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Abstract. Chordal graphs are intersection graphs of subtrees of a tree,
while interval graphs are intersection graphs of subpaths of a path. Undi-
rected path graphs are an intermediate class of graphs, defined as the
intersection graphs of paths of a tree. It is known that DOMINATING
SET, CONNECTED DOMINATING SET, and STEINER TREE are W[2]-hard
on chordal graphs, when parameterized by the size of the solution, and
are polynomial-time solvable on interval graphs. As for the undirected
path graphs, all these problems are known to be NP-complete, and when
parameterized by the size of the solution, no classification in the param-
eterized complexity theory is known apart from the trivial XP classifica-
tion. We prove that DOMINATING SET, CONNECTED DOMINATING SET,
and STEINER TREE are FPT for undirected path graphs when parame-
terized by the size of the solution, and that they continue to be FPT for
general chordal graphs when parameterized by the size of the solution
plus the vertex leafage of the graph, provided a tree model with optimal
vertex leafage is given. We show a relation between the parameterization
of MIN-LC-VSP problems by the leafage of the graph versus the vertex
leafage plus the size of a solution.

Keywords: Chordal graphs - Undirected Path graphs - Dominating
Set - Steiner Tree - FPT algorithms

1 Introduction

Given a graph G and a family of subsets S = {Su}ucv () of a set U, we say
that G is the intersection graph of S if uv € E(G) if and only if S, NS, # 0,
and that (U,S) is a model of G. Chordal graphs are defined as graphs having
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no induced cycle of size bigger than three, but it is known that they are also
the intersection graphs of subtrees of a characteristic tree [13]. Nested subclasses
of chordal graphs are defined by putting constraints in either the characteristic
tree, or the subtrees. Interval graphs are the intersection graphs of subpaths of a
path [6]; rooted directed path graphs are the intersection graphs of directed paths
of an out-branching [14] (an oriented rooted tree with all vertices being reachable
from the root); directed path graphs are the intersection graphs of directed paths
of an oriented tree [20]; and undirected path graphs are the intersection graphs of
paths of a tree [12]. The cited papers give polynomial-time recognition algorithms
that also provide models for these classes, called tree models.

A set D C V(G) is dominating if, for every vertex v € V(G) \ D, we have
that v has a neighbor in D. Given a graph G and a positive integer k, the
DOMINATING SET problem consists of deciding whether G has a dominating set
of size at most x, while the CONNECTED DOMINATING SET asks the same but
requires additionally that G[D] is connected. Given also a subset X C V(G),
called set of terminals, the STEINER TREE problem consists of deciding whether
there exists a subset S C V(G) \ X, called Steiner set, such that |S| < x and
G[S U X] is connected—and hence G[S U X] has a spanning tree T, called a
Steiner tree of G for X. It is known that CONNECTED DOMINATING SET and
STEINER TREE have the same complexity for chordal graphs and subclasses [23].
The natural parameter of all these problems is .

DOMINATING SET is considered the canonical problem in the class W[2]-hard
when parameterized by , which explains the great interest in it (see e.g. [15]).
When restricted to chordal graphs (and even to split graphs), DOMINATING SET,
as well as CONNECTED DOMINATING SET, are still W[2]-hard when parame-
terized by k [21]. However, they become polynomial-time solvable on interval
graphs, and more generally on rooted directed path graphs [5,23], which brings
the natural question about whether they are also polynomial-time solvable on
undirected path graphs. This unfortunately is not the case, as both are NP-
complete on these graphs [5,10]. Up to our knowledge, it is not known whether
(CONNECTED) DOMINATING SET is solvable in polynomial time on directed path
graphs. Nevertheless, it could still happen that they are FPT when parameter-
ized by k on undirected path graphs, and indeed this is one of our results. This
classification closes all the parameterized complexity open entries for undirected
path graphs presented in [10].

