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A total colouring assigns a colour to each vertex and edge of a graph, so

that there are no incidence conflicts. Since, by definition, a total colour-

ing is also a vertex-colouring and an edge-colouring, it is natural to con-

sider successful strategies, both theoretical and algorithmic, towards the

solution of these two more studied problems. This chapter surveys recent

advances towards a better understanding of the challenging total colour-

ing problem, with respect to Hilton’s condition, cubic graphs, equitable

colourings, vertex-elimination orders, decomposition, and complexity di-

chotomies.

1 Introduction

Let G be a simple connected graph with vertex-set V (G) and edge-set

E(G). An element of G is one of its vertices or edges. An edge e ∈ E(G),

whose ends are v and w, is denoted by {v, w} or vw. An edge-colouring of

G is a map π : E(G)→ C , where C is a set of colours, with π(e) 6= π(f)

for any two adjacent edges e, f ∈ E(G). If C = {1, 2, . . . , k}, then we
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have an edge-colouring with k colours, and π is a k-edge-colouring. The

smallest integer k for which a k-edge-colouring exists is the chromatic

index of G, denoted by χ′(G). Clearly, χ′(G) ≥ ∆(G), where ∆(G) is

the maximum degree of a vertex in G. Vizing’s theorem asserts that

every simple graph G has an edge-colouring with ∆(G) + 1 colours, so

χ′(G) = ∆(G) or ∆(G) + 1. If a graph G has χ′(G) = ∆(G), then G is

said to be of class 1; otherwise, G is of class 2.

A total colouring is a map π : E(G) ∪ V (G) → C with π(x) 6= π(y)

for any two adjacent or incident elements x, y ∈ E(G) ∪ V (G). The

smallest integer k for which a total colouring with k colours exists is

the total chromatic number of G, denoted by χ
T

(G). Clearly, χ
T

(G) ≥
∆(G)+1. The total colouring conjecture, posed independently by Behzad

in 1965 and Vizing in 1964, states that every simple graph G has a

total colouring with ∆(G)+2 colours. By the total colouring conjecture,

χ
T

(G) = ∆(G) + 1 or ∆(G) + 2. If χ
T

(G) = ∆(G) + 1, then G is said to

be of type 1; otherwise, G is of type 2.

The total colouring conjecture has been verified in restricted cases,

such as cubic graphs [38] and graphs with maximum degree ∆ ≤ 5 [28],

but the general problem has remained open for more than fifty years,

illustrating the difficulty of total colouring. The total colouring conjec-

ture has not been settled for regular graphs, for planar graphs, or for

chordal graphs.

The complexity of the total colouring problem is known to be poly-

nomial for a few very restricted graph classes, – that is, there is a

polynomial-time algorithm which decides whether a given graph in the

class is of type 1.

There are a few graph classes whose total chromatic number has been

determined. Examples include cycle graphs, complete and complete bi-

partite graphs, and trees [49], grids [11], and series-parallel graphs which

generalise outerplanar graphs (see [24] and [46]). The complexity of total

colouring is unknown for the class of chordal graphs, and the partial re-

sults for the related classes of interval graphs [1], split graphs [13], rooted

path graphs [23], and dually chordal graphs [20] expose the interest in

the total colouring problem for chordal graphs.

Another class for which the complexity of total colouring is unknown

is the class of join graphs: results are known only for very restricted

subclasses, such as the join of a complete inequibipartite (where the two

parts have unequal sizes) graph and a path, and the join of a complete

bipartite graph and a cycle, all of which are of type 1 (see [30]). Join

graphs generalise connected graphs with no induced P4, known as con-
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nected cographs, a structured graph class for which the total chromatic

number has not been determined.

It is an NP-complete problem to determine whether the total chro-

matic number of an arbitrary graph G is ∆(G)+1 (see [39]). The original

NP-completeness proof was a reduction from the edge-colouring prob-

lem, suggesting that, for most graph classes, total colouring is harder

than edge-colouring. The total colouring problem remains NP-complete

when restricted to k-regular bipartite inputs [37], for each fixed k ≥ 3.

It is natural to investigate the complexity of total colouring when re-

stricted to classes for which the complexity of edge-colouring is already

established.

Surprisingly, there are classes of graphs that satisfy the total colouring

conjecture, and yet it is an NP-complete problem to determine whether

the total chromatic number of a graph in the class is of type 1 – for

instance, the class of bipartite graphs or of cubic graphs. On the other

hand, there are classes of graphs for which the total colouring problem

remains NP-complete when restricted to graphs in the class, and yet

the total colouring conjecture has not been settled for that class – for

instance, regular graphs and unichord-free graphs (see [31]).

