one may wonder if every 5-snark can be decomposed into
two disjoint perfect matchings and a (not necessarily 2-edge-connected) Class 2 cubic graph, but this does not
hold. Rizzi’s poorly matchable 5-snarks, mentioned in Section 1, are clearly counterexamples, since they are
graphs wherein every pair of perfect matchings intersect.
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