Undirected path graphs can also be seen as intersection graphs of subtrees
of a tree where each subtree has at most 2 leaves. A natural generalization
therefore is to investigate intersection of subtrees with at most ¢ leaves, which
leads to the definition of vertex leafage of a chordal graph. Given a tree model
T = (T, {Tu}uev(c)) of a chordal G, the vertex leafage of T is the maximum
number v¢(7) of leaves in a subtree T,, while the vertex leafage of G is the
minimum vertex leafage over all of its tree models [8]; we denote the parameter
by v¢(G). Undirected path graphs are exactly the chordal graphs with vertex
leafage 2. Recall that DOMINATING SET and CONNECTED DOMINATING SET
are NP-complete on undirected path graphs [5,10], which gives us that they are
NP-complete on chordal graphs with vertex leafage k for every fixed k > 2.
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This fact prevents the existence of FPT algorithms parameterized by the vertex
leafage of chordal graphs unless P = NP.

In this work we prove that CONNECTED DOMINATING SET and DOMINATING
SET are FPT on chordal graphs when parameterized by x + v¢(G), as long as
a tree model with optimal vertex leafage is provided. Since a tree model with
optimal vertex leafage can be computed in polynomial time for undirected path
graphs [12], we get that these problems are FPT when parameterized by s on
these graphs, which is best possible by the mentioned results.

Theorem 1. Let G be a chordal graph. If a tree model T such that v€(T) =
vl(Q) is provided, then DOMINATING SET, CONNECTED DOMINATING SET and
STEINER TREE are FPT when parameterized by x + vl(G). In particular, when
restricted to undirected path graphs, then DOMINATING SET can always be solved
in time O*(22¢(1+1°86%)) *yyhile CONNECTED DOMINATING SET and STEINER
TREE can be solved in time O*(4").

A closely related parameter is the leafage of G, denoted by ¢(G), which is
the minimum number of leaves ¢(7) in the tree of a tree model 7 of G [19]. Sur-
prisingly enough, a tree model with ¢(G) leaves can be computed in polynomial
time [16]. This unfortunately is not the case for the vertex leafage parameter, as
it is known [8] that it is NP-complete to decide whether a chordal graph G has
vertex leafage at most 3; they also give an algorithm to compute v¢(G) in time
n“@ | which is XP when parameterized by ¢(G). In [11] they provide an FPT
algorithm for DOMINATING SET when parameterized by ¢(G). Since v4(G) is a
weaker parameter than ¢(G), the algorithm provided in [11] is not readily appli-
cable to DOMINATING SET parameterized by x and v¢(G). Nevertheless, we show
that positive instances of DOMINATING SET and CONNECTED DOMINATING SET
must have bounded leafage, which brought us to the question about whether the
same holds for generalizations of DOMINATING SET. Indeed, we have found that
the broader class of problems, called MIN-LC-VSP problems [7,11], have the
same property. Given a graph G and subsets o,p C {0,---,n — 1}, a subset
S CV(G) is a (o,p)-set if: [N(v) N S| € o for every v € S, and |[N(v) N S| € p
for every v € V(G) \ S. Fixing o, p, and given a graph G and an integer x, the
MIN-LC-VSP,, , problem consists in deciding whether there exists a (o, p)-set
S of size at most k. Observe that if 0 € p, then the answer is always yes since
taking the empty set satisfies the constraints; this is why we suppose 0 ¢ p in
what follows. MIN-LC-VSP problems generalize a number of optimization prob-
lems, as e.g. DOMINATING SET, d-DOMINATING SET, TOTAL DOMINATING SET,
INDUCED d-REGULAR SUBGRAPH, etc. [7]. We state our result and its corollary
obtained from v¢(G) < ¢(G).

Theorem 2. Let o,p C {0,--- ,n — 1} be such that 0 ¢ p, G a chordal graph
and K a positive integer. If (G, k) is a YES instance of MIN-LC-VSP,, ,, then
U(G) < k- vl(G).

Corollary 1. Leto,p C{0,--- ,n—1}, G be a chordal graph and k be a positive
integer. If MIN-LC-VSP, , is FPT when parameterized by v¢(G), then MIN-
LC-VSP,, is also FPT when parameterized by ¢(G). And if MIN-LC-VSP, ,
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is FPT when parameterized by £(G) and a tree model T with ve(T) = vl(G) is
provided, then MIN-LC-VSP,, , is also FPT when parameterized by x + v¢(G).