In this chapter we consider some advances towards a better under-

standing of the total colouring problem, with respect to Hilton’s con-

dition (Section 2), cubic graphs (Section 3), equitable colourings (Sec-

tion 4), vertex-elimination orders (Section 5), decomposition (Section 6),

and complexity dichotomies (Section 7), ending with concluding remarks

and conjectures in Section 8.

2 Hilton’s condition

In 1965 Behzad proved in his thesis that even complete graphs are of

type 2, and odd complete graphs are of type 1. A universal vertex is

adjacent to every other vertex in the graph. If a graph G has a universal

vertex, then G satisfies the total colouring conjecture because it is a

spanning subgraph of a complete graph with the same maximum degree.

If G has an odd number of vertices, then it is of type 1, since it is a

spanning subgraph of the odd complete graph Kn.

Theorem 2.1, given by Hilton [25] in 1990, establishes necessary and

sufficient conditions for a graph G to be of type 2.
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Theorem 2.1 Let G be a simple graph with an even number of vertices

and with a universal vertex. Then G is of type 2 if and only if

∣∣E(G)
∣∣ + α′(G) < |V (G)| /2,

where α′(G) is the cardinality of a maximum independent set of edges

of G, the complement of G.

Note that graphs with universal vertices and an even number of ver-

tices satisfy the total colouring conjecture, because they are spanning

subgraphs of a graph of type 2. Theorem 2.1 tells us when graphs with

an even number of vertices and universal vertices are of type 1 or of

type 2, and can be applied to the closed neighbourhood of a vertex of

maximum degree (the vertex and its neighbours) to determine when a

general graph G cannot be of type 1. We therefore say that a general

graph satisfies Hilton’s condition if the subgraph induced by this closed

neighbourhood of a vertex of maximum degree is of type 2.

Recall that a clique is a set of pairwise adjacent vertices in the graph

and an independent set is a set of pairwise non-adjacent vertices. A graph

is a split graph if its vertex-set can be partitioned into a clique and an

independent set. A proper interval or indifference graph is the intersec-

tion graph of a set of unit intervals of a straight line. An indifference

order of a graph is a total order on its vertex-set for which the vertices

of each maximal clique are consecutive with respect to the order.

In 1971 Roberts proved that a graph is an indifference graph if and

only if it admits an indifference order. Split graphs and indifference

graphs are two classes of graphs for which the total colouring conjec-

ture has been proved, and split graphs and indifference graphs, with

∆(G) even, have χ
T

(G) = ∆(G) + 1 (see [13] and [20]). However, the

total colouring problem for these two graph classes is still open.

This provided the motivation to investigate the total colouring prob-

lem for split-indifference graphs, a graph class for which the edge-colouring

problem was solved. Using a characterisation of split-indifference graphs

G, due to Ortiz et al. in 1988, χ
T

(G) can be determined when ∆(G) is

odd, by giving conditions which imply that χ
T

(G) = ∆(G) + 2, and by

constructing a (∆(G)+1)-total colouring; otherwise, when the conditions

do not hold, there is a characterisation by Campos et al. [9].

Theorem 2.2 A split-indifference graph is of type 2 if and only if it

satisfies Hilton’s condition.
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A connected simple graph G is a k-clique graph if G has exactly k dis-

tinct maximal cliques. If G is a 3-clique graph with no universal vertex,

then G is an indifference graph (see Figueiredo et al. [19]), so 3-clique

graphs satisfy the total colouring conjecture. It remains to be deter-

mined which 3-clique graphs G without universal vertices and with odd

maximum degree are of type 1.

Graph class even ∆ odd ∆

complete type 1 type 2 (Hilton’s condition)
universal vertex type 1 Hilton’s condition ([25])

split type 1 open
indifference type 1 open

split-indifference type 1 Hilton’s condition ([9])
3-clique graph type 1 open

Table 3.1 Classes with respect to Hilton’s condition on total colouring.

For the graph classes listed in Table 3.1, every graph with odd max-

imum degree is of class 1 and every graph with even maximum degree

is of type 1 (see Chen et al. [13] and Figueiredo et al. [19]). A general

question, which we leave open, is to determine the largest graph class for

which all of its graphs with odd maximum degree are of class 1 and all

of its graphs with even maximum degree are of type 1. A related ques-

tion is to determine the largest graph class for which all of its graphs

of type 2 satisfy Hilton’s condition. A necessary condition for such a

class is that its graphs with even maximum degree are of type 1. All of

the graph classes listed in Table 3.1 satisfy the total colouring conjec-

ture, but the total chromatic number has not been determined for split

graphs, indifference graphs, or 3-clique graphs.

3 Cubic graphs

Colouring is a challenging problem that models many real situations in

which the adjacencies represent conflicts. In 1880 P. G. Tait proved that

the four-colour conjecture is equivalent to the statement that every pla-

nar bridgeless cubic graph is of class 1. The search for counter-examples

to the four-colour conjecture motivated the definition of a snark, which

is a cyclically-4-edge-connected cubic graph of class 2; an example is
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the Petersen graph. The importance of these graphs arises partly from

the fact that several conjectures would have snarks as minimal counter-

examples: three of these conjectures are Tutte’s 5-flow conjecture, the

1-factor double cover conjecture, and the cycle double cover conjecture

(see Cavicchioli et al. [12]).

Let G be a graph and let A be a proper subset of V (G). We denote

by η(A) the set of edges of G with one extremity in A and the other

extremity in V − A. A subset F of edges of G is an edge-cutset if there

exists a proper subset A of V (G) for which F = η(A). If η(A) is an

edge-cutset of G of cardinality n, and if the subgraphs of G induced by

A and V − A have at least one cycle, then η(A) is said to be a c-cutset

of size n. If G has at least one c-cutset, the smallest number of edges of

a c-cutset of G is the cyclic edge-connectivity of G. A graph is cyclically

k-edge-connected if its cyclic edge-connectivity is at least k.

The name ‘snark’ was given by Martin Gardner in 1976, based on

Lewis Carroll’s poem The Hunting of the Snark, because they are hard

to find. Isaacs [26] focused his study of cubic bridgeless graphs of class 2

on snarks. Indeed, he defined two simple constructions for producing any

cubic graph with cyclic edge connectivity 2 or 3 and of class 2 from a

smaller cubic graph of class 2. From a cubic graph of class 2 containing

a square (an induced chordless cycle of length 4) we can also derive a

smaller cubic graph of class 2, but there is no associated construction. For

this reason, squares are not forbidden in our definition of snarks, unlike

those of other authors. An even more restrictive set of cubic graphs

of class 2, the c-minimal snarks (based on other constructions), was

proposed by Preissmann in 1983.

The Petersen graph is the smallest (and earliest) snark, and it is known

that there are no snarks of order 12, 14 and 16. Isaacs introduced the

dot product, an operation used for constructing infinitely many snarks,

and defined the family of ‘flower snarks’. The Blanuša snark of order

18 is the dot product of two copies of the Petersen graph, and Preiss-

mann proved that there are only two snarks of order 18. In this context,

Watkins [48] defined two families of snarks that are constructed using

the dot product of Petersen graphs, starting from the two snarks of or-

der 18. The Goldberg and Loupekhine families of snarks were introduced

in [27] and [22].

In [12] Cavicchioli et al. reported that their extensive computer study

of snarks showed that all square-free snarks with fewer than 30 vertices

are of type 1, and asked for the smallest order of a square-free snark of

type 2. Later, Brinkmann et al. [7] showed that this order is at least 38.
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The infinite families of flower snarks and Goldberg snarks have total

chromatic number 4 (see Campos et al. [8]). An infinite snark family

which includes the Loupekhine and Goldberg snarks, the Blanuša fami-

lies and two snark families constructed from the dot product of Petersen

graphs were additionally proved to be of type 1 (see Sasaki et al. [41]).

In the opposite direction, graphs of type 2 were obtained from the dot

product of cubic graphs of type 1, and several cubic graphs of type 2

were obtained by relaxing the conditions of cyclic edge-connectivity and

chromatic index. But the hunting of snarks continues:

Question 3.1 Is there a square-free snark of type 2?

4 Equitable total colourings

A total colouring is equitable if the numbers of elements of each colour

differ by at most 1, and the least integer for which a graph has an

equitable colouring is called its equitable total chromatic number. As

with total colourings, it is conjectured that the equitable total chromatic

number of a graph is at most ∆+2, and this was proved for cubic graphs

by Wang [44]. So the equitable total chromatic number of a cubic graph is

either 4 or 5, and the problem of deciding whether it is 4 is NP-complete

for bipartite cubic graphs (see Dantas et al. [18]).

Since the equitable total chromatic number of a graph cannot be less

than its total chromatic number, we deduce that if a cubic graph has

no total colouring with 4 colours, then not only does it have a total

colouring with 5 colours, but also an equitable one. On the other hand,

the equitable total chromatic number of cubic graphs of type 1 could be

either 4 or 5.