We mention that MAX-LC-VSP, , can also be defined (in this case, the
problem consists in deciding whether there exists a (o, p)-set S such that |S| >
k), but our proof cannot be applied to these problems. Nevertheless, many of the
MAaX-LC-VSP, , problems cited in [7] are known to be polynomial-time solvable
in chordal graphs, e.g. INDEPENDENT SET, MAXIMUM INDUCED MATCHING,
MAXIMUM EFFICIENT EDGE DOMINATING SET and MAXIMUM DOMINATING
INDUCED MATCHING, STRONG STABLE SET, etc. (see for instance [18]).

Another parameter of interest is the mim-width of G [22], since many prob-
lems can be solved in XP time when parameterized by mim-width [2,7,17], and
rooted directed path graphs have mim-width 1 [17]. One could therefore ask
whether undirected path graphs also have bounded mim-width. Up to our knowl-
edge, no explicit construction of undirected path graphs with unbounded mim-
width is known, but the fact that LC-VSP problems can be solved in polynomial
time on graphs with bounded mim-width [7], combined with the NP-hardness
of DOMINATING SET on undirected path graphs, give evidence that undirected
path graphs do not have bounded mim-width, unless P = NP.

2 Preliminaries

A parameterized problem is a language II C X x N, where X' is a fixed finite
alphabet. A pair (I,k) € X x N is called an instance of II with parameter k,
and we say that it is a YES instance if (I, k) € II. Given instances (I, k), (I’, k')
of the same parameterized problem I7, it is said that they are equivalent if (I, k)
is a YES instance of IT if and only if so does (I’,k’). A reduction rule for IT is
a polynomial-time computable function that maps an instance (I, k) to another
instance (I', k’). Tt is safe if (I, k) and (I’, k') are equivalent and k' < g(x), where
g is a computable function. We refer the reader to [9] for further background on
parameterized complexity.

We denote by 7 = (T, {Tu }uev(a)) a tree model of G. Given anode t € V(T),
we denote by V; the set {u € V(G):t € V(T,)}. We say that u € V(G) is a
leafy vertex of G (with respect to 7) if V(T,) = {{,} and ¢, is a leaf in T;
denote by L(G,T) the set of leafy vertices of G with respect to 7, and for each
u € L(G,T), denote by £, the unique node in T;,. We omit (G,7) when it is
clear from the context.

A tree model (T, {Ty }uecv(g)) of G is said to be minimal if there are no two
adjacent nodes ¢,¢ € V(T') such that V; C Vp. It is known that such a tree model
can be computed in polynomial time [12]. Even though obtaining a minimal tree
model, given a tree model of G, is a standard operation, we prove it explicitly
in the appendix in order to show that also the vertex leafage does not increase.

Proposition 1 ([12]). Let G be a chordal graph, and T = (T, {Tu}uecv(c)) be
a tree model of G. Then, a minimal tree model T' = (T",{T, }yev(c)) of G with
vl(T") < vl(T) and L(T") < U(T) can be computed in polynomial time.
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The following lemma directly implies Theorem 2 and will also be useful in the
following sections.

Lemma 1. Let G be a chordal graph, T = (T, {Tu}uev(a)) a minimal tree model
of G such that v0(T) = vl(G), k a positive integer and S C V(G) such that
Nlul NS # O for every leafy vertex u € L. If |S| < k, then £(G) < k- vl(G).

Proof. By contradiction, let £1,..., ¢ be the leaves of T, with k& > k- vl(G) + 1.
Since 7 is minimal, for each i € {1,...,k}, there exists v; € Vp, such that
V(Ty,) = {¢;}, as otherwise we would have V;, C V;, where t; is the neighbor
of ¢; in T. For each u € S, let D,, = {v; | u € N[v;]}. Observe that if v; € S,
then D,, = {v;} since ¢1,..., ¢ are all distinct leaves of T' (i.e., {v1,..., v} is
an independent set). Note also that if uw € S\ {v1,..., v}, then |D,| < vl(G).
By assumption, we know that N[v;] NS # @ for every v; € {v1,...,v%} \ S,
which means that |, .g Du = {v1, ..., vx}. However, we know that |(J,cg Du| <
Y oues | Dul <1S|-vl(G) < k- vl(G), a contradiction since k > & - vé(G). O

Since in Theorem 2 we have 0 ¢ p, we get directly that a solution S to
MIN-LC-VSP, , applied to (G, k) must be such that N[u] NS # @ for every
u € V(@G), and in particular for every leafy vertex. Hence, Theorem 2 follows
from the above lemma. Additionally, it is known that DOMINATING SET can
be solved in time 2°¢°) . nOW) on a chordal graph G, where { = ¢(G) and
n = |V(G)| [11]. Since DOMINATING SET is equivalent to MIN-LC-VSP,, , with
o=1{0,...,n—1} and p = {1,...,n — 1}, we get that Corollary 1 implies
that DOMINATING SET can be solved in FPT time on a chordal graph G when
parameterized by k + v€(G), provided the appropriate model is given. To finish
the proof of Theorem 1, we need to investigate the complexity of STEINER TREE
and CONNECTED DOMINATING SET, and to present the claimed algorithm for
DOMINATING SET when restricted to undirected path graphs. This is done in
Sects. 3 and 4, respectively.

3 Connected Dominating Set and Steiner Tree

In this section, we present FPT algorithms for CONNECTED DOMINATING SET
and STEINER TREE parameterized by k + v€(G). For simplicity, in what follows
we denote an instance of STEINER TREE and CONNECTED DOMINATING SET
parameterized by k + vf(G) simply by (G, X, k) and (G, k), respectively, since
vl(G) depends on G and hence appears implicitly in the notation. We start by
solving STEINER TREE, and at the end of the section we prove that CONNECTED
DOMINATING SET is equivalent to STEINER TREE applied to (G, L), where L is
the set of leafy vertices in a given model of G. And to solve STEINER TREE, we
apply two reduction rules that allows us to consider only instances (G, L, k). We
start by getting rid of the leafy vertices that are not in X.

Reduction Rule 1. Let (G, X, k) be an instance of STEINER TREE where G is
chordal, and T = (T, {Tu}uev(a)) be a tree model of G. If there exists v € L\ X,
then delete v, obtaining the instance (G — v, X, k).
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Proof of safeness. Removing vertices clearly cannot increase the vertex leafage;
hence we just need to prove that (G,X,k) is a YES instance if and only if
(G — v, X, k) also is. Clearly a solution for (G — v, X, k) is also a solution for
(G, X, k) since G —v C G. Conversely, let S C V(G) be a Steiner set for (G, X)
such that |S| < k. By definition H = G[S U X] is connected. If v ¢ S, then
H C G — v, so suppose otherwise. Observe that, by definition of tree model
and since V(T,) = {¢} for some leaf ¢ of T, we get that N(v) is a clique of G.
This clearly implies that v cannot be a cut-vertex in H, i.e., that H — v is still
connected, which means that S — v is a solution for (G — v, X, k). O

We now show that it is enough to consider terminal vertices that are leafy
vertices. We cannot, however, simply delete the set X \ £ of non-leafy terminal
vertices since they might be useful to connect terminal leafy vertices, without
making an impact on the size of the Steiner set. Thus we use the bypass operation
to eliminate vertices in X \ £ while maintaining the connectivity that is gained by
including these vertices in the induced subgraph G[SU X]. The bypass operation
of a vertex v € V(@) consists of removing v from V(G), and adding uw for
every pair u, w of neighbors of v (such that uw ¢ E(G) to avoid multiple edges).
Before we apply the bypass reduction, we prove the following lemma.

Lemma 2. Let G be a chordal graph, T = (T,{Tu}uev(a)) be a tree model of
G such that LNVy #£ 0 for every leaf £ € V(T), and ) # X C V(G) be such that
LCX. IfS is a Steiner set for (G,X), then V; contains some vertex of SUX
for every t € V(T).