Graphs had been known whose total chromatic number is strictly less

than its equitable total chromatic number (see Fu [21]), but the first

cubic graphs of type 1 with equitable total chromatic number 5 were

described somewhat later (see [18]). Furthermore, Chen et al. [14] proved

that the chromatic number and the equitable chromatic number are

equal for all connected cubic graphs, and Wang and Zhang [47] proved

that the chromatic index and the equitable chromatic index are equal for

any graph. So it was natural to investigate the existence of cubic graphs

of type 1 with equitable total chromatic number 5. A construction that

allows us to obtain infinitely many such graphs was presented in [18]; all

of these graphs have small girth. It was also established that one infinite
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family of cubic graphs of type 1 with girth 5 all have equitable total

chromatic number 4. This motivates the following question:

Question 4.1 Is there a cubic graph of type 1 with girth greater than 4

and equitable total chromatic number 5?

For two infinite classes of cubic graphs of type 1, the ladder graphs [15]

and the Goldberg graphs [22], the oldest 4-total colourings to be de-

scribed were not equitable, but all of these graphs are now known to

have equitable total chromatic number 4 (see [18]).

In [39] Sánchez-Arroyo proved the NP-completeness of the problem

of deciding whether a bipartite cubic graph has a total colouring with

4 colours. The proof is based on a polynomial-time reduction from the

NP-complete problem of deciding whether a 4-regular graph has a 4-

edge-colouring (see [29]). The proof in [18] that the problem of deciding

whether a bipartite cubic graph has an equitable 4-total colouring is

NP-complete used a reduction from the same problem, but the gadget

used in [39] had to be modified.

Given as instance for the 4-edge-colouring problem a 4-regular graph

G, we construct as instance for the equitable 4-total colouring problem

a bipartite cubic graph GR. In the proof that a 4-regular graph G has

chromatic index 4 if and only if the constructed graph GR has equitable

total chromatic number 4, the key property was that whenever G has no

4-edge-colouring, the constructed graph GR is of type 2. It is not known

whether the problem of deciding whether a cubic graph of type 1 has an

equitable total chromatic number 4 is NP-complete.

All cubic graphs of type 2 have equitable total chromatic number 5,

and since there are examples of cubic graphs of type 1 with equitable

total chromatic number 5, we may also ask the following question:

Question 4.2 Is the problem of deciding whether a cubic graph with

equitable total chromatic number 5 is of type 1 NP-complete?

5 Vertex-elimination orders

We next consider classes of graphs defined by special vertex-elimination

orders, and we describe a simple constructive proof of the total colouring

conjecture for doubly chordal graphs, strongly chordal graphs, interval

graphs and indifference graphs.

A vertex v of a graph G is universal if deg(v) = |V (G)| − 1. If N(v)
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is the neighbourhood of v, we denote by N [v] the closed neighbourhood

N [v] = N(v) ∪ {v}, and by N (v) the family of sets {N [w] : w ∈ N [v]}.
Given a graph G, we denote by G2 the graph with V (G2) = V (G) and

for which vw ∈ E(G2) if and only if the distance between v and w in G

is at most 2.

We follow the terminology of Brandstädt et al. [6], who presented

vertex orderings as an algorithmically powerful tool. A vertex v is simple

if N (v) is linearly ordered by set inclusion, and a vertex w ∈ N [v] is a

maximum neighbour of v if N [z] ⊆ N [w], for all z ∈ N [v]. A maximum

neighbourhood elimination order of a graph G is a linear order on its

vertex-set {v1, v2, . . . , vn}, for which there is a maximum neighbour wi

of vi in G[v1, v2, . . . , vi].

A vertex v is simplicial if N [v] is complete. A perfect elimination order

of a graph G is a linear order on its vertex-set {v1, v2, . . . , vn} for which

vi is simplicial in G[v1, v2, . . . , vi]. A graph is chordal if it admits a perfect

elimination order.

A simple elimination order of a graph G is a linear order on its vertex-

set {v1, v2, . . . , vn} for which vi is simple in G[v1, v2, . . . , vi]. A vertex is

doubly simplicial if it is simplicial and has a maximum neighbour. A dou-

bly perfect elimination order of a graph G is a linear order on its vertex-

set {v1, v2, . . . , vn} for which vi is doubly simplicial in G[v1, v2, . . . , vi].

A graph is strongly chordal if it admits a simple elimination order, and

a graph is doubly chordal if it admits a doubly perfect elimination order.

Strongly chordal graphs are additionally characterised by strong perfect

elimination orders, and the characterisation implies that every strongly

chordal graph is doubly chordal.

A graph is dually chordal if it admits a maximum neighbourhood elim-

ination order. The word ‘dually’ refers to a duality to chordal graphs

justified by the following characterisation: a graph G has a maximum

neighbourhood order if and only if its clique hypergraph C(G) forms

a hypertree (see Szwarcfiter and Bornstein [42]). Recognition of dually

chordal graphs can be done inO(n2m)-time. However, as described in [5],

dually chordal graphs can be shown to be recognisable in linear time,

by using maximum neighbourhood elimination orders. Maximum neigh-

bourhood orders are algorithmically useful, especially for domination-

like problems and distance problems (see [4], [5]). For a dually chordal

graph, a maximum neighbourhood order can be computed in linear time.

Note that, unlike chordal graphs, dually chordal graphs are not per-

fect: every graph that contains a universal vertex is dually chordal. In

addition, a graph is doubly chordal if and only if it is chordal and du-
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ally chordal. A graph is strongly chordal if and only if all of its induced

subgraphs are dually chordal (see [6]).

The greedy algorithm for vertex-colouring examines the vertices of a

graph according to a linear order, and then assigns to the current vertex

the smallest available colour that creates no conflicts. A perfect order

is a linear order on the vertex-set of a graph for which the greedy al-

gorithm colours optimally all the vertices of its induced subgraphs (see

Chvátal [16]). Every chordal graph admits a perfect order because every

perfect elimination order is a perfect order.

In [20], vertex-elimination orders are related to edge and total colour-

ings through the definition of a special homomorphism. If G and G′ are

graphs, then a pullback from G to G′ is a function f : V (G) → V (G′),

for which:

• f is a homomorphism: if vw ∈ E(G), then f(v)f(w) ∈ E(G′);

• f is injective when restricted to N(v), for all v ∈ V (G).

The main use of pullbacks is to transfer colourings, as shown by

Figueiredo, Meidanis and Mello [20] in the following theorems:

Theorem 5.1 If f is a pullback from G to G′, and if τ ′ is a total-

colouring of G′, then the colour assignment τ defined by

τ(v) = τ ′(f(v)) and τ(vw) = τ ′(f(v)f(w))

is a total colouring of G.

Theorem 5.2 There is a pullback from G to K` if and only if χ(G2) ≤
`.

Corollary 5.1 If χ(G2) ≤ `, then χT (G) ≤ ` if ` is odd, and χT (G) ≤
`+ 1 if ` is even.

A maximum neighbourhood elimination order of a dually chordal

graph G can be used to colour the vertices of G2 greedily with ∆(G) + 1

colours. This optimal vertex colouring of G2 is then used to give a simple

constructive proof of the total colour conjecture and of Vizing’s theorem

for the class of dually chordal graphs (see [20]).

Theorem 5.3 If G is dually chordal, then χ(G2) ≤ ∆(G) + 1.

To prove Theorem 5.3 we let v1, v2, . . . , vn be a maximum neighbour-

hood elimination order of G. Let Gi = G[v1, v2, . . . , vi] be the subgraph

induced by {v1, v2, . . . , vi} and let Ni[v] be the closed neighbourhood

of v in Gi. Let wi be a maximum neighbour of vi in Gi. By definition,
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Ni[z] ⊆ Ni[wi], for all z ∈ Ni[vi], and so there are at most ∆(G) + 1

vertices in the family of sets Ni(vi) = {Ni[z] : z ∈ Ni[vi]}. Thus, given a

maximum neighborhood order of G, the greedy algorithm uses at most

∆(G) + 1 colours to colour the vertices of G2.

Corollary 5.2 Let G be a dually chordal graph. Then χT (G) ≤ ∆(G)+

2. Moreover, if ∆(G) is even then G is of type 1, and if ∆(G) is odd

then G is of class 1. In particular, these properties hold if G is doubly

chordal, strongly chordal or an interval graph.

Figueiredo, Meidanis, and Mello [20] have given an example of a

chordal graph G satisfying χ(G2) > ∆(G) + 1; this shows that The-

orem 5.3 does not hold for arbitrary chordal graphs. Golumbic [23] has

given an alternative proof that the total colouring conjecture holds for

rooted path graphs.

6 Decomposition

We next describe a decomposition technique for total colouring struc-

tured graph classes. Recall that, given a graph G and a set of ver-

tices X ⊂ V (G), we say that X is a cutset of G if the induced sub-

graph G \ X = G[V (G) \ X] is disconnected. If |X| = n, then X is

an n-cutset. If the connected components of G \X are H1, H2, . . . ,Hk,

then we say that the induced subgraphs G1 = G[V (H1) ∪ X], G2 =

G[V (H2) ∪ X], . . . , Gk = G[V (Hk) ∪ X] are the X-components of G.