Proof. It V(T) = {t} it follows trivially because X # 0); so suppose |V (T)| > 1.
The lemma also holds trivially for the leaves of T since £L C X and LNV, # ()
for every leaf ¢ € V(T). So consider a non-leaf node ¢ of T'. Note that ¢ must be
within a path between two leaves ¢; and ¢y of T'; let v1,v2 € V(G) be such that
V(T,,) = {4} for each i € {1,2} (they exist by assumption). Since G[S U X] is
connected and {vy,v2} C L C X, there is a path P in G[S U X| between vy, va.
Because G is chordal, we get that V, separates v; from v, in G for every internal
node g in the #1, {o-path @ in T'. Therefore, we get that P must contain a vertex
of V; for internal node ¢ of ), in particular it must contain a vertex of V;. O

Reduction Rule 2. Let (G, X, k) be an instance of STEINER TREE where G
is chordal, T = (T,{Tu}uev(c)) be a tree model of G such that LN Vy # O for
every leaf £ € V(T), and suppose that Reduction 1 cannot be applied. If there
exists v € X \ L, then bypass v, obtaining the instance (G', X — v, k).

Proof of safeness. First we show that the vertex leafage cannot increase by con-
structing a tree model of G’ from 7. Consider 7" = (T", {T, }yev(c’)) obtained
as follows.

1. T" is the tree obtained from T by contracting T, to a single vertex, t,; and
2. For each u € V(G'), if V(T,) NV (Ty,) = 0, then T, remains the same; oth-
erwise, T, is the subtree of 7" containing exactly the vertices in (V(T}) \

V(1)) U {to}
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To see that the vertex leafage does not increase, just observe that edge con-
tractions of trees cannot increase the number of leaves. It remains to argue that
7' is indeed a tree model of G’. For this, we must have vw € E(G’) if and only
if V(T)) NV (T}) # 0. To see that it holds it suffices to observe that ¢, € V(7))
if and only if u € N (v). Now, because the value of k remains the same, and since
the bypass operation can be clearly applied in polynomial time, it remains to
show that (G, X, k) and (G', X — v, k) are equivalent. Denote X — v by X', and
by £’ the set L(G’,T"). Note that the existence of v implies that |£| > 2. Since
Reduction 1 cannot be applied, we get that £ C X.

First, consider a solution S for (G, X, k). We argue that S is also a Steiner
set for (G’, X’), i.e., that S U X’ induces a connected subgraph of G’. Indeed, if
u,w € SUX’ C SUX, then there exists a u, w-path P in G[SUX]. If v ¢ V(P),
then P still exists in G'; and otherwise, v is an intermediate vertex in P that is
replaced by an edge in G, i.e., u,w are still connected in G'[S U X’].

Now, let S be a solution for (G, X', k), which means that H' = G'[S U X']
is connected. We want to prove that H = G[S U X] is also connected. For this,
first observe that H' is obtained from H — v by turning N(v) N V(H') into a
clique. Therefore, the only way H could be disconnected is if v is an isolated
vertex in H; we show that this cannot occur. Indeed, note that contracting T,
into a single vertex ¢, maintains the property that each leaf of 7" must contain
a leafy vertex, i.e., that £ NV, # ) for every leaf £ € V(T”). Hence, by Lemma 2
we must have (SU X’) NV, # 0, i.e., v has some neighbor in H. O

We are finally ready to prove the main result of this section.

Theorem 3. Let G be a chordal graph on n vertices and m edges, X C V(G),
and k be a positive integer. STEINER TREE can be solved on (G, X, k) in time
O*(QK"”K(G)), provided a tree model with optimal vertex leafage is given. In par-
ticular, if G is an undirected path graph, then STEINER TREE can always be
solved in time O(4*n? + nm).