The concept of a block is more general (see [43]) and the blocks of de-

composition of a graph G by a set of vertices X ⊂ V (G) are here the

X-components of G. The main goal of decomposing a graph G is to

try to solve a problem for G by combining the solutions for its blocks.

Here we obtain a (∆(G) + 1)-total colouring of G from (∆(G) + 1)-total

colourings of its blocks.

A well-studied decomposition for the vertex-colouring problem is one

based on clique cutsets – that is, cutsets that are cliques. We say that X

is a clique n-cutset of G if X is a clique on n vertices and also a cutset of

G. If X is a clique cutset of a graph G, and if optimum vertex-colourings

are known for each block, we can immediately combine those colourings

into an optimum vertex-colouring of G. More precisely, we interchange

the colours of the vertices in each X-component in such a way that the

colours of the vertices in X agree.

For the total colouring problem, if a clique cutset X has exactly one
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vertex v, then we can combine (∆(G) + 1)-total colourings of the blocks

of decomposition into a (∆(G) + 1)-total colouring of the original graph

G: we simply (∆(G) + 1)-total colour each X-component in such a way

that the colour of v is the same and the colours of its incident edges are

all different. In fact, when we total colour graph classes that are closed

under decompositions by 1-cutsets, we may assume that the graphs are

2-connected.

If |X| ≥ 2, however, there is no such well-behaved result. In [33], there

is an example in which G has maximum degree 3 and X is a clique 2-

cutset, yielding X-components G1 and G2, where G2 is a 4-cycle. The

key property, already established by Sánchez-Arroyo [39], is that for

the blocks G1 and G2, the two edges incident to the clique 2-cutset

in any 4-total colouring of G1 have the same colour. So if G is total

colourable with 4 colours, then the 4-cycle G2 has such a total colouring

in which the free colours of two consecutive vertices in the cycle are the

same, and this is not possible. So both X-components of G are total

colourable with 4 colours, but the graph G has no such total colouring.

Similar examples can be constructed for graphs of larger degrees, and

this motivates us to investigate conditions under which we can combine

total colourings around a clique cutset. Machado and Figueiredo [33]

have presented applications of the decomposition by clique 2-cutsets to

the total colouring problem.

Next, we consider grids. If m,n ≥ 1, then a grid is a graph that

is isomorphic to Gm×n with vertex-set V (Gm×n) = {1, 2, . . . ,m} ×
{1, 2, . . . , n} and edge-set E(Gm×n) = {(i, j)(k, l) : |i− k|+ |j − l| = 1,

(i, j), (k, l) ∈ V (Gm×n)}. A partial grid is an arbitrary subgraph of a

grid, and these are harder to work with than grids; for instance, the

recognition of grids is a polynomial problem, whereas the problem is

NP-complete for partial grids. The total colouring of partial grids has

proved to be a challenging problem. Whereas the partial grids of max-

imum degree 1, 2 or 4 can be coloured by applying the total colouring

results for grids and cycles, the case of maximum degree 3 remains in-

complete (see Campos and Mello [11]). The last step towards a complete

classification of partial grids is to consider the remaining subcases of

maximum degree 3.

A graph is c-chordal if it has no induced cycle of size larger than c (see

[17]). The decomposition by clique 2-cutsets provides a method for total

colouring subclasses of partial grids for which there is a bound on the

size of the maximum induced cycle. The applicability of the proposed

decomposition arises from the fact that, for fixed c, the set of basic
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graphs with respect to the decomposition of c-chordal partial grids by

clique 2-cutsets is finite. As a consequence, we can deduce that the task

of determining the total chromatic number of c-chordal partial grids

of maximum degree 3 is reduced to that of exhibiting suitable 4-total-

colourings of a finite number of graphs. Because the basic blocks having

a 4-total colouring is not sufficient for the whole graph to be 4-total

colourable, a stronger colouring property for the basic blocks, called a

frontier-colouring, has been defined, and the total chromatic number of

8-chordal partial grids has been determined (see [33]).

Theorem 6.1 Every 8-chordal partial grid of maximum degree 3 is of

type 1.

7 Complexity separation

The book Computers and Intractability, A Guide to the Theory of NP-

completeness, by Michael R. Garey and David S. Johnson, was pub-

lished in 1979, and despite its age, it is considered by the computa-

tional complexity community as the single most important book, just

as NP-completeness is considered the single most important concept to

come out of theoretical computer science. The popularity of the NP-

completeness concept and of its guidebook increased when the P = NP

problem was selected by the Clay Mathematics Institute as one of the

seven Millennium Problems to motivate research on important classic

questions that have resisted solution over the years. The book was fol-

lowed by the NP-completeness column, published by David S. Johnson in

the Journal of Algorithms and in the ACM Transactions on Algorithms

from 1981 to 2007.

The idea of a separating problem – a problem with distinct complexi-

ties when restricted to distinct classes – was investigated by Johnson in

his NP-completeness column of 1985, and has appeared in many papers

on algorithmic graph theory; for example, vertex-colouring is a separat-

ing problem for planar graphs (which is NP-complete) and its subclass

of series-parallel graphs (which is polynomial). It is surprising that, for

most classes proposed by Johnson, the complexities of edge-colouring

and total colouring remain open.

Given a class G of graphs and a graph decision problem ϕ belonging

to NP, we say that a full complexity dichotomy of G is obtained if we

can partition G into G1,G2, . . . in such a way that ϕ is classified as
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polynomial or NP-complete when restricted to each Gi. The concept of

full complexity dichotomy is particularly interesting for the investigation

of NP-complete problems because, as we partition a class G into NP-

complete subclasses and polynomial subclasses, it becomes clearer why

the problem is NP-complete in G. Clearly, if a problem is polynomial in

G, then any partition of G determines polynomial subclasses, and if a

problem is NP-complete in G then any finite partition of G determines

at least one NP-complete subclass.

Another useful tool for the complexity analysis of such problems is

the idea of a separating class, a concept that is dual to the idea of

Johnson’s separating problem. A class G of graphs is a separating class

for problems ϕ1 and ϕ2 if ϕ1 is NP-complete when restricted to G and

ϕ2 is polynomial when restricted to G, or vice versa. The usefulness of a

separating class is that it illustrates how the same structure can define

both a polynomial problem and an NP-complete problem.

A graph is unichord-free if it contains no cycle with a unique chord

as an induced subgraph. The class of unichord-free graphs was recently

investigated in a series of papers (see [36], [31] and [43]) and has proved

to be useful for the study of the complexity of colouring problems. In

particular, several surprising complexity dichotomies have been found

in subclasses of unichord-free graphs. We discuss some results based on

the concept of a separating class, and we describe the class of bipartite

unichord-free graphs as a final missing separating class with respect to

edge-colouring and total colouring problems (see [32]).

Determining the complexity of edge-colouring and total colouring is

challenging, in the sense that both problems are NP-complete and re-

strictions to very few classes are known to be polynomial. We consider

separating classes for both problems and observe that it is quite easy to

construct artificial separating classes for them. Consider the classes

Gk = {G : ∆(G) = k and ω(G) = ∆(G) + 1}

for k ≥ 3, where ∆(G) is the maximum degree in G and ω(G) is the size

of a maximum clique of G. When k is even, each Gk is a separating class

where edge-colouring is polynomial and total colouring is NP-complete.

When k is odd, each Gk is a separating class where edge-colouring is

NP-complete and total colouring is polynomial. However, such classes

are not very interesting, in the sense that the polynomiality of either

problem does not arise from any nice structural property, but simply

from the fact that a large clique always forces a negative answer. Such

a situation is analogous to the one that led to the definition of a perfect
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graph G, where every induced subgraph G′ of G satisfies χ(G′) = ω(G′).

This avoids the occurrence of uninteresting graph classes such as the

ones that contain large cliques. In this sense, the separating classes that

we should consider for colouring problems should be closed under taking

induced subgraphs; they are often referred to as hereditary classes.

Unichord-free graphs have recently attracted great interest because

their rich structure has led to interesting and surprising results on the

complexity of colouring problems. The class of unichord-free graphs is

closed under taking induced subgraphs, and so is interesting in the

context of separating classes. We state the main results on colouring

unichord-free graphs:

• edge-colouring and total colouring, when restricted to unichord-free

graphs, are NP-complete problems ([36], [31]);

• edge-colouring, when restricted to square-free unichord-free graphs

with maximum degree 3, is NP-complete [36];

• every non-complete square-free unichord-free graph with maximum

degree at least 4 is of class 1 [36];

• every non-complete square-free unichord-free graph with maximum

degree at least 3 is of type 1 ([31], [35]);

• every chordless graph G (a unichord-free graph for which every cycle

is induced) with ∆(G) ≥ 3 is of class 1 and of type 1 [34].

The second of these observations yields a full complexity dichotomy

of the class of square-free unichord-free graphs with respect to the edge-

colouring problem. The partition of the class of square-free unichord-

free graphs is constructed according to the maximum degree, and the

complexity dichotomy is particularly surprising, so far unmatched in the

literature: just one part (the part of unichord-free graphs with maximum

degree 3) is NP-complete. In all other parts, the problem is polynomial.