Proof. Let (G,X,k) be an instance of STEINER TREE where G is a chordal
graph. If £(G) = 1 or | X| = 1, then G[X] is a complete graph and thus S =0
is a solution. Thus we now assume that ¢(G) > 2 and | X| > 2. First, compute a
minimal tree-model of G; this can be done in polynomial time [12]. Observe that
a minimal tree model satisfies the condition of Reduction Rule 2. By iteratively
applying Reduction Rules 1 and 2, and Proposition 1 to maintain a minimal tree
model, we obtain in polynomial time an equivalent instance (G’, X', k) such that
vl(G") < vl(G), and X' is the set of leafy vertices of G’ (related to a tree model
T = (T",{T, }uev(c)))- Now, let S C V(G’) be a Steiner set for (G', X’) such
that |S] < k. The connected components of G[X’] are exactly the cliques V,N X",
£ a leaf of T'. So, we get that either N[u] = N[v] or N[u] N N[v] = § for every
pair of leafy vertices u,v € X’. Hence, we get N(u) NS # () for every u € X/,
and by Lemma 1 we get £(G’) < k- vl(G') < k- vl(G). We can solve (G', L, k)
in the claimed time using the algorithm given in [3] for STEINER TREE which
runs in this instance in time O(2"“""Z(C’Y)n2 + nm) time, and in particular if G is
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an undirected path graph, the starting tree model with optimal vertex leafage
can be found in polynomial time [12]. O

Finally, our result for CONNECTED DOMINATING SET is obtained by proving
equivalence to STEINER TREE on (G, L, k). Our proof is necessary since the
complexity equivalence proved in [23] concerns only classical complexity.

Theorem 4. Let G be a chordal graph on n vertices and m edges, and k be
a positive integer. CONNECTED DOMINATING SET can be solved on (G, k) in
time O*(2”'”5(G)), provided a tree model with optimal vertex leafage is given.
In particular, if G is an undirected path graph, then CONNECTED DOMINATING
SET can always be solved in time O(4%n? + nm).

Proof. We prove that S is a connected dominating set of G if and only if S is a
Steiner set for (G, £), where £ denotes the set of leafy vertices in a tree model
(T, {Tu}uev(a)) of G. The theorem follows by Theorem 3.

Let S be a connected dominating set of G. So G[S] is a connected subgraph
of G, and since it is also dominating, we get that N(u) NS # () for every u € L.
It follows that G[SU L] is also connected, and hence S is a Steiner set for (G, L).

On the other hand, if S is a Steiner set for (G, L), then by Lemma 2 we
know that V; N (SUL) # 0 for every ¢t € V(T'), which in turn implies that every
u € V(G) has a neighbor in S U L. To finish the proof, just recall that if v is
a leafy vertex, then N(v) is a clique. Hence, if u € V(G) is adjacent to v € L,
then w is also adjacent to w € SN N(v) (which exists since S is a Steiner set for
(G, L) and L is a collection of disjoint cliques). O

4 Dominating Set

In this section, we present an FPT algorithm for DOMINATING SET parameterized
by k restricted to undirected path graphs. Although we believe that our method
can be extended to any chordal graph, when parameterized by k + v¢(G), we
remark that the expected running time of such approach is worse than simply
applying the algorithm given in [11] after bounding the leafage of the input
graph. Thus we refrain from discussing this extension and focus only on the
particular case of undirected path graphs since, in this case, our proof is self-
contained, simpler, and the O*(22#(1+1°6 %)) running time beats the 20(+*)0(1)
running time provided by applying the algorithm in [11].

In the B-DOMINATING SET, we are given a graph G, a positive integer k,
and a subset B C V(G) (called set of black vertices), and the goal is to decide
if there is a set D C V(G) with |D| < & such that N[b] N D # § for every b € B.
In other words, the goal is to find a set of at most k vertices that dominates
every black vertex of the instance. We say that such a set D is a B-dominating
set (in G). Clearly, solving DOMINATING SET on (G, k) is equivalent to solving
B-DOMINATING SET on (G, V(G), k).

From this point on, we assume that G is an undirected path graph, and that
T = (T, {Pu}ucv(c)) is a tree model of G where each P, is a subpath of T' (this
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can be computed in polynomial time [12]). We also denote by L the set L(G,T).
As in the previous section, we solve this problem by first applying a series of
reduction rules, the first of which is analogous to Reduction Rule 1.