We observe, additionally, that the class of square-free unichord-free

graphs is a separating class for edge-colouring and total colouring prob-

lems. Whereas it was not the earliest separating class in the literature

(the class of bipartite graphs was one such example), it was the first

one for which edge-colouring is harder than total colouring. The unex-

pectedness of such a result arises from the fact that total colouring is

traditionally viewed as a problem that is harder than edge-colouring. The

NP-completeness proof for total colouring [37] is a reduction from edge-

colouring, and most classes investigated in the context of total colouring

are classes for which edge-colouring is well understood (see [11] and [49]).
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The above results motivate the search for a subclass where edge-

colouring is polynomial and total colouring is NP-complete. It was shown

in [32] that the class of bipartite unichord-free graphs is such a separat-

ing class. An additional motivation is that because total colouring is

NP-complete for bipartite graphs and unichord-free graphs, it is natural

to consider the intersection of the two classes (see Table 3.2).

We note, and should further investigate, why some of the dichotomies

are not just ‘polynomial vs NP-complete’, but actually ‘constant time

vs NP-complete’; such problems can be either trivial or very hard.

class \ problem edge-colouring total colouring

unichord-free NP-complete [36] NP-complete [31]
chordless polynomial [34] polynomial [34]

{square,unichord}-free NP-complete [36] polynomial [35]
bipartite unichord-free polynomial NP-complete [32]

Table 3.2 The computational complexity of colouring problems

restricted to subclasses of unichord-free graphs.

8 Concluding remarks and conjectures

The complexity of the total colouring problem remains unknown for sev-

eral important and well-studied graph classes. One example is the class

of partial grids, considered in Section 6, which are arbitrary subgraphs

of grids. The total colouring conjecture clearly holds for this subclass

of bipartite graphs. When the maximum degree is 1, 2 or 4, a partial

grid can be optimally total coloured as a path-graph, a cycle graph or a

grid, but when the maximum degree is 3, the only partial grids for which

the total chromatic number has been determined are of type 1 (see [11]

and [33]).

Question 8.1 Are all partial grids with maximum degree 3 of type 1?

The complexity of total colouring planar graphs is unknown – in

fact, even the total colouring conjecture is not yet settled for this class

(see [45]). The total colouring conjecture was proved for planar graphs

with maximum degree at least 7 in [40]; the total chromatic number
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was determined for planar graphs with large girth in [3], and with max-

imum degree greater than 11 in [2]. Zhongfu et al. [50] have shown that

outerplanar graphs with maximum degree at least 3 are of type 1.

The total colouring conjecture has not yet been proved for regular

graphs. A power of a cycle Ck
n (for k ≥ 1) is a simple graph with V (G) =

{v0, v1, . . . , vn−1} and vivj ∈ E(G) if and only if min{j − i, i − j(mod

n)} ≤ k. Note that C1
n is the induced cycle Cn on n vertices, and for n ≤

2k+ 1 Ck
n is the complete graph Kn on n vertices. Powers of cycles were

considered by Campos e Mello [10], who showed that powers of cycles

Ck
n with n even and 2 < k < n/2 satisfy the total colouring conjecture

by exhibiting a polynomially constructed (∆(G) + 2)-total colouring for

these graphs. The total chromatic number has been determined for some

powers of cycles, but the total colouring conjecture has not been settled

for them.

In Section 5 we considered perfect elimination orders, which have been

used to characterise chordal graphs and to develop efficient algorithms

for the recognition and vertex-colouring of chordal graphs, but we have

been unable to use perfect elimination orders to totally colour chordal

graphs.

Question 8.2 Are all chordal graphs with even maximum degree of

type 1?

In Section 6 we considered the decomposition of graphs by clique

cutsets, and gave an example of a graph of type 2 for which the two

blocks arising from a clique cutset are of type 1. Clique cutsets have been

used to characterise chordal graphs and to develop efficient algorithms

for the recognition and vertex-colouring of chordal graphs, but so far we

have been unable to use clique cutsets to totally colour chordal graphs.

In Section 7 we considered separating problem complexity, as pro-

posed by D. S. Johnson, and the dual concept of a separating graph

class. It is surprising that, for most of the classes that he proposed

in 1985, the complexity of edge-colouring remains challengingly open.

By studying separating graph classes with respect to vertex-colourings,

edge-colourings, and total colourings, we may better understand the

complexity of the challenging total colouring problem. We invite the

reader to consider edge-colourings and total colourings for the classes of

split graphs, cographs, and proper interval graphs.
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