Reduction Rule 3. Let (G, B,k) be an instance of B-DOMINATING SET. If
there exists v € L\ B, then delete v, obtaining the instance (G —v, B, k). And if
there exists v € LN B such that v is an isolated vertex, then delete v, obtaining
the instance (G —v,B — v,k — 1).

Proof of safeness. Deleting a vertex clearly does not increase the vertex leafage,
so we just need to prove the equivalence between instances. For the first case,
clearly a B-dominating set in G — v is also a B-dominating set in G. So let S
be a B-dominating set in G. If v ¢ S, then there is nothing to prove. Otherwise,
since v is a leafy vertex, we get that N[v] is a clique, which means that any
b € B dominated by v can be dominated by any u € N(v) instead. The second
part is analogous. O

Now we can assume that every leafy vertex v of G is black and is not isolated.
The following rule allows us to bound the number of leaves in T'.

Reduction Rule 4. If B = (), then output YES. And if B # () and either k <0
or T has more than 2k leaves, then output NO.

Safeness. Follows from the assumption that every leafy vertex v is black and
from Lemma 1. O

Thus, we assume that T has at most 2« leaves. Furthermore, if |V(T)| =1,
then G is the complete graph and any vertex dominates B; so from now on we
assume that T has at least 2 leaves. Our next operation is not a reduction rule,
but a branching rule instead. More specifically, we create a number of smaller
instances in order to solve the problem. The amount of instances created is
bounded by a function of x, thanks to the fact that T has at most 2k leaves.

Given nodes ¢,t" of T, denote by P(t,t') the t,t'-path in T. Also, given a
subpath P of T, denote by Vp the set {u € V(G) | P, C P}. Say that u € Vp is
P-mazimal if there is no v € Vp such that P, is a proper subpath of P,.

Branching Rule. Let T = (G, B, k) be an instance of B-DOMINATING SET.
Let £ € V(T) be a leaf of T, and u € V(G) be such that V(P,) = {£}. For each
leaf t e V(T), t # ¢, do the following:

1. Choose v € Vp(yy to be a P({,t)-mazimal vertex such that £ € V(P,);
2. Define G' = G — Vp, and B' = B\ Ng[v];
3. Create the instance Z(u,t) = (G', B,k — 1).

We remark that {u,v} C Vp, and thus those two vertices are not in G’.

Correctness of the Branching Rule. First, observe that a minimal tree model of
G’ can again be obtained by applying Proposition 1 to the tree model 7 restricted
to G'. Therefore, it remains to show that Z is a YES instance of B-DOMINATING
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SET if and only if there exists a leaf ¢t of T distinct from ¢ such that the instance
Z(u,t) is also a YES instance.

For the necessity, let S be a B-dominating set of G. By our assumption that
Reduction Rule 3 is not applicable, we get that u € B, and N (u) # (). Note that,
since V(P,) = {¢} we get that N(u) is a clique. This means that if u € S, then
(S\{u})U{v} is also B-dominating, for any v € N (u). Therefore, we can assume
that u € S. Now, let v be the neighbor of u in S. Also, let ¢’ be the endpoint
of P, distinct from ¢, and let ¢ be any leaf separated from ¢ by the edge of P,
incident to ¢’ (it might happen that ¢ = #'). Then, either v is P(¢,t)-maximal,
or there exists x € V; which is P({, t)-maximal. If the latter occurs, we get that
P, C P,, which in turn gives us that N[v] C N|z] and that (S\ {v}) U {z} is
a B-dominating set of G. We can therefore suppose, without loss of generality,
that v is P(¢,t)-maximal. Now, let Z(u,t) be the instance of B-DOMINATING
SET constructed as in the statement of the Branching Rule. Observe that if v’
is also P(¢,t)-maximal such that ¢ € V(P,/), then P, = P, and the constructed
instance is the same, so we can suppose that indeed v is the iterated P(,t)-
maximal vertex. It remains to prove that S’ = S\ {v} is a B’-dominating set of
Z(u,t). For this, let b € B’. By construction b € B\ Ng[v]. Therefore, b has a
neighbor in S\ {v}, as we wanted to show.

For the sufficiency, let Z(u,t) = (G’, B',k — 1) be the instance given by the
Branching Rule, and let S’ be a B’-dominating set of G'. Because every b € B’ is
dominated by S’, and B\ B’ = Ng[v], we get that S = S’U{v} is a B-dominating
set in (7, as we wanted. a

The last part of Theorem 1 follows by bounding the number of instances,
since each instance is solved in polynomial time.

Theorem 5. Let G be an undirected path graph. Then DOMINATING SET can
be solved in time O*(20(<108K)),

Proof. We start by obtaining a tree model with optimal vertex leafage for G by
applying the polynomial algorithm in [12]. Then, we iteratively apply Reduction
Rules 3 and 4 (also applying Proposition 1 to maintain a minimal tree model),
until we reach the need to apply the Branching Rule. The latter is then applied
for every leaf of the current tree model, which generates at most (2x)? = 4r>
new instances. The process then starts over on each of the generated instances.
Finally, since the budget for the size of the solution decreases by 1 after applying
the Branching Rule, we get that a new application of the rule would generate at
most (2xk — 2)? new instances, and so on. Observe that this cascade can be done
at most x times, since at each application we keep one vertex in the dominating
set that is being constructed. Therefore, in the worst case scenario, we get that
the total number of generated instances is: (2k)?- (25 —2)%- -+ - (25 — (26 — 2))?
=1[(2r)- (26 —2)- --- - (2)]> = O([(2k)"]?) = O(2?<e8#+1)) Observe that if an
instance eventually ends up with a non-empty set of black vertices and a budget
of 0 (base case of the branching procedure), then Reduction Rule 4 will output
No. Because the applications of Reduction Rules 3 and 4 and of Proposition 1
are done in polynomial time, we get the claimed running time. O
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5 Conclusion

We have investigated the complexity of DOMINATING SET, CONNECTED DOMI-
NATING SET and STEINER TREE when parameterized by the size of the solution
plus the vertex leafage (k 4+ v€(G)) of a given chordal graph G. We have found
that they are all FPT, provided that a tree model with optimal vertex leafage
of G is given. Since such a tree model can be found in polynomial time if G is
an undirected path graph (which are graphs with vertex leafage 2), we get that
they are all FPT on these graphs when parameterized by the size of the solution.
A question is whether the condition about the provided tree model can be lifted.
Because positive instances have leafage bounded by a function of x and v¢(G),
we know that if computing v¢(G) is FPT when parameterized by ¢(G), then we
would have a complete fixed-parameter algorithm. Another option could be to
provide a tree model which is not very far from an optimal one, i.e., that has
vertex leafage at most c-v¢(G) for some constant c. This would increase only the
constants in our complexities, and we would again have complete algorithms. We
ask whether this is achievable. We recall the reader that deciding v¢(G) < 3 is
NP-complete, but that the vertex leafage can be computed in time n?*(©) [g].

The inequality v¢(G) < £(G) says that the vertex leafage of G is a weaker
parameter, i.e., that if a problem is FPT when parameterized by v¢(G), then it is
also FPT when parameterized by £(G). However, we have also seen that if some
MIN-LC-VSP problem is FPT when parameterized by £(G), then we get also
parameterization by x4+ v¢(G). In [11] they provide a fixed-parameter algorithm
for DOMINATING SET when parameterized by ¢(G). A question is whether their
result can be generalized to all MIN-L.C-VSP problems. Given the complexity
of the algorithm given in [11], this seems to be a very challenging problem.

Recall the definitions of undirected path, rooted directed path and directed
path graphs given in the introduction. It is known that undirected path graphs
and rooted directed path graphs are separated by DOMINATING SET, STEINER
TREE, CONNECTED DOMINATING SET and GRAPH ISOMORPHISM [1,4,5,10,23],
while directed path and rooted directed path graphs are separated by GRAPH
IsOMORPHISM [1]. Therefore we ask whether any of the investigated problems
also separates these classes. More generally, is there a problem that separates
directed path graphs from undirected path graphs?

Finally, we also leave as open the question of whether STEINER TREE and
DOMINATING SET admit polynomial kernels with relation to the parameter s
when restricted to undirected path graphs.